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Abstract

This paper analyzes the pertinence and statistical behavior of symbol-spaced tapped-
delay-line (SSTDL) models for wide-sense stationary uncorrelated scattering (WSSUS)
mobile radio channels. SSTDL models are obtained by sampling the channel impulse
response (CIR) in delay domain at a rate equal to the reciprocal of the symbol dura-
tion. They were proposed more than four decades ago as canonical channel models for
band-limited time-variant linear systems, and are nowadays widely in use for assessing
the performance of several wireless communication systems. The applicability of these
tapped-delay-line (TDL) models seems to be unquestionable, as they were developed in
the framework of the sampling theorem. Nonetheless, we show here that SSTDL models
should be used with care to model WSSUS channels, because the channel’s uncorre-
lated scattering (US) condition might easily be violated. Furthermore, we show that
SSTDL models suffer from strong limitations in emulating the channel frequency cor-
relation function (FCF). This drawback leads to an inaccurate performance evaluation
of wireless communication systems sensitive to the FCF. To cope with this problem, we
present a simple solution by doubling the channel’s sampling rate. The benefits of this
solution are demonstrated with some exemplary simulation results.
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1 Introduction

The wide-sense stationary uncorrelated scattering (WSSUS) model proposed by Bello [1] is

widely accepted as an adequate model for small-scale mobile fading channels [2]–[7]. A variety

of standardized channel models for wireless and mobile communication systems has actually

been developed on the basis of this stochastic model [8]–[13]. In order to obtain realizable

and well specified representations of WSSUS channels, one often has to resort in practice to

the use of simulation models (SMs). Different types of SMs can be used for the simulation of

WSSUS channels, e.g., [15], [14]. However, a fundamental requirement for any of such SMs is

the proper emulation of the essential characteristics of the WSSUS model. This characteristic

is necessary to allow for a reliable and reproducible system performance investigation.

Several SMs basing on the time-variant tapped-delay-line (TDL) filter concept have been

proposed to enable the implementation of WSSUS channels with continuous-time impulse

responses, such as those in [5] and [15]. Among them, the simplest and perhaps most popular

one is a so-called symbol-spaced TDL (SSTDL) model. Briefly speaking, a SSTDL model

can be considered as a sampled version of the time-variant channel impulse response (CIR)

obtained by using a sampling rate equal to the reciprocal of the symbol duration. Such kind

of TDL models were originally introduced by Kailath [17] and Bello [1] as canonical channel

models — which essentially are channel SMs — for band-limited time-variant linear (TVL)

systems. SSTDL models are nowadays widely in use for evaluating the performance of modern

wireless communication systems, e.g., [18]–[20].

It might seem that the applicability of SSTDL models is unquestionable, since they were

developed in the framework of the sampling theorem [1]. Nonetheless, the results reported in

[21] suggest that the pertinence of such TDL models is rather doubtful when the concept is

applied to WSSUS channels. In fact, the answer to the question whether SSTDL models are

suitable for modeling WSSUS channels is still lacking in the literature. What is more, despite
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the fact that this modeling approach dates back more than forty years [1], [17], the statistical

properties of the resulting SSTDL are not well known. Most of the literature on this topic

concentrates only on describing the structure of the SSTDL model [6], [7], and even though

a statistical analysis can be found in [1], [4] and [16], no information concerning the channel

frequency correlation function (FCF) is provided there. The information about the FCF is very

important because this function influences the performance of many wide-band and frequency

diversity wireless communication systems, such as multicarrier code division multiple access

(MC-CDMA) systems [18]–[20], [22], [23].

Closing the above mentioned gaps is necessary not only for a better understanding of

channel modeling aspects, but also for carrying out a reliable system performance investigation.

In this paper, we aim at closing them by analyzing the pertinence and statistical behavior of

SSTDL models for WSSUS channels. It is also our objective to discuss the problems associated

with these TDL models, as well as to present a simple and effective strategy to avoid them.

The rest of the paper is organized as follows. Section 2 is committed to the analysis of

the suitability of SSTDL models for simulating WSSUS channels. It is shown in Section 2

that using SSTDL models to model the CIR of WSSUS channels within the context of band-

limited systems results in a violation of the channel’s uncorrelated scattering (US) condition. In

Section 3, we provide a concise description of the statistical behavior of these SMs. We show

in that section that SSTDL models suffer from strong limitations in emulating the FCF of

WSSUS channels. In Section 4, we show that SSTDL models lead to an imprecise performance

evaluation of wireless communication systems sensitive to the FCF. To cope with this problem,

we discuss a solution in Section 5 by doubling the sampling rate of the channel, resulting in a

half-symbol-spaced TDL model. The usefulness of this solution is exemplary demonstrated by

analyzing bit error probabilities for a down-link MC-CDMA system. Finally, we present our

conclusions in Section 6.
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2 About the Pertinence of SSTDL Models

2.1 The SSTDL Modeling Approach

Before analyzing the suitability of SSTDL models for modeling WSSUS channels, it is conve-

nient to review the approach followed in [1] to obtain such SMs. Toward that end, consider a

wireless communication system characterized by the input-output relationship

y(t) = x(t) ∗ h(t, τ) =

∫

x(t)h(t, τ)dτ (1)

where ∗ denotes convolution, x(t) is the transmitted signal, y(t) is the received signal, and

h(t, τ) is the time-variant CIR, which is continuous in both t and τ variables. The CIR h(t, τ),

called input delay-spread function by Bello, may be regarded as being the system response at

time t to a unit impulse applied τ seconds in the past.

