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Abstract In this paper, we investigate the correlation and ergodic properties of the squared
envelope of a class of autocorrelation-ergodic (AE) sum-of-cisoids (SOC) simulation models
for mobile Rayleigh fading channels. Novel closed-form expressions are presented for both
the ensemble and the time autocorrelation functions (ACFs) of the SOC simulation model’s
squared envelope. These expressions have been derived by assuming that the SOC model’s
inphase and quadrature (IQ) components have arbitrary autocorrelation and cross-correlation
properties. This consideration makes the results herein presented more general than those
given previously in other papers, where it is assumed that the IQ components of the simulation
model are strictly uncorrelated. We show that under certain conditions, the squared envelope
of the SOC model is an AE random process. In addition, we evaluate the performance of three
fundamental methods for the computation of the model parameters—namely the generalized
method of equal areas, the Lp-norm method, and the Riemann sum method—regarding their
accuracy for emulating the squared envelope ACF of a reference narrowband Rayleigh fad-
ing channel model. The obtained results are important to design efficient simulators for the
performance analysis of systems and algorithms sensitive to the correlation properties of the
channel’s squared envelope, such as speed estimators and handover mechanisms.
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1 Introduction

Simulation models based on a finite sum of complex sinusoids (cisoids) have widely been
used as a basis for the design of efficient mobile fading channel simulators, e.g., see [1–
7]. Applications of sum-of-cisoids (SOC) models span from the simulation of narrowband
single-input single-output (SISO) channels [1–3], to the development of narrowband [4,5]
and wideband [6,7] multiple-input multiple-output (MIMO) fading channel simulators. SOC
simulators belong to a special class of simulation models built upon the sum-of-sinusoids
(SOS) principle introduced by Rice in [8] and [9]. Roughly speaking, the difference between
SOC models and conventional SOS models is that the former models are able to generate
complex-valued waveforms with inphase and quadrature (IQ) components having specified
autocorrelation and cross-correlation properties [10, Ch. 3]. The latter models, on the other
hand, are designed to generate complex-valued waveforms with uncorrelated IQ components
[11,12]. Conventional SOS models are therefore limited to the simulation of fading channels
characterized by symmetrical Doppler power spectral densities (DPSDs), while SOC models
can be applied to the simulation of fading channels having both symmetrical and asymmet-
rical DPSDs [10]. This is a noteworthy characteristic of the SOC models, as it has been
observed from measured data that the DPSD of real-world channels is in general asymmetri-
cal [13,14]. We refer the reader to [10,15] and [16] for further information on the differences
between SOC models and SOS models.

Based on the random or deterministic nature of the cisoids’ parameters—gains, Doppler
frequencies, and phases, we can identify eight fundamental classes of SOC simulation mod-
els [15]: Seven classes of stochastic SOC models and one class of deterministic SOC models.
Among the seven classes of stochastic SOC models, only the class comprising cisoids with
constant gains, constant frequencies, and random phases enables the design of autocorrela-
tion-ergodic (AE) channel simulators. The AE property is highly convenient, as it allows
to efficiently approximate the channel’s autocorrelation function (ACF) without the need of
averaging across simulation runs.

Some important statistical properties of AE SOC simulators for Rayleigh fading channels
have been studied in [16] and [17]. The autocorrelation and spectral characteristics of the
underlying SOC model as well as the probability density functions (PDFs) of its envelope and
phase are analyzed in [16]. The level-crossing rate (LCR) and the average duration of fades
(ADF) of the model’s envelope are investigated in [17]. Nevertheless, the correlation proper-
ties of the squared envelope of AE SOC simulation models have not been studied so far. The
squared envelope ACF of the channel gives insights into the instantaneous signal-to-noise
ratio (ISNR) fluctuations produced by noisy-fading channels [18, p. 129]. This statistical
function exerts a strong influence on the performance of several systems and algorithms for
mobile communications, such as speed estimators [19,20] and handover mechanisms [21].
Closing the above mentioned gap is therefore necessary to carry out a reliable laboratory
analysis of wireless communication systems sensitive to ISNR fluctuations. It is the aim of
this paper to shed some light on the correlation properties of the squared envelope of AE
SOC simulators for mobile Rayleigh fading channels.

The contributions of this paper are threefold. Firstly, novel closed-form expressions are
presented for the ensemble ACF and the time ACF (TACF) of the SOC simulation model’s
squared envelope. These expressions have been derived by assuming that the model’s IQ
components have arbitrary autocorrelation and cross-correlation properties. The obtained
expressions are therefore more general than those presented in other papers, where the squared
envelope ACF of conventional SOS models is investigated, such as in [11]. Secondly, the
ergodic properties of the squared envelope of AE SOC models are studied in this paper for
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the first time. Finally, we analyze the performance of three fundamental methods for the
computation of the SOC model parameters—namely the generalized method of equal areas
(GMEA) [1], the L p-norm method (LPNM) [6], and the Riemann sum method (RSM) [2]—
with respect to their accuracy in emulating the squared envelope ACF of the reference model.
Such an analysis had not been made before.

