
Appl Intell
DOI 10.1007/s10489-011-0280-5

Service selection in stochastic environments:
a learning-automaton based solution

Anis Yazidi · Ole-Christoffer Granmo ·
B. John Oommen

© Springer Science+Business Media, LLC 2011

Abstract In this paper, we propose a novel solution to the
problem of identifying services of high quality. The reported
solutions to this problem have, in one way or the other, re-
sorted to using so-called “Reputation Systems” (RSs). Al-
though these systems can offer generic recommendations
by aggregating user-provided opinions about the quality of
the services under consideration, they are, understandably,
prone to “ballot stuffing” and “badmouthing” in a compet-
itive marketplace. In general, unfair ratings may degrade
the trustworthiness of RSs, and additionally, changes in the
quality of service, over time, can render previous ratings un-
reliable. As opposed to the reported solutions, in this pa-
per, we propose to solve the problem using tools provided
by Learning Automata (LA), which have proven properties
capable of learning the optimal action when operating in
unknown stochastic environments. Furthermore, they com-
bine rapid and accurate convergence with low computational

The first author gratefully acknowledges the financial support of the
Ericsson Research, Aachen, Germany, and the third author is grateful
for the partial support provided by NSERC, the Natural Sciences and
Engineering Research Council of Canada. A preliminary version of
this paper was presented at IEA/AIE’10, the 2010 International
Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, Cordoba, Spain, in June 2010.

A. Yazidi · O.-C. Granmo · B.J. Oommen (�)
Department of ICT, University of Agder, Grimstad, Norway
e-mail: oommen@scs.carleton.ca

A. Yazidi
e-mail: anis.yazidi@uia.no

O.-C. Granmo
e-mail: ole.granmo@uia.no

B.J. Oommen
School of Computer Science, Carleton University, Ottawa,
Canada K1S 5B6

complexity. In addition to its computational simplicity, un-
like most reported approaches, our scheme does not require
prior knowledge of the degree of any of the above mentioned
problems associated with RSs. Instead, it gradually learns
the identity and characteristics of the users which provide
fair ratings, and of those who provide unfair ratings, even
when these are a consequence of them making unintentional
mistakes.

Comprehensive empirical results show that our LA-based
scheme efficiently handles any degree of unfair ratings (as
long as these ratings are binary—the extension to non-binary
ratings is “trivial”, if we use the S-model of LA computa-
tions instead of the P -model). Furthermore, if the quality of
services and/or the trustworthiness of the users change, our
scheme is able to robustly track such changes over time. Fi-
nally, the scheme is ideal for decentralized processing. Ac-
cordingly, we believe that our LA-based scheme forms a
promising basis for improving the performance of RSs in
general.

Keywords Reputation systems · Learning automata ·
Stochastic optimization

1 Introduction

1.1 Problem formulation

With the abundance of services available in today’s world,
identifying those of high quality is becoming increasingly
difficult. Since this, typically, involves the comprehensive
marketplace, an entire body of research has recently come
to the forefront, namely, the study of so-called “Reputa-
tion Systems” (RSs). Such systems have attracted a lot of
attention during the last decade in academia as well as in

mailto:oommen@scs.carleton.ca
mailto:anis.yazidi@uia.no
mailto:ole.granmo@uia.no


A. Yazidi et al.

the industry, because they present a, hopefully, transparent
method by which the user community, within a social net-
work, can rank the quality of the services in question. RSs
have also emerged as an efficient approach to handle trust
in online services, and can be used to collect information
about the performance of services in the absence of direct
experience.

In this paper we intend to model and study how expe-
riences can be shared between users in a social network,
where the medium of collaboration is a RS. The basic
premise, of course, is that it is possible for users to expedi-
ently obtain knowledge about the nature, quality and draw-
backs of specific services by considering the experiences of
other users. Indeed, the information that people used to share
with their friends on campus or over a cup of coffee is now
being broadcasted online, and one can thus, easily and elec-
tronically, take advantage of the comments of thousands of
people participating in the social network. For instance, in a
social network of tourists, sharing the experiences concern-
ing restaurants can certainly prove advantageous.

The above premise is true if the basis of the decision is
accurate, up-to-date and fair. Unless a person is naive, he
must accept the fact that every user may not communicate
his experiences truthfully. In fact, the social network and
the system itself might contain misinformed/deceptive users
who provide either unfair positive ratings about a subject or
service, or who unfairly submit negative ratings. Such “de-
ceptive” agents, who may even submit their inaccurate rat-
ings innocently, have the effect that they mislead a RS that
is based on blindly aggregating users’ experiences. Further-
more, when the quality of services and the nature of users
change over time, the challenge is further aggravated.

From this perspective, we can state a fundamental para-
dox1 about using RSs by virtue of the fact that they are
prone to “ballot stuffing” and “badmouthing” in a compet-
itive marketplace. Users who want to promote a particular
product or service can flood the domain (i.e., the social net-
work) with sympathetic votes, while those who want to get
a competitive edge over a specific product or service can
“badmouth” it unfairly. Thus, although these systems can of-
fer generic recommendations by aggregating user-provided
opinions, unfair ratings may degrade the trustworthiness of
such systems. Additionally, changes in the quality of ser-
vice, over time, can render previous ratings unreliable. In
general, unfair ratings may degrade the trustworthiness of
RSs, and changes in the quality of service, over time, can
render previous ratings unreliable.

1Instead of relying purely on traditional information sources, a user can
opt to take advantage of social networks in the form of RSs to get more
reliable recommendations. But instead, he risks ending up with even
worse reliability than what was offered with traditional information
sources because misinformed/deceptive users may “contaminate” the
RSs. Hence the paradox!

This problem, of separating “fair” and “unfair” agents
for a specific service, is called the Agent-Type Partition-
ing Problem (AT PP ). Put in a nutshell, in this paper, we
propose to solve the above mentioned paradoxical AT PP

using tools provided by Learning Automata (LA), which
have powerful potential in efficiently and quickly learning
the optimal action when operating in unknown stochastic
environments. It adaptively, and in an on-line manner, grad-
ually learns the identity and characteristics of the users who
provide fair ratings, and of those which provide unfair rat-
ings, even when these are a consequence of them making
unintentional mistakes.

The solutions provided here have been subjected to rigor-
ous experimental tests, and the results presented are, in our
opinion, both novel and conclusive.

1.2 Reputation systems: state of the art

Finding ways to solve the AT PP and thus counter the detri-
mental influence of unfair ratings on a RS has been a focal
concern of a number of studies [3, 5, 13, 22, 28, 30]. Del-
larocas [5] used elements from collaborative filtering to de-
termine the nearest neighbors of an agent that exhibited sim-
ilar ratings on commonly-rated subjects. He then applied a
cluster filtering approach to filter out the most likely unfairly
positive ratings. Sen and Sajja [22] proposed an algorithm
to select a service provider to process a task by querying
other user agents about their ratings of the available service
providers. The main idea motivating their work is to select a
subset of agents, who when queried, gives a minimum prob-
abilistic guarantee that the majority of the queried agents
provide correct reputation estimates. However, comprehen-
sive experimental tests show that their approach is prone to
the variation of the ratio of deceptive agents. As opposed
to these, Zacharia [30] proposed a game-theoretic model to
solve the trust problem in online markets. In [29], the au-
thors present a heuristic methodology to reduce the compu-
tational complexity of ratings prediction in a trust network
topology while maintaining accuracy. Their approach relies
on experimentally verifying that the trust network exhibits
the so called “small-worldness” network property. The au-
thors verified the validity of their approach through exper-
imental data extracted from online trust sites. Apart from
online markets applications, the concept of trust was shown
to be useful to avoid access to fraudulent and malicious web
sites [15]. In [15], the authors presented a proxy-based ap-
proach that makes use of safety ratings provided by McAfee
SiteAdvisor in order to prevent access to untrustworthy web
sites.

It is worth noting that combining reports from different
witnesses is akin to the problem of fusioning possibly con-
flicting sources of information [2, 7, 10]. Buchegger and Le
Boudec [3] tackled the latter issue as follows: They proposed



Service selection in stochastic environments: a learning-automaton based solution

a Bayesian reputation mechanism in which each node iso-
lates malicious nodes by applying a deviation test methodol-
ogy. Their approach requires the agent to have enough direct
experience with the services so that he can evaluate the trust-
worthiness of the reports of the witnesses. While this is a de-
sirable option, unfortunately, in real life, such an assumption
does not always hold, specially when the number of possi-
ble services is large. In [4], Chen and Singh evaluated the
quality of feedbacks assuming that a feedback is credible if
it is consistent with the majority of feedbacks for a given
user. Their approach, though promising, unfortunately, suf-
fers from a deterioration in the performance when the ratio
of deceptive agents is high. In [28], Yu and Singh devised
a modified weighted majority algorithm to combine reports
from several witnesses to determine the ratings of another
agent. The main shortcoming of the work reported in [28] is
its relatively slow rate of convergence. In contrast, in [27],
Witby and Jøsang presented a Bayesian approach to filter out
dishonest feedback based on an iterated filtering approach.
In their approach, the authors extended the so-called “Beta”
reputation system presented by Jøsang and Ismail [9]. The
authors of [6] proposed a probabilistic model to assess peer
trustworthiness in P2P networks. Their model, which, in one
sense, is similar to ours, differs from the present work be-
cause the authors of [6] assume that a peer can deduce the
trustworthiness of other peers by comparing its own perfor-
mance with reports of other peers about itself. Though such
an assumption permits a feedback-evaluating mechanism, it
is based on the fact that peers provide services to one an-
other, thus permitting every party the right to play the role
of a service provider and the service consumer (a report-
ing agent). Our approach, which we briefly describe in the
next section and then explain in greater detail subsequently,
makes a clear distinction between these parties—the service
provider and the reporting agent.

