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Abstract

The stochastic non-linear fractional knapsack problem is a challeng-
ing optimization problem with numerous applications, including resource
allocation. The goal is to find the most valuable mix of materials that
fits within a knapsack of fixed capacity. When the value functions of the
involved materials are fully known and differentiable, the most valuable
mixture can be found by direct application of Lagrange multipliers. How-
ever, in many real-world applications, such as web polling, information
about material value is uncertain, and in many cases missing altogether.
Surprisingly, without prior information about material value, the recently
proposed Learning Automata Knapsack Game (LAKG) and Hierarchy of
Twofold Resource Allocation Automata (H-TRAA) offers arbitrarily ac-
curate convergence towards the optimal solution, simply by interacting
with the knapsack on-line. This paper introduces Gaussian Process based
Optimistic Knapsack Sampling (GPOKS) a novel model-based reinforce-
ment learning scheme for solving stochastic fractional knapsack problems,
founded on Gaussian Process (GP) enabled Optimistic Thompson Sam-
pling (OTS). Not only does this scheme converge significantly faster than
LAKG, GPOKS also incorporates GP based learning of the material val-
ues themselves, forming the basis for OTS supported balancing between
exploration and exploitation. Using resource allocation in web polling as a
proof-of-concept application, our empirical results show that GPOKS con-
sistently outperforms LAKG and H-TRAA, the current top-performers,
under a wide variety of parameter settings.
Keywords: Gaussian Process, Thompson Sampling, SNEFKS Problem
Stochastic Resource Allocation Web Polling
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Mathematical Notation

x vector x
x′ vector x transposed
〈x · z〉 The inner product between vector x and z
|x| Euclidean length of vector x
M matrix M
I Identity matrix of appropriate size
E[·] Expected value operator
P (·) Probability operator
N (µ, σ2) Gaussian Distribution
N (µ,Σ) Multivariate Gaussian Distribution(
n
k

)
The binomial coefficient i.e. n choose k.

δpq The Kronecker delta: δpq = 1 if p = q, 0 otherwise.
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1 Introduction

Parts of this thesis are published in [14], as a part of the thesis process, where
it received the award for best student paper, and can be found in Appendix B
TODO: add the paper.

1.1 Background and Motivation

Effective resource allocation is a topic of interest in most large scale systems,
due to the simple fact that one could perform a set of tasks given a particular
allocation of resources, one might save a lot of resources only by modifying the
allocation scheme (i.e. how much resources is available to each task) and not
the solution itself.

Figure 1.1: P depends on both A and B.

An example of this could be the allocation of running time for a distributed
program P . Say that P needs the results from both task A and B in order
to finish its calculations, how should it allocate running time to both of these
(since P is a distributed program we may assume that A and B are running
in parallel). A naive implementation might divide the running time uniformly
among A and B, however this is only optimal in the case where A and B require
an equal amount of running time to finish. For cases where this requirement
does not hold, the running time should be allocated in such a manner that A
and B both finish at the same time. Note that the gain in performance from
this type of optimization does not depend on how A and B are solved, only the
allocated resources have to do so, see figure 1.1 for a more visual representation
of this example.

The challenge with these type of problems is there inherit stochastic nature.
Continuing the above example, an exact solution would require us knowing in
advance the time needed to finish processing both A and B as a function of
their allocated running time. But for most non-trivial problems this type of
information is not readily available and we must either estimate 1 it, or utilize
some sort of adaptive scheme. A adaptive scheme would in this case start out

1Empirically or by exploiting known facts surrounding the problem.
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with a priori estimate and gradually, based on observations, adapt towards a
more optimal allocation.

1.2 Application: Web-polling

The Internet can be seen as a massive collection of ever changing information,
continuously evolving as web resources are created, edited, deleted, and re-
placed [36]. In many cases obtaining sufficient information from the Internet is
of uttermost importance, including social media monitoring, counter-terrorism
and business intelligence. To keep up with these data requirements applied
search engines have to constantly monitor available web resources to quickly
and accurately detect changes, typically employing a polling regime.

The problem then becomes; how can we balance the available polling-resources
in such a manner that we detect and retrieve the maximum amount of infor-
mation? This problem was largely ignored in the literature until the introduc-
tion of the Learning Automata Knapsack Game (LAKG) [16] in 2006 where
Granmo et al. also gave a formal problem definition, the so-called Stochastic
Non-linear Equality Fractional Knapsack (NEFK) problem. In [19] the Hi-
erarchy of Twofold Resource Allocation Automata (H-TRAA) algorithm was
proposed, outstripping LAKG as the state-of-the-art for scenarios with a high
number of unique resources.

Up to this point, the typical and also the simplest approach was to apply
a uniform polling policy, where every web-resource was polled using a equal,
fixed frequency. Clearly, this is a sub-optimal solution since each web resource
may have a different characteristic. A web resource that rarely updates would
be allocated a too high frequency and as such result in a large number of poll
request returning without any new information. In addition it would deny a
rapidly changing web resource the needed capacity to retrieve the available
data. Thus, balancing the available polling capacity based on the web resources
individual characteristic can result in a gain in information without increasing
the total capacity of the system.

One can classify the type of solutions to this problem into two categories,
online and estimation based solutions. The estimation based solution divide the
allocation process into two phases. Firstly it will apply the uniform policy to all
the web resources and monitor their update rates, gaining an estimate on there
update probability. Threating these estimated values as the true underlying
update probabilities for each web resource, one can use Lagrange Multipliers to
calculate an estimated optimal resource allocation for the web resources.

However, while this algorithm can achieve an optimal balance, doing so
would also require an arbitrary long estimation phase. That is, one either has
to accept a sub-optimal solution due to an insufficient estimation phase, or wait
for an extensive time period while the estimation process occurs to find more
accurate update probabilities to base the calculations off.

In this thesis, we will be largely concerned with the on-line type of solution,
here the algorithm perform both the estimation and calculation step at the same

8



time, gradually improving itself.
This thesis introduces Gaussian Process based Optimistic Knapsack Sam-

pling (GPOKS) – a novel online scheme for solving stochastic knapsack prob-
lems founded, as the name implies, on Gaussian Process (GP) [40] [5] based
Thompson Sampling [50] enchanted by the principle of Optimistic Thompson
Sampling [28].

1.3 Thesis definition

The Internet can be seen as a massive collection of ever-changing information,
continuously evolving as web resources are created, edited, deleted, and re-
placed. Obtaining adequate amount of information is in many cases of paramount
importance, typically task such as social media analysis depends not only on
the quality of the data but also on the quantity and freshness of the data (e.g.
the difference between the generation and the collection of the data). Most
real-world scenarios boils down to being able to quickly and accurately detect
when a web resource changes, as to only retrieve data that is new, reducing
extraneous work for the collectors. Usually some sort of polling scheme is em-
ployed, where each web-page is polled for updates with a given frequency. The
problem comes in the form of determining the optimal polling frequency for each
web resource given the constraints of the total polling capacity of the system.
The trivial and clearly sub-optimal solution would be to ignore the individual
characteristics of each web resource and divide the total polling capacity uni-
formly among the web resources being monitored. While other methods have
been suggested in the literature, the state-of-the-art polling scheme is LAKG, a
Learning Automata based stochastic on-line algorithm for solving the Stochastic
Nonlinear Equality Knapsack (SNEFK) whom the web-polling problem can be
seen as a realization of. In this master thesis we will combine the principle of
Optimistic Thompson Sampling (OTS) and Gaussian Processes (GP) to form
a novel scheme for solving the SNEFK. We will then compare this new solu-
tion with existing state-of-the art techniques (LAKG) for solving SNEFK, with
emphasis on the web-polling problem using a wide variety of configuration and
scenarios.

1.4 Summary of Contributions

• We introduce the concept of Thompson Function Sampling applied to
Gaussian Processes

• Connect the state-of-art solvers for Multi-Armed-Bandit problems to the
Stochastic Nonlinear Equality Fractional Knapsack Problem

• Give a detailed performance centric comparison of variations of the GPOKS
scheme.

• Compare the performance between GPOKS and the current state-of-the-
art algorithms.
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• Utilizing the restrictions GPOKS places on the GP we obtain a much
faster calculation method for GPOKS than traditional GPs can offer.

1.5 Outline

The layout of this thesis can be summarized as follows:

• In Section 2 we introduce the formal problem description and the web-
polling application.

• In Section 3 and 4 we cover the necessary background information.

• In Section 5 we give a brief overview of the state-of-art for solving the
SNEFK problem.

• In Section 6 the novel GPOKS algorithm is introduced.

• In Section 7 we define the experiments that will be performed, and in
Section 8 we report the results of the experiments.

• In Section 9 the conclusion and future work is covered.

• Appendix A gives a novel proof for the DET-KS algorithm.

• Appendix B is the published paper covering parts of this thesis.

