
ERRATA LIST

Page
number

ERRATA

37
Second paragraph in subsection 3.1.3.2: A space character between “and” and “port types”
is inserted.

50

Subsection 3.2.4: A new sentence discussing model transformations and a new citation to
a new article is added.

A concrete example of model refinement is a transformation of service models into
executable state machines, which is also a model, is presented in [54].

The new cited article is:

[54] F.A. Kraemer, P. Herrmann. Transforming Collaborative Service Specifications into
Efficiently Executable State Machines. In Electronic Communications of the EASST
6(2007).

52

Subsection 3.2.5: A new sentence states that a code generation method that aligns UML
2.0 and Temporal logic is added. For this, a new citation is also added at then end of the
sentence.

An example of code generation method that aligns UML state machines and Temporal
logic to generate code from service models is introduced in [55].

The new cited article is:

[55] F.A. Kraemer, P. Herrmann, R. Bræk. Aligning UML 2.0 State Machines and
Temporal Logic for the Efficient Execution of Services. In R. Meersmann and Z. Tari
(eds.), Proceedings of the 8th International Symposium on Distributed Objects and
Applications (DOA06), pages 1613-1632, LNCS 4276, Montpellier, Springer-Verlag 2006.

54

Subsection 3.3: A new sentence and its reference with regard to an example of method for
developing embedded applications are added.

In [56], reusable building blocks are used to construct embedded applications. A
dedicated building block provides a mechanism to access platform-specific functionality
of Sun SPOTs devices. The building blocks can be used in combination with other blocks
realizing other functionalities such as communication protocols.

The new cited article is:

[56] F.A. Kraemer, V. Slåtten, P. Herrmann. Model-Driven Construction of Embedded
Applications based on Reusable Building Blocks – An Example. In R. Reed, A. Bilgic, R. 3
Gotzhein (eds.), Proceedings of the 14th International SDL Forum 2009, pages 1-18,
Bochum, LNCS 5719, Springer-Verlag, September 2009.

58

Subsection 3.5: Instead of article 65 (old version), two newest versions of the article are
cited. The new cited articles are:

[53] F.A. Kraemer, R. Bræk, P. Herrmann. Compositional Service Engineering with
Arctis. In Teletronikk, Special Issue on Model-Driven Security - Integrating Availability in
System Development, Telenor, (2009)1, 135-151

[57] F.A. Kraemer, V. Slåtten, P. Herrmann. Tool Support for the Rapid Composition,
Analysis and Implementation of Reactive Services. In The Journal of Systems and
Software 82 (2009) 2068-2080.

66

Second paragraph: A new citation is added at the end of sentence:

Software developers can use ARCTIS to specify, analyze, and verify software system using
models[57].

The cited article is:

[57] F.A. Kraemer, V. Slåtten, P. Herrmann. Tool Support for the Rapid Composition,
Analysis and Implementation of Reactive Services. In The Journal of Systems and
Software 82 (2009) 2068-2080

67

First paragraph: The sentence “Similarly, ARCTIS building block is also a model as it is
instance of ARCTIS” is edited as

Similarly, an ARCTIS building block is also a model as it is an instance of ARCTIS that is
based on UML 2.0 [53,57,65].

80

Section 4.5.2: A short comparison of PMG-pro and ARCTIS code generation is added.
For this, article number 55 is cited.

With regard to the ARCTIS code generation, PMG-pro code generator applies only a
simple transformation process. It reads and converts directly activity nodes (with control
and object flows) into code. So, it works only on a simple activity diagram due to the
formalism. The reason is that the code generator in PMG-pro is developed only for the
purpose of proof-of-concept. However, since the method is independent of languages and
tools, PMG-pro can use any built-in code generator. In contrast, ARCTIS converts a
collaboration activity diagram into a state machine which is executable. For this, cTLA is
used for the reasoning [55]. Code is then, generated from the generated state machines. It
works on more complex activity diagrams.

92

Section 5.4, forth paragraph: The article number 55 is also cited at the end of the sentence
“In the case of ARCTIS … is instantiated”.

In the case of ARCTIS to Java code generation, from each building block, one object is
instantiated [55].

105

Subsection 5.5.2.4, second paragraph: The article number 55 is also cited again at the end
of the sentence “ARCTIS has a code generator for J2SE … model”.

ARCTIS has a code generator for J2SE that enables automatic code generation from
ARCTIS model [55].

106
Subsection 5.5.3.3: The misspelled title is corrected. The correct one is Use Case
Scenario.

123
Subsection 6.3.2: To make it clear what is discussed, the title is changed. The new title is:

6.3.2 Discussion

124

Subsection 6.3.2, first paragraph: A short comparison to article number 38 is added.

Model-driven development is considered effective if the transformation of abstract models
to more detailed models is an automatic process. In [38], a method for an automatic
transformation of flow-global choreography models (UML activity diagram) into localized
choreography models (ARCTIS model) is proposed. The author proposes to use Attributed
Graph Grammar System (AGG) as the graph transformation engine. Using this method,
ARCTIS code generator is used to generate an executable code. In contrast, PMG-pro
implements only a simple interpreter that reads and converts any connection of activity
nodes (in the activity diagrams) into code, directly. This is of course a week approach.
However, it works for a simple activity diagram, where the automation of code generation
can be achieved. For more complex activity diagram, PMG-pro can use built-in code
generator

The new cited article is:

[38] Han F., S.B. Kathayat, Hien L., R. Bræk, P. Herrmann, Towards Choreography
Model Transformation via Graph Transformation, in Proceedings of the 2nd IEEE
International Conference on Software Engineering and Service Science (ICSESS 2011),
pages 508-515, Beijing, IEEE Computer Society Press, July 2011.

135
References: The list of the references is updated due to the new added six citations and
one citation is removed.