For practical purposes, it is possible to derive discrete-delay1 representations of the CIR

h(t, τ) on the basis of the sampling theorem by assuming that either the transmitted signal

or the channel itself is bandwidth restricted. For the latter case, it was shown in [1, pp. 378-

379] that if the corresponding channel transfer function H(t, f) ,
∫

h(t, τ) exp{−j2πfτ}dτ is

confined to a bandwidth W (meaning that H(t, f) = 0 for |f | > W), then, according to the

sampling theorem, the CIR h(t, τ) may equivalently be expressed as [1, eq. (123)]

h(t, τ) ≡
∞
∑

n=−∞

h
(

t,
n

W

)

sinc
(

W
[

τ −
n

W

])

(2)

where sinc(τ) , sin(πτ)/(πτ), W ≥ W is an arbitrary sampling rate, and δ(τ) is the Dirac

delta function.

In conformity with the thesis in [1], it turns out that the CIR h(t, τ) is well modeled by a

1In this paper, we will be concerned only with the discrete-delay modeling of the CIR h(t, τ). The reader is
referred to [3] for a detailed study on the modeling of h(t, τ) in discrete-time domain
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TDL linear filter having a time-variant impulse response

ĥ(t, τ) = ∆τ ·

∞
∑

n=−∞

h(t, n∆τ)δ(τ − n∆τ) (3)

where the tap spacing ∆τ , 1/W is given such that ∆τ ≤ 1/W. The equivalent discrete-delay

CIR described by ĥ(t, τ) establishes the so-called SSTDL model when W = W = Ws, where

Ws = 1/T is the nominal bandwidth of the transmitted symbols2, and T is usually equal to

the symbol duration3. We will refer through the paper to ĥ(t, τ) either as SSTDL model or as

T -spaced TDL model to stress the fact that ∆τ = T (Ws = W = W ), while we will use the

term ∆τ -spaced TDL model for the more general case where ∆τ ≤ T (Ws ≤ W ≤ W ).

The equivalence between the CIR h(t, τ) and its discrete-delay version defined by ĥ(t, τ)

in (3) holds in the sense that the former impulse response can be reconstructed from the

interpolation of the latter one, as indicated by (2).

2.2 The Pertinence of SSTDL Models

The SSTDL modeling approach may at first seem to be sound and thorough. Nevertheless,

important problems arise when the random nature of mobile fading channels is brought into

consideration. The main source of conflict comes from the fact that the SSTDL model was

derived on the basis of the sampling theorem for deterministic signals. If the CIR h(t, τ)

is deemed to be a random process, as it is done usually for wireless communication system,

it is obvious that its discrete-delay representation should instead be obtained by invoking the

sampling theorem for stochastic processes [7, p. 71]. Thus, the bandwidth restriction should not

2The nominal bandwidth may be defined as the width of the main lobe of the power spectral density of a
digitally modulated signal.

3For instance, T equals the duration of the quadrature-amplitude-modulation (QAM) symbols in a conven-
tional single carrier system, whereas T equals the chip duration in direct-sequence spread spectrum (DS-SS)
systems [23]. Multicarrier systems [23], [27] are a special case, where T is equal to the (non-cyclic-extended)
symbol duration divided by the total number of subcarriers. In all cases, Ws = 1/T holds. We note that the
term “symbol” is used in this paper for those digital signals that carry the information through the channel.
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be associated with the channel transfer function H(t, f), but with the power density spectrum

of h(t, τ). Fortunately, the amendment of such an imprecision results in the same equivalent

discrete-delay CIR as described by ĥ(t, τ) in (3), and the results and conclusions drawn in [1]

remain basically unchanged. In this case, however, the equivalence defined in (2) holds true

only in the zero-mean-square-error sense, which signifies that [7, p. 71]

E

{

∣

∣

∣

∣

h(t, τ) −
∞
∑

n=−∞

h
(

t,
n

W

)

sinc
(

W
[

τ −
n

W

])

∣

∣

∣

∣

2
}

= 0 (4)

where E{·} denotes statistical expectation. As cautioning remark, we point out that the

sampling theorem for stochastic processes applies only on stationary processes.

A further problem appears if the CIR h(t, τ) meets per definition the WSSUS condition.