2 Knapsack Problems

In this section, we formalize and introduce the Stochastic Nonlinear Equality
Fractional Knapsack (SNEFK) Problem. First, by reviewing some more tradi-
tional variations of the knapsack problem, then we extend these into SNEFK
that form the basis for GPOKS, we finish by showing how SNEFK can be used
as a basis for the optimal web-polling problem.

2.1 Traditional Knapsack problems

The iconic knapsack problem is informally stated as: A man is going to the
market, he has a single knapsack 2 to carry goods. Before he leaves he must
decide what he should put into his knapsack to maximize his earnings at the
market. Some items might be worth a lot, but will take up a lot of space, other
less-valuable items may be worth less but will also take up less space. As such,
a optimal solution take both of these views into account and finds the perfect
setting that is just right.

2Knapsack: A bag with shoulder straps, carried on the back, and typically made of canvas
or other weatherproof material.
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{0-1} Knapsack Problem:
We now consider the classical {0-1} knapsack problem. This NP-hard problem
[44] is studied extensively throughout the literature and several algorithms for
finding the exact solution exists for nice problems [27] [37].3 Here a subset of
n items have to be packed into a knapsack with a capacity c. Each items has a
value vi and a weight wi and the problem is then to select a subset of the items
such that the total weight of the items does not exceed c and whose total value
is a maximum. We can transform this into a Integer Linear Programing (ILP)
model by first, without loss of generality assume that all vi, wi and c are positive
integers. Introducing a binary variable si that takes on the value ‘1’ if item i
is in the knapsack and ’0’ otherwise, we arrive at the following mathematical
definition:

maximize
n∑
i=0

sivi

subject to
n∑
i=0

siwi ≤ c

Unbounded Knapsack Problem:
The natural extension to this problem is the Unbounded Knapsack Problem
(UKP), here the restriction that we either select the item or not is relaxed into
allowing si to take on any non-negative value i.e. we can select multiple copies
of the same object as long as we respect the total capacity of the knapsack.
This variation of the knapsack problem is also NP-hard [2] and have several
applications such as network planning, network routing and parallel scheduling
etc. [24]. Formally, UKP is expressed as:

maximize
n∑
i=0

sivi

subject to
n∑
i=0

siwi ≤ c ∀i, si ∈ Z+ ∪ {0}

Linear Fractional Knapsack Problem:
Many real world allocation schemes operate in fractions, a large company might
want to share its bandwidth smartly, a system might want to allocate CPU-
time efficiently for different processes, or divide access to a shared buss. Again,
the common denominator of these problem, is that they are operating using
fractions instead of binary decisions.

The Linear Fractional Knapsack Problem (FKP) is a continuous knapsack
problem as opposed to both 0-1 and UKP which are discrete integer problems.
If we alter the knapsack to allow a real-valued amount of a material (item),
denoted xi, and translate the item value into a material value per unit we end
up with UKP. We assume that both the weight wi and material unit value vi
are pro-rated, and non-negative.

3Problems with exponentially growing coefficients cannot be solved efficiently, this is only
natural considering the NP-hardness of the problem.
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maximize
n∑
i=0

xivi

subject to
n∑
i=0

xiwi ≤ c ∀i, 0 ≤ xi ≤ 1

It is well know that FKP can be solved in a greedy manner, first we order
the materials by their value density (vi/wi), and then we put the materials into
the knapsack, one by one, based on their density, until the knapsack is full. If
the last item cannot fit in its entirety we instead put a fraction of the material
such that we fill the knapsack completely [6].

A common requirement for a fractional knapsack is that is must operate
with limited set of information, and gradually improve the solution as one gain
access to more information, an example of such an algorithm is found in [34].

2.2 The Nonlinear Equality FK (NEFK) Problem

One important extension of the classical FK problem is the Nonlinear Equality
FK problem with a separable and concave objective function. The problem can
be stated as follows [22]:

maximize f(x) =
n∑
i=0

fi(xi)

subject to
n∑
i=0

xi = c, ∀i,∈ {1, 2, . . . , n} , xi ≥ 0.

Since the objective vector function f(x) is considered to be concave, the value
function fi(xi) of each material is also concave. This means that the derivatives
of the material value functions fi(xi) with respect to xi (hereafter denoted f ′i)
are non-increasing4. In other words, the material value per unit volume is no
longer constant as in the linear case, but decreases with the material amount,
and so the optimization problem becomes:

maximize f(x) =
n∑
i=0

fi(xi)

subject to
n∑
i=0

xi = c, ∀i,∈ {1, 2, . . . , n} , xi ≥ 0.

where fi(xi) =
∫ xi

0
f ′i(xi)dxi.

Efficient solutions to the latter problem, based on the principle of Lagrange
multipliers, have been devised. In short, the optimal value occurs when the
derivatives f ′ of the material value functions are equal, subject to the knapsack

4This can be seen by considering fi(xi) as the position of a object, then if fi(xi) is concave
it must per definition have a negative double derivative (acceleration) f ′′i (xi) < 0 implying
that the speed (f ′i(xi)) is decreasing for each time step (xi). Thus it is non-increasing.
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constraints, identified as [8]:

f ′1(x1) = f ′2(x2) = . . . = f ′n(xn)

subject to
n∑
i=0

xi = c, ∀i,∈ {1, 2, . . . , n} , xi ≥ 0
(2.1)

Example 2.1. Since this part is crucial for the later development of GPOKS
in section 6 we present a concrete example of how equation 2.1 works. We use
the following two concave materials functions:

f1(x1) = −x21 ⇒ f ′1(x1) = −x21 ⇒ f ′′1 (x1) = −2
f2(x2) = −3x22 ⇒ f ′2(x2) = −6x22 ⇒ f ′′2 (x2) = −6
where x1 ≥ 0 , x2 ≥ 0 and c = 1

Both f1(x1) and f2(x2) are clearly concave since their double derivative is neg-
ative. Since we only have two materials we can write: x2 = c − x1 = 1 − x1.
Attacking the problem directly employing Calculus we find f(x) = f1(x1) +
f2(x2) = −x21 − 3x22 = −x21 − 3(1 − x1)2 = −4x1 + 6x1 − 3. We then calculate
f ′(x) = 6− 8x1 and set f ′ equal to zero and solve for x1 to give us: x1 = 3

4 and
x2 = 1− x1 = 1

4 .

Approaching the problem using equation 2.1 allow us to set f ′1(x1) = f ′2(x2)
again using the fact that x2 = 1 − x1 we find: f ′1(x1) = f ′2(x2) → −x21 =
−6x22 → −2x1 = −6(1 − x1) → 6 = 8x1 → x1 = 3

4 the same as when we used
regular calculus.

See figure 2.1 for a plot of f(x) = −4x1 + 6x1 − 3. Notice that if you want
to move x2 closer to ‘0’ you also have to move x1 closer to ‘1’, and since their
derivatives are equal, you would loose from doing so.

Figure 2.1: NEFK Example
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2.3 The Stochastic Nonlinear Equality Knapsack (SNEFK)
Problem

In this this thesis we generalize the nonlinear equality knapsack problem. First
of all, we let the material value per unit volume for any xi be a probability
function pi(xi). Furthermore, we consider the distribution of pi(xi) to be a fixed
unknown function. That is, each time an amount of xi of material i is added to
the knapsack, we only observe an instantiation of pi(xi) and not the function
pi(xi) itself.5 Given this stochastic environment, we then intend to devise an
on-line incremental scheme that learns the mix of material that maximizes the
expected value of the knapsack, through a series of informed guesses.

Thus, to clarify issues we are provided with a set of n materials that should
be used to fill a knapsack with a fixed capacity c. However, unlike the NEFK in
the Stochastic NEFK the material value for each material is a random quantity:

material unit valuei =

{
1 with probability pi(xi)

0 with probability 1− pi(xi)
.

As an additional complication, pi(xi) is nonlinear in the sense that it decreases
monotonically with xi, i.e. xi1 ≤ xi2 ⇐⇒ pi(xi1) ≤ pi(xi2).

Since unit volume values are a random quantity, we operate with the ex-
pected unit volume values instead of the actual unit volume values. With this
understanding, and the above perspective in mind, the expected of the amount
xi of material i, 1 ≤ i ≤ n becomes fi(xi) =

∫ xi

0
pi(xi)dxi. Accordingly, the

expected value per unit volume 6 of material i becomes f ′i(xi) = pi(xi). In
this stochastic and non-linear version of the FK problem, the objective is to fill
the knapsack such that the expected value f(x) =

∑n
1 fi(xi) of the materials

contained in the knapsack is maximized. Thus, we aim to:

maximize f(x) =
n∑
i=0

fi(xi)

where fi(xi) =
∫ xi

0
pi(xi)dxi, pi(xi) = f ′i(xi)

subject to
n∑
i=0

xi = c, ∀i,∈ {1, 2, . . . , n} , xi ≥ 0

A fascinating property of the above problem is that the amount of in-
formation available to the decision maker is limited – the decision maker is
only allowed to observe the current unit value of each material (either 0 or
1). That is, each time a material mix is added to the knapsack, the unit

5For the sake of consistency with previous work on the Stochastic NEFK Problem, we
here model stochastic material unit values using Bernoulli trials. However, since GPOKS is
based on Gaussian Processes, the central limit theorem opens up for addressing a number of
other distributions too. Furthermore, there exist dedicated kernel functions for a variety of
distributions.