The outline of the paper is as follows. In Sect. 2, we review some relevant statistical
properties of a Rayleigh fading channel model that we have adopted as reference model for
this research work. In Sect. 3, we analyze the correlation characteristics of the squared enve-
lope of an AE SOC model that is well suited for the simulation of the reference model. In
Sect. 4, we evaluate the performance of the parameter computation methods. We present our
conclusions in Sect. 5. According to conventions, we will denote stochastic processes and
random variables by bold symbols and letters, while constants and deterministic processes
will be denoted by plain symbols and letters.

2 The Reference Model

The complex envelope of our reference narrowband Rayleigh fading channel model is
mathematically represented in the equivalent baseband by a complex Gaussian random
process

μμμ(t) = μμμI (t) + jμμμQ(t), j �
√−1 (1)

where μμμI (t) and μμμQ(t) are stationary zero-mean real-valued Gaussian processes, each with
variance σ 2

μμμ/2. In line with the 2D scattering model proposed by Clarke [22], we define the
random processes in (1) such that their ACFs and cross-correlation functions (CCFs) satisfy
the equations [10, Sec. 2.3.1]:

rμμμIμμμI (τ ) = rμμμQμμμQ (τ ) = σ 2
μμμ

π∫

0

gααα(α) cos(2π fmax cos(α)τ)dα (2)

rμμμIμμμQ (τ ) = −rμμμQμμμI (τ ) = σ 2
μμμ

π∫

0

gααα(α) sin(2π fmax cos(α)τ)dα (3)

rμμμμμμ(τ) = 2 [rμμμIμμμI (τ ) + jrμμμIμμμQ (τ )] = 2 σ 2
μμμ

π∫

0

gααα(α) exp( j2π fmax cos(α)τ)dα (4)

where rxxxyyy(τ ) � E{xxx∗(t) yyy(t + τ)}, with xxx(t) and yyy(t) denoting two arbitrary random pro-
cesses. The operators E{·} and (·)∗ indicate statistical expectation and complex conjugate,
respectively. In (2)–(4), fmax designates the maximum Doppler shift and gααα(α) � [pααα(α) +
pααα(−α)]/2 is the even part of the PDF pααα(α) characterizing the angle-of-arrival (AOA)
statistics of the channel. One may observe from (2)–(4) that if the IQ components of μμμ(t)
are uncorrelated, meaning that rμμμIμμμQ (τ ) = rμμμQμμμI (τ ) = 0, then the reference model’s ACF
rμμμμμμ(τ) is a real-valued even function. On the other hand, if μμμI (t) and μμμQ(t) are mutually
correlated, then rμμμμμμ(τ) is a complex-valued Hermitian symmetric function. Based on the
properties of the Fourier transform [23, Sec. 3.6], we can further observe that if μμμI (t) and
μμμQ(t) are uncorrelated, then the channel’s DPSD Sμμμμμμ( f ) �

∫∞
−∞ rμμμμμμ(τ) exp{− j2π f τ }dτ

is real-valued and symmetrical with respect to the origin. Otherwise, if the IQ components
of μμμ(t) are cross-correlated, then the DPSD Sμμμμμμ( f ) is real-valued and asymmetrical.
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Regarding the squared envelope ζζζ 2(t) � |μμμ(t)|2 of the reference model, it is shown in [10,
Sec. 2.4.3] that ζζζ 2(t) is a wide-sense stationary (WSS) process with mean E{ζζζ 2(t)} = σ 2

μμμ

and ACF given as

rζζζ 2ζζζ 2(τ ) = σ 4
μμμ + ∣∣rμμμμμμ(τ)

∣∣2 . (5)

The notation | · | stands for the complex absolute value operator.

3 The SOC Simulation Model

3.1 The Stochastic SOC Simulation Model

The AE SOC simulation model under analysis is characterized by a random process of the
form

μ̂̂μ̂μ(t) =
N∑

n=1

ĉn exp
{

j (2π f̂n t + θ̂̂θ̂θn)
}

. (6)

The random phases θ̂̂θ̂θn are assumed to be mutually independent and uniformly distributed
over [−π, π), the gains ĉn satisfy