1.3 Overview of our solution

In this paper, we provide a novel solution to the above prob-
lems, and in particular to the AT PP , based on Learning Au-
tomata (LA), which can learn the optimal action when op-
erating in unknown stochastic environments. Furthermore,
they combine rapid and accurate convergence with low com-
putational complexity. In addition to its computational sim-
plicity, unlike most reported approaches, our scheme does
not require prior knowledge of the degree of any of the above
mentioned problems with RSs. Rather, it adaptively, and in
an on-line manner, gradually learns the identity and charac-
teristics of the users who provide fair ratings, and of those
which provide unfair ratings, even when these are a conse-
quence of them making unintentional mistakes.

Learning is achieved by interacting with a so-called “En-
vironment”, and by processing its responses to the actions

that are chosen. Such automata have various applications
such as parameter optimization, statistical decision making
and telephone routing [14, 18–20]. Narendra and Thathachar
[14] have dedicated a book that reviews the families and ap-
plications of LA, and a brief survey of this field is included
here in the interest of completeness.

By suitably modeling reports about direct experiences in-
volving a specific service as responses from the correspond-
ing “Environment”, our scheme intelligently groups agents
according to the rating that they give to the same service. To
formalize these responses, we define an agent to be “fair”
(or “trustworthy”) if it reports the service performance cor-
rectly with a probability p > 0.5. Similarly, an agent is said
to be “deceptive” if it reports the inverted service perfor-
mance with a probability q > 0.5. The beauty of our scheme
is that although the identity of the reporting agents is un-
known, “fair” agents will end up in the same group, while
“deceptive” agents will converge to another group.

Unlike most existing reported approaches that only con-
sider the feedback from “fair” agents as being informative,
and which simultaneously discard the feedback from “un-
fair” agents, in our work we attempt to intelligently com-
bine (or fuse) the feedback from fair and deceptive agents
when evaluating the performance of a service. Moreover, we
do not impose the constraint that we need a priori knowl-
edge about the ratio of deceptive agents. Consequently, un-
like most of existing work, that suffer from a decline in the
performance when the ratio of deceptive agents increases,
our scheme is robust to the variation of this ratio. This char-
acteristic phenomenon of our scheme is unique.

1.4 Contributions of this paper

The novel contributions of this paper, when it concerns RSs,
are the following:

• We demonstrate the applicability of LA to RSs—thus pro-
viding a promising real-time solution to this paradoxical
problem. To our knowledge, the paper presents the first
reported LA-based solution for any problem within the
field of RSs.

• Since our solution is based on LA, it is both computation-
ally simple and memory efficient.

• With regard to the field of LA itself, our scheme presents
twofold contributions to traditional LA-based partition-
ing algorithms [17, 19, 20]. First of all, we do not im-
pose the constraint that an equal number of agents must
reside in the same partition. Secondly, we experimentally
demonstrate that the partitioning still yields accurate re-
sults when the environment is stochastic. In this sense,
the parameter used here to decide whether two agents are
reckoned “similar” is stochastic, while the latter parame-
ter was assumed constant in [17, 19, 20].



A. Yazidi et al.

• Most importantly, however, our scheme maximizes the
likelihood of selecting high quality services in the pres-
ence of an unknown ratio of deceptive agents. Indeed, not
only does the scheme not require the a priori knowledge
of the ratio of the deceptive agents, but it is also very ro-
bust to extremely high ratios of such deceptive or even
malicious agents!

We conclude this section by mentioning that our results
probably represent the state-of-the-art!

1.5 Paper Organization

Earlier, in Sect. 1.2 we presented a brief survey of the avail-
able solutions for dealing with fair and unfair agents in RSs.
The rest of the paper is organized as follows. First of all,
in Sect. 2, we present a formal statement of the problem.
Then, in Sect. 3 we present a brief overview of the field of
LA. Thereafter, in Sect. 4 we present our solution, which
is the LA-based scheme for selecting services in stochastic
environments. Experimental results obtained by rigorously
testing our solution for a variety of scenarios and for agents
with different characteristics, are presented in Sect. 5. Sec-
tion 6 concludes the paper.

2 Modeling the problem

Let us consider a population of L services (or service
providers), S = {S1, S2, . . . , SL}. We also assume that the
social network (or pool of users) consists of N parties (syn-
onymously called “agents”) U = {u1, u2, . . . , uN }. Each ser-
vice Sl has an associated quality, which, in our work is repre-
sented by an “innate” probability of the service provider per-
forming exceptionally well whenever its service is requested
by an agent. This probability is specified by the quantity θl ,
assumed to be unknown to the users/agents. For a given in-
teraction instance between user agent ui and service Sl , let
xil denote the performance value, which, for the sake of for-
malism, is assumed to be generated from a distribution re-
ferred to as the Performance Distribution of Sl . After the
service has been provided, the user/agent ui observes the
performance xil , where xil ∈ {0,1}. Since we intend to re-
duce our problem to a maximization problem, we assume
that ‘0’ denotes the lowest performance of the service, while
‘1’ denotes its highest performance.2

At this juncture, after the agent has experienced the qual-
ity of the service, he communicates his experience to the
rest of the network. Let yil be the report that he transmits to

2The extension to non-binary ratings (for example when xil is a real
number in the unit interval) is “trivial”, if we use the S-model of LA
computations instead of the P -model.

other agents after he experiences xil , where,3 yil ∈ {0,1}. It
is here that we have to model the genuineness of an agent
communicating his evaluation accurately. To do this, we as-
sume that agent ui communicates his experience, xil , truth-
fully to other agents in the population, with a probability
pi . In other words, pi denotes the probability that agent
ui is not misreporting his experience. For ease of notation,
we let qi = 1 − pi , which represents the probability that
agent ui does, in fact, misreport his experience. The inten-
tion for this symbolism should be obvious, because clearly,
pi = Prob(xil = yil).

Observe that as a result of this communication model, a
“deceptive” agent will probabilistically tend to report low
performance experience values for high performance ser-
vices and vice versa. Our aim, then, is to incrementally par-
tition the agents as being true/fair or deceptive, concurrently
with their experiences being communicated to us. Further-
more, at the same time as the agents are being partitioned,
our aim is to use the present state of the ongoing partition-
ing as a basis for decision making when selecting services.
Thus, our scheme can be divided into two interacting phases,
namely, an agent partitioning phase and a service selection
phase. The input to the agent partitioning phase is the reports
communicated by the other agents, while the input to the ser-
vice selection phase is the current agent partitioning. Deci-
sions about whether to access a service or not are the output
of the overall procedure, with the goal of making the deci-
sions that maximize the service performance experienced by
the agent that acts upon those decisions.

Note that we do not assume that an agent can access any
service, any time he wants. Rather, we assume that service
access is spatially and temporally restricted. Thus, the true
nature of services and agents are only gradually revealed,
i.e., as the overall system of agents and services are ob-
served over time. Also, note that we assume that some of the
agents spend some time on exploration, and not all of their
time purely on exploiting the experiences communicated by
other agents. This is necessary in order for the overall system
to discover the nature of new services when they are intro-
duced, as well as detecting the new nature of an old service
that changes nature.

Formally, the Agent-Type Partitioning Problem (AT PP ),
can be stated as follows: A social network consists of N

agents, U = {u1, u2, . . . , uN }, where each agent ui is char-
acterized by a fixed but unknown probability pi of him re-
porting his experience truthfully. The ATPP involves parti-
tioning U into 2 (mutually exclusive and exhaustive) groups
so as to obtain a 2-partition Gk = {Gi |i = 1,2}, such that
each group, Gi , of size, Ni , exclusively contains only the

3We mention, in passing, that other researchers, have used the notation
yil to signify the rating of the service.



Service selection in stochastic environments: a learning-automaton based solution

agents of its own type, i.e., which either communicate truth-
fully or deceptively.

Since the set of all possible solutions is isomorphic to
the set of all possible subsets of U , we conjecture that the
problem of determining the optimal 2-partition is NP -hard.

To simplify the problem, we assume that every pi can
assume one of two4 possible values from the set {pd,pf },
where pd < 0.5 and pf > 0.5. Then, agent ui is said to be
fair if pi = pf , and is said be deceptive if pi = pd .

Based on the above, the set of fair agents is Uf =
{ui |pi = pf }, and the set of deceptive agents is Ud =
{ui |pi = pd}.

Let yil be a random variable defined as below:

yil =
{

1 w.p pi.θl + (1 − pi).(1 − θl)

0 w.p pi.(1 − θl) + (1 − pi).θl .
(1)

Consider the scenario when two agents ui and uj utilize the
same service Sl and report on it. Then, based on the above
notation, their reports relative to the service Sl are yil and
yjl respectively, where:

Prob(yil = yjl)

= Prob[(yil = 0 ∧ yjl = 0) ∨ (yil = 1 ∧ yjl = 1)]
= Prob[(yil = 0 ∧ yjl = 0)]

+ Prob[(yil = 1 ∧ yjl = 1)]
= Prob(yil = 0) · Prob(yjl = 0)

+ Prob(yil = 1) · Prob(yjl = 1).

Throughout this paper, we shall denote Prob(yil = yjl) to
be the probability that the agents ui and uj will agree in
their appraisal. This quantity has the following property.

Theorem 1 Let ui and uj two agents. If both ui and uj

are of the same nature (either both deceptive agents or both
fair), then Prob(yil = yjl) > 0.5. Similarly, if ui and uj are
of different nature, then Prob(yil = yjl) < 0.5.

Proof The proof is straightforward. �

We shall now proceed to present a brief overview of LA,
the toolkit to solve the AT PP .

4Generalizing this so that each pi can be an element of a set
{pd1 ,pd2 , . . . pdJ

,pf1 ,pf2 , . . . pfM
}, where every pdi

< 0.5 and every
pfj

> 0.5 is rather trivial. It merely involves extending the arguments
presented here for all possible pairs 〈pdi

,pfj
〉. Notice that in the same

vein, agent ui would be considered fair if pi ∈ {pf1 ,pf2 , . . . pfM
}, and

he would be deceptive if pi ∈ {pd1 ,pd2 , . . . pdJ
}.