6We hereafter use f ′i(xi) to denote the derivative of the expected value function fi(xi) with
respect to xi.
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value of each material is provided to the decision maker. The actual out-
come probabilities pi(xi), 1 ≤ i ≤ N however, remains unknown to the de-
cision maker who have to relay on a sequence of material value amounts i.e.
(x1, x2, . . . , xn) 7→ (v1, v2, . . . , vn) ∀vi, vi ∈ {0, 1}. As a direct consequence of
this, the maximum material mix must be found through a series of trial-and-
error, i.e. by experimenting with different material mixes and by observing the
outcome and gradually work towards a maximum mixture.

2.4 Web-Polling as a Stochastic NEFK problem

As introduced in section 1.2 we will now consider the application of GPOKS
towards the optimal web-polling problem. This web polling scenario is based
on the setting found in [16] [19] and is based on the SNEFK problem.

Web resource monitoring primarily consist of repeatedly polling a set of web
resources so that any change in the resources can be detected. In practical
terms, there are several limiting factors that govern how such a scheme may
operate e.g. processing power, bandwidth limitation. This impose a constraint
on the maximum number of web resources that can be polled per time step.
Since only a sub-set of the total resources can be polled at any given time step
the problem turn into selecting this sub-set in a manner that maximize some
metric. A natural metric in this case would be the number of updates detected.

Figure 2.2: Time-line for two web-resources, a ’x’ denotes a update for that
resource.

Looking at figure 2.2 we see that resource A clearly 7 have a lower update
probability than resource B. Moreover, the probability of detecting an update
increases as a function of the delta time between each poll any particular re-
source. This is a crucial observation and as noted elsewhere [16] [17] [18] gives
us the property that while the probability of detecting a change increase with
the delta time between polls. The probability decrease monotonically with an
increased polling frequency i.e. the inverse of the delta time. This is trivial to
see when taken to the extreme, polling a web resource every time unit will yield
a much lower probability to detect an update per poll than a web resource that
is polled only at the very end of our time interval.

While other metrics for comparing the performance between web polling al-
gorithms exists in the literature [36] [51] and we recognize that they all center
around the update detection probability i.e. the chance of a update being dis-
covered. Therefore, will we use the update detection probability as our primary

7In the given time interval or horizon.
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token of interest. We introduce the notion of discrete time as a strictly increas-
ing positive integer sequence, where the interval between the integers represents
our atomic unit of decision making. In each time interval every web resource
i has a constant probability pi of being updated with new information. Fur-
thermore, when a web resource is updated/changed any un-retrieved update is
considered lost e.g. a news site where newer articles replace older ones on the
front-page.

This behavior can be modeled as an exponential sequence, denote qi = 1−pi
and define the frequency as xi. Then di(xi) represent the update probability
for web resource i using a polling frequency equal to xi

di(xi) , 1− q1/xi

i . (2.2)

By way of example, consider the scenario where a web resource remains
unchanged in any single time step with probability 0.5. Then polling the web
resource uncovers new information with probability 10.53 = 0.875 if the web
resource is polled every 3rd+ time step (i.e., with frequency 1

3 ) and 10.5 = 0.75
if the web resource is polled every 2nd time step. As can be seen, increasing
the polling frequency reduces the probability of discovering new information on
each polling.

We also present a modified version (equation: 2.3) where we augment the
di(xi) function with a white noise factor σws, this version is used to see how
algorithms respond to varying level of noise

di(xi, σ
2
ws) , (1− q1/xi

i ) +N (0, σ2
ws). (2.3)

Given the above considerations, our aim is to find the resource polling fre-
quencies vector x that maximize the expected number of pollings uncovering
new information per time step:

maximize
n∑
i=1

xidi(xi)

subject to
n∑
i=0

xi = c

where ∀i ∈ Z+, xi ≥ 0

3 Reinforcement Learning

This section will give a brief introduction to the field of Reinforcement Learning
(RL) in a Multi Armed Bandit context. Then we will present two solution
algorithms that form the basis for our stochastic knapsack scheme developed in
section 2.

The essence of RL can be found in figure 3.1 and can be read as follows: An
action at is selected at time t, we perform the action at on the environment,
and the environment rewards us with some reward bt. We then have to make a
choice of what action we would like to perform next based on bt, nevertheless
we select a new action at+1 and repeat the process. The interesting bit here is
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how exactly we select the new action to be performed. Usually the actions are
selected in order to maximize the reward gained over some finite timespan.

Figure 3.1: Reinforcement Learning

3.1 Learning Automata

In this section we will only briefly cover the topic of Learning Automata (LA)
since a team of LA’s form the basis for the state-of-the-art that we will be
comparing our algorithm GPOKS against in section 8. An automaton is an
entity very similar to the traditional Finite State Machine, and is defined in [33]
as a quintuple {Φ, a, β,F(·, ·),G(·)}.

(i) The state of the automaton in instant t, denoted φ(t) is an element of the
finite set

Φ = {φ1, φ2, . . . , φs}. (3.1)

(ii) The action a taken by the automaton in instant t, denoted a(t) is an
element of the finite set

a = {a1, a2, . . . , ar}. (3.2)

(iii) The input of an automaton at the instant t, denoted β(t) is an element of
a set β, and is also the output or reward given by the environment. Here
β can be defined both using a discrete set or a continuous interval on the
real line, here a, b ∈ R.

β = {β1, β2, . . . , βm} or β = (a, b). (3.3)

(iv) The transition function F(·, ·) determines the next state of the automaton
at time instant t + 1 and is thus a function of the current state φ(t) and
the reward β(t). We will present this function primarily in the form of
transition graphs such as the one shown in Figure 3.2.

φ(t+ 1) = F [φ(t), β(t)]. (3.4)

Note that this definition of F allow it to be either deterministic or stochas-
tic in nature.

(v) The output function G(·) determines the output at state t in terms of the
current state φ(t).

a(t+ 1) = G[φ(t)]. (3.5)
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Example 3.1. To finish up the section on LAs we will give a short example
of a working automaton. This automaton will try to find what is best out of
two actions thus a = {a1, a2} and we have a binary reward β = {0, 1}. The
transition function F for the case when β(t) = 1 and β(t) = 0 is given in figure
3.2. Note that we have defined a reward as β = 1 opposite of the regular LA
literature notation as to fit notation wise with the rest of the thesis. The output
function G is defined in equation 3.6, and the initial state is φ(0) = φ2.

G[φ(t)] =

{
a1, if φ(t) ∈ {φ1, φ2}
a2, if φ(t) ∈ {φ3, φ4}

(3.6)

Figure 3.2: Transition function F [φ(t), β(t)]

Running the automaton
The idea behind this automaton is that for if we get a sequence of rewards we
“remember” that this particular action performs well and as such we should be
a bit lenient when it fails to offer a reward, but this effect should be propor-
tional to the amount of previous rewards it has given us. In this specific case
the memory for each action is two. The initial state of the automaton is defined
as φ2 and we find the current action as a(t) = G[φ2] = a1. We then perform the
action a1 on the environment, resulting in a reward β(1) = 0. The next state is
then found by φ(2) = F [φ(1), β(1)] = F [φ2, 0] = φ3 and similarly the next ac-
tion or output is a(3) = G[φ(2)] = G[φ3] = a2. Playing action a2 yield a reward
β(2) = 1, as such the updated state is φ(3) = F [φ(2), β(2)] = F [φ3, 1] = φ4.
Remark: The rewards given here is chosen to illustrate how a Learning Au-
tomata works, and should not be given any special consideration.

3.2 Thompson Sampling

The classical Thompson Sampling (TS) principle is closely tied to the exploration-
exploitation dilemma found in the Multi-Arm Bandit Problem (MAB). As such
we will first introduce the MAB problem then we will explain the Thompson
Sampling in a MAB context. Later in Section 6 we will see how TS can be
applied to a variant of the Knapsack Problem.

3.2.1 Multi Arm Bandit Problem

The Multi-Armed Bandit Problem (MABP) is perhaps the problem studied
most in statistics [3], originally described by Robbins(1952) [41]. It captures
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the difficult trade-off between exploring and exploiting, that is, while exploring
the environment for a good move, it should also empirically select the currently
assumed best move. This problem turned out to be quite fundamental to the
field of reinforcement learning [47] and genetic programing [20].