∑N
n=1 ĉ2

n = σ 2
μμμ, and the Doppler frequencies f̂n are defined

as f̂n � fmax cos(α̂n), α̂n ∈ [−π, π), n = 1, 2, . . . , N . Numerical results presented in [1,2],
and [16] indicate that the correlation properties, the spectral characteristics, and the PDFs
of the envelope and phase of the reference model with given correlation properties can effi-
ciently be approximated by means of the SOC model defined in (6). Some important first-
and second-order statistics of μ̂̂μ̂μ(t) have been analyzed in [16,17]. For the purposes of this
paper, it is only relevant to know that if the Doppler frequencies f̂n satisfy the inequalities

f̂n �= 0, ∀n (7a)

f̂n �= f̂m, n �= m (7b)

then μ̂̂μ̂μ(t) is a zero-mean WSS process with variance σ 2
μμμ for which the correlation properties

can be summarized as [16]:

rμ̂̂μ̂μI μ̂̂μ̂μI
(τ ) = rμ̂̂μ̂μQμ̂̂μ̂μQ

(τ ) =
N∑

n=1

ĉ2
n

2
cos
(

2π f̂nτ
)

(8)

rμ̂̂μ̂μI μ̂̂μ̂μQ
(τ ) = −rμ̂̂μ̂μQμ̂̂μ̂μI

(τ ) =
N∑

n=1

ĉ2
n

2
sin
(

2π f̂nτ
)

(9)

rμ̂̂μ̂μμ̂̂μ̂μ(τ ) = 2
[
rμ̂̂μ̂μI μ̂̂μ̂μI

(τ ) + jrμ̂̂μ̂μI μ̂̂μ̂μQ
(τ )
]

=
N∑

n=1

ĉ2
n exp

{
j2π f̂nτ

}
. (10)

In the previous equations, μ̂̂μ̂μI (t) = �{μ̂̂μ̂μ(t)} and μ̂̂μ̂μQ(t) = 	{μ̂̂μ̂μ(t)} are the IQ components of
μ̂̂μ̂μ(t). The operators �{·} and 	{·} denote the real and the imaginary parts of a complex-valued
process, respectively.

For a proper simulation of fading channels characterized by symmetrical DPSDs, the
SOC model in (6) has to be parameterized in such a way that its IQ components are mutually
uncorrelated, implying that rμ̂̂μ̂μI μ̂̂μ̂μQ

(τ ) = rμ̂̂μ̂μQμ̂̂μ̂μI
(τ ) = 0. Assuming the fulfillment of the

inequalities in (7), we can deduce from (9) that the random processes μ̂̂μ̂μI (t) and μ̂̂μ̂μQ(t) are
uncorrelated if and only if (iff):
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Condition 1 The number of cisoids N is even, and for each pair of parameters (ĉn, f̂n), there
exists one and only one pair (ĉm, f̂m), such that ĉn = ĉm and f̂n = − f̂m hold for n �= m and
n = 1, 2, . . . , N .

The previous condition has a strong influence on the TACF of the simulation model’s squared
envelope, as will be shown in Sect. 3.4. Before we proceed to study this influence, let us ana-
lyze first the ensemble ACF of the stochastic SOC simulation model’s squared envelope
ζ̂̂ζ̂ζ 2(t) � |μ̂̂μ̂μ(t)|2.

3.2 The Ensemble ACF of the SOC Model’s Squared Envelope

Starting from the definition of the ACF r
ζ̂̂ζ̂ζ 2ζ̂̂ζ̂ζ 2(τ ) of ζ̂̂ζ̂ζ 2(t) and using (6), we have

r
ζ̂̂ζ̂ζ 2ζ̂̂ζ̂ζ 2(τ ) = E{|μ̂̂μ̂μ(t)|2|μ̂̂μ̂μ(t + τ)|2}

=
N∑

l=1

N∑
m=1

N∑
n=1

N∑
p=1

ĉl ĉm ĉn ĉp exp
{

j2π( f̂l − f̂m)t
}

× exp
{

j2π( f̂n − f̂ p)(t + τ)
}

E
{

exp
{

j (θ̂̂θ̂θ l − θ̂̂θ̂θm + θ̂̂θ̂θn − θ̂̂θ̂θ p)
}}

. (11)

Since the random phases θ̂̂θ̂θn are mutually independent and uniformly distributed over
[−π, π), the expectation in (11) is different from zero only if: l = m = n = p; l =
m, n = p, l �= n; and l = p, m = n, l �= m. Bearing this in mind, we obtain

r
ζ̂̂ζ̂ζ 2ζ̂̂ζ̂ζ 2(τ ) =

N∑
l=1

ĉ4
l

︸ ︷︷ ︸
Case: l=m=n=p

+
N∑

m=1

N∑
n=1
n �=m

ĉ2
mĉ2

n

︸ ︷︷ ︸
Case: l=m, n=p, l �=n

+
N∑

p=1

N∑
q=1
q �=p

ĉ2
p ĉ2

q exp
{
− j2π f̂ pτ

}
exp

{
j2π f̂qτ

}

︸ ︷︷ ︸
Case: l=p, m=n, l �=m

. (12)

The previous result can be rearranged as follows

r
ζ̂̂ζ̂ζ 2ζ̂̂ζ̂ζ 2(τ ) =

[
N∑

m=1

ĉ2
m

]2

−
N∑

n=1

ĉ4
n +

N∑
p=1

N∑
q=1

ĉ2
p ĉ2

q exp{− j2π f̂ pτ } exp{ j2π f̂qτ }. (13)