3 Stochastic learning automata

Learning Automata5 (LA) have been used in systems that
have incomplete knowledge about the Environment in which
they operate [1, 14, 21, 25]. The learning mechanism at-
tempts to learn from a stochastic Teacher which models the
Environment. In his pioneering work, Tsetlin [26] attempted
to use LA to model biological learning. In general, a random
action is selected based on a probability vector, and these
action probabilities are updated based on the observation of
the Environment’s response, after which the procedure is re-
peated.

The term “Learning Automata” was first publicized by
Narendra and Thathachar [14]. The goal of LA is to “deter-
mine the optimal action out of a set of allowable actions” [1].
The distinguishing characteristic of automata-based learn-
ing is that the search for the optimizing parameter vector is
conducted in the space of probability distributions defined
over the parameter space, rather than in the parameter space
itself [24].

In the first LA designs, the transition and the output func-
tions were time invariant, and for this reason these LA were
considered “Fixed Structure Stochastic Automata” (FSSA).
Tsetlin, Krylov, and Krinsky [26] presented notable exam-
ples of this type of automata. The solution we present here,
essentially falls within this family and so we shall explain
this family in greater detail in Sect. 3.1.

Later, Vorontsova and Varshavskii [14] introduced a class
of stochastic automata known in the literature as Variable
Structure Stochastic Automata (VSSA). In the definition of
a VSSA, the LA is completely defined by a set of actions
(one of which is the output of the automaton), a set of inputs
(which is usually the response of the Environment) and a
learning algorithm, T . The learning algorithm [14] operates
on a vector (called the Action Probability vector)

P(t) = [p1(t), . . . , pR(t)]T,

where pi(t) (i = 1, . . . ,R) is the probability that the au-
tomaton will select the action αi at time ‘t’, pi(t) =
Pr[α(t) = αi], i = 1, . . . ,R, and it satisfies

R∑
i=1

pi(t) = 1 ∀t.

Note that the algorithm T : [0,1]R × A × B → [0,1]R is
an updating scheme where A = {α1, α2, . . . , αR},
2 ≤ R < ∞, is the set of output actions of the automaton,

5In the interest of completeness, we have included a brief review of
the field of LA here. The review found in the earlier version of the
paper has been abridged as per the desire of the referees. The list of
applications of LA is also extensive, but omitted here in the interest of
brevity and the advice of the referees.



A. Yazidi et al.

and B is the set of responses from the Environment. Thus,
the updating is such that

P(t + 1) = T (P (t), α(t), β(t)),

where P(t) is the action probability vector, α(t) is the action
chosen at time t , and β(t) is the response it has obtained.

3.1 Fundamentals of FSSA

Since the solution to the AT PP which we present here es-
sentially falls within the family of FSSA, we explain them
now in greater detail. A FSSA is a quintuple (α, �, β , F, G)
where:

• α = {α1, . . . , αR} is the set of actions that it must choose
from.

• � = {φ1, . . . , φS} is a set of states.
• β = {0,1} is its set of inputs. The ‘1’ represents a penalty,

while the ‘0’ represents a reward.
• F is a map from � × β to �. It defines the transition of

the internal state of the automaton on receiving an input.
F may be stochastic.

• G is a map from � to α, and it determines the action taken
by the automaton if it is in a given state. With no loss of
generality, G is deterministic.

As discussed above, the automaton is offered a set of ac-
tions, and it is constrained to choose one of them. When an
action is chosen, the Environment gives out a response β(t)

at a time ‘t’. The automaton is either penalized or rewarded
with an unknown probability ci or 1 − ci , respectively. On
the basis of the response β(t), the state of the automaton
φ(t) is updated and a new action is chosen at (t + 1). The
penalty probability ci satisfies:

ci = Pr[β(t) = 1|α(t) = αi] (i = 1,2, . . . ,R).

The basic idea used to solve the AT PP is based on a
sub-class of LA solutions that has been used to solve the
object partitioning problem [8, 16]. As documented in the
literature, the object partitioning problem involves partition-
ing a set of |P| objects into |N| groups or classes, where the
main aim is to partition the objects into groups that mimic
an underlying unknown grouping. In other words, the ob-
jects which are accessed together must reside in the same
group [16]. In the special case when all the groups are re-
quired to contain the same number of objects, the problem
is also referred to as the Equi-Partitioning Problem (EPP ).
Many solutions involving LA have been proposed to solve
the EPP , but the most efficient algorithm is the Object Mi-
grating Automaton (OMA) [16]. The latter was first pro-
posed by Oommen and Ma [16], and some modifications
were added by Gale et al. [8] to create the Adaptive Clus-
tering Algorithm (ACA). Since the OMA is, in one sense,

the prior art on which our present solution is built, and since
we have compared our scheme with the OMA, we briefly
describe its design here.

3.2 Object migrating automaton (OMA)

The Object Migrating Automaton (OMA) is an ergodic au-
tomaton that has R actions {α1, . . . , αR} representing the
possible underlying classes. Each action αi has its own set
of states {φi1, φi2, . . . , φiM}, where M is the depth of mem-
ory, and 1 ≤ i ≤ R represents the number of classes. φi1 is
called the most internal state and φiM is the boundary (or
most external) state.

A set of W physical objects {A1,A2, . . . ,AW } is ac-
cessed by a random stream of queries, and the objects are
to be partitioned into groups so that the frequently jointly-
accessed objects are clustered together. The OMA uti-
lizes W abstract objects {O1,O2, . . . ,OW } instead of mi-
grating the physical objects. Each abstract object is as-
signed to a state belonging to an initial random group but
in its boundary state. The objects within the automaton
move from one action to another, and so, in this case, all
the W abstract objects move around in the automaton. If
the abstract objects Oi and Oj are in the action αh, and
the request accesses 〈Ai,Aj 〉, then the OMA will be re-
warded by moving them towards the most internal state
φh1. But a penalty arises if the abstract objects Oi and
Oj are in different classes, say αh and αg , respectively.
Assuming Oi is in ζi ε {φh1, φh2, . . . , φhM } and Oj is in
ζj ε {φg1, φg2, . . . , φgM}, they will be moved as follows:

• If ζi �= φhM and ζj �= φgM , Oi and Oj are moved one
state toward φhM and φgM , respectively.

• If exactly one of them is in the boundary state, the object
which is not in the boundary state is moved towards its
boundary state.

• If both of them are in their boundary states, one of them,
say Oi is moved to the boundary state of the other object
φgM . In addition, the closest object to them is moved to
the boundary state φhM , so as to preserve an equal number
of objects in each group.

It is important to point out that the random stream of
queries contains information about an optimal partition, and
the OMA attempts to converge to it. The automaton is said
to have converged when all the objects in a class are in the
deepest (or second deepest) most-internal state.

The OMA can be improved by the following: Assume
that a pair of objects 〈Ai,Aj 〉 is accessed, where Oi is in
the boundary state, while Oj is in a non-boundary state. In
this case, a general check should be made to locate another
object in the boundary state of the partition containing Oj . If
there is an object, then swapping is done between this object
and Oi in order to bring the two accessed objects into the



Service selection in stochastic environments: a learning-automaton based solution

same partition. In turn, instead of waiting for a long time to
have these accessed objects in the same partition, the con-
vergence speed can be increased by swapping the objects
into the right partitions.

The formal algorithm for the OMA is found in [8, 16],
and omitted here in the interest of space.

3.3 Similarities between the AT PP and the EPP

The idea behind using LA as a tool to solve the AT PP

comes from the elegance of using them to solve the EPP .
The similarity between the EPP and the AT PP render LA

as one of the promising candidate tools to solve the latter.
This is because:

• As in the case of the EPP , the AT PP is (possibly) NP-
hard, primarily due to the exponential growth in the num-
ber of partitions of objects/agents.

• The EPP dictates that each partition must have the same
number of objects. It is easy to see that an analogous con-
dition can be imposed with the AT PP if the number of
fair and deceptive agents are equal. Relaxing this con-
straint will be one of our major challenges.

• The EPP and AT PP seek to partition the objects/agents
into groups that mimic the underlying unknown groups of
objects and agents respectively. In the case of the EPP ,
the objects which are accessed together more frequently
by a random sequence of queries are said to be in the
same partition. As opposed to this, in the AT PP , the
agents which are similar to each other (by being either
fair or deceptive), are required to be in the same group so
as to maximize the “within-group” and to minimize the
“between-group” similarities.

We now highlight the differences between the two prob-
lems.

3.4 Limitations of the OMA in the AT PP context

The reported instances of the OMA are not directly applica-
ble for the AT PP . To develop our solution, we highlight the
main restrictions, and the necessary enhancements which
must be added to the OMA in order for it to be useful in
our present application domain.

• First of all, unlike the EPP, the AT PP does not require
the number of agents in each group to be the same.

• In case of the AT PP , the user does not have access to the
stream of random queries. Rather, the only available data
is the set of instances when the appraisal of one agent con-
curs with that of another. It is thus apparent that we have
to artificially “generate” a sequence of “queries” (or pairs)
which can be used to operate on a machine similar to the
OMA. The above restriction has a “two-edged” implica-
tion. First of all, in the EPP , the user usually requests

the system to obtain a query pair of the form 〈Oi,Oj 〉.
However, in the AT PP , it is our responsibility, while de-
signing the algorithm, to determine which agents should
be deemed similar or dissimilar, and the reader will ob-
serve that this determination is a problem to be solved
in its own right. Secondly, in the OMA, the placement
of the objects in the automaton and the stream of random
queries, together, serve to either reward or penalize the au-
tomaton. However, in the case of the AT PP , the question
of obtaining a reward/penalty response is not provided by
the user, but it has to be inferred. This again has to be
solved.

• Unlike the EPP , which has no way of penalizing “non-
accessed elements”, a solution to the AT PP must de-
velop a strategy for penalizing such agents by consider-
ing how similar the agents within the same groups are.
Clearly, this is superfluous for the EPP because, in that
problem, the automaton is absolutely dependent on the
user’s queries. In the present problem, it is crucial that
an automaton can quantify how fitting an agent is for any
given group.

• The optimal partition for the EPP yields crucial informa-
tion in the stream of random queries. As opposed to this,
in the context of the AT PP , the system has no notion of
how to characterize the optimal partition. This renders the
problem of adapting the OMA to solve the AT PP more
difficult.