In this thesis, we will keep to a very basic formulation of the bandit problem.
Given an environment consisting of n stochastic variables X1, X2, . . . , Xn, our
goal is the find out which of these will give the highest expected value. In other
words we want to find a k that maximizes:

k = max
0≤i≤n

E[Xi] (3.7)

This can be seen as a slot-machine with n arms8 {a1, a2, . . . , an}, where the
reward from pulling the i’th arm is governed by the random variable Xi. The
player then wants to maximize his winnings by only playing the best arm. Since
the player does not have any a priori knowledge of the internal distribution of
the arms he will have to explore, he does this by pulling the arms one at a time.
After each pull the player is given a reward from the environment. How can the
player then maximize his total winnings? See figure 3.3 for a illustration of an
single time step in a MAB-Problem.

Figure 3.3: MABP: Action a2 is selected in time t and given its reward, there
are 5 available arms.

When first encountered with this problem, the first solution is generally
some sort of greedy approach. In the literature, we find several greedy based
algorithms, where the most notorious ones are, greedy and ε-greedy. The greedy
algorithm calculates the average for each arm and continue to pull the arm with
the highest average. Since greedy will only pull the arm with the highest average
it has a tendency too explore to little and exploit too much. ε-greedy tries to
alleviate this by introducing an exploration factor, namely with probability ε
selected a random arm, and with probability 1−ε select the arm with the highest
average.

While these greedy algorithms work, there are better alternatives. The per-
haps most notorious non-greedy MABP algorithm is UCB-1 [3] that builds upon

8Hence the name; Multi-Armed-Bandit
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the idea of playing the arm with the highest upper confidence interval9. UCB-1
provides good empirical results but is also analytically tractable and tight finite
time performance bounds are found in [3] and later improved on in [4].

3.2.2 Applications of MABP

There exists a wide variety of applications for the MABP, as such we will only
mention a few noteworthy applications here. Rusmevichientong et. al [43]
developed a scheme based on MAB that optimized the advertisement content
a search-engine would display to its user based on the search query, such as
to maximize the chance that the user clicked on the advertisement. Within
the context of Computer Go10 a revolution was sparked from the development
of Multi-Armed-Bandit Tree Search (UCT) [23], using Monte-Carlo simulation
gave rise to a novel set of techniques [49] eventually resulting in a 1st place in
the Computer Go World Championship in 2008 [48].

3.3 Thompson Sampling in a Bandit Context

The Thompson Sampling Principle in MABP starts by formalizing our a-priori
belief surrounding each arm, with a probability distribution. Of course, these
distributions only represents our knowledge and not the underlying probability
distributions, as these are unknown. An important note here is that this forms
a bijective mapping between the set of arms and the set of distributions i.e.
each arm is associated with one and only one distribution, and vice versa.

Thompson Sampling then works by sampling a point from each distribu-
tion associated with an arm. We treat this value as the true value of the arm
and simply select the arm that offers the highest reward. We then update the
probability distribution of the arm that we selected using Bayes Theorem with
the reward from the pull. A common way to perform this Bayesian update in
efficient manner is by selecting a prior from the prior conjugate family (popular
choices include the Gaussian distribution and Beta distribution). As a conse-
quence the variance of the distribution associated with the optimal arm will
decrease and we see that the sampled value of the arm will asymptotically go
towards the mean of the true underlying distribution. We therefore say that
Thompson Sampling is greedy-in-limit [28] i.e. in the limit we only select the
most profitable arm. Another property proved in [28] is that in-theory TS never
stop exploring, due to the fact that the variance can never actually reach zero
except in the limit. However, in practice we will have a number-underflow when
the variance exceeds the precision of the storage format, thus reaching zero.
Before we give an example on how TS works, we mention that until Agrawal
et. al [1] theoretical finite performance bounds for Thompson Sampling where
missing from the literature, following suit, [21] gave the first asymptotic optimal
finite time proof for Bernoulli bandits in a TS context. These papers, among

9Hence the name Upper Confidence Bound (UCB)
10The field of playing Go, a chess like game, using a computer
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others, give a much sought-after theoretical foundation for the good empirical
results of TS [15]. The algorithm for TS can be found later in section 3.3.1.

Example 3.2. To illustrate exactly how this conjugate prior update is per-
formed we will illustrate a single step using a Gaussian prior, in figure 3.4 we
start with a prior ∼ N (µpre = 10, σpre = 3.0) and receive a reward m = 7.5,
where we have set a fixed likelihood standard deviation to σlh = 2.0 defining
how much emphasis we should put on the new data i.e. the lower σlh is, the
more we trust the data. The conjugate prior for a Gaussian distribution with a
known likelihood variance is found in equation 3.8 (see [7] for a deviation).

µpost =
(σ2
lh µpre + σ2

prem)

σ2
lh + σ2

pre

and σ2
post =

σ2
lhσ

2
pre

(σ2
lh + σ2

pre)
(3.8)

Inserting our example values into equation 3.8 gives us a posterior distribution
of N (µpost = 8.27, σpost = 1.66).

Remark. Notice to the fact that the variance of the posterior is monotonically
decreasing independent of the actual data in the likelihood. As such this form
of TS is only directly applicable to stationary-MAB problems i.e., where the
probability of an update follows some fixed unchanging distributions. One pos-
sible approach to overcome this limitation is described in [35] where a Sibling
Kalman filter is applied to the hyper-parameters acting like a continuous sliding
window.

Prior Posterior

Figure 3.4: A Gaussian distribution prior and posterior

3.3.1 TS Algorithm

We here present the TS algorithm applied to a MAB problem using an un-
specified conjugate prior. Let U(θ, r) be a conjugate prior that takes a prior
distribution (θ) and a likelihood r and returns a posterior distribution. Note
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that we without loss of generality augment θ to also contain any external pa-
rameters such as learning rate.

Algorithm: TS-MANB
Input: θ0 initial hyper-parameters; Number of arms n
Initialization: d0(θ0) = d1(θ1) = . . . dn(θn)
Method:
For t = 1, 2, . . . Do

1. For each Arm j ∈ {0, 1, . . . , n}, draw a value xj randomly from the asso-
ciated distribution Di.

2. Pull the Arm i whose drawn value xi is the largest one:

α[t] = i = argmax
j∈{0,1,...,n}

xj .

3. Receive a reward r̃i from pulling Arm i, and update hyper-parameters
using the conjugate prior: θi = U(θi, r̃i)

End Algorithm: TS-MANB

3.3.2 Optimistic Thompson Sampling

In both Thompson Sampling and UCB we find that an important incentive for
exploration, is the practice of boosting the predictions of actions for which we
are uncertain. However [28]11 takes this approach one step further. Recog-
nizing that regular TS allow sampling of extreme values in both tails of the
distribution, thus leading to a decrease in potential exploration. To alleviate
this tendency Optimistic Thompson Sampling (OTS) was introduced, here the
sample is clamped to the upper part of the distribution, see figure 3.5 for an
illustration. This modification have show to compare favorable to UCB and TS
in empirical studies [30] [9] for many practical configurations.

4 Gaussian Processes

This section start by introducing the notion of a function ensemble and it can
be adapted to fit a set of data. The Bayesian Linear Model and feature space is
then covered as a basis for the Gaussian Process. The rest of this chapter then
covers various aspects of the usage of a Gaussian Process.

11First published as a technical report in [29].
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Regular Thompson Sampling Optimistic Thompson Sampling

Figure 3.5: TS and OTS, the potential sampling area is marked yellow.

4.1 Machine learning as a Function Ensemble

In most Machine Learning problems, the goal is to generalize from a finite set
of observations (inductive learning), such that the uncertainty associated with
making predictions decreases after taking observed data into account.

To this end, we postulate an a priori relationship between made observa-
tions and future observations. In practice this relationship is seldom without
uncertainty and makes the task of generalization non-trivial. An example of a
non-trivial relation could occur in time-series analysis where we want to predict
future observations given a limited set of previous observations.

If we represent the postulated priori as an ensemble of functions, then the
concept of learning transforms to one of adapting the ensemble to the observed
data. One might imagine that the observations is ”generated” by picking a func-
tion from the ensemble and that function is responsible for the observed data.
We note that the observations them-self might be of a stochastic nature and
that the ensemble might only hold a rough abstraction to the underlying model
that we observe. This is, however, of little concern as long as we can obtain
good predictions by conditioning the ensemble on the observations (probabilistic
inversion) giving us a new adapted ensemble that is locked down on the obser-
vations while still variable everywhere else in the index set [45]. In the next
section we will give a example on this effect.