Since the cisoids’ gains ĉn satisfy the condition
∑N

n=1 ĉ2
n = σ 2

μμμ, and given that rμ̂̂μ̂μμ̂̂μ̂μ(τ ) =∑N
n=1 ĉ2

n · exp{ j2π f̂nτ } [see (10)], we can finally write

r
ζ̂̂ζ̂ζ 2ζ̂̂ζ̂ζ 2(τ ) = σ 4

μμμ + |rμ̂̂μ̂μμ̂̂μ̂μ(τ )|2 −
N∑

n=1

ĉ4
n . (14)

One can easily verify that the mean value of ζ̂̂ζ̂ζ 2(t) is equal to E{ζ̂̂ζ̂ζ 2(t)} = σ 2
μμμ. Thus, we can

conclude that ζ̂̂ζ̂ζ 2(t) is a WSS process because its mean value is constant over time and its
ACF r

ζ̂̂ζ̂ζ 2ζ̂̂ζ̂ζ 2(τ ) is time-shift insensitive.
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By comparing (14) with (5), we can observe that to accurately emulate the squared enve-
lope ACF rζζζ 2ζζζ 2(τ ) of the reference model, the SOC model in (6) has to be parameterized in

such a way that rμ̂̂μ̂μμ̂̂μ̂μ(τ ) ≈ rμμμμμμ(τ) and
∑N

n=1 ĉ4
n ≈ 0. Several different parameter computation

methods that render a good approximation to rμμμμμμ(τ) have been proposed in the literature,
e.g., those described in [1] and [2]. However, none of the existing methods is designed to
minimize the factor

∑N
n=1 ĉ4

n . To ensure that this factor is negligible, a large number of
cisoids, say N ≥ 50, has to be considered.

3.3 The Deterministic SOC Simulation Model

In practice, the simulation of the reference model is performed by generating sample func-
tions of μ̂̂μ̂μ(t). The output of the simulator can therefore be represented by a deterministic
process having the form

μ̂(k)(t) =
N∑

n=1

ĉn exp
{

j
(
2π f̂n t + θ̂ (k)

n

)}
(15)

where k is a positive integer and θ̂
(k)
n is the outcome of θ̂̂θ̂θn associated to the kth sample func-

tion of μ̂̂μ̂μ(t). The time characteristics1 of μ̂(k)(t) are investigated in [10, Sec. 3.4.3]. Here, it
is only important to know that if the inequalities in (7) hold, then the TACF of μ̂(k)(t) can
be expressed as

rμ̂(k)μ̂(k) (τ ) =
N∑

n=1

ĉn exp
{

j2π f̂nτ
}

, ∀k (16)

where rxy(τ ) � 〈x∗(t)y(t + τ)〉, with x(t) and y(t) denoting two arbitrary functions of time.
Notice that the TACF rμ̂(k)μ̂(k) (τ ) of any sample function μ̂(k)(t) is equal to the ensemble
ACF rμ̂̂μ̂μμ̂̂μ̂μ(τ ) [cf. (16) and (10)].

3.4 The TACF of the SOC Model’s Squared Envelope

With respect to the TACF r
ζ̂ (k)2 ζ̂ (k)2 (τ ) of the sample functions ζ̂ (k)2

(t) of ζ̂̂ζ̂ζ 2(t), we have

r
ζ̂ (k)2 ζ̂ (k)2 (τ ) =

〈
|μ̂(k)(t)|2|μ̂(k)(t + τ)|2

〉

=
N∑

l=1

N∑
m=1

N∑
n=1

N∑
p=1

ĉl ĉm ĉn ĉp exp
{

j2π( f̂n − f̂ p)τ
}

× exp
{

j (θ̂l − θ̂m + θ̂n − θ̂p)
}

× lim
T →∞

1

2T

T∫

−T

exp
{

j2π( f̂l − f̂m + f̂n − f̂ p)t
}

dt. (17)

In order to find a compact closed-form expression for r
ζ̂ (k)2 ζ̂ (k)2 (τ ), we will assume that in

addition to the inequalities in (7), the following condition is met:

1 The time average of a function x(t) is denoted by 〈x(t)〉 and defined as 〈x(t)〉 � lim
T →∞

1
2T

∫ T
−T x(t)dt .
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Condition 2 If N ≥ 4, then the Doppler frequencies f̂n are pair-wise different in the sense
that:

f̂l + f̂n = f̂m + f̂ p, iff

⎧⎨
⎩

l = m = n = p;
or l = m, n = p, l �= n;
or l = p, m = n, l �= m.

