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ABSTRACT

Consider power allocation for Secondary User (SU) packet

transmissions on multiple channels with different channel con-

ditions and variable Primary User (PU) arrival rates in a cog-

nitive radio network. Two problems are studied in this paper.

The first one is to minimize the collision probability with PUs

and the second problem is to maximize the data rate while

keeping the collision probability bounded. It is shown that the

optimal solution for the first problem is to allocate all power

onto the best channel based on a certain criterion. The second

problem with per-channel power budget constraint is proved

to be NP-hard and therefore a pseudo-polynomial time solu-

tion for the problem is proposed. When a total power budget

for all channels is imposed in the second problem, a com-

putationally efficient algorithm is introduced. The proposed

algorithms are validated by numerical experiments.

1. INTRODUCTION

Spectrum access in Cognitive Radio Networks (CRNs) can

be implemented in an Opportunistic Spectrum Access (OSA)

manner [1], where SUs transmit over a band only if none of

the PUs is transmitting in that band. By utilizing spectrum

sensing, the SUs can decide to transmit if the sensing result

indicates that all PU transmitters are inactive at this band.

In distributed CRNs with OSA approach, Medium Access

Control (MAC) protocols usually work in a competing man-

ner whereby the SUs compete for channel opportunities, with

the winning SU using the available channels while other SUs

have to wait for the next competition. When multiple avail-

able channels exist, channel assembling technique can be uti-

lized by the winner in order to support higher data rate and

further improve spectrum utility, as discussed in [2–5]. Tra-

ditionally, waterfilling is adopted for power allocation among

multiple channels. However, this approach may lead to high

probability of collision between SU and PU activities. When

This research is supported by the EU Seventh Framework Programme

FP7-PEOPLE-IRSES under grant agreement no. 247083, project acronym

S2EuNet. This research is carried out during a visit of the first author to the

Dept. of Electrical and Computer Engineering, University of Minnesota.

such collision happens, i.e., PUs appear during an SU packet

transmission, SUs must release the channel immediately in

order to make room for PUs, resulting a cost to SUs. More

recently, the reference [6] introduced a risk-return model for

SUs in which the cost of this collision in a given band is mod-

eled as a rate loss depending on the power level allocated to

this band. Under this model, the optimal power allocation

strategy turned out to be similar to the traditional waterfilling.

However, in practice, the full impact of such collision is much

more than just the wasted transmission power or the associ-

ated rate loss. It includes other important ramifications, such

as the resulting SU packet loss, the delay and the overhead

in the handshake process between SU communication pairs.

Modeling this collision just as a rate loss is insufficient.

In this work, we directly minimize or constrain the colli-

sion probability. Specifically, we consider two optimal power

allocation problems for the case where SUs access the chan-

nels in a competing manner and only the winner can utilize

the vacant channels for packet transmission after competition.

One problem is to minimize the collision probability of an SU

packet with PUs. The other is to maximize the capacity given

the upper bound of SU packet collision probability.

The rest of the paper is organized as follows. The system

model is given in Sec. 2 while the optimal power allocation

problems are described and analyzed in Sec. 3. Then various

algorithms are designed to solve the problems in Sec. 4. Nu-

merical results and corresponding discussions are presented

in Sec. 5, before the paper is concluded in Sec. 6.

2. SYSTEM MODEL

For notational convenience, we use an SU to indicate an SU

communication pair in the following paragraphs. Assume

there are M channels available to the winner after channel

competition and sensing. Suppose a PU service requires only

one channel and all of these channels have identical band-

width B. Due to hardware constraint, an SU can assemble

up to N channels for a packet transmission. Those channels

can be either neighboring to each other or separated in the

spectrum domain. Therefore, considering channel availability



and hardware constraint, the SU can utilize up to min{M,N}
channels for a packet transmission.

When OFDM is utilized, each of those channels contains

further S subchannels corresponding to the subcarriers in the

system. The channel state, noise density and the SU’s allo-

cated power for the jth subchannels in channel i is denoted by

hi,j , ni,j , and pi,j respectively, where i ∈ I , I = {1, · · · ,M}
and j ∈ J , J = {1, · · · , S}. Each subcarrier has equal band-

width b, where Sb = B. If a transmission scheme other than

OFDM is performed where there are no subchannels, hi,j ,

ni,j , and pi,j will become hi, ni, and pi.