We recognize and differentiate between two line of thoughts when it comes to
choosing the ensemble: Using a parametric model, we restrict ourself to a single
function class indexed by a finite fixed set of parameters. We induce an ensemble
of functions by considering a distribution over the parameters in the index set.
Learning then translate to adapting the parameters in such a manner that they
fit the observed data. This methodology allow us to fully take advantage of
an informed a priori postulate, for example, using expert knowledge. However,
for cases where the function class does not match the observed data such an
approach can lead to poor performance. In such cases a non-parametric model
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may give better performance.
A non-parametric model have the property that we do not have to worry

about whether or not it is possible for the model to fit the data i.e. fitting a
linear function to data originating from a sinusoidal function would yield poor
results. Instead it is customary to specify some prior defining what functions are
more probable than others. In the case of a Gaussian Process, we define a kernel
or covariance function that specify how probable a function in our ensemble is,
Section 4.4 covers this in greater detail.

Example 4.1. We finish this introduction with a simple example that shows
how a adaption of the ensemble for the quadratic function f(x) = 2x3 − 3x+ 1
may be performed, note that we do not take any stochastic elements into ac-
count (making the probabilistic inversion step a boolean operator). For con-
ceptual clarity, we will employ a parametric approach. That is, in Bayesian
terms, we make use of a prior that discards any non-quadratic function from
our ensemble12 thus giving us a starting point of a ensemble containing only
quadratic functions. In formal notations we may describe these steps as:

(1) Our ensemble set starts containing all possible one dimensional functions:
E1 = {f |f : R → R}

(2) We apply our prior, discarding any non-quadratic function.
Pprior = {f |f is a quadratic function}
E2 = E1 ∩ Pprior

Look at the first piece of observed data, f∗(0) = 1. The f∗ here denotes the
true unknown function that generated the data. We may then update our
ensemble E2 in such a manner that only quadratic functions that agree with
the observations remain. Continuing from step (2):

(3) Our observation:
O1 = {f∗(0) = 1}

(4) Adapt our ensemble to fit with the observation
E3 = {f |f ∈ E2 ∧ f(0) = f∗(0)}

Visually we can see the difference between E2 and E3 in figure 4.1 where we
have marked some elements from each set. Next we add two more observations,
f∗(2) = 3 and f∗(−1) = 6 in step (5) and (6) respectively.

(5) Adapt our ensemble to fit with the observation
E4 = {f |f ∈ E3 ∧ f(2) = f∗(2)}

(6) Adapt our ensemble to fit with the observation
E5 = {f |f ∈ E4 ∧ f(−1) = f∗(−1)}

12Effectively we assume a-priori that the probability of a non-quadratic function generated
the observed data is zero.

24



(A) Functions from E2 (B) Functions from E3

Figure 4.1: Ensemble adapting example step 2 and 4

(A) Functions from E4 (B) The one function in E5

Figure 4.2: Ensemble adapting example step 5 and 6

And we can see the how the ensemble adapts to the data in figure 4.2. Observe
that |E5| = 1 since we utilize a parametric-model and there is exactly one
function that fit our data. However, if we picked a linear function to represent
the data our model would not give us any exact solutions, and we would be
forced to use some sort of probabilistic fitting such as least-squares regression
to approximate an answer. A Gaussian Process alleviate these type of problems
in a seamless manner due to its inherit non-parametric model [40] and thus
forms the basis for a powerful machine learning tool.

4.2 Bayesian Linear Regression Model

At the heart of a Gaussian Process is the Bayesian take on the standard linear
regression model with Gaussian white noise.

f(x) = x′w, y = f(x) + ε
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Here x is the input vector and w is a vector of weights, notice that we have
encoded the traditional bias term µ (f(x) = µ + x′w) implicit into the weight
vector w by augmenting x with a additional element that is always one, thus
the corresponding weight in w represents the customary bias term µ. As such
we will ignore the bias term and instead work directly with the weight vector.
Note that ε represents the white noise and is assumed to be independent identical
distributed as a Gaussian distribution with zero mean and variance σ2,

ε ∼ N (0, σ2).

This model therefore explicitly assumes that the difference between a ob-
served value y and f(x) can be explained by white noise (ε) and that the data
is inherently linear. The resulting problem is then given a prior and a training
set D to determine the posteriori estimate of w.

Defining an observation training set with n entries asD = {(xi, yi)|i = 1, 2, . . . , n}
where d is the dimension of xi, we can find a n× d design matrix X, similarly
we define y = {y1, y2, . . . , yn}. Using X and w we can now form the likelihood
of observing a vector y as a product over each observation:

P (y|X,w) =
n∏
i=1

P (yi|xi,w)

=
n∏
i=1

P (yi|N(xi
′w, σ2))

=
n∏
i=1

1√
2πσ2

exp
(
− (yi−xi

′w)2

2σ2

)
= 1

(2πσ2)n/2 exp
(
− 1

2σ2 |y −X ′w|2
)

= N (X ′w, σ2I)

(4.1)

where I denotes an identity matrix of appropriate size and we observe that
the likelihood is a multivariate Gaussian Distribution. Since we operate in
a Bayesian manner we need to formulate a prior over the distribution of our
parameters. This prior will encompass all our belief surrounding the parameters
before considering the observations. Since we have a likelihood of the shape of
a Gaussian distribution it is convenient to use a zero mean Gaussian prior with
a covariance Σp over the weights,

w ∼ N (0,Σp).

Then using Bayes theorem we can find the posterior distribution over the weights
as:

posterior =
likelihood× prior

marginal likelihood

We have already found both the prior and the likelihood as such we need to find
the marginal likelihood P (y|X). Since the marginal likelihood is independent of
the weights, we see that it only represents a normalization constant and therefore
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we absorb it into the proportional part. After some algebraic manipulation 13

(the derivation can be found in [11]) gives us:

P (w|X,y) ∼ N (w̄ = σ−2A−1Xy, A−1) (4.2)

where A = σ−2XX ′ + Σ−1p .

Generating a predictive model (e.g. a way to predict future values) for the
Bayesian Linear Regression at a test point x∗ we utilize typical Bayesian method-
ology and simply average over all possible parameter values, weighted by their
posterior probability, here f∗ , f(x∗).

P (f∗|x∗, X,y) =
∫
P (f∗|x∗w) P (w|X,y) dw

= N (σ−2x∗
′A−1Xy, x∗

′A−1x∗)
(4.3)

And the result is again a Gaussian, with a mean constructed from multiplying
the posterior weight found in equation 4.2 with the test point.

Example 4.2. The function we would like to model is the Exponential Growth
Model g(t) = eα+(β×t) found in for example Moore’s Law 14. Taking the loga-
rithm on each, side gives us the linear equation f(t) = log g(t) = α + (β × t).
We set α = 0.9 and β = 1.2 as to give us practical values and generate some
”noisy” samples (σ = 0.2), giving us a D found in the table below:

t: 0.2 0.8 1.4
y: 1.40 1.94 2.44

The data gives us a design matrix X (note that we have augmented the bias
term into the xi vectors): 1.0 0.2

1.0 0.8
1.0 1.4


and a y vector equal to: y = [1.40, 1.94, 2.44]′. Applying equation 4.2 to this
data gives us a Multivariate Gaussian Distribution as: N (w̄, A−1) where w̄ =
[1.23, 0.86] and A−1 = [

0.048 −0.043
−0.043 0.055

]
To find our original expression, we substitute w back into our function f(t)
giving: f(t) = 0.86 + 1.23t. Transform f(t) into g(t) is done by applying the
exponential function yielding: g(t) = ef(t) = e0.86+1.23t.

Making use of the predictive model (equation: 4.3), we want to find the
distribution over the point x∗ = [1.0, 0.5] (note that we again have to augment

13Basically writing out the parts that depends on the weight, ”complete the square” and
simplify until a Gaussian Distribution shape is achieved.

14Named after Intel co-founder Gordon E. Moore who in [32] noticed that the number of
semiconductors doubled every 18 month.
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the bias term). Gives a Gaussian distribution surrounding the point x∗ where
f(x∗) = f∗ ∼ N (1.40, 0.018). Repeating this predictive process we can generate
a plot over the predictive model as illustrated in Figure 4.3.

Figure 4.3: Bayesian Bivariate Regression, the yellow area marks a 95% confi-
dence interval surrounding the mean of the predictive model.

4.3 Kernel-Induced Feature Spaces

Example 4.2 in the preceding section contains an important piece of informa-
tion besides the multivariate Bayesian linear regression, in-fact, it introduces
a light version of a powerful mathematical tool called Kernel-Induced Feature
Spaces. In [31], Minsky and Papert highlighted the limitations of linear learning
algorithms, such as the classical Rosenblatt’s Perceptron algorithm [42]. (How-
ever, by lifting a non-linear problem into a feature space such that the problem
is again linear, albeit in a different space, allows us to take full advantage of
the power of linear algorithms.) A commonly employed preprocessing strat-
egy in machine learning is changing the representation of the data, note that
we transform from a d-dimensional input space to a r-dimensional feature space:

x = [x1, x2, . . . , xd] 7→ Φ(x) = [Φ1(x),Φ2(x), . . . ,Φr(x)].