(18)

Under such conditions, the integral in (17) is different from zero only if: l = m = n =
p; l = m, n = p, l �= n; and l = p, m = n, l �= m. By solving (17) for these three cases, we
find that [cf. (12)]:

r
ζ̂ (k)2 ζ̂ (k)2 (τ ) =

N∑
l=1

ĉ4
l +

N∑
m=1

N∑
n=1
n �=m

ĉ2
mĉ2

n +
N∑

p=1

N∑
q=1
q �=p

ĉ2
p ĉ2

q exp
{
− j2π f̂ pτ

}
exp

{
j2π f̂qτ

}

= σ 4
μμμ + ∣∣rμ̂(k)μ̂(k) (τ )

∣∣2 −
N∑

n=1

ĉ4
n . (19)

Note that the results presented in (19) and (14) are equal, as rμ̂(k)μ̂(k) (τ ) = rμ̂̂μ̂μμ̂̂μ̂μ(τ )∀k.
We pointed out in Sect. 3.1 that the IQ components of μ̂̂μ̂μ(t) are mutually uncorrelated iff

the Doppler frequencies f̂n and the gains ĉn satisfy Condition 1. For such a particular case, the
solution given in (19) for r

ζ̂ (k)2 ζ̂ (k)2 (τ ) is not valid, because Condition 1 is not compatible with

Condition 2. This is because the equation f̂l + f̂n = f̂m + f̂ p has more solutions than the ones
specified in (18) if Condition 1 is fulfilled. Notice that Condition 1 implies that the Doppler
frequencies f̂n are given such that f̂n �= f̂m ∀n �= m and f̂n = − f̂N−n+1, n = 1, 2, . . . , N ,
where it has been assumed that f̂n < f̂m for n < m. Thus, the equality in (18) holds in this
case also if l �= n �= m �= q, m = N − l + 1, and q = N − n − 1.

The simulation of fading channels having uncorrelated IQ components is relevant for many
practical purposes, e.g., for analyzing the system performance under isotropic scattering con-
ditions. For this reason, we derive in the Appendix a solution for r

ζ̂ (k)2 ζ̂ (k)2 (τ ) by neglecting
Condition 2 and assuming the fulfillment of Condition 1. We suppose without loss of gener-
ality that the Doppler frequencies f̂n are indexed such that f̂n < f̂m ∀n < m. The solution
derived in the Appendix has the following structure

r
ζ̂ (k)2 ζ̂ (k)2 (τ ) = σ 4

μμμ + ∣∣rμ̂(k)μ̂(k) (τ )
∣∣2 −

N∑
n=1

ĉ4
n + 4

{∣∣∣∣
M∑

m=1

ĉ2
m cos

(
2π f̂mτ

)

× exp
{

j
(
θ̂ (k)

m + θ̂
(k)
N−m+1

)} ∣∣∣∣
2

−
M∑

k=1

ĉ4
k cos2 (2π f̂kτ

)}
(20)

where M = N/2 (N is even). It should be noticed that the expression presented above
depends on the phases θ̂

(k)
n . This is in contrast to the solution given in (19), which is not

influenced by the parameters θ̂
(k)
n .

3.5 Ergodic Properties of the SOC Model’s Squared Envelope

On the basis of the results presented so far, we can analyze the ergodicity of the simulation
model’s squared envelope ζ̂̂ζ̂ζ 2(t). To start with, we recall that a WSS random process is said to
be AE if all TACFs of the sample functions are equal to the ensemble ACF of the underlying
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stochastic process [24, Sec. 6.6]. Clearly, the stochastic simulation model described by μ̂̂μ̂μ(t)
is AE, since rμ̂(k)μ̂(k) (τ ) = rμ̂̂μ̂μμ̂̂μ̂μ(τ )∀k [cf. (10) and (16)].

From the results presented in Sects. 3.2 and 3.4, we can conclude that if Condition 2 is
fulfilled, then ζζζ 2(t) is an AE process, as r

ζ̂ (k)2 ζ̂ (k)2 (τ ) = r
ζ̂̂ζ̂ζ 2ζ̂̂ζ̂ζ 2(τ )∀k. However, if the simu-

lation model is parameterized such that its IQ components are uncorrelated, implying that
Condition 1 is satisfied, then the TACF r

ζ̂ (k)2 ζ̂ (k)2 (τ ) of the kth sample function of ζ̂̂ζ̂ζ 2(t) is

a function of the phases θ̂
(k)
n . In this case, ζ̂̂ζ̂ζ 2(t) is not an AE process, since the equality

r
ζ̂ (k)2 ζ̂ (k)2 (τ ) = r

ζ̂̂ζ̂ζ 2ζ̂̂ζ̂ζ 2(τ ) is not valid for all values of k.