Assume the arrival of the PU services follows Poisson
process with rate λi in channel i, i ∈ I . In a period τ , the
probability that there is no PU activity in channel i, denoted
by Pi(τ), is given by Pi(τ) = e−λiτ . Assume further that PU
services are independent among different channels, the prob-
ability that there is no PU activity in a given channel set Cs

during period τ , denoted by PCs
(τ), is

PCs(τ) =
∏

i∈Cs

Pi(τ) = e−
∑

i∈Cs
λiτ . (1)

If there is no collision with the PUs, the time required to
transmit a packet of the SU, denoted as T , is given by

T =
Lp

∑M

i=1

∑S

j=1
b log(1 + |hi,j |2pi,j/(ni,jb))

, (2)

where Lp is the packet length and the denominator is the

achieved capacity. Without loss of generality, we merge ni,jb

and |hi,j |
2 by defining h

′

i,j = |hi,j |
2/(ni,jb).

Let us define the channel usage indicator ξi, i ∈ I as

ξi =

{

1,
∑

j
pi,j > 0,

0, otherwise,
(3)

where
∑

i ξi ≤ min{M,N}. This parameter indicates whether

channel i is utilized by the SU or not.

We further assume that the set of assembled channels for
the SU packet is fixed during its transmission. Based on Eqs.
(1), (2), and (3), the probability that a packet is transmitted
without collision with a PU activity can be formulated as

Pr = exp(−

∑M

i=1
λiξiLp

∑M

i=1

∑S

j=1
b log(1 + h

′

i,jpi,j)
). (4)

3. OPTIMIZATION PROBLEMS AND ANALYSIS

3.1. Minimizing the collision probability

Based on the above system model and for a given power bud-
get, the optimization problem of minimizing the probabil-
ity that an SU packet will collide with PUs, i.e., minimizing

1 − Pr, can be derived as

min
{pi,j}i∈I,j∈J

∑M

i=1
λiξiLp

∑M

i=1

∑S

j=1
b log(1 + h

′

i,jpi,j)
, (5)

s.t. ξi =

{

1,
∑

j
pi,j > 0,

0, otherwise,

1 ≤
∑

i

ξi ≤ min{M, N}, pi,j ≥ 0, ∀i, j,

∑

i

∑

j

pi,j ≤pt; or
∑

j

pi,j ≤pt, ∀i∈I, (6)

where pt is the total power budget. As illustrated in (6), two

cases for power constraint are considered, either there is a

total power budget or there exists a power constraint for each

channel. The condition
∑

i ξi ≥ 1 is introduced so that at

least one band is used by the winning SU to send its packet.

For a fixed set of selected channels and the packet length,

the probability that an SU packet collides with PUs will be re-

duced if the data rate1 increases. Since waterfilling is the opti-

mal power allocation scheme for the total power budget case,

once the channels are selected, waterfilling must be used. Sim-

ilarly, in the per-channel budget constraint case, the maximum

power should be utilized in each of the selected channels,

while in subchannels within a particular channel the power

is still allocated in the waterfilling manner.

Proposition 1 The optimal solution for the problem (5) is to

allocate the whole power to only one channel i which gives

the minimum value of λiLp/
∑S

j=1
b log(1 + h

′

i,jp
∗

i,j), where

p∗i,j is the solution of waterfilling for channel i with pt.

Proof We prove it by contradiction. Assume that
∑

i ξi =
ℓ ≥ 2, i.e., ℓ channels are utilized as the optimal solution
for transmission in the total power constraint case. Without
loss of generality, we assume that those ℓ channels are sorted

from low to high according to λiLp/
∑S

j=1
b log(1+h

′

i,jpi,j),

where i ∈ {1, · · · , ℓ} and
∑

i

∑

j pi,j = pt. By dropping

channel ℓ, i.e., setting pℓ,j = 0, ∀j, we have

∑ℓ−1

i=1
λiLp

∑ℓ−1

i=1

∑S

j=1
b log(1 + h

′

i,jpi,j)
(7)

≤

∑ℓ

i=1
λiLp

∑ℓ

i=1

∑S

j=1
b log(1 + h

′

i,jpi,j)
, (8)

which is a contradiction since it gives us a better optimal point

with smaller number of channels2. Similar result can be ap-

plied to the single channel power constraint case.