• In the same vein, the definition of the optimal partition for
the EPP is quite different from that of the corresponding
solution for the AT PP . In the case of the EPP , all ob-
jects which are accessed together more frequently should
be in the same partition, while in the AT PP all agents
which respond in a similar way should be in the same
group.

• The criteria which are used to reward and penalize the
automaton in the EPP is quite unlike the one used for
the AT PP . In the EPP , the automaton is rewarded or
penalized based on the (unknown) probability of any two
objects being jointly accessed. But in the context of the
AT PP , the automaton is reward or penalized by “con-
ducting a comprehensive study” of the relation between
the individual agents, which, furthermore, may or may not
participate in a communication within the social network.

• Although the EPP and AT PP utilize analogous rules
for a reward phenomenon, as we shall see, they differ in
performing the penalty rules. In case of the EPP , the
automaton enforces the rule that the pertinent object mi-
grates, if and only if at least one of the accessed objects
is at the boundary state of the different partitions. As op-
posed to this, in the AT PP , the automaton enforces the
rule that the agents are migrated to the alternate group
whenever the task of migrating is dictated by their joint
appraisal probabilities.



A. Yazidi et al.

• The automaton used to solve the EPP is said to have
converged, when all the objects are found in the most (or
the last two) internal states of each partition. However,
we propose that the convergence in the AT PP occurs
when the measure of their clusters is satisfactory. For ex-
ample, if all the agents in both class are in their most in-
ternal states, the within-cluster distance of each cluster
would be zero, and the between-cluster distance would be
2M . We can then say that convergence has occurred if
the weighted sum of the within-cluster distance and their
between-cluster distance is greater than a given threshold.

4 A LA-based solution to the AT PP

This section describes, in fair detail, all the aspects and algo-
rithmic issues associated with our LA-based solution to the
AT PP . To initiate this, in Sect. 4.1 we first explicitly state
the inputs, outputs and goals of the entire exercise. Then, in
Sect. 4.2, we present a formal overview of the solution, in-
cluding the components of its 7-tuple formulation. Each of
the elements of this automaton are formally explained here.
Since the formulation of the LA has to explicitly declare the
responses it makes to Rewards and Penalties, Sect. 4.3 ex-
plicitly defines these both diagrammatically and algorithmi-
cally. This is followed, in Sect. 4.4, by a description of how
the user concentrates his observation on a sliding window of
interactions with other agents in the social network, and a
simple example (in Sect. 4.6) concludes this section.

4.1 Inputs, outputs and goals

In order to develop our LA-based solution to the AT PP , it
is appropriate that we re-iterate what the corresponding in-
puts and outputs are. The input to our automaton, is the set
of user agents U = {u1, u2, . . . , uN } and the reports that are
communicated within the social network. With regard to the
output, we intend to partition U into two sets, namely, the
set of fair agents Uf = {ui |pi = pf }, and the set of decep-
tive agents Ud = {ui |pi = pd}. The intuitive principle that
we use is that the agents that have the same nature (fair or
deceptive) will report similar experiences about the same
service, and we shall attempt to infer this phenomenon to,
hopefully, migrate them to the same partition. Observe that
since agents of different nature report dissimilar experiences
about the same service, we hope to also infer this, and, hope-
fully, force them to converge into different partitions.

4.2 Formal definition of the LA-based AT PP solution

We define the Agent Migrating Partitioning Automaton
(AMPA) as a 7-tuple as below: (U , �, α, β , Q, G, W),
where

• U = {u1, u2, . . . , uN } is the set of agents.
• � = {φ1, φ2, . . . , φ2M} is the set of states.
• α = {α1, α2} is the set of actions, each representing a

group into which the elements of U fall.
• β = {‘0’, ‘1’} is the set of responses, where ‘0’ represents

a Reward, and ‘1’ represents a Penalty.
• Q is the transition function, which specifies how the

agents should move between the various states. This func-
tion is quite involved and will be explained in detail
presently.

• The function G partitions the set of states for the groups.
For each group, αj , there is a set of states {φ(j−1)M+1, . . . ,

φjM }, where M6 is the depth of memory. Thus,

G(φi) = αj (j − 1)M + 1 ≤ i ≤ jM. (2)

This means that the agent in the automaton chooses α1

if it is in any of the first M states, and that it chooses α2

if it is in any of the states from φM+1 to φ2M . We assume
that φ(j−1)M+1 is the most internal state of group αj , and
that φjM is the boundary state. These are called the states
of “Maximum Certainty” and “Minimum Certainty”, re-
spectively.

• W = {WD
l (t)}, where, WD

l (t) = {Last D records prior to
instant t relative to service Sl}.

Our aim is to infer from W a similarity list of agents
deemed to be collectively similar. From it we can, based
on the window of recent events, obtain a list of pairs of
the form 〈ui, uj 〉 deemed to be similar. The question of
how W is obtained will be discussed later.

To see how all these components flow together, we shall
now explain how the learning cycle is performed—which is
the central kernel where the AT PP is solved.

The learning phase is the core of the clustering. The
AMPA model is initialized by placing all the agents at the
boundary state of their initially randomly-chosen groups.
This indicates that the AMPA is initially uncertain of the
placement of the agents, because the different states within
a given group quantify the measure of certainty that the
scheme has for a given agent belonging to that group. As
the learning cycle proceeds, similar agents will be rewarded
for their being together in the same group, and they will be
penalized by either moving toward their boundary state, or
to another group, as will be clarified presently.

6Generally speaking, the depth of the memory, M , in the LA could
play an important role in determining the accuracy of the LA, while
the eigenvalues of the underlying chain would determine the machine’s
rate of convergence. To the best of our knowledge, we are not aware of
any method used to determine the best value for M except the trial-and-
error approach. The effect of varying M will be explained in Sect. 5.



Service selection in stochastic environments: a learning-automaton based solution

4.3 Reward and penalty transitions

Philosophically, we mention that since we require that all
the elements of U move among the states of the machine, it
is distinct from traditional FSSA, which, being a traditional
finite state machine, always finds itself in only one of a finite
number of states. Also, if agent ui is in action αj , it signifies
that it is in the sub-partition whose index is j . Moreover, if
the states occupied by the nodes are given, the sub-partitions
can be trivially obtained by invoking (2).

Let ζi(t) be the index of the state occupied by agent ui

at the t th time instant. Based on {ζi(t)} and (2), let us sup-
pose that the automaton decides a current partition of U into
sub-partitions. Using this notation we shall later describe the
transition map of the automaton. Since the intention of the
learning process is to collect “similar” agents into the same
sub-partition, the question of “inter-agent similarity” (i.e.,
inferring which two agents should be grouped together) is
rather crucial. In the spirit of Theorem 1, we shall reckon
that two agents are similar if they are of the same nature,
implying that the corresponding probability of them agree-
ing is greater than 0.5.

We now consider the reward and penalty scenarios sepa-
rately.

4.3.1 Transitions for rewards

(a) Whenever two agents ui and uj test the same ser-
vice, if their corresponding reports are identical (either
both ‘0’ or both ‘1’), and they currently belong to the
same partition, the automaton (and, in particular, ui and
uj ) is rewarded. This mode of rewarding is called the
RewardAgreeing mode depicted in Fig. 1, and the al-
gorithm is formally given in Algorithm 1 titled “Re-
ward_Agreeing_Nodes”.

(b) As opposed to this, if ui and uj are dissimilar and
they currently belong to distinct partitions, the automa-
ton (and again, in particular, ui and uj ) is rewarded.
This mode of rewarding is called the RewardDisagree-
ingMode. The algorithm is identical to the formal algo-
rithm given in Algorithm 1, and is thus omitted to avoid
repetition.

By way of explanation, more specifically, on being re-
warded, since the agents ui and uj are in the “correct”
group, say αp , with regard to the agent it is being com-
pared with, both of them are moved towards the most in-
ternal state of that group, one step at a time. Observe that
it does not matter whether either (or both) of them is in a
boundary state. The overall scheme is given in Algorithm 2
titled “Reward_Agent”.

4.3.2 Transitions for penalties

Here we encounter three cases as listed below.

Algorithm 1 Procedure Reward_Agreeing_Nodes
Input: ζi and ζj : the indices of the states where the agents
Ri and Rj are located in the LA.
Output: The updated values of ζi and ζj .
Method:

1: Reward_Agent(ζi )
2: Reward_Agent(ζj )
3: return ζi and ζj

End Procedure Reward_Agreeing_Nodes

Algorithm 2 Procedure Reward_Agent
Input: ζi , which represents the index of the state where the
agent Ri is located in the LA.
Output: The updated value of ζi .
Method:

1: if (ζi mod M �= 1) then
2: ζi = ζi − 1
3: end if
4: return ζi

End Procedure Reward_Agent

(a) Whenever two agents ui and uj test the same service,
if their corresponding reports are identical (either both
‘0’ or both ‘1’), and they currently belong to distinct
partitions, the automaton (and, in particular, ui and uj )
is penalized. More specifically, this case is encountered
when two similar agents, ui and uj , are allocated in dis-
tinct groups say, αa and αb respectively (i.e., Ri is in
state ζi , where ζi ∈ {φ(a−1)M+1, . . . , φaM}, and Rj is in
state ζj , where ζj ∈ {φ(b−1)M+1, . . . , φbM }). This mode
of rewarding is called the PenalizeAgreeing mode de-
picted in Fig. 2, and the algorithm is formally given in
Algorithm 3 titled “PenalizeAgreeingNodes”.