If h(t, τ) is a WSSUS random process, then the simulation approach described in Section 2.1

is not applicable, because the US condition is incompatible with the bandwidth constraint

presupposed to obtain ĥ(t, τ) [23]. Such an incompatibility often passes unnoticed in the liter-

ature. Take as an example the conclusions drawn in [7] at the end of Section 14.5.1 regarding

the uncorrelatedness of the tap gains of ĥ(t, τ) being a consequence of the US condition of

h(t, τ). This statement is not adequate in the way it was postulated in [7], because it was built

on by implicitly assuming that the CIR h(t, τ) fulfills per definition both the WSSUS condition

and the bandwitdh-limitation constrain. Notice that the eq. (14.5–4) given in [7, Sec. 14.5.1]

holds true only if the channel transfer function is inherently band-limited.

Bello proposed a second TDL model which circumvents the incompatibility between the

channel bandwidth limitation and the WSSUS condition [1, pp. 379, second column]. In

deriving that model, Bello shifted the bandwidth constraint onto the input signal x(t). There-

fore, since the bandwidth restriction is external to the CIR h(t, τ), one can assume (without

problems) that h(t, τ) is a WSSUS process. For this case, it can be shown that the equivalent
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discrete-delay CIR is given by [16]

h̃(t, τ) =

∞
∑

n=−∞

[
∫

h(t, ξ)sinc(W [ξ − n∆τ ])dξ

]

δ(τ − n∆τ). (5)

The impulse response h̃(t, τ) is not equivalent to h(t, τ) in the sense of (2), but in what

y(t) ≡
∞
∑

n=−∞

x(t − n∆τ)

∫

h(t, ξ)sinc([ξ − n∆τ ])dξ. (6)

The previous equation implies that the output of the system remains the same if the CIR h(t, τ)

is replaced by its discrete-delay version h̃(t, τ); as y(t) = ỹ(t), where ỹ(t) = x(t) ∗ h̃(t, τ). It is

promptly seen that if x(t) is random, then the equivalence y(t) ≡ ỹ(t) holds only in the zero-

mean-square-error sense. Similar observations can be made for the SSTDL model, or more

generally for the ∆τ -spaced TDL model, since y(t) ≡ ŷ(t) ∗ sinc (Wt), where ŷ = x(t) ∗ ĥ(t, τ).

While the TDL model described in (5) is compatible with WSSUS channels, it is strictly

speaking not a valid SM for them. This is due to the fact that the tap gains of the equivalent

discrete-delay CIR h̃(t, τ) are mutually correlated. The cross-correlation among the taps can

nonetheless be neglected if the autocorrelation function of h(t, τ) varies slowly in the delay

domain with respect to ∆τ , as pointed out in [1] and [16]. However, since the US condition of

the CIR h(t, τ) is not well reflected in general by h̃(t, τ), it can be conclude that this SM is not

adequate for modeling WSSUS channels. Indeed, the underlying reference model4 of h̃(t, τ),

which is a filtered version of h(t, τ), belongs to the class of non-WSSUS channels [24].

4In general, the reference model is any analytical model which specifies the statistical behavior of the
simulated channel.
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3 Statistical Behavior of SSTDL Models

Despite the SSTDL model proves to be incompatible with WSSUS channels from the per-

spective of band-limited systems, SMs of this kind are widely being used in connection with

the WSSUS model to evaluate the performance of up-to-date wireless communication systems,

e.g., [18]–[20]. In defense of such a system performance investigation approach, we can argue

that the SSTDL model might coexist with WSSUS channels if the bandwidth constraint im-

posed on the CIR h(t, τ) is relaxed5. To find out if this is the case, it is necessary to know

whether ĥ(t, τ) satisfactorily emulates the statistical properties of WSSUS channels. It should

also be determined whether the resulting SSTDL model lends itself to system performance

investigations. To accomplish the above-mentioned tasks, we need a complete description of

the statistical behavior of the (nonequivalent) discrete-delay CIR ĥ(t, τ). In this section, we

provide such a description by assuming that h(t, τ) is a WSSUS Gaussian random process. We

will also assume that the CIR h(t, τ) is causal and has finite duration, so that

ĥ(t, τ) = ∆τ ·
N
∑

n=0

h(t, n∆τ)δ(τ − n∆τ) (7)

where the number of taps N , ⌊W · τmax⌋ + 1 is defined with respect to the sampling rate W

and the channel’s maximum excess delay τmax [2]. The operator ⌊·⌋ denotes the nearest integer

toward minus infinity. These assumptions will hold throughout the remaining of the paper.

3.1 Statistical Description of the Reference Channel Model

Before we proceed, we will summarize the statistical properties of the WSSUS Gaussian CIR

h(t, τ) which are relevant for the purposes of this paper. For a detailed discussion on the

5Note, however, that the equivalences described in Section 2 for each of the pairs ĥ(t, τ), h(t, τ) and ŷ(t),
y(t) will no longer be valid. In any case, the corresponding relationships between those functions should be
established as mere approximations in terms of their statistical properties.
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statistical properties of WSSUS channels we refer the reader to [1], [3], [7], and [23].

In line with the WSSUS Gaussian model, h(t, τ) is fully characterized by its autocorrelation

function (ACF)

rh(t1, t2; τ1, τ2) , E {h(t1, τ1)h
∗(t2, τ2)}

= rh(∆t; τ1)δ(τ1 − τ2) (8)

where rh(∆t; τ) , E{h(t, τ)h∗(t + ∆t, τ)}, ∆t = t1 − t2, and {·}∗ denotes complex conjugate.