1The achieved data rate is determined by channel condition, power budget

and coding/modulation scheme etc. Modern coding/modulation scheme can

achieve data rate close to the Shannon capacity. In this work, we use data

rate and capacity interchangeably.
2Note that if we do waterfilling again in the new set after dropping that

channel, the denominator of Eq. (7) will increase since the portion of the

power used for the channel that we dropped can be reused for the remaining

channels. Therefore the inequality Eq. (7) becomes strict in this case.



3.2. Maximizing data rate with collision probability con-

straint

More generally, one would maximize the data rate while keep-
ing the collision probability below a threshold value. Then the
optimization problem becomes

max
{pi,j}i∈I,j∈J

M
∑

i=1

S
∑

j=1

b log(1 + h
′

i,jpi,j), (9)

s.t.

∑M

i=1
λiξi

∑M

i=1

∑S

j=1
b log(1 + h

′

i,jpi,j)
≤ γ0, (10)

ξi =

{

1,
∑

j
pi,j > 0,

0, otherwise,
∑

i

ξi ≤ min{M, N}, pi,j ≥ 0, (11)

∑

i

∑

j

pi,j ≤ pt; or
∑

j

pi,j ≤ pt, ∀i ∈ I,

where γ0 = − log(1 − Prc0)/Lp and Prc0 is the maximum

tolerable level of the collision probability.
If we ignore the hardware constraint in (11) and consider

only per-channel power constraint, the problem becomes

max
{pi}i∈I

M
∑

i=1

S
∑

j=1

b log(1 + h
′

i,jpi,j), (12)

s.t.

∑M

i=1
λiξi

∑M

i=1

∑S

j=1
b log(1 + h

′

i,jpi,j)
≤ γ0,

ξi =

{

1,
∑

j
pi,j > 0,

0, otherwise,

S
∑

j=1

pi,j ≤ pt, pi,j ≥ 0. (13)

Proposition 2 The optimization problem (12)-(13) which is a

special case of the optimization problem (9)-(11) is NP-hard.

Proof Let p
′

i,j be the solution of (12)-(13) and let us also

define qi =
∑S

j=1
p

′

i,j/pt. Since
∑S

j=1
p

′

i,j is either zero or

pt, qi ∈ {0, 1}. Let vi =
∑S

j=1
b log(1 + h

′

i,jp
∗

i,j), where

p∗i,j denotes the waterfilling solution in channel i with power
budget pt. Thus, the problem becomes

max
{qi}i∈I

∑

i

viqi, (14)

s.t.
∑

i

λiqi/
∑

i

viqi ≤ γ0, qi ∈ {0, 1}.

Given λi − γ0vi ≤ 0 for a specific channel i, we must set
qi = 1, because this choice of variable satisfies the constraint
and increases the value of objective function. On the other
hand, for the channels that λi − γ0vi > 0, we must solve the
following optimization problem:

max
{qi}

i∈I
′

D +
∑

i

viqi, (15)

s.t.
∑

i

(λi − γ0vi)qi ≤ C, qi ∈ {0, 1},

where I
′

= {i|λi − γ0vi > 0, i ∈ I}, C = −
∑

j∈I
′′ (λj −

γ0)vj , D =
∑

j∈I
′′ vjqj and I ′′ = I − I ′ is the complement

of the set I ′. Clearly, (15) is a knapsack problem. Moreover,

we can start from an instance of a knapsack problem and build

the equivalent power allocation problem (12)-(13).

4. ALGORITHMS FOR POWER ALLOCATION

In what follows, we suggest different algorithms for the data

rate maximization problem under various power constraints.