Algorithm 3 Procedure Penalize_Agreeing_Nodes
Input: ζi and ζj : the indices of the states where the agents
Ri and Rj are located in the LA.
Output: The updated values of ζi and ζj .
Method:

1: Penalize_Agent(ζi)
2: Penalize_Agent(ζj )
3: return ζi and ζj

End Procedure Penalize_Agreeing_Nodes

(b) However, if ui and uj are both assigned to the same sub-
partition, but they should rather be assigned to distinct
groups, the automaton is penalized. Analogous to the
above, this mode of penalizing is called the PenalizeDis-
agreeing mode, because, in this mode, agents which are



A. Yazidi et al.

Fig. 1 (a) RewardAgreeing Mode: This is the case when both agents
ui and uj belong to the same partition. Observe that it does not mat-
ter whether either (or both) of them is in a boundary state. (b) Reward

Disagreeing Mode: This is the case when both agents ui and uj belong
to different partitions. Again, observe that it does not matter whether
either (or both) of them is in a boundary state

Fig. 2 PenalizeAgreeing Mode: This is the case when both agents ui and uj belong to different partitions. In (a), neither of them is in a boundary
state. As opposed to this, in (b), the figure depicts the case when one of them, uj , is in a boundary state

Fig. 3 PenalizingDisagreeing mode: This is the case when both agents
ui and uj belong to the same partition, when, in actuality, they should
belong to distinct partitions. In (a), neither of them is in a boundary

state. As opposed to this, in (b), the figure depicts the case when one
of them, uj , is in a boundary state

Algorithm 4 Procedure Penalize_Agent
Input: ζi , which represents the index of the state where the
agent Ri is located in the LA.
Output: The updated value of ζi .
Method:

1: if (ζi mod M �= 0) then
2: ζi = ζi + 1
3: else
4: if (ζi = M) then
5: ζi = 2M
6: else
7: ζi = M
8: end if
9: end if

10: return ζi

End Procedure Penalize_Agent

actually dissimilar are assigned to the same subparti-
tion and they are therefore penalized. This is depicted
in Fig. 3, and the algorithm is identical to the formal

algorithm given in Algorithm 3. It is again omitted to
avoid repetition.

(c) In both these cases, if the agent in question is in a bound-
ary state, it is subsequently moved to the boundary state
of the alternate choice.

Again, by way of explanation, on being penalized, if the
agents ui and uj are in the same group, say αa , both of them
are moved away from the most internal state of that group,
one step at a time. See Figs. 2 and 3 and Algorithm 4 titled
“Penalize_Agent”. If either of them is in a boundary state, it
switches actions to go to the boundary state of the alternate
action.

4.4 The window of observations

Since we adopt a simple interaction model, at each time in-
stant a random agent chooses a random service to interact
with, and can report his experience to the rest of agents.

We now address the question of recording the reports as-
sociated with the various agents, which in turn, involves the
set W, defined above. In our work, we adopt a “tuple-based”
window to store the reports for a given service [12], where



Service selection in stochastic environments: a learning-automaton based solution

the size of the window is quantified in terms of the number
of tuples. We have opted to do this because it is easier to
deal with tuple-based windows, since the size of each win-
dow in terms of the number of tuples is fixed. As opposed
to this, a time-based window would be specified in terms of
time units, where the size of each window instance may vary
based on the arrival process. Observe that our approach is
consistent with the work of Shapiro [23] where it was proven
that in an environment in which peers can change their be-
havior over time, the efficiency of a reputation mechanism
is maximized by giving higher weights on recent ratings and
where older (stale) ratings are discounted. Clearly, this is
equivalent to enforcing a sliding window.

In the partitioning phase, the agent in question observes
the reports of other agents. Based on the similarity of the re-
ports relative to the same service, the agent in question parti-
tions the reporters into two sets. Obviously, the reporters are
either deceptive or fair. Despite the ability of our LA-based
clustering algorithm to separate between the two groups Uf

and Ud , the agent can not determine which of the two groups
is the fair one, (Uf ), and which is the deceptive one, (Ud ),
unless he tries the services himself. Intuitively, if the agents
knows this information, he can just take the inverse of the
reports of the “liars” as being trustworthy, while he consid-
ers the rest of the reports, obtained from the fair agents, as
also being trustworthy.

With regard to the set W, the decision making procedure
that maximizes the likelihood of choosing high performance
services, works as follows. Every agent stores the last D re-
ports seen so far. Thus, the agent in question maintains, for
every service, a sliding window over the last D reported ex-
periences, which guarantees gathering the most recent re-
ports. Let

WD
l (t) = {Last D records prior to instant t

relative to service Sl}

At time instant t , WD
l (t) contains the D tuples with the

largest time stamps (where, if the total number d of reports
seen so far is smaller than the length of the window D, the
vector contains these d elements). Clearly, WD

l (t) stores the
most recent D tuples.7 Also, let WD

l [k] denote the record of
index k in the vector, or the (D − k)th last record.

4.5 The decision making phase

In the spirit of what we have developed so far, we assume
that the services belong to two categories: high performance
services and low performance services. A high performance

7In future, unless there is ambiguity, for ease of notation, we shall omit
the time index t .

service is a service with a high8 value of θ , and similarly, a
low performance service is a service with a low value of θ .
We suppose that agent u aspires to interact with high per-
formance services. Therefore, every time u desires to access
a service, u creates a list L of the recommended services
by applying a majority voting method, as explained below.
Based on this, u chooses a random service among the ele-
ments of this created list. In order to create a list of the high
performance services, for every service Sl , agent u evaluates
the feedback from agents that may have directly interacted
with service Sl during the last D interactions. We adopt the
terminology of a “witness” to denote an agent solicited for
providing its feedback. In this sense, at instant t , agent u

examines the service history vector WD
l (t) that contains the

last reports of the witnesses regarding the performance of
service Sl . For every report in the vector WD

l (t), agent u

should take the reverse of the report as true if he believes that
the witness is a “liar”, and consider the rest of the reports
as being trustworthy. Following such a reasoning, given D

trustworthy reports about a given service, we can apply a
deterministic majority voting to determine if the service is
of high performance or of low performance. Obviously, if
the majority of the agents assign the service a ranking of
‘1’, the service is assumed to be of a high performance, and
consequently, it is added to the list L.

However, a potential question is that of determining
which partition is the deceptive one, and which involves the
fair agents. In order to differentiate between the partitions
we design a LA that learns which of the partitions is decep-
tive and which is fair—based on the result of the interaction
between agent u with the selected service Sl . The automa-
ton is rewarded whenever agent u selects a recommended
service from the list L and the result of the interaction is a
high performance (meaning ‘1’). Similarly, the automaton
is penalized whenever agent u selects a recommended ser-
vice from the list L and the result of the interaction is a low
performance (meaning ‘0’). Again, we suppose that agent
u in question is initially assigned to the boundary state. We
observe the following:

• If agent u is in class αj then u supposes that all the agents
in αj are fair, and the agents in the alternate class are de-
ceptive.

• Whenever agent u decides to interact with a high perfor-
mance service, he creates the list L of recommended ser-
vices, and proceeds to choose a random service from L.

• If the result of the interaction is ‘1’, a reward is generated,
and the agent u goes one step towards the most internal
state of class αj .

8In the section which describes the simulations performed, a typical
value that we choose for high performance services is θ = 0.8, and for
low performance services is θ = 0.2.



A. Yazidi et al.

• If the result of the interaction is ‘0’, a penalty is generated
and agent u goes one step towards the boundary state of
class αj .

• If agent u is already in the boundary state, he switches to
the alternate class.

The formal algorithm which puts all the pieces of this
puzzle together, follows in Algorithm 5. Observe that the
agent whom we are interested in (say, u, who is in state ξ )
invokes this. He periodically,9 with a periodicity T , invokes
the Service Selection module given formally in Algorithm 6.
Since, as we alluded to earlier, we are working with a simple
interaction model, our solution assumes that at every time
instant, a random agent ui is allowed to experience the qual-
ity of a random service, and that he communicates his expe-
rience to the rest of the network. This report will serve as an
input to the OMA-Based-Partitioning, given formally in Al-
gorithm 7. Consequently, the agent u will be able to contin-
uously invoke an “intelligent” partitioning strategy between
his consecutive accesses to the services, and also incremen-
tally partition the set of reporting agents. The automaton as-
sociated with the agent u will converge to the action which
yields the minimum penalty response in an expected sense.
In our case, the automaton will converge to the class contain-
ing the fair agents, while the deceptive agents will converge
to the alternate class.

Algorithm 5 Main_Algorithm
Input: U = {u1, . . . , uN }, the set of agents, and T , a para-
meter which specifies the access periodicity of the system.
Output: Choice of an accessed service at every T th time in-
stant.
Method:

1: for Every time instant n do
2: if ((n mod T = 0)) then
3: Service_Selection(U )
4: else
5: OMA_Based_Partitioning(U )
6: end if
7: end for

End Main_Algorithm

4.6 Example

To show how the proposed decision making works we pro-
vide an example (see Fig. 4). In this example, we suppose

9Here, we suppose that the agent u aspires to access a high perfor-
mance service with a pre-defined fixed frequency, for example, after
every T time instances. Observe that we could just as easily have re-
sorted to a Poisson distribution.