Again, referring back to example 4.2 we see that the mapping Φ(·) used is
the logarithmic function. If we now reformulate our multivariate Bayesian linear
regression model in terms of this mapping φ(·) we get:

f(x) = φ(x)′w.

Here w, the parameter vector, is extended to contain n parameters. Repeating
the steps in the previous section only replacing all instances of X with Φ(X)
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(the transformed15 design matrix) we obtain the following predictive model:

P (f∗|x∗, X,y) ∼ N (σ−2φ(x∗)
′A−1Φy, φ(x∗)

′A−1x∗)

where Φ = Φ(X) and A = σ−2ΦΦ′ + Σ−1p .

Seeing that the above equation is defined solely in terms of the inner products
in input space, then we can avoid any explicit computation of ΦΦ′ (the Gram
Matrix) and instead define a kernel K(x,x′) that replaces the occurrences of the
inner product space. This is commonly referred to as the kernel trick and form
the basis of what we refer to as kernel based learning methods and is used in
machine learning methods such as Support Vector Machines [10] and Gaussian
Processes [45] [40].

4.4 Gaussian Process

The main point of a Gaussian Process (GP) is to adapt an ensemble of functions
in a stochastic manner to fit a set of data points. We will now give a more formal
introduction to how a GP works.

Definition 4.1. A Gaussian Process is a collection of random variables, any
finite number of which have a joint Gaussian distribution [40]

Let f(x) denote the real-process that we model, then we define its mean function
m(x) and the kernel function K(x,x′) as:

m(x) = E[f(x)]
K(x,x′) = E[(f(x)−m(x)(f(x′)−m(x′)],

and will write the Gaussian Process as

f(x) ∼ GP(m(x),K(x,x′)).

Gaussian process (GP) regression is a Bayesian approach which assumes a GP
prior16 over functions, i.e., assumes a priori that function values behave accord-
ing to [39]:

P (f |x1,x2, . . . ,xn) = N (0,K),

where f = [f1, f2, . . . , fn]′ is a vector of latent functions values i.e. fi = f(xi).
And K is a covariance matrix given by the kernel function, Kij = K(xi,xj).
From this model, we realize that a Gaussian Process follows the Bayesian Mul-
tivariate Regression Model, where the number of dimensions is n, one per latent
function value. Here each latent function value fi at xi is treated as a random
variable which covary with an arbitrary point xj as determined by the kernel
function K(xi,xj).

15Each vector xi in the training set is separately lifted into the feature space and aggregated
into a design matrix.

16For notational simplicity will we in this thesis exclusively use zero-mean priors (m(x) = 0).
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4.4.1 Squared Exponential Kernel

In this thesis we will only consider the one dimensional squared exponential
kernel (SE Kernel) defined as:

K(xp, xq) = σ2
f exp

(
− 1

2l2
(xp − xq)2

)
+ σ2

nδpq (4.4)

Here l is the characteristic length-scale parameter that determines how rapidly
the correlation should decay as the distance between xp and xq increases, σ2

f is

the signal variance and σ2
n is white noise (note that δpq here denotes the Kro-

necker delta between xp and xq). This kernel function is infinitely differentiable,
giving it mean-square derivatives of all orders and is therefore very smooth [40],
and it is perhaps the most commonly used kernel in machine learning literature.
It can be shown [26] that it corresponds to a linear Bayesian regression model
with an infinite number of basis functions, hence the need to work implicit in a
feature space using the kernel trick.

For the hyper-parameters l2 = 1.0, σ2
f = 1.0, σ2

n = 0.1. We present table
4.4 to provide some insights in how much different points covary, the xp remains
fixed at xp = 1.0 and K(xq, xq) is presented for different values of xq.

1.0 1.1 1.2 1.5 2.0 4.0
xq 1.1 0.99 0.98 0.88 0.60 0.01

Figure 4.4: SE-Kernel covariance between fixed point xp = 1.0 and xq.

From this table we notice two things, firstly that if two points are placed
in the same index (i.e. xp = xq) then the white noise component (σ2

n) of
the SE Kernel comes into play, this will form the basis for the efficient GP
implementation of GPOKS in section 6.2. And secondly, the fact that the
covariance values decrease rapidly with only a difference of three between xp
and xq the observations does almost not affect each other.

4.4.2 GP Inference and Function Sampling

Inference in a GP model is in many ways equivalent to using the predictive model
introduced for MultiVariate Gaussian Regression (MVGR). As with MVGR we
start by defining a training set D = {(xi, yi), i = 0, 1, . . . , n}, with n pairs of
observed data. Here xi is a vectorial point and fi is the scalar output at xi,
that is: fi = f(xi), to take noise17 into account we formulate the following
relationship:

yi = f(xi) + εi, where εi ∼ N (0, σ2
noise])

To predict the function value f∗ at the points x∗, we, use Bayes rule, to find
the joint posterior P (f , f∗|y) by combining the GP prior with the likelihood
P (y|f , f∗) giving:

17As with MVGR we assume white i.i.d Gaussian noise
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P (f , f∗|y) =
P (f , f∗)× P (y|f , f∗)

P (y)
.

Marginalizing out the training data f then gives us:

P (f∗|y) =

∫
P (f , f∗|y)df =

1

P (y)

∫
P (y|f)P (f , f∗)df ,

where the joint GP prior and likelihood can be written as:

P (f , f∗) = N
(

0,

[
Kf ,f K∗,f
Kf ,∗ K∗,∗

])
and P (y|f) = N (f , σ2

noiseI),

where Ka,b is defined as the covariance between a and b, and we use asterisk *
as a shorthand for f∗. Since the joint GP prior and likelihood is both Gaussian
we can evaluate the integral in a closed form giving us a Multivariate Gaussian
predictive model as:

P (f∗|y) = N (K∗,f [Kf ,f + σ2
noiseI]−1y, K∗,∗ −K∗,f [Kf ,f + σ2

noiseI]−1 Kf ,∗)
(4.5)

Example 4.3. The following example will demonstrate how a GP operates:
We start out with a non-informative prior distribution, illustrated in Figure 4.5.
As seen in the figure, we can using this prior draw random function samples,
note the mean function: m(x) = 0. Next in Figure 4.6 we add a data point (or
observation). The confidence interval surrounding the data point immediately
shrinks, making the likelihood of a random sample functions passing close to
the data point much higher.

Figure 4.5: GP Prior distribution,
the marked yellow area is a 95%
confidence interval.

Figure 4.6: GP Posterior after 1 ob-
servation, the marked yellow area is
a 95% confidence interval.

Now, we continue and add some additional data points, illustrated in Figure 4.7
and Figure 4.8. We can now observe “bubbles” between the data-points, where
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the confidence interval is higher. This indicates that the predictive model is more
uncertain about the underlying function f(x) in this area. We will later see how
GP-UCB and several GPOKS Variations use this to explore the function space,
looking for the highest potential point. It also interesting to see how similar this
model looks to the Bayesian Linear Regression example given earlier, except that
the GP handles non-linear function, due to its non-parametric nature.

Figure 4.7: GP Posterior after 2 ob-
servations, the marked yellow area
is a 95% confidence interval.

Figure 4.8: GP Posterior after 4 ob-
servation, the marked yellow area is
a 95% confidence interval.

5 SFNEKS Problem - State-of-the-art solvers

The Learning Automata Knapsack Game (LAKG) algorithm first proposed in
[16] is considered the state-of-the art for SFNEKS problems with relatively small
scale configurations i.e., a low amount of different materials. However in [19]
H-TRAA was introduced, with a significantly better convergence rate for large
scale problems i.e., a hight amount of different materials. In this thesis, we will
compare our algorithm GPOKS with both of these and will therefore give a
condensed overview of their mechanics to better outline the differences.

5.1 LAKG – Learning Automata Knapsack Game

Learning Automata Knapsack Game (LAKG) was long the leading contender
for solving the SFNEKS problem [16]. Here each material in a SFNEKS is
represented with a separate LA, with N states Φ = {φ1, . . . , φn}. Loosely
stated the amount of a single material is then the current state φ(t)/N .

The game part of the LAKG comes from the fact that the LAs cooperate; All
the LAs share a common variable, is the knapsack full or not? (i.e. Is the sum
of all the LA states equal to 1?), This behavior is reflected in their transition
function F for material i:

Φi(t+ 1) = Φi(t) + 1 Knapsack not full and βi(t) = 1,
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Φi(t+ 1) = Φi(t)− 1 Knapsack not empty and βi(t) = 0.

Since the initial state of this scheme is bN/2c the LAKG have an easier time
coping with problems whose solution is close to uniform.

5.2 H-TRAA – Hierarchy of Twofold Resource Allocation
Automata

Hierarchy of Twofold Resource Allocation Automata (H-TRAA) introduced in
[19] outperforms LAKG in several areas, and is currently the state-of-art for
large scale SFNEKS problems.