4.1. Power allocation with per-channel power constraint

For the per-channel power constraint case, based on our pre-
vious discussions, we can re-formulate the problem as

max
{qi}i∈I

∑

i

viqi, (16)

s.t.
∑

i

wiqi ≤ 0,
∑

i

qi ≤ min{M, N}, qi ∈ {0, 1},

where wi = λi − γ0vi.

Inspired by the dynamic programming algorithm for the
knapsack problem, we propose a pseudo-polynomial time al-
gorithm as follows. Define m(i, x, n) to be the maximum
value of the objective function that can be attained with weight
less than or equal to x, by choosing channels (or items in the
knapsack problem) from the set {1, 2, . . . , i} and choosing at
most n channels. It is easy to see that the following equations
hold:

m(i, x, 0) =

{

0; x ≥ 0,
infeasible; otherwise,

m(0, x, n) =

{

0; x ≥ 0,
infeasible; otherwise,

m(1, x, n) =







v1; n ≥ 1, x ≥ w1,
0; n = 0, x ≥ 0,
infeasible; x < min{0, w1},

m(i, x, n) =















max{A, B + vi}; both A and B feasible,
A; A feasible, B infeasible,
B + vi; B feasible, A infeasible,
infeasible; both A and B infeasible,

where A = m(i− 1, x, n) and B = m(i− 1, x−wi, n− 1).
Since neither wi nor vi are required to be integers, a top-

down approach in dynamic programming is utilized. There-

fore, the final result, i.e., m(M, 0,min{M,N}), can be cal-

culated in a recursive manner through dynamic programming.

4.2. Power allocation with total power constraint

We now introduce a highly efficient heuristic for the total

power constraint case as illustrated in Algorithm 1. This al-

gorithm is based on the fact that a channel with a smaller

λiLp/
∑S

j=1
b log(1 + h

′

i,jpi,j), ∀i ∈ I and
∑

j pi,j = pt,

may better satisfy the probability constraint.



Define [R, p] := wf(m,n, p) as the waterfilling function

using from the m-th to the n-th channels with power budget

p, where R is the resulted capacity and p is the resulted power

allocation vector. In this algorithm, firstly waterfilling is done

for each of channel individually with the total power budget

constraint. By doing so, we can check the feasibility of the

problem and sort the channels from low to high according to

λiLp/
∑S

j=1
b log(1 + h

′

i,jpi,j), ∀i ∈ I and
∑

j pi,j = pt.

Let this new ordered channel set be Io. Based on the resulted

ranking, we form a set with channel index from the first one

to the largest possible one, i.e., make the set have as many

channels as possible while keeping the probability and the

hardware constraints satisfied. The reason is that with a to-

tal power budget, the larger number of channels we utilize,

the higher the capacity it can potentially achieve through wa-

terfilling.

Algorithm 1 : A sub-optimal algorithm

for i := 1 to M do

[Ri, p] := wf(i, i, pt).
end for

if ∀ λiLp/Ri > γ0 then

Problem infeasible.

else

Rank channels according to λiLp/Ri from low to high.

if N ≥ M then

Return [R, p] := Search(M).
else

[Capa, p
′

] := Search(N).
if Search(N) = wf(1, N, pt) then

for i := N + 1 to M do

[R, p] := wf(i − N + 1, i, pt).
if the solution is feasible and R > Capa then

Capa := R and p
′

:= p.

end if

end for

end if

Return [Capa, p
′

].

end if

end if

In Algorithm 1, there is a function [R, p] := Search(s)
which is explicitly given in Algorithm 2. This function per-

forms based on the bisection method. The variable s in this

function indicates the searching range, i.e., from the first to

the sth channel in the new ordered channel set Io. The re-

turned values [R, p] are based on the largest feasible subset

with elements starting from the first channel consecutively,

up to the sth one in the new ordered channel set. The function

[R, p] := Search(s) can always find a feasible solution if it is

called, since the feasibility of the problem has been checked

and the channels are ranked accordingly in Algorithm 1.