Algorithm 6 Procedure Service_Selection
Input: A current partition of U {u1, . . . , uN } into sub-
partitions. Note that ζ , which represents the state occupied
by agent u.
Output: The updated value of ζ .
Method:

1: for every service Sl in the pool of available services do
2: Initialize vote ← 0
3: Initialize L ← ∅
4: WD

l : report vector relative to Sl

5: for k ← 1 to D − 1 do
6: j ← Index of the agent associated to record WD

l [k]
7: if ((u and uj are in same group)∧(WD

l [k] = 1))
then

8: vote := vote + 1
9: else

10: if ((u and uj are in different groups)∧(WD
l [k] =

0)) then
11: vote := vote + 1
12: end if
13: end if
14: end for
15: if (vote ≥ D/2) then
16: L ← L ∪ Sl

17: end if
18: end for
19: Sr : Service chosen at random from the list L

20: xr : Result of the interaction as u accesses Sr

21: ζ : Index of the state occupied by agent u

22: if (xr = 1) then
23: Reward_Agent(ζ )
24: else
25: Penalize_Agent(ζ )
26: end if
End Procedure Service_Selection

that the current partition is depicted by Fig. 4(a). Agents u1,
u3 and u5 belong to a different partition than agents u2 and
u4. We suppose that the agent in question, u, desires to inter-
act with a high performance service. u examines the report
vector WD

l (t). Moreover, we suppose that WD
l (t) is com-

posed of {y1l = 0, y3l = 0, y5l = 0, y2l = 1, y4l = 0}. Since
u is in state φ6, it belongs to partition α2, and therefore as-
sumes that agents u2 and u4 are fair agents, since they be-
long to the same partition as he. Similarly, u assumes that
agents u1, u3 and u5 are deceptive. Therefore, u inverts
the reports received from the “assumed deceptive agents”,
namely (y1l = 0, y3l = 0, y5l = 0) and trusts the reports from
the “assumed fair agents”, namely (y2l = 1, y4l = 0). Ap-
plying the majority voting method, four 1’s and one 0, leads
to a majority of 1, meaning that the service Sl is assumed
a priori to be a high performance service. We suppose that u



Service selection in stochastic environments: a learning-automaton based solution

Fig. 4 An example of how the decision making process works. In (a)
we encounter the so-called PenalizeAgreeing mode. Here the agents
ui and uj belong to different partitions, and neither of them is in a

boundary state. As opposed to this, in case (b), the LA encounters the
PenalizeAgreeing mode, when both agents ui and uj belong to differ-
ent partitions, and one of them, uj , is in a boundary state

Algorithm 7 Procedure OMA_Based_Partitioning
Input: U = {u1, . . . , uN } is the set of agents to be parti-
tioned.
Output: Partitioning agents into two sub-partitions.
Method:

1: A random agent i chooses a random service Sl

2: xil : Result of the interaction
3: yil : Reported experience
4: Update the vector WD

l

5: for k ← 1 to D − 1 do
6: j ← Index of the agent associated to record WD

l [k]
7: if (yil = yjl) then
8: if (ui and uj are in same group) then
9: Reward_Agreeing_Nodes(i,j )

10: else
11: Penalize_Agreeing_Nodes(i,j )
12: end if
13: else
14: if (ui and uj are in same group) then
15: Penalize_Disagreeing_Nodes(i,j )
16: else
17: Reward_Disagreeing_Nodes(i, j )
18: end if
19: end if
20: end for
End Procedure OMA_Based_Partitioning

selects Sl after creating the list L. In addition, suppose that
the result of the interaction is ranked as being a “low” per-
formance. Therefore, the automaton depicted in Fig. 4(b) is
penalized. Since u is at the boundary state, φ6, u switches
from its current partition, and is assigned to the state φ3. Be-
ing in state φ3 (and consequently in partition α1), u assumes
that agents u2 and u4 are deceptive agents since they now
belong to a different partition than he. Similarly, u now as-
sumes that agents u1, u3 and u5 are fair, and the system is
ready for the next interaction!

5 Experimental results

The performance10 of our scheme for RSs has been tested
by simulation in a variety of parameter settings, and the re-
sults that we have obtained are truly conclusive. To quantify
the quality of the scheme, we measured the average perfor-
mance of the selected services over all interactions, and this
was used as the performance index. All the results reported
have been obtained after averaging across 1,000 runs, where
every run consisted of 40,000 steps. In other words, each
time i the agent in question, guided by our learning scheme,
selects a service, the resulting performance xi is either 0
or 1. Thus, assuming that the agent selects a total of n ser-
vices across all runs and time steps, we define the average
performance to be

∑n
i=1 xi .

The interactions between the agents and the services were
generated at random, and at every time instant, a random
agent was made to select a random service. In our current
experimental setting, the number of agents was 20 and the
number of services in the pool of available services was 100.
The services belonged to two categories, namely, high per-
formance services with θ ≥ 0.5, and low performance ser-
vices with θ ≤ 0.5. The agent in question (i.e., the one which
we are interested in) periodically accessed a service every
1,000 runs—as per the above-mentioned procedure.

We report now the results obtained by testing the scheme
in a variety of settings.11

5.1 Performance in static environments

We first report the results for environments which are sta-
tic. Figure 5 shows the average performance of the service
selection scheme when the testing was done over 40,000
runs. In this particular setting, 10% of the services were high

10We are grateful to the feedback from the anonymous Referees, whose
comments helped to improve this section significantly.
11We have done experiments for numerous settings and scenarios. In
the interest of brevity, we merely report a few representative (and typi-
cal) experimental results, so that the power of our proposed methodol-
ogy can be justified.



A. Yazidi et al.

Fig. 5 The behavior of the
AMPA, measured in terms of
the average performance, in an
environment when the behavior
of the agents is static

Fig. 6 The behavior of the
AMPA in an environment when
the ratio of fair/deceptive agents
is varied. The figure shows the
variation of the average
performance under different
ratios of deceptive agents

performance services with θ = 0.8, and 90% were low per-
formance services with θ = 0.2. Further, 15 of the report-
ing agents were deceptive with pd = 0.2, while 5 were fair
agents with pf = 0.8. The depth of memory used for the LA
was M = 10, and the length of the sliding window was 100.
The results that we have obtained are shown in Fig. 5, which
demonstrates the ability of the approach to accurately in-
fer correct decisions in the presence of the deceptive agents.
In Fig. 5, 95% confidence intervals for the averages perfor-
mance are also plotted. Observe that the scheme achieves a
near-optimal index that asymptotically approaches the per-
formance of the high performance services, i.e., θ = 0.8.

5.2 Immunity to the proportion of deceptive agents

We now consider the problem of investigating how “im-
mune” our system is to the percentage of deceptive agents.
Figure 6 presents the average performance of the system
(over all interactions) when the ratio of deceptive agents is
varied. Observe that Fig. 6 are also reports the 95% confi-
dence intervals for these averages performance indices. The
reader will agree that the simulations results demonstrate
that the scheme is truly “immune” to varying the proportions
of fair and deceptive agents. In fact, even if all agents are
deceptive (i.e., this is equivalent to a ratio of 100%), the av-
erage performance is stable and again achieves near-optimal
values that approach the index of the high performance ser-
vices, θ = 0.8. In our opinion, this is quite remarkable!

5.3 Varying the spread between deceptive and fair agents

To further demonstrate the power of the scheme, we have
considered the effect of varying the spread between decep-
tive and fair agents. To analyze this, in this experiment,
50% of the services provided were set to be “high per-
formance” services. Figure 7 displays the average perfor-
mance when pf and pd were set to the following pairs: (0.8,
0.2), (0.6,0.4), and (0.5,0.5). The reader should observe that
as the spread between the fair and deceptive agents is de-
creased, the environment becomes increasingly more “dif-
ficult”, rendering the task of differentiating between them
to be more exacting. In the particular case where pf = 0.5
and pd = 0.5, the process of choosing the services is totally
random, which results in a theoretical performance of 0.5,
because,

P(θ = 0.8) × 0.8 + P(θ = 0.2) × 0.5

= 0.5 × 0.8 + 0.5 × 0.2 = 0.5.

However, in every case, the AMPA seems to asymptotically
attain near-optimal solutions.

5.4 Periodically changing service performance

To investigate the behavior of the AMPA with perfor-
mances which changed with time, we first considered the
scenario when these changes were made periodically. In-
deed, we achieved this by changing all the service perfor-
mances periodically every 5,000 runs. Further, the changes



Service selection in stochastic environments: a learning-automaton based solution

Fig. 7 The variation of the
performance of the AMPA

with increasing spreads between
the trustworthiness of deceptive
and fair agents

Fig. 8 The performance of the
AMPA with periodically
changing service performances

were made “drastic”, i.e., by inverting them from their prior
values as per:

θl,new = 1 − θl,old .

In the simulation settings, we used the following parameters:
There were 10% high performance services with θ = 0.8,
and 90% low performance services with θ = 0.1. Further,
we assumed that 15 of the reporting agents were decep-
tive, with pd = 0.2, while 5 were fair agents with pf = 0.8.
The memory depth used for the LA was M = 10, and the
length of the sliding window length was 100. From the re-
sults shown in Fig. 8, the reader will observe that the scheme
is able to adapt favorably to such changes. Indeed, from
Fig. 8, we notice that as the behavior of the services changed
(i.e., at every 5,000th step), the subsequent access by agent
u resulted in choosing a low performance service. However,
the scheme was well able to adapt to that change, and that,
rather rapidly, because of the state changes of the AMPA

and the sliding window approach. In fact, as the window
slides, the reports related to older (i.e., “stale”) service per-
formances were discounted, and replaced by more recent
reports, which, in turn, better reflected the current perfor-
mance of the services. Again, we believe that the way by
which the AMPA tracks this change is quite remarkable.

5.5 Immunity to the ratio of low performance services

The next scenario we report is the AMPA’s immunity to
the ratio of low performance services. Simulations results
demonstrate that the scheme is immune to varying this ra-
tio. In this case, we observe that for the system to achieve

near-optimal performance, the time window should be cho-
sen to be relatively large. In fact, it turns out that the agent in
question still opts to choose high performance services even
if their ratio is as low as 10%. Figure 9 depicts the average
performance (over time) with variations in the ratio of low
performance services. In our experiments, we utilized the
following ratios: 10%, 30%, 50%, 70%, and 90%, and in the
simulation, 15 of the reporting agents were deceptive with
pd = 0.2, while 5 of the agents were fair with pf = 0.8.
The reader will observe that the AMPA converges to near-
optimal performance in every single setting!

5.6 Varying the spread between high/low performance
services

To further demonstrate the property of the AMPA to be in-
sensitive to the spread between high and low performance
services, we conducted a set of experiments in which these
parameters were varied. Figure 10 depicts the average per-
formance when the indices of the high and low perfor-
mance services were set to the following pairs: (0.8,0.2),
(0.7,0.3), (0.6,0.4) and (0.5,0.5) respectively. In this ex-
periment, 50% of the services provided were set to be “high
performance” services. The reader will observe that as the
spread decreased, it was (understandably!!) increasingly dif-
ficult for the scheme to accurately select only high perfor-
mance services. Of course, in the limit when we encounter
the particular case of (0.5,0.5), the process of choosing the
services turns out to be totally random, which resulted in a
theoretical performance of 0.5.