It starts by dividing the materials into pairs, where each pair is associated
with a single learning automata. This LA controls the relative normalized weight
between its two materials i.e. It may weight one 80% and one 20%. This can
be seen as separate knapsack problem involving two materials. Now we pair the
LAs together and again assign an LA to control the relative normalized weight
between these two. We repeat this process to effectively form a binary tree
where the leafs are the original LAs, each representing two materials. Note that
this require us to have exactly 2n, n ∈ Z+ materials.

Figure 5.1: H-TRAA with 8 materials (A - H) and some example weights.

To find the amount of a material we start at the LA containing the material
in question and work our way upwards to the root. Taking the product of the
weights as we move along. In figure 5.1 one can observe a H-TRAA in work
with eight materials (named A-H), and the amount of material A that we would
like to add would then be: xA = 0.90 × 0.75 × 0.15 = 0.10125. Note that the
H-TRAA initially start with a uniform distribution over the materials.

The update (or reinforcement) phase is done as follows: If we added material
i to the knapsack, and received a reward, first update the directly associated
LA, then that LA will again update its parent LA with a reward. This processes
continues until the root node is reached. As a example, if we got a reward when
adding xA of material A. We would first give a reward to LA-1, then LA-1
would give a update to LA-5 and LA-5 to LA-7.

The remaining piece of H-TRAA is the TRAA part. TRAA is the scheme
used in each LA node. It has N states and like the LAKG suggest a material
amount(s) equal to n/N and 1−n/N for the two materials (i = 1, 2) respectively
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(here n = Φ(t) the current state). The big difference arise in the transition
function F :

Φ(t+ 1) = Φ(t) + 1 If rand() ≤ (1− n/N) and β1(t) = 1 and 1 ≤ n ≤ N

Φ(t+ 1) = Φ(t)− 1 If rand() ≤ (n/N) and β2(t) = 1 and 1 ≤ n ≤ N
Since the chance of moving in one direction decreases the more one goes in that
particular direction the TRAA will quickly take the first steps but will be slower
to converge totally. This effect is enhanced due to the fact that if one child fails
to propagate (i.e. its rand() value was too low) then its ancestors LAs will not
get a chance to update its state.

5.3 GP-UCB – Gaussian Process Upper Confidence Bounds

This is a Bayesian Optimization (BO) scheme called GP-UCB that was intro-
duced in [46] alongside with a strong theoretical foundation for its inner work-
ings. The gist of the GP-UCB algorithm is that, unlike most MAB solvers, who
assume that each arm is independent of the other arms, GP-UCB assume that
there is a relationship between the different arms. By modeling the inter-arm
relationship as a GP, where arm number i is represented in the GP as point xi.
Then by using a problem specific kernel, GP-UCB allow for a significant faster
exploration as each observation obtained does not only affect a single arm, but
instead affects all arms as specified by the kernel function.

To find the next arm to select GP-UCB perform Gaussian Regression over
all the arms, and pick the point with the highest 95% confidence interval i.e.
mean + 2σ.

If this inter-arm relationship does not exist then GP-UCB is not suitable
for the problem at hand and a regular UCB-1 could be tried instead. However,
in the Stochastic NEFK problem we do have a smooth response surface, thus
fulfilling the criteria needed to use GP-UCB.

5.3.1 Applying a MAB solver to the Stochastic NEFK

The MAB solver introduced in 3.2.1 as well as GP-UCB are not made to handle
the SFNEKS problem directly, but if we translate the material amounts from
a continuous value into a set of discrete values we can map each possible value
to a arm, thus creating a MAB problem. The downside with this approach
is that the number of arms will increase drastic as the number of materials
increase. Say we have n materials and use k different discrete amounts (e.g.
k = 101 ⇒ 1

101−1 = 0.01 intervals in xi , the material amount )18. We can
translate the problem into a simple combinatorial exercise:
How many solutions exists for the follow integer problem?

y1 + y2 + . . .+ yn = k
where ∀i ∈ Z+, 1 ≤ xi ≤ k and xi ∈ Z

18The minus one part of 1
101−1

comes from the fact that we need to include the endpoint

as well as the starting point
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Where the solution is simply:
(
k+n−n−1

k−n
)

=
(
k−1
k−n
)
. Note that in this formu-

lation we disallow a zero material amount for any material, thus decreasing the
number of available arms. As we see in table 5.2 the amount of arms required
even for a small amount of materials discourage the application of MAB solver
for problems using 3 materials or more. We will therefore only present MAB
results for the cases with two materials.

k interval 2 materials 3 materials 4 materials 5 materials
11 0.1 10 45 120 210
101 0.01 100 4950 161700 3921225

Figure 5.2: Number of arms when using MAB to solve SFNEKS
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6 Gaussian Process based Optimistic Knapsack
Sampling (GPOKS)

In the MAB Problem outlined in section 3.2.1, we pursue to find the best arm
using a sequence of educated guesses, a so-called trial-and-error process. The
GPOKS attempts something similar, however instead of simply seeking the best
material (bandit arm), we are searching for a mixture of materials, also referred
to as a mixture strategy in Game Theory [12].

We here present a novel GP based model for stochastic NEFK problems,
where a collection of GPs capture the individual material unit values, forming
a model of the problem. The GPOKS algorithm builds upon a famous quote by
G. Pólya: “If there is a problem you can’t solve, then there is an easier problem
you can solve: find it.” [38].

Using the GP collection based model, Thompson Sampling is applied to sam-
ple a likely deterministic NEFK problem instances from the GPs. That, in turn
can be solved based on Lagrange Multipliers, producing a potential solution to
the SNEFK problem at hand. Using this solution as a guide, we interact with
the knapsack and update the collection of GPs, gradually minimizing the dif-
ference between the true underlying stochastic NEFK problem and the sampled
deterministic NEFK problem. Therefore the difference between the solutions
are also minimized. A conceptual overview of GPOKS can be seen in Figure
6.1.

Figure 6.1: Conceptual overview of the different states of GPOKS; (1) Samples
the GP based model for a similar deterministic NEFK problem. (2) Solves the
NEFK problem. (3) Apply the solution to the NEFK problem to the origi-
nal SNEFK problem. (4) Update the GP model to more closely represent the
SNEFK problem. So that the next sample will be closer to the original problem.

6.1 Sampling and solving a NEFK problem

To represent the stochastic NEFK problem in a manner that allows us to sample
a NEFK problem we associate one GP per material. Thus we gain a collection
of GPs denoted C = {GP1, GP2, . . . , GPn} where n refers to the number of
materials in the problem, where each GPi ∈ C maps to a f ′(xi) = pi(xi). For
GPi the x-axis will denote the material amount (xi) and the y-axis will denote
the material value probability function p(xi). Figure 6.7 shows one such GP.
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Recalling the NEFK problem definition from Section 2.2, repeated here for
clarity:

maximize f(x) =
n∑
i=0

fi(xi)

subject to
n∑
i=0

xi = c, ∀i,∈ {1, 2, . . . , n} , xi ≥ 0.

We observe that the NEFK problem is completely defined using the set of fi(xi)
functions and its capacity. As such we need to extract these functions from the
GP collection, one per material. In Section 4.4.2 we introduced the concept of
function sampling from a GP. We use this technique to sample a function p̂i(xi)
from GPi and formulate a probable NEFK problem using these i.e. maximize∑
p̂i(xi) instead of

∑
pi(xi).

6.1.1 Solving NEFK

Having obtained a completely defined NEFK problem we need to solve it. To
perform this task we propose the Deterministic Knapsack Solver (DET-KS)
algorithm. DET-KS takes a set of concave material functions and iteratively
calculate an optimal mixture vector M , the solution to the NEFK problem.

The way DET-KS works is that it starts with initial mixture vector set to
some small value (as to disallow any solution not involving all materials). It
then, in a greedy fashion, adds a small fraction of the knapsack capacity to
the material that would gain the least from the increase in material amount,
it repeats this step until the knapsack is full. We were unable to find any
published proof of the convergence properties of DET-KS, we therefore present
a novel proof in Appendix A.

Algorithm: DET-KS
Input: Set of functions f = {f1, . . . , fn} and c the knapsack capacity.
Initialization: M[1] = . . . = M[n] = ε;
# Typically ε can be set to some sufficiently small value.
Method:
While sum(M) =< c Do

1. Find the material i that have the smallest delta value weighted by its
mixture:

i = argmin
j∈{1,n}

[M[j]× f(M[j])]− [(M[j] + ε)× f(M[j] + ε)].

2. Increase the amount of fi in the mixture: M[i] = M[i] + ε.

End While
Return M
End Algorithm: DET-KS
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6.1.2 Rejection Sampling

To further enhance GPOKS we draw upon the success of Optimistic Thomp-
son Sampling (OTS) (see section 3.3.2 for more info) and introduce the notion
of rejection sampling for GPOKS. Rejection sampling or acceptance-rejection
method is a method for sampling from a random distribution where the proba-
bility density function of the distribution makes direct sampling infeasible [25],
and can typically be seen applied to (Bayesian) Monte Carlo Markov Chain
posterior estimation techniques such as Gibbs Sampling [13].