Similarly, h(t, τ) can be completely characterized by its time-frequency ACF (TF-ACF)

RH(t1, t2; f1, f2) , E {H(t1, f1)H
∗(t2, f2)}

=

∫ ∫

rh(t1, t2; τ1, τ2) exp{j2π(f1τ1 − f2τ2)}dτ1dτ2 (9)

= RH(∆t; ∆f) (10)

where ∆f = f1 − f2. Equation (10) results from the substitution of rh(t1, t2; τ1, τ2) from (8)

into (9), and states that the channel is wide-sense stationary6 (WSS) in both the time and the

frequency variables.

In particular, the multipath behavior of h(t, τ) is characterized in the frequency domain

by the FCF RH(∆f) , RH(0; ∆f) and, equivalently, in the delay domain by the power delay

profile (PDP)

Sτ (τ) , E{‖h(t, τ)‖2}

=

∫

∞

−∞

RH(∆f)ej2πτ∆fd∆f. (11)

We will focus our attention on these two statistical quantities (especially on the FCF) as the

TDL models are mostly intended to emulate them [5].

6Actually, the channel is strict-sense stationary (SSS), since the underlying process is a Gaussian process.
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3.2 Statistical Description of ∆τ-Spaced TDL Models

Given that ĥ(t, τ) is a sampled version of a Gaussian process, it is in turn a Gaussian process,

which is therefore completely characterized by its ACF

rĥ(t1, t2; τ1, τ2) = E{ĥ(t1, τ1)ĥ
∗(t2, τ2)}

=
1

W 2
rh(∆t; τ1)δ(τ1 − τ2) ·

∞
∑

n=−∞

δ(τ1 − nT ) (12)

where W , 1/∆τ . (We recall that W = Ws for the T -spaced TDL model.) Equation (12)

shows that ĥ(t, τ) is a WSSUS process, which was to be expected since the tap gains of ĥ(t, τ)

are samples of a WSS random process that fulfills the US condition. We can therefore conclude

that ĥ(t, τ) is an adequate SM for WSSUS channels. This is in line with the conclusion drawn

in [7]. However, we came to it without presupposing any bandwidth limitation for the channel

transfer function H(t, f). In order to determine how accurate is this SM in emulating the

statistical behavior of the reference model given by the CIR h(t, τ), it is convenient to turn

our attention to the analysis of the FCF of ĥ(t, τ).

We can express the TF-ACF of ĥ(t, τ), denoted by RĤ(t1, t2; f1, f2), as the convolution

of the channel’s TF-ACF RH(t1, t2; f1, f2) = RH(∆t; ∆f) and the train of delta functions
∑

∞

n=−∞
δ(f1 − nW )/W . In this way, we obtain

RĤ(t1, t2; f1, f2) =
1

W

∞
∑

n=−∞

RH(∆t; ∆f − nW ) (13)

= RĤ(∆t; ∆f). (14)

In turn, we can define the FCF of ĥ(t, τ) as RĤ(∆f) , RĤ(0; ∆f), i.e.,

RĤ(∆f) =
1

W

∞
∑

n=−∞

RH(0; ∆f − nW ). (15)

10



An equivalent expression which allows for the analytical evaluation of the FCF RĤ(∆f) may

be written as follows:

RĤ(∆f) =
1

W 2

N
∑

n=0

Sτ (n/W ) exp{−j2πn∆f/W}. (16)

We observe that RĤ(t1, t2; f1, f2) is WSS in the time domain and wide-sense periodic in the

frequency domain with period W . In mathematical terms, this means that RĤ(t1, t2; f1, f2) =

RĤ(∆t; ∆f + kW ), where k is an integer. Notice that RĤ(∆f) = RĤ(∆f + kW ). Also, the

FCF RĤ(∆τ) is Hermitian symmetric, i.e., RĤ(∆f) = R∗

Ĥ
(−∆f).

For an accurate emulation of the FCF RH(∆f) of the reference model it is desirable that

RĤ(∆f) = RH(∆f). Nevertheless, this equality can be fulfilled only within the frequency

interval ∆f ∈ [−W/2, W/2], because RĤ(∆f) 6= RH(∆f) for |∆f | > W/2 due to the peri-

odicity of RĤ(∆f). What is more, the FCF RĤ(∆f) of the SM ĥ(t, τ) is a weighted sum

of shifted replicas of RH(∆f), as can be observed from (15). Therefore, to ensure that the

relation RĤ(∆f) = RH(∆f) holds for ∆f ∈ [−W/2, W/2], it is necessary that RH(∆f) = 0

for |∆f | > W/2, otherwise the replicas of RH(∆f) will overlap and RĤ(∆f) will be affected

by aliasing. Unfortunately, the fulfillment of this condition cannot be guaranteed because the

FCF of WSSUS channels is not band-limited, and ĥ(t, τ) does not include any external band-

width restriction for RH(∆f) — which is actually the main difference between ĥ(t, τ) and the