A. Yazidi et al.

Fig. 9 The performance of the
AMPA with variations in the
ratio of low performance
services

Fig. 10 The performance of the
AMPA as the spread between
the high and low performance
services is decreased

5.7 Effect of changing the memory size

The final result that we report confirms the basic theory of
LA, which asserts that the performance of the machine in-
creases with the size of the memory. To test the effect of the
machine’s memory, numerous experiments were conducted
in a number of environmental settings. In this experiment,
50% of the services provided were set to be “high perfor-
mance” services. The results obtained in every case was
identical, namely, that the performance increased with the
memory. Indeed, Fig. 11 illustrates that decreasing the mem-
ory depth from 5 to 2 results in a lower performance. Again,
as anticipated by the theoretical results, a smaller memory
undermines the quality of the partitioning process, making it
difficult for the AMPA to accurately differentiate between
the deceptive and fair agents.

5.8 Experimental comparison

In this section, we compare12 our proposed approach with
two popular algorithms for dealing with deceptive agents,
namely Yu and Singh’s weighted majority method [28], and
Sen and Sajja’s approach [22]. The main idea of the algo-
rithm in [28] is to assign a weight to every witness that
reflects how credible he is. Before accessing a service, the

12We are grateful to the anonymous referees who suggested such a
comparison.

agent in question, u, requests the predictions of the indi-
vidual witnesses concerning the service performance. The
witnesses convey their predictions to u in the form of be-
lief functions [28]. After accessing the service, the agent
in question updates the weight of every witness based on
the result of interacting with the service. Deceptive agents
will tend to submit inaccurate predictions and thus their rel-
ative weights will decrease over time. Similarly, the weights
of fair agents will increase over time. An aggregated pre-
diction, denoted as λ in [28], is computed by the agent in
question as a weighted combination of the witnesses’ pre-
dictions. In order to be able to compare our algorithm with
the scheme proposed in [28], we were forced to add a Ser-
vice Selection Procedure to Yu and Singh’s weighted major-
ity method, i.e., one that is analogous to the service selection
procedure presented in our Algorithm 6. In the service selec-
tion procedure, whenever agent u desires to access a service,
u creates a list L of the recommended services that have an
aggregated prediction λ greater13 than 1

2 .
In Fig. 12, we report the evolution of the average perfor-

mance for our approach, and compare it with Yu and Singh’s
weighted majority algorithm. In the simulation settings, we
used the following parameters: There were 10% high perfor-
mance services with θ = 0.8, and 90% low performance ser-
vices with θ = 0.2. Moreover, we assumed that 15 of the re-

13Using the value 1
2 as a decision threshold is commonly used in

Weighted Majority Algorithms [11].



Service selection in stochastic environments: a learning-automaton based solution

Fig. 11 The variation of the
performance of the AMPA by
reducing the length of the
memory

Fig. 12 The comparison of the
performance of the AMPA

with the Weighted Majority
Algorithm

porting agents were deceptive, with pd = 0.2, while 5 were
fair agents with pf = 0.8. For the weighted majority algo-
rithm, we adopted the number of episodes to be H = 10,
as described in [28]. From Fig. 12, we remark that our pro-
posed approach exhibits a faster convergence speed than the
weighted majority algorithm. The slow convergence speed
of the weighted majority algorithm can be explained by the
gradual reduction of the weight of deceptive agents. This
gradual modification of weights leads to the weighted av-
erage being “polluted” by the deceptive agents for a con-
siderable amount of time, before their detrimental effect is
filtered out.

Table 1 summarizes the average performance at time in-
stant 20,000, for different ratios of deceptive agents, where
the total number of agents was set to be 20. Table 1 shows
that the average performance for the weighted majority al-
gorithm monotonically decreases as the ratio of deceptive
agents increases. This also demonstrates that the speed of
convergence of the weighted majority algorithm decreases
monotonically, as we increase the ratio of deceptive agents.
On the other hand, Table 1 also reports that the learning
speed of our proposed approach is not affected at all by the
increased ratio of deceptive agents, thus demonstrating the
superiority of our approach.

In addition to comparing our algorithm to the weighted
majority algorithm, we have also evaluated another popular
approach, namely the approach proposed by Sen and Sajja in
[22]. In [22], the authors made use of a reinforcement learn-
ing technique to locate high performance service providers.

A fundamental assumption in the latter approach is that the
majority of agents are fair. When this assumption is true, the
probability guarantee defined in [22] is obtained by querying
all witnesses.14 In Fig. 13, we report a comparison of the av-
erage performance under varying ratios of deceptive agents.
In the experimental settings, 50% of the services were as-
sumed to provide high performance. We observe that Sen
and Sajja’s algorithm suffers from a performance decline
as the number of deceptive agents increases. As opposed to
this, from Fig. 13, we observe that the average performance
of our scheme remains near-optimal in every setting. It is
worth noting that the robustness of our approach (when deal-
ing with high ratios of deceptive agents) is not due to invert-
ing the ratings of deceptive agents. In fact, we could exclu-
sively base our predictions on the ratings of fair agents and
discard the ratings of deceptive ones. However, intelligently
combining the ratings from both fair and deceptive agents
when evaluating the performance of a service, reduces the
variance of the resulting aggregate.

5.9 Evaluation of computational efficiency

The issue of addressing the computational complexity of our
solution is not easily answered. The real issue is that the
problem itself is NP-Hard because it can be reduced to the

14In the interest of brevity, the full details of this approach are omitted.
We refer the reader to [22] for further details about the scheme.



A. Yazidi et al.

Table 1 A comparison of the
performances of the AMPA

and the method due to Yu and
Singh [28] after 20,000 time
steps

Weighted majority Proposed approach

Deceptive
agents ratio

Average Standard
deviation

Average Standard
deviation

10% 0.786 0.013 0.796 0.013

20% 0.752 0.014 0.795 0.013

30 % 0.718 0.014 0.792 0.013

40% 0.701 0.014 0.790 0.013

50% 0.674 0.015 0.794 0.013

60% 0.635 0.015 0.793 0.013

70% 0.611 0.015 0.798 0.013

80% 0.581 0.016 0.797 0.013

90% 0.547 0.016 0.796 0.013

Fig. 13 The variation of the
average performance of the
AMPA and the method of Sen
and Sajja [22] when the ratio of
fair agents is decreased

partitioning problem, and so, if we merely stated that at each
step we required a linear number of operations, we would
be presenting an unfair picture to the reader. Indeed, gener-
ally speaking, the time complexity of a fixed-structure LA
depends on the depth of the memory, M , which plays an
important role in determining the accuracy of the LA, while
the consequent eigenvalues of the underlying chain (also de-
pendent on M) would determine the rate of convergence. In
practice, the LA is assumed to have converged when all ob-
jects are in (or close to) the most internal states in each par-
tition. Even though one needs but a linear number of moves
per iteration, to the best of our knowledge, we are not aware
of any method that can be used to pre-determine the num-
ber of iterations required for a solution to reach these most
internal states. Hence we present below, what we believe is
the most appropriate (fair and scientific) method of reporting
the complexity of the solution.

In order to assess the computational efficiency of our ap-
proach, we also measured the execution times on a laptop
PC containing a 2.1 GHz Intel Core Duo CPU with 2 GB
of RAM, running Windows XP 2002. All the algorithms
were implemented using Java, and the code was compiled
using the Sun Java compiler (javac). Observe that our main
algorithm consists of two main procedures, namely the Ser-
vice_Selection Procedure and the OMA_Based_Partitioning
Procedure, whose detailed descriptions are respectively

found in Algorithm 6 and Algorithm 7. In this perspective,
we analyzed the computational efficiency of both these pro-
cedures separately.

Note that in all of the experiments, the execution time is
expressed in milliseconds. Figure 14 depicts the evolution of
the execution time of the Procedure OMA_Based_Partition-
ing when the size of the sliding window was varied from 10
to 100, and when we fixed the number of services to 100.
From Fig. 14, we observe that the required execution time
for the OMA_Based_Partitioning increases linearly as the
size of the sliding window increases. Note that we achieve
high accuracy with relatively small window sizes, and it is
not unreasonable to reckon that this linear increase in com-
putation time is rather insignificant in real-world applica-
tions.

In the rest of this section, we evaluate the performance
of the Procedure Service_Selection. Here, we measured the
execution times by varying the number of services and for
varying sliding window sizes. In Fig. 15, we fixed the win-
dow size to be 100 and varied the number of services from
10 to 100. From the figure, we note that the execution time
of Procedure Service_Selection increases almost linearly as
we increase the number of services, which is also quite com-
mendable!

Similarly, in Fig. 16, we display the results when the
number of services was fixed to be 100, and we varied the



Service selection in stochastic environments: a learning-automaton based solution

Fig. 14 Execution time of the
Procedure
OMA_Based_Partitioning with
varying Sliding Window sizes

Fig. 15 Execution time of the
Procedure Service_Selection
with varying number of services

Fig. 16 Execution time of the
Procedure Service_Selection
with varying Sliding Window
sizes

window size from 10 to 100. From this figure, we note that
by increasing the window size, the execution time increases
as well, again, almost linearly!

5.10 Utilizing the ATPP to real-world applications

The ultimate intention of this paper is to have the algorithm
functional in a real-world device. The problems with testing
and incorporating it on real-world applications are many and
listed below:

1. First of all, it is extremely hard, if not impossible to get
real-life data on which we can test the algorithm. Indeed,
we would like to perform a real-world study with “real”
good and bad services, and with “real” people taking the
role of truth-tellers and liars. However, the question, re-
ally, is one of finding service providers and users who
will willingly participate in such an experiment, and the
logistics of this exercise is unsurmountable.

2. Secondly, even if are able to “recruit” service providers
for this task, it will be impossible to find real-life users
who will serve as “ballot-stuffers” or “badmouthers”.

3. Even if people serve in these capacities, the results of the
tests should, in actuality, be verified using psychological
and cognitive criteria. Unfortunately, such a study would
have to be carefully designed in order to provide reliable
results, and would require human resources and knowl-
edge in the latter domains that remain outside the scope
of the present project. We respectfully submit that his is
a multi-disciplinary project in its own right.