4 Performance Evaluation of the Parameter Computation Methods

The accuracy of the SOC simulation model to emulate the statistical properties of the refer-
ence model is ultimately determined by the method employed to compute the gains ĉn and
the Doppler frequencies f̂n . The GMEA [1], the LPNM [6], and the RSM [2] have been pro-
posed as suitable parameter computation methods for the design of SOC simulators for fading
channels characterized by any given (symmetrical or asymmetrical) DPSD. In this section,
we evaluate the performance of these methods in terms of the emulation of the reference
model’s squared envelope ACF. We also present some numerical results that demonstrate the
correctness of the expressions derived in the previous section for r

ζ̂̂ζ̂ζ 2ζ̂̂ζ̂ζ 2(τ ) and r
ζ̂ (k)2 ζ̂ (k)2 (τ ).

4.1 Review of the Parameter Computation Methods

4.1.1 The GMEA

To allow for a proper emulation of the channel’s envelope distribution, the GMEA defines
the gains ĉn as follows [1], [10, Sec. 4.3]

ĉn = σμμμ√
N

, n = 1, 2, . . . , N . (21)

The Doppler frequencies f̂n are obtained by finding the roots of the equation

f̂n∫

− fmax

Sμμμμμμ( f ) d f − σ 2
μμμ

N

(
N − n + 1

2

)
= 0 (22)

for n = 1, 2, . . . , N .

4.1.2 The LPNM

For this method, the gains are given as in (21). However, to maximize the quality of the
approximation rμμμμμμ(τ) ≈ rμ̂̂μ̂μμ̂̂μ̂μ(τ ) over a given interval of interest centered at the origin, say

τ ∈ [−τmax, τmax], the Doppler frequencies f̂n are computed as minimizers of the L p-norm
[5,6]

ε
(p)
rμμμμμμ

�

⎧⎨
⎩

1

τmax

τmax∫

0

∣∣rμμμμμμ(τ) − rμ̂̂μ̂μμ̂̂μ̂μ(τ )
∣∣p dτ

⎫⎬
⎭

1/p

(23)

where p is a positive integer. For our experiments, we will set p = 2 and τmax = N/(4 fmax).
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4.1.3 The RSM

For the RSM, it is assumed that the PDF pααα(α) of the AOA α is given such that its even
part gααα(α) is non-singular and has at most one maximum in [0, π). Under this assump-
tion, the gains ĉn and the AOAs α̂n , which are related to the Doppler frequencies f̂n via
f̂n = fmax cos(α̂n), are defined as follows [2]:

ĉn = σμμμ

√
gααα(α̂n)∑N

m=1 gααα(α̂m)
(24)

α̂n = α	 + αu − α	

N

(
n − 1

2

)
, αu > α	 (25)

for n = 1, 2, . . . , N . In (25), α	 and αu designate the lower and the upper boundaries of
the subinterval IU of [0, π) inside of which the function gααα(α) is above a given threshold
γq ∈ (0, sup{gααα(α)}), where sup{·} denotes the supremum. The value of γq is defined as a
percentage q of the supremum of gααα(α), i.e.,

γq = sup {gααα(α)} × q

100
, 0 < q < 100. (26)

A good trade-off between the approximations to the channel’s ACF and envelope distribution
can be obtained by choosing q ∈ [0.1, 1]. In this paper, we will consider q = 0.5.

It is worth mentioning that the Doppler frequencies f̂n obtained by applying any of the
aforementioned methods satisfy in general the inequalities in (7) [10, Ch. 4]. The methods
are therefore well suited for the design of AE SOC channel simulators. Furthermore, if the
DPSD Sμμμμμμ( f ) of the reference model is asymmetrical, then the application of such methods
results, in the majority of cases, in a set of Doppler frequencies that meet Condition 2. On
the other hand, for the GMEA and the RSM, it is shown in [10, Appx. E] that Condition 1 is
always fulfilled if the channel’s DPSD Sμμμμμμ( f ) is symmetrical.

4.2 Simulation Set-Up

We evaluate the methods’ performance by assuming that the channel’s AOA statistics
follows the von Mises distribution [25]. The von Mises PDF is given as pααα(α) =
exp {κ cos(α − mα)} / (2π I0(κ)) for α ∈ [−π, π), where mα ∈ [−π, π) is the mean AOA,
κ ≥ 0 determines the channel’s angular spread, and I0(·) denotes the zeroth-order modified
Bessel function of the first kind. When using the von Mises distribution, the ACF of the
reference model can be expressed in closed form as [25]

rμμμμμμ(τ) = σ 2
μμμ

I0(κ)
I0

({
κ2 − (2π fmaxτ)2 + j4πκ fmax cos(mα)τ

}1/2)
. (27)

We carry out our investigations by considering the following values for the pair of param-
eters (mα, κ): (0◦, 0); (0◦, 5); (0◦, 20); (0◦, 10); (30◦, 10); and (90◦, 10). The first and the
last pair of parameters are representative of fading channels characterized by symmetrical
DPSDs, whereas the other four pairs correspond to channels with asymmetrical DPSDs [10,
Sec. 2.5.1]. For the simulations, we will consider fmax = 91 Hz and σ 2