TDL model h̃(t, τ) described in Section 2. The FCF of ĥ(t, τ) will therefore be affected by a

certain degree of aliasing, which will reduce its accuracy for emulating the FCF of h(t, τ). This

is in fact the main drawback of the ∆τ -spaced TDL model. Owing to the aliasing effects, the

FCF RĤ(∆f) of ĥ(t, τ) provides just an approximation to the FCF RH(∆f) of the reference

model h(t, τ) if −W/2 ≤ ∆f ≤ W/2. Aliasing is a well-known effect, but to the best of the

authors’ knowledge, it is generally not recognized in the literature that this effect influences

the statistical properties of the SM described by ĥ(t, τ) in (3).
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On the other hand, a reliable performance analysis of wireless systems requires the accurate

emulation of RH(∆f) along the whole frequency range of the system’s bandwidth. Hence,

satisfying the relation RĤ(∆f) ≈ RH(∆f) within the interval ∆f ∈ [−Ws, Ws] is sufficient for

system evaluation purposes. Unfortunately, this is not possible when we employ a T -spaced

TDL model, because the period W of the FCF of this SM is equal to Ws, i.e., W = Ws, which

means that the approximation RĤ(∆f) ≈ RH(∆f) cannot be satisfied for Ws/2 ≤ |∆f | ≤

Ws]. As will be shown next, this characteristic of T -spaced TDL models seriously affects the

performance evaluation of wireless communication systems sensitive to the FCF.

4 Numerical Examples

4.1 The Truncated-Exponential-Decay PDP

In this section, we will provide some examples to illustrate the issues discussed in Section

3.2. To this end, let us assume that the CIR h(t, τ) of the reference model has a truncated-

exponential-decay (TED)-PDP

Sτ (τ) =











1
c
· e−τ/σ, 0 ≤ τ ≤ τmax

0, else
(17)

where σ > 0 is called the PDP’s falling factor, and c = [1 − exp{−τmax/σ}] /σ. The TED-PDP

has been shown to be an adequate model for characterizing the PDP of outdoor and indoor

wide-band channels [25]. Indeed, this type of PDP has been used as a reference for design and

test by several bodies of standardization for wireless communication systems [8]–[10], [13], [26].

For the case of the TED-PDP, the FCF RH(∆f) of the reference model is given by

RH(∆f) =
1 − e−(1−j2π∆fσ)τmax/σ

(1 − j2π∆fσ) · (1 − e−τmax/σ)
. (18)
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From (16) and (17) we can express the FCF RĤ(∆f) of the ∆τ -spaced TDL model ĥ(t, τ) as

RĤ(∆f) =
1 − e−N(1+j2π∆fσ)/(Wσ)

1 − e−(1+j2π∆fσ)/(Wσ)
·

1 − e−1/(Wσ)

1 − e−N/(Wσ)
. (19)

We normalized (16) to obtain the above expression, so that RĤ(0) = 1. Note that for the T -

spaced TDL model, RĤ(∆f) in (19) is periodic with W = Ws, i.e., RĤ(∆f) = RĤ(∆f +kWs).

4.2 Effects of Aliasing on the FCF

In Fig. 1, we present a comparison between |RĤ(∆f)| and |RH(∆f)| for τmax = 800 ns, W =

Ws = 20 MHz, and three different values of the falling factor σ = {30 ns, 60 ns, 105 ns}. These

parameters are representative of the propagation conditions encountered inside office buildings

(σ = 30 ns), at large open space environments (σ = 60 ns), and at outdoor environments under

non-line of sight conditions (σ = 105 ns) [11] for applications in wireless local area networks

(WLANs), such as HIPERLAN/2, where the system bandwidth Ws is equal to 20 MHz [10].

As can be seen in the three cases shown in Fig. 1, |RĤ(∆f)| does not match |RH(∆f)| for

the interval ∆f ∈ [−Ws/2, Ws/2], inside of which the approximation RĤ(∆f) ≈ RĤ(∆f) is

valid. Actually, by taking the graphs of |RH(∆f)| as reference, we can observe that |RĤ(∆f)|

exhibits a correlation offset that increases monotonically as ∆f moves from zero to ±W/2.

Since RH(∆f) is not bounded in the frequency domain, the above mentioned offset is indeed

an effect caused by aliasing. We can also observe in Fig. 1 that |RĤ(∆f)| 6= |RH(∆f)| when

|∆f | > W/2, as both FCFs clearly follow different trends for frequencies in excess of W/2.
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4.3 The Influence of the FCF on the System Performance

Consider the frequency diversity system described by the following base-band equivalent signal

model (we will assume that this system is free of inter-symbol interference (ISI))

Y = CX + N (20)

where X, Y,N ∈ CM×1 represent a vector of M transmitted signals, a vector of M received

signals, and a vector of M complex additive white Gaussian noise (AWGN) components, respec-

tively. The (n, n)th entry of the diagonal matrix C ∈ CM×M represents the channel response

of the nth transmitted signal centered at (n− 1) · f0, where f0 is the fundamental frequency of

the system. The notation Cm×n stands for the set of all m × n complex matrices.