Algorithm 2 : Search(s)

Let m := 0, n := 1, f := 1, capa := 0, p
′

:= 0.

repeat

m := m + ⌈(1/2)ns⌋ f , [R, p] := wf(1,m, pt).
if the solution is feasible then

f := 1.

if R > capa then

capa := R and p
′

:= p.

end if

else

f := −1.

end if

n := n + 1.

until ⌈(1/2)ns⌋ = 0. Return [capa, p
′

].

5. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the performance of the proposed algorithms

are evaluated via numerical experiments. In both of the per-

channel and the total power budget constraint cases, two sce-

narios when N ≥ M and N < M are investigated. The

default parameters are summarized in Table 1. In order to

evaluate the performance of the proposed algorithms, an ex-

haustive search algorithm is considered as the benchmark. All

the illustrated results are the average values of over 100 runs.

Table 1. Parameters for performance analysis.

Notation Values

Number of subchannels (S) 8

Rayleigh distributed

Channel state (hi,j) with parameter 1/0.6552

Noise density (ni,j) 10−10 W/Hz

Power budget (pt) 8 × 10−3 W

Channel bandwidth (B) 2 × 106 Hz

Uniformly distributed

PU Poisson arrival rate (λi) between 40 to 100 times/s

Packet length (Lp) 8000 bit

Collision probability (Prc0) 3%

5.1. Per-channel power constraint case

The proposed pseudo-polynomial time algorithm is compared

with the exhaustive search algorithm in two aspects: The data

rate achieved and the computational complexity as represented

by the machine running time. In our numerical experiments

we observed that the pseudo-polynomial time algorithm al-

ways finds the optimal solution, therefore we do not plot the

results explicitly. The running time with respect to the num-

ber of channels M is plotted in Fig. 1 when N ≥ M , i.e.,

with sufficient hardware.
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As observed from Fig. 1, when the number of total chan-

nels grows, the time used by exhaustive search increases dra-

matically. We have also observed that the pseudo-polynomial

time algorithm consumes slightly more time than the exhaus-

tive search does when M is small, i.e, M < 7 in this example,

although not observable in the current plotting. It means that

when only a few channels are available, the exhaustive search

method is a good option. However for large M , the pseudo-

polynomial time algorithm through dynamic programming is

preferable. Similar results have been observed when N < M
however not illustrated here due to page limit.
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5.2. Total power constraint case

In Fig. 2, we illustrate the capacity as a function of the mean

value of the PU arrival rate among channels in the total power

budget case. The total power budget is 8×10−2 W, and the PU

Poisson arrival rate among different channels, λi, is uniformly

distributed with the mean value λ̄ and the variance of 300,

while other parameters follow the default values.

Two cases, N = M = 10, and N = 6 and M = 10,

are studied. From Fig. 2, we can observe that the capacity of

the algorithms in both cases is relatively stable initially and

decreases as the average PU arrival rate increases. When the

mean arrival rate of PU service is small, most of the chan-

nels can be utilized for packet transmission while keeping the

probability constraint satisfied. When the mean PU arrival

rate becomes larger, the number of channels that can make the

probability constraint satisfy decreases. Given the same total

power budget constraint, with smaller number of assembled

channels, i.e., less bandwidth, the capacity will be reduced.

Comparing the capacity of the sub-optimal and the exhaus-

tive search algorithms, the capacity of sub-optimal algorithm

is quite close to the result of the exhaustive search method.

Furthermore, with respect to computational complexity,

the number of times for executing the waterfilling algorithm

is only proportional to M using the sub-optimal algorithm

while it is exponential to M in the exhaustive search method.

6. CONCLUSIONS

In this paper, power allocation in CRNs is considered from

two aspects, minimizing collision probability with PUs and

maximizing the capacity with constraint collision probabil-

ity. The optimal solution of the first problem is provably to

put full energy in the single best channel while the second

problem is proved to be NP-hard in the per-channel power

constraint case. Therefore a dynamic programming method

is proposed for power allocation with per-channel power con-

straint. A highly efficient heuristic is introduced for power al-

location with total power constraint. As expected, the numer-

ical results demonstrate that dynamic programming achieves

the optimized result, and that the heuristic algorithm is capa-

ble of achieving data rates close to the global optimal at very

low computational complexity.
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