μμμ = 1.
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Fig. 1 Comparison among the GMEA, the LPNM, and the RSM in terms of the emulation of the ensemble
ACF of the reference model’s squared envelope by considering the von Mises PDF of the AOA ( fmax = 91 Hz,
σ 2
μμμ = 1, and N = 50)

4.3 Simulation Results and Discussion

In Fig. 1, we present a comparison between the squared envelope ACF of the reference model,
rζζζ 2ζζζ 2(τ ), and the squared envelope ACF of the simulation model, r

ζ̂̂ζ̂ζ 2ζ̂̂ζ̂ζ 2(τ ), with N = 50. The
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figure shows theoretical and empirical graphs of the ensemble ACF of ζ̂̂ζ̂ζ 2(t). The theoretical
curves were obtained by evaluating (14), whereas the empirical graphs were generated by
averaging over the measured ACFs of 100 simulated sample functions of ζ̂̂ζ̂ζ 2(t). Such an
averaging was necessary, since the process ζ̂̂ζ̂ζ 2(t) is not always AE.2 However, to demon-
strate the correctness of the solutions presented in Sect. 3.4 for the TACF r

ζ̂ (k)2 ζ̂ (k)2 (τ ) of

the sample functions of ζ̂̂ζ̂ζ 2(t), we present in Fig. 2 a comparison between analytical and
empirical graphs of r

ζ̂ (k)2 ζ̂ (k)2 (τ ) generated by applying the RSM. One can observe from
Figs. 1 and 2 that the results obtained in practice are in excellent agreement with the ones
predicted by the theory. Furthermore, the graphs depicted in Fig. 2 show that the process
ζ̂̂ζ̂ζ 2(t) is AE if the DPSD Sμμμμμμ( f ) is asymmetrical, and non-AE if Sμμμμμμ( f ) is symmetrical.
This is in line with the observations we made in Sect. 3.5—we recall that the RSM satisfies
Condition 2 if Sμμμμμμ( f ) is asymmetrical, and it fulfills Condition 1 if Sμμμμμμ( f ) is symmetrical
[see Sect. 4.1].

With respect to the methods’ performance, we can see in Fig. 1 that all three methods
provide a reasonably good approximation to rζζζ 2ζζζ 2(τ ). However, the best fitting to the ACF

of ζ̂̂ζ̂ζ 2(t) is achieved by the GMEA and the LPNM. For illustration, we plot in Fig. 3 the
root-mean square (RMS) error

ε(2)
r
ζζζ2ζζζ2

�

⎧⎨
⎩

1

τmax

τmax∫

0

∣∣∣rζζζ 2ζζζ 2(τ ) − r
ζ̂̂ζ̂ζ 2ζ̂̂ζ̂ζ 2(τ )

∣∣∣2 dτ

⎫⎬
⎭

1/2

(28)

between rζζζ 2ζζζ 2(τ ) and r
ζ̂̂ζ̂ζ 2ζ̂̂ζ̂ζ 2(τ ) by considering τmax = N/(4 fmax). Figure 3 shows clearly that

the GMEA and the LPNM produce a smaller error than the RSM. Furthermore, the graphs
of ε

(2)
r
ζζζ2ζζζ2 depicted in Fig. 3 indicate that the GMEA and the LPNM perform essentially the

same.
A quick inspection of the curves drawn in Fig. 1 reveals that regardless of the underlying

parameter computation method, there exists an offset between the ACFs of ζ̂̂ζ̂ζ 2(t) and ζζζ 2(t).
Such an offset, which can clearly be distinguished at τ = 0, is caused by the negative term
−∑N

n=1 ĉ4
n affecting the ACF r

ζ̂̂ζ̂ζ 2ζ̂̂ζ̂ζ 2(τ ) of ζ̂̂ζ̂ζ 2(t) [see (14)]. One may observe from Fig. 1 that
the smallest offset is produced by the GMEA and the LPNM, and the largest by the RSM.
This can be seen in Fig. 4, where we have plotted the absolute value of the negative factor
−∑N

n=1 ĉ4
n as a function of N . A comparison between the graphs depicted in Figs. 1 and 3

reveals that the RMS error ε
(2)
r
ζζζ2ζζζ2 is mainly determined by the factor

∑N
n=1 ĉ4

n . This factor
can only be decreased by increasing the number of cisoids N .