Ideally, C = diag{H}, where the vector H ∈ CM×1 represents the transfer function of the

reference model h(τ ; t) such that 〈H〉n = H(n∆f ; t) for all t. The diag{·} operator produces

a diagonal matrix from a vector, where the diagonal elements of the matrix are equal to the

elements of the vector between the curly braces; and 〈·〉n,m denotes the entry of a matrix at

its mth column and nth row (subindex m is omitted for vectors). Consequently, the channel

correlation matrix Rc = E{CC∗} equals the reference correlation matrix R = E{HHH}, the

(n, m)th entry of which is given as

〈R〉n,m = RH(W · ∆m−n/M) (21)

where ∆m−n = m − n denotes the (m − n)th lag of R, and {·}H indicates the conjugate

transpose operation.

When we use a T -spaced TDL model (or a ∆τ -spaced TDL model in general) for simulating

the system described by (20), then the channel matrix C is equivalent to Ĉ = diag{Ĥ}, where
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Ĥ = fft{ĥ}τ 7→∆f , and ĥ ∈ CM×1 with M ≥ N is the vector representation7 of ĥ(τ ; t). The

notation fft{·}τ 7→∆f indicates the column-wise fast Fourier transform (FFT) of a matrix with

respect to ∆f . In this case, the correlation matrix Rc is equal to R̂, where R̂ = E{ĤĤH} is

related to RĤ(∆f) by

〈R̂〉n,m = RĤ(W · ∆m−n/M). (22)

It follows from (21) and (22) that

〈R̂〉n,m ≈ 〈R〉n,m, for |∆m−n| ≤ ⌊M/2⌋ (23)

〈R̂〉n,m 6= 〈R〉n,m, for |∆m−n| > ⌊M/2⌋ . (24)

By assuming binary phase shift keying (BPSK) modulation and maximal ratio combining

(MRC), we can express the BEP of this system by [23, Sect. 2.4.6]

PBEP =
1

π

∫ π/2

0

M
∏

i=1

(

1

1 + Eb

N0
· λi

M ·sin2θ

)

dθ (25)

where Eb is the bit energy, N0 is the noise density, and λi is the ith eigenvalue of the correlation

matrix Rc. From (25), and since the eigenvalues of R and R̂ are not exactly the same because

of (23) and (24), the BEP of the reference system described by (20) will differ from that of the

simulation system described by Ŷ = ĈX + N, where Ĉ = diag{Ĥ}.

As a numerical example, let us analyze the BEP of a down-link MC-CDMA system [28]

consisting of M = 64 orthogonal subcarriers with f0 = 312.5 kHz, all of them used as data

subcarriers. The nominal bandwidth of this system is Ws = 20 MHz (Ws = 64 × 312.5 kHz),

7The elements of ĥ are given such that 〈ĥ〉n equals the nth tap gain of ĥ(τ ; t) for n = 0, . . . , N ; while
〈ĥ〉n = 0 for n = N, . . . , M − 1. In turn, the value of M is defined with respect to a given observation interval
τobs in such a way that M = ⌈τobs · W ⌉ and τobs > τmax. The operator ⌈·⌉ denotes the nearest integer toward

infinity. Obviously, ĥ and ĥ(τ ; t) describe equivalent SMs.
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and T = 1/Ws is therefore equal to 50 ns. We assume a multiple-user-interference (MUI)-free

network scenario with BPSK and MRC, and we consider MSF = {1, 2, 4, 8, 16, 32, 64}, where

MSF denotes the spreading factor of the system (MSF ≤ M). To compute the BEP for different

spreading factors, we used a slightly modified version of (25), which is given by

PBEP−SF =
1

π

∫ π/2

0

MSF
∏

i=1





1

1 + Eb

N0
·

λ̃
(MSF)
i

MSF·sin
2θ



 dθ (26)

where λ̃
(MSF)
i is the ith eigenvalue of the submatrix R

(MSF)
c ∈ CMSF×MSF, the (n, m)th entry

of which is 〈R
(MSF)
c 〉n,m = 〈Rc〉n,m. We evaluated (26) considering the T -spaced TDL model

and the TED-PDP [see (17)] with τmax = 800 ns and the same values of the falling factor σ

considered for Fig. 1. The results obtained for σ = 30 ns are shown in Fig. 2, while the results

obtained for σ = 60 ns and σ = 105 ns are presented in Fig. 3 and Fig. 4, respectively.