4. From an optimistic perspective, we remark that by intro-
ducing a large degree of noise in our simulations, we are
able to “stress” the schemes quite severely, thus mimick-
ing the “nuisances” of the real world. This is what we
have done in this paper.

5. In this regard, we have included a comparative evaluation
with other popular approaches for dealing with deceptive
agents ratings, namely, Yu and Singh’s weighted majority



A. Yazidi et al.

method [28] and Sen and Sajja’s reinforcement learning
approach [22] (see Sect. 5.8). From these evaluations, we
believe that it is clear that our scheme provides the same
kind of functionality as what is required from practical
cases. One should, however, note that our scheme out-
performs the latter schemes in the experiments.

Finally, we conclude this section by remarking that from
a more realistic viewpoint, now that the problem setup has
been clarified, we believe that it is, presently, much clearer
how the scheme fits into a practical case. Thus, a more re-
stricted real-world study is planned as a next step in coop-
eration with Ericsson Research, where we intend to build a
mobile phone-based prototype of the scheme presented in
this paper, with a focus on learning from a real-life social
network. Briefly stated, in this prototype each mobile phone
will be equipped with an instance of ATPP. Furthermore,
the ratings users submit about services must be accessible
by each mobile phone, preferably based on lazy propaga-
tion of ratings on a per need basis. Thus, as ratings of other
users are observed by a given instance of ATPP, and the re-
spective user obtains direct experience from his own inter-
action with services, ATPP updates its state accordingly, as
demonstrated in the simulations of this paper. Another pos-
sible practical application of our algorithm is stated in the
paper by Sen and Sajja [22] where user agents need to select
processor agents to achieve processor tasks. This avenue of
research is also currently being investigated.

6 Conclusions

In this paper, we have considered an extremely pertinent
problem in the area of “Reputation Systems” (RSs), namely
the one of identifying services of high quality. Although
these RSs offer generic recommendations by aggregating
user-provided opinions about the quality of the services un-
der consideration, they are prone to “ballot stuffing” and
“badmouthing” in a competitive marketplace. Clearly, such
unfair ratings may degrade the trustworthiness of RSs, and
additionally, changes in the quality of service, over time, can
render previous ratings unreliable. In this paper, we have
presented a novel solution for the problem using tools pro-
vided by the family of Learning Automata (LA). Unlike
most reported approaches, our scheme does not require prior
knowledge of the degree of any of the above mentioned
problems associated with RSs. Instead, it gradually learns
the identity and characteristics of the users which provide
fair ratings, and of those who provide unfair ratings, even
when these are a consequence of them making unintentional
mistakes.

Comprehensive empirical results show that our LA-based
scheme efficiently handles any degree of unfair binary rat-
ings. Furthermore, if the quality of services and/or the trust-

worthiness of the users change, our scheme is able to ro-
bustly track such changes over time. The paper also contains
a detailed comparison of the method with the state-of-the-
art. Finally, the strategy is ideal for decentralized process-
ing, and so, as such, we believe that our LA-based scheme
forms a promising basis for improving the performance of
RSs.

A possible extension of our work is to develop the
analogous methodology for continuous reports instead of
boolean. Also, in this work, every agent in a social network
can communicate with all other agents. In practice, though,
most of the time, one agent may resort to his friends for par-
tial information of available services. The question of how
we can devise a solution for the service reputation effec-
tively and efficiently (in this setting) is a research task in
itself, and is an interesting problem for future work.

References

1. Agache M, Oommen BJ (2002) Generalized pursuit learning
schemes: new families of continuous and discretized learning au-
tomata. IEEE Trans Syst Man Cybern, Part B, Cybern 32(6):738–
749

2. Altincay H (2006) On the independence requirement in
Dempster-Shafer theory for combining classifiers provid-
ing statistical evidence. Appl Intell 25:73–90. doi:10.1007/
s10489-006-8867-y

3. Buchegger S, Le Boudec J (2004) A robust reputation system for
P2P and mobile ad-hoc networks. In: Proceedings of the second
workshop on the economics of peer-to-peer systems

4. Chen M, Singh JP (2001) Computing and using reputations for
internet ratings. In: Proceedings of the 3rd ACM conference on
electronic commerce, Tampa, FL, USA. ACM, New York, pp 154–
162

5. Dellarocas C (2000) Immunizing online reputation reporting sys-
tems against unfair ratings and discriminatory behavior. In: Pro-
ceedings of the 2nd ACM conference on electronic commerce,
Minneapolis, Minnesota, USA. ACM, New York, pp 150–157

6. Despotovic Z, Aberer K (2004) A probabilistic approach to predict
peers performance in P2P networks. In: Cooperative information
agents VIII, pp 62–76

7. Faceli K, de Carvalho A, Rezende S (2004) Combining in-
telligent techniques for sensor fusion. Appl Intell 20:199–213.
doi:10.1023/B:APIN.0000021413.05467.20

8. Gale W, Das S, Yu C (1990) Improvements to an algorithm for
equipartitioning. IEEE Trans Comput 39(5):706–710

9. Jøsang A, Ismail R, Boyd C (2007) A survey of trust and rep-
utation systems for online service provision. Decis Support Syst
43(2):618–644

10. Li X, Dai X, Dezert J, Smarandache F (2010) Fusion
of imprecise qualitative information. Appl Intell 33:340–351.
doi:10.1007/s10489-009-0170-2

11. Littlestone N, Warmuth MK (1994) The weighted majority algo-
rithm. Inf Comput 108(2):212–261

12. Mayur Datar M, Gionis A, Indyk P, Motwani R (2002) Main-
taining stream statistics over sliding windows. SIAM J Comput
31(6):1794–1813

13. Mundinger J, Le Boudec J-Y (2008) Analysis of a reputation sys-
tem for mobile ad-hoc networks with liars. Perform Eval 65(3–
4):212–226

http://dx.doi.org/10.1007/s10489-006-8867-y
http://dx.doi.org/10.1007/s10489-006-8867-y
http://dx.doi.org/10.1023/B:APIN.0000021413.05467.20
http://dx.doi.org/10.1007/s10489-009-0170-2


Service selection in stochastic environments: a learning-automaton based solution

14. Narendra KS, Thathachar MAL (1989) Learning automata: an in-
troduction. Prentice-Hall, New Jersey

15. Obied A, Alhajj R (2009) Fraudulent and malicious
sites on the web. Appl Intell 30:112–120. doi:10.1007/
s10489-007-0102-y

16. Oommen B, Ma D (1988) Deterministic learning automata so-
lutions to the equipartitioning problem. IEEE Trans Comput
37(1):2–13

17. Oommen BJ, de St Croix EV (1996) Graph partitioning using
learning automata. IEEE Trans Comput 45(2):195–208

18. Oommen BJ, Fothergill C (1993) Fast learning automaton-based
image examination and retrieval. Comput J 36(6):542–553

19. Oommen BJ, Ma DCY (1988) Deterministic learning automata
solutions to the equipartitioning problem. IEEE Trans Comput
37(1):2–13

20. Oommen BJ, Ma DCY (1992) Stochastic automata solutions to
the object partitioning problem. Comput J 34(6):A105–A120

21. Poznyak AS, Najim K (1997) Learning automata and stochastic
optimization. Springer, Berlin

22. Sen S, Sajja N (2002) Robustness of reputation-based trust:
boolean case. In: Proceedings of the first international joint con-
ference on autonomous agents and multiagent systems: part 1,
Bologna, Italy. ACM, New York, pp 288–293

23. Shapiro C (1982) Consumer information, product quality, and
seller reputation. Bell J Econ 13(1):20–35

24. Thathachar MAL, Sastry PS (2002) Varieties of learning au-
tomata: an overview. IEEE Trans Syst Man Cybern, Part B, Cy-
bern 32(6):711–722

25. Thathachar MAL, Sastry PS (2003) Networks of learning au-
tomata: techniques for online stochastic optimization. Kluwer
Academic, Boston

26. Tsetlin ML (1973) Automaton theory and the modeling of biolog-
ical systems. Academic Press, New York

27. Whitby A, Jøsang A, Indulska J (2005) Filtering out unfair ratings
in bayesian reputation systems. J Manag Res 4(2):48–64

28. Yu B, Singh MP (2003) Detecting deception in reputation man-
agement. In: Proceedings of the second international joint confer-
ence on autonomous agents and multiagent systems, Melbourne,
Australia. ACM, New York, pp 73–80

29. Yuan W, Guan D, Lee Y-K, Lee S (2010) The small-
world trust network. Appl Intell 1–12. doi:10.1007/
s10489-010-0230-7

30. Zacharia G, Maes P (2000) Trust management through reputation
mechanisms. Appl Artif Intell 14(9):881–907

http://dx.doi.org/10.1007/s10489-007-0102-y
http://dx.doi.org/10.1007/s10489-007-0102-y
http://dx.doi.org/10.1007/s10489-010-0230-7
http://dx.doi.org/10.1007/s10489-010-0230-7

	Service selection in stochastic environments: a learning-automaton based solution
	Abstract
	Introduction
	Problem formulation
	Reputation systems: state of the art
	Overview of our solution
	Contributions of this paper
	Paper Organization

	Modeling the problem
	Stochastic learning automata
	Fundamentals of FSSA
	Object migrating automaton (OMA)
	Similarities between the ATPP and the EPP
	Limitations of the OMA in the ATPP context

	A LA-based solution to the ATPP
	Inputs, outputs and goals
	Formal definition of the LA-based ATPP solution
	Reward and penalty transitions
	Transitions for rewards
	Transitions for penalties

	The window of observations
	The decision making phase
	Example

	Experimental results
	Performance in static environments
	Immunity to the proportion of deceptive agents
	Varying the spread between deceptive and fair agents
	Periodically changing service performance
	Immunity to the ratio of low performance services
	Varying the spread between high/low performance services
	Effect of changing the memory size
	Experimental comparison
	Evaluation of computational efficiency
	Utilizing the ATPP to real-world applications

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