5 Conclusions

In this paper, we analyzed the correlation and ergodic properties of the squared envelope
of an AE SOC simulation model for mobile Rayleigh fading channels. We showed that if
the Doppler frequencies of the SOC model are pair-wise different, then its squared enve-
lope is an AE ergodic process. However, if the SOC model is parameterized in such a

2 We pointed out in Sect. 3.5 that ζ̂̂ζ̂ζ 2(t) is non-AE if the IQ components of μ̂̂μ̂μ(t) are uncorrelated. Such
a situation arises in the case of the GMEA and the RSM if the DPSD Sμμμμμμ( f ) is symmetrical (scenarios:
mα = 0◦, κ = 0; and mα = 90◦, κ = 10).
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Fig. 2 Comparison between the theoretical and the empirical squared envelope ACFs of the simulation model’s
sample functions by considering the RSM and the von Mises PDF of the AOA ( fmax = 91 Hz, σ 2

μμμ = 1, and
N = 50)

way that its IQ components are uncorrelated, then its squared envelope proves to be a
non-AE process. We also evaluate the performance of the GMEA, the LPNM, and the
RSM regarding their accuracy in emulating the ACF of the reference model’s squared
envelope. The obtained results show that the three methods provide a reasonably good
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Fig. 3 RMS error ε
(2)
r
ζζζ2ζζζ2 of the squared envelope ACF of the simulation model designed by applying the

GMEA, the LPNM, and the RSM to the von Mises PDF of the AOA ( fmax = 91 Hz and σ 2
μμμ = 1)

approximation to the channel’s squared envelope ACF, although the GMEA and the LPNM
perform better than the RSM. From our investigations, we can also conclude that due to the
offset term inherent to the squared envelope ACF of the simulation model, the approxima-
tion to the reference model’s squared envelope ACF is always worse than the approxima-
tion to the reference model’s ACF and can only be improved by increasing the number of
cisoids.
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Fig. 4 Absolute value of the offset term −∑N
n=1 ĉ4

n of the simulation model’s squared envelope ACF as a
function of N

Appendix

In this appendix, we outline the derivation of the solution presented in (20) for the TACF
r
ζ̂ (k)2 ζ̂ (k)2 (τ ) of the sample functions of ζ̂̂ζ̂ζ 2(t). It is assumed that the inequalities in (7) hold

and Condition 1 is fulfilled. Our starting point is the expression given in (17) for r
ζ̂ (k)2 ζ̂ (k)2 (τ ).

For the case analyzed at the beginning of Sect. 3.4, the integral in (17) is different from zero
in the limit T → ∞ only if: l = m = n = p; l = n, m = p, l �= m; or l = p, m = n, l �= n.
For the case at hand, the integral is different from zero also if l �= m �= n �= q and f̂l =
− f̂n, f̂m = − f̂ p; f̂l = − f̂n, f̂ p = − f̂m; f̂n = − f̂l , f̂m = − f̂ p; or f̂n = − f̂l , f̂ p = − f̂m .
Taking this into account, we have

r
ζ̂ (k)2 ζ̂ (k)2 (τ ) = σ 4

μμμ + |rμ̂μ̂(τ )|2 −
N∑

n=1

ĉ4
n +

M∑
l=1

ĉ2
l exp

{
j
(
θ̂l + θ̂N−l+1

)}
exp

{
− j2π f̂lτ

}

×
{ M∑

m=1

ĉ2
m exp

{
− j
(
θ̂m + θ̂N−m+1

)}
exp

{
j2π f̂mτ

}

+
M∑

n=1

ĉ2
n exp

{
− j
(
θ̂n + θ̂N−n+1

)}
exp

{
− j2π f̂nτ

}}

+
M∑

p=1

ĉ2
p exp

{
j
(
θ̂p + θ̂N−p+1

)}
exp

{
j2π f̂ pτ

}

×
{ M∑

q=1

ĉ2
q exp

{
− j
(
θ̂q + θ̂N−q+1

)}
exp

{
j2π f̂qτ

}
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+
M∑

k=1

ĉ2
k exp

{
− j
(
θ̂k + θ̂N−k+1

)}
exp

{
− j2π f̂kτ

}}

where M = N/2 (N is even). From the previous equation, one can verify that

r
ζ̂ (k)2 ζ̂ (k)2 (τ ) = σ 4

μμμ + |rμ̂μ̂(τ )|2 −
N∑

n=1

ĉ4
n

+
M∑

l=1

M∑
m=1

ĉ2
l ĉ2

m exp
{

j
(
θ̂l + θ̂N−l+1 − θ̂m − θ̂N−m+1

)}

×
{

exp
{
− j2π

(
f̂l − f̂m

)
τ
}

+ exp
{
− j2π( f̂l + f̂m)τ

}

+ exp
{

j2π( f̂l + f̂m)τ
}

+ exp
{

j2π( f̂l − f̂m)τ
}}

= σ 4
μμμ + |rμ̂μ̂(τ )|2 −

N∑
n=1

ĉ4
n

+4
M∑

l=1

M∑
m=1
m �=l

ĉ2
l ĉ2

m exp
{

j (θ̂l + θ̂N−l+1 − θ̂m − θ̂N−m+1)
}

× cos
(

2π f̂lτ
)

· cos
(

2π f̂mτ
)

. (29)

Using the identity
∑N

n=1
∑N

m=1,m �=n xn x∗
m =

∣∣∣∑N
n=1 xn

∣∣∣2 −∑N
m=1 |xm |2, we finally obtain

(20).
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