As can be seen in Figs. 2, 3, and 4, the BEP of the reference system Y = CX + N

with MSF > 1 is not exactly the same as that of the simulation system Ŷ = ĈX + N. In

fact, the difference between the BEP of both systems increases with increasing the spreading

factor MSF. This is because the approximation R̂(MSF) ≈ R(MSF) is worse due to the aliasing

effects as MSF increases — The submatrices R̂(MSF),R(MSF) ∈ CMSF×MSF are given such that

〈R̂(MSF)〉n,m = 〈R̂〉n,m and 〈R(MSF)〉n,m = 〈R〉n,m. Interestingly, Fig. 4 shows that the aliasing

effects can be neglected if σ is large. This was to be expected, since the FCF RH(∆f) of h(t, τ)

decays fast for large values of σ [cf. Fig. 1], which enhances the quality of the approximation

defined in (23). However, the BEP of Ŷ = ĈX+N is clearly different from that of Y = CX+N

when MSF = 64 even for a large σ, because half of the elements in R̂(64) do not meet the relation

〈R̂(64)〉m,n ≈ 〈R(64)〉m,n [see (24)].
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5 Avoiding the Problems Caused by T -Spaced

TDL Models

SSTDL models lead to an imprecise system performance evaluation because of two reasons.

On the one hand, the quality of the relation RĤ(∆f) ≈ RH(∆f), ∆f ∈ [−Ws/2, Ws/2], is

affected by aliasing effects. On the other hand, RĤ(∆f) 6= RH(∆f) for ∆f /∈ [−Ws/2, Ws/2]

since RĤ(∆f) behaves different from RH(∆f) when |∆f | > Ws/2. Fortunately, these problems

can be solved, or at least sufficiently reduced, simply by increasing the sampling rate of the

channel, i.e., by reducing the tap spacing ∆τ in ĥ(τ ; t).

Reducing ∆τ will result in less severe aliasing effects provided that RH(∆f) −→ 0 as

∆f −→ ±∞ (most PDPs, including the TED-PDP in (17), meet this condition). In addition,

it is obvious from (15) that a higher sampling rate results in a larger period for RĤ(∆f) and,

consequently, in a larger approximation interval. Indeed, it can be shown that RĤ(∆f) −→

RH(∆f) as ∆τ −→ 0. Particularly, if we choose ∆τ = T/2, then the period W of RĤ(∆f) will

be conveniently equal to twice Ws, i.e., W = 2Ws. In this way, the approximation RĤ(∆f) ≈

RH(∆f) will hold for the relevant interval ∆f ∈ [−Ws, Ws]. As a result, we will obtain a more

reliable picture of the system’s performance while keeping the TDL model’s complexity low.

For the above mentioned reasons, we suggest to sample the CIR at a rate equal to twice Ws as

alternative to avoid the problems associated to T -spaced TDL models. For the sake of clarity,

we will henceforth refer to the oversampled TDL model having a tap spacing of ∆τ = T/2 as

the T/2–spaced TDL model.

Figure 5 illustrates the advantages of using T/2-spaced TDL models by comparing the

absolute value of the FCF of the reference model, |RH(∆f)|, with that of the T -spaced and

T/2-spaced TDL models. As expected, this figure shows that T/2-spaced TDL models are more

resilient to the aliasing effects than T -spaced TDL models. Furthermore, we can observe in

Fig. 5 that the approximation interval of T/2-spaced TDL model is valid for ∆f ∈ [−Ws, Ws].
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As a numerical example of the benefits of T/2-spaced TDL models for system evaluation,

let us consider again the MC-CDMA system described in Section IV. We have recalculated the

BEP of this system under the same considerations as in Section IV, but with the difference

that we use now a T/2–spaced TDL channel model, meaning that the tap spacing is equal to

∆τ = 25 ns and ĥ ∈ C128×1 with N = 33. The results are shown in Figs. 6, 7, and 8.

It is clear from Figs. 6, 7, and 8, that the simulation system Ŷ = ĈX + N matches

better the BEP of the reference system Y = CX + N when the T/2–spaced TDL channel

model is used. Moreover, in the BEP curves of Y and Ŷ corresponding to a SF of 64, we

can see that the difference between the graphs is considerably smaller than when we use the

T–spaced TDL model (see Figs. 2, 3, and 4). The reason for this significant improvement

is that the approximation RĤ(∆f) ≈ RH(∆f) is valid for ∆f ∈ [−Ws, Ws] when we use

a T/2-spaced TDL model. We shall mention, nonetheless, that the T/2-spaced TDL model

has been introduced mainly as a solution to enable the approximation of the FCF RH(∆f)

along the relevant range of frequencies of the system −Ws ≤ ∆f ≤ Ws. It does not remove

completely the aliasing effects observed within ∆f ∈ [−W/2, W/2], which explains the slight

differences between the BEP of the reference system and the simulation system for σ = 30 ns

and MSF = 64 [cf. Fig. 8]. Other solutions, more sophisticated than the one discussed here,

are necessary to neutralize the aliasing effects, e.g., see [5].

6 Conclusions

We showed that important inconsistencies arise when SSTDL models, or ∆τ -spaced TDL

models in general, are used within the context of band-limited systems to model WSSUS

channels. Such inconsistencies involve the violation of the US condition of the channel. The

∆τ -spaced TDL model defined by ĥ(t, τ) is nevertheless a valid SM for WSSUS channels if it is

considered out of the context of band-limited systems. This is because the resulting ∆τ -spaced
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TDL model turns out to be in itself a WSSUS random process.

We have shown that the FCF RĤ(∆f) of the ∆τ -spaced TDL models is periodic with a

period equal to W = 1/∆τ , which cause aliasing effects. Because of this characteristic of

RĤ(∆f), ∆τ -spaced TDL models provide just an approximation to the FCF RH(∆f) of the

reference model h(t, τ), which is valid only for ∆f ∈ [−W/2, W/2]. The quality of such an

approximation is determined by the aliasing effects.

Given that the relation RĤ(∆f) ≈ RH(∆f) is not valid for |∆f | > W/2, T -spaced TDL

models are not able to emulate the FCF of the reference model for the frequency range of the

system’s bandwidth Ws (as W = Ws for T -spaced TDL models). This drawback seriously

affects the performance analysis of wireless communication systems sensitive to the FCF.

To avoid the problems caused by T -spaced TDL models, we suggested the use of T/2–spaced

TDL channel models, which are obtained by sampling the CIR at a rate equal to 2Ws, i.e.,

∆τ = T/2. The T/2-spaced TDL model will be more resilient to the aliasing effects than the

T -spaced TDL model provided that the FCF RH(∆f) of the reference model approaches to zero

as ∆f → ∞. Another advantage is that T/2 spaced TDL models allow for the approximation of

the FCF of the reference model along the complete frequency range of the system’s bandwidth.

For this reason, using T/2-spaced TDL models instead of T -spaced TDL models turns out to

be of great advantage for system evaluation purposes.
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cation Center of Ensenada (CICESE), BC, México, in 2006, both in electrical engineering with major on
telecommunications. He also received the Advanced Studies Diploma (DEA) from the Polytechnic University
of Catalonia (UPC), Barcelona, Spain, in 2005. He is an Assistant Professor (currently on a leave) of Electrical
Engineering at the Panamericana University, Campus Bonaterra, Ags., México, and a Doctorate Fellow at the
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Figure 1: Comparison between |RH(∆f)| and |RĤ(∆f)| by using the T -spaced TDL model,
by assuming the TED-PDP with τmax = 800 ns, Ws = 20 MHz (W = Ws), and σ =
{30 ns, 60 ns, 105 ns}.
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Figure 2: Bit error probabilities (BEPs) of an MUI-free down-link MC-CDMA system with
MRC and different values of the spreading factor MSF. Solid lines: BEPs of the reference system
Y = CX+N, which were computed by using the reference channel model C = diag{H}. Dash–
dotted lines: BEPs of the simulation system Ŷ = ĈX+N, which were computed by using the
vector representation of the T -spaced TDL model Ĉ = diag{Ĥ}.
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Figure 3: Bit error probabilities (BEPs) of an MUI-free down-link MC-CDMA system with
MRC and different values of the spreading factor MSF. Solid lines: BEPs of the reference system
Y = CX+N, which were computed by using the reference channel model C = diag{H}. Dash–
dotted lines: BEPs of the simulation system Ŷ = ĈX+N, which were computed by using the
vector representation of the T -spaced TDL model Ĉ = diag{Ĥ}.
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Figure 4: Bit error probabilities (BEPs) of an MUI-free down-link MC-CDMA system with
MRC and different values of the spreading factor MSF. Solid lines: BEPs of the reference system
Y = CX+N, which were computed by using the reference channel model C = diag{H}. Dash–
dotted lines: BEPs of the simulation system Ŷ = ĈX+N, which were computed by using the
vector representation of the T -spaced TDL model Ĉ = diag{Ĥ}.
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Figure 5: Comparison between |RH(∆f)| and |RĤ(∆f)| by using the T -spaced TDL model
(dashed lines) and the T/2-spaced TDL model (dotted lines) by assuming the TED-PDP with
τmax = 800 ns, Ws = 20 MHz, and σ = {30 ns, 60 ns, 105 ns}.
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Figure 6: Bit error probabilities (BEPs) of an MUI-free down-link MC-CDMA system with
MRC and different values of the spreading factor MSF. Solid lines: BEPs of the reference system
Y = CX+N, which were computed by using the reference channel model C = diag{H}. Dash–
dotted lines: BEPs of the simulation system Ŷ = ĈX+N, which were computed by using the
vector representation of the T/2-spaced TDL model Ĉ = diag{Ĥ}.
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Figure 7: Bit error probabilities (BEPs) of an MUI-free down-link MC-CDMA system with
MRC and different values of the spreading factor MSF. Solid lines: BEPs of the reference system
Y = CX+N, which were computed by using the reference channel model C = diag{H}. Dash–
dotted lines: BEPs of the simulation system Ŷ = ĈX+N, which were computed by using the
vector representation of the T/2-spaced TDL model Ĉ = diag{Ĥ}.
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Figure 8: Bit error probabilities (BEPs) of an MUI-free down-link MC-CDMA system with
MRC and different values of the spreading factor MSF. Solid lines: BEPs of the reference system
Y = CX+N, which were computed by using the reference channel model C = diag{H}. Dash–
dotted lines: BEPs of the simulation system Ŷ = ĈX+N, which were computed by using the
vector representation of the T/2-spaced TDL model Ĉ = diag{Ĥ}.
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