In our case we are interested in sampling a function that fulfill some specified
criteria (e.g. optimistic). We proceed by sampling a candidate function f̂ , if this
fulfill the criteria then we are done, else we reject the candidate function and
sample a new candidate function. We repeat this process as long as necessary
to find a candidate that is acceptable, that is, fulfill the criteria. In GPOKS we
will use two criteria for rejection sampling, optimistic and monotonic to refine
the type of sample functions we use for our NEFK problem. For a baseline
reference we include figure 6.2 where a set of functions are sampled from the
GP without rejection sampling.

As long as the candidate sampling is done i.i.d. the chance of finding a
specific sample function remains the same as if we had sampled from the true
distribution.

Figure 6.2: Samples from a GP without rejection sampling.

6.1.3 Optimistic Rejection Sampling

To generate “optimistic” sampling functions using rejection sampling we first
have to define a criterion for what an optimistic function is. Given an index set
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X and a mean function µ(x) we define an optimistic function g(x) as a function
that fulfill the criterion:

∀x ∈ X, g(x) ≥ µ(x). (6.1)

In more informal terms, it means that we are only interested in functions that
strictly reside in the upper part of the confidence interval surrounding the mean
function µi in GPi. Figure 6.3 illustrates this point.

Figure 6.3: Samples from a GP using rejection sampling with a optimistic cri-
terion.

6.1.4 Monotonic Rejection Sampling

In the definition of the NEFK and its stochastic variant SNEFK, each material
volume function pi(xi) is required to be non-increasing. Rejection sampling
allows us to take full advantage of this fact by defining a criterion where this
property is fulfilled. Given an index setX we define the criterion for a monotonic
function g(x) as:

∀x1, x2 ∈ X, x1 ≤ x2 ⇒ g(x1) ≥ g(x2). (6.2)

As seen in figure 6.4 the monotonic functions closely resembles the example
NEFK material value function given in Section 6.1.
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Figure 6.4: Samples from a GP using rejection sampling with a monotonic
criterion.

6.1.5 Rejection Sampling in GPOKS

To achieve higher performance the rejection sampling phase in GPOKS combines
the monotonic and the optimistic requirement into a single criterion. Thus, only
accepting candidate functions that are both optimistic and monotonic. Figure
6.5 shows a selection of candidate functions that the GPOKS rejection sampling
accept.
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Figure 6.5: GPOKS Rejection Sampling with both monotonic and optimistic
criteria.

6.2 Implementation

Armed with the conceptional understanding of GPOKS we now provide an
architectural overview of our scheme in figure 6.6. As illustrated in the figure,
GPOKS operate as follows:

Figure 6.6: GPOKS Architectural Overview

1. A collection of GPs, one Gaussian Process GPi , for each material i, at-
tempts to estimate the material unit value functions, pi(xi) = f ′i(xi), 1 ≤
i ≤ n .
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2. One candidate material unit value function, f̂ ′i(xi), 1 ≤ i ≤ n, is then
sampled, using rejection sampling, from each GPi, thus applying the TS
principle of sampling functions proportionally to their likelihoods.

3. The DET-KS component in the architecture finds the optimal material
mixture vector M̂ = [x1, x2, . . . , xn] for the sampled material unit value

functions, f̂ ′i(xi), 1 ≤ i ≤ n, using Lagrange Multipliers.

4. One of the materials is then selected by the Scheduler component for
evaluation, ensuring that each material i is selected with a frequency pro-
portional to the amount of material xi, assigned by M̂.

5. Finally, the Stochastic Environment i.e. the Stochastic NEFK, samples
the true underlying probability function pi(xi) using the selected materials
material amount xi, providing a feedback vi to the corresponding GPi,
which update its Bayesian estimate of f ′i(xi).

6.3 Example Steps

To finish the section on GPOKS we will show a selection of example steps that
identify the strength of the algorithm. In this context there is a total of two
materials that should be mixed. Figure 6.7 shows the GP based estimates for the
two material unit values after only 7 material value observations. It is clear from
the figure that there is a significant uncertainty associated with the estimated
material value functions, and therefore the estimated optimal material amounts
M̂ = [x̂1, x̂2] are far from the optimal amounts M = [x1, x2].

Estimate of material unit value f ′1(x1)
after 7 observations, with optimal and
estimated material amounts x1.

Estimate of material unit value f ′2(x2)
after 7 observations, with optimal and
estimated material amounts x2.

Figure 6.7: GP1 and GP2 at t = 7
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However, after 193 iterations of the GPOKS algorithm, we observe a number
of fascinating properties in Figure 6.8. First of all, the Bayesian estimates of
the material unit values, f ′1(x1) and f ′2(x2) have become more accurate (i.e. the
Bayesian Credibility interval surrounding each point is lower). Furthermore,
we observe that the estimated optimal material mixture is much closer to the
optimal values. Finally, observe that the uncertainty concerning f ′(x1) and
f ′2(x2) varies with x1 and x2. The beauty of Thompson Sampling is that the
exploration is guided, i.e. that exploration is performed in the areas containing
potential optimal values, thus gradually zooming in on the areas that are more
likely to contain the optimal material mixture.

Figure 6.8: Estimate of material unit values f ′1(x1) and f ′2(x2) after 193 obser-
vations, with optimal and estimated material amounts x1 and x2.

6.3.1 Finite Index Set Optimization

While the above solution works, in theory, a major drawback is that GP regres-
sion is an O(n3) operation (as it requires a matrix inversion), leading for poor
scalability for large time series. However, by exploiting the fact that each GP
is indexed by the open interval Ix = (0.0, 1.0), and the fact that the usage of a
Squared Exponential Kernel gives us very smooth functions we can reduce n,
the number of used observations in the following manner: First we convert the
continuous index set into a discreet index set, consisting of k different values as
Ix 7→ {x0 = 0, x1 = 1

k−1 , x2 = 2
k−1 , . . . , xk = 1}. The potential reduction in

convergence accuracy stemming from this can be alleviated by using a higher k
value19, thus lowering the distance between the algorithms optimal point and

19This loss will be further explored in the experiment section later on.
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the true optimal point.
Then, we recall the equations (4.5 and 4.4) for the GP regression and the

SE Kernel respectively (both re-stated here to improve readability):

P (f∗|y) = N (K∗,f [Kf ,f + σ2
noiseI]−1y, K∗,∗ −K∗,f [Kf ,f + σ2

noiseI]−1 Kf ,∗).

K(xp, xq) = σ2
f exp

(
− 1

2l2
(xp − xq)2

)
+ σ2

nδpq,

We see that the only part that affect the white noise (i.e. σ2
noise) is the part

of the matrix where the Kronecker delta is ’1’ (i.e. p equals q). Now since we
are using a zero-mean prior for the GP (i.e. m(x) = 0) then the distribution
over each separate index xi point, conditioned on all the observations of fi,

becomes a one-dimensional Gaussian ∼ Ni
(
ȳi,

σ2
noise

ni

)
, here ȳi is the average of

each observation yi at point xi and ni is the number of observations at xi. This
result comes from the standard Bayesian inference rules, when sampling from a
Gaussian with known variance [7].

Taking this observation into account we can transform the n × n matrix
[Kf ,f + σ2

noiseI] , where n is the total number of observations, into a k × k
matrix (here k is the number of elements in our discrete index set). Reducing
our time complexity20 from O(n3) to O(k).

In matrix notation this looks like:

[Kf ,f+σ
2
noiseI] =


K(x0, x0) +

σ2
noise

n0
K(x0, x1) . . . K(x0, xk)

K(x1, x0) K(x0, x1) +
σ2
noise

n1
. . . K(x1, xk)

...
...

. . .
...

K(xk, x0) K(xk, x1) K(xk, xk) +
σ2
noise

nk


y = [ȳ0, ȳ1, . . . , ȳk]′

The usage of this method is exact within the resolution or accuracy of our
discrete index set, as opposed to using a sparse approximation method [40] [39]
that typically operates by only using a selected sub-set of the total number of ob-
servations, where the subset is based on some random sampling heuristic. These
sparse methods are more suited for problems where it is infeasible to generate
a discrete index set. An additional observation is that, as earlier mentioned,
TS zooms in on the potential optimal parts requiring that a small set of obser-
vations handle the shape of the non-potential points, making it proportionally
harder to select the right point to use in the sparse approximation.

20Note that each step still require O(k3) to perform the necessary matrix inversion, but this
time does not increase with a growing number of observations, and can therefore be threated
as a constant.
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7 Experiment Configurations

In this section we give the experimental configuration for GPOKS following
the Web Polling application outlined in the introduction. We will first give an
overview of the algorithms that we use as a basis to determine the performance
level of GPOKS, in addition to the configurations and settings used.

7.1 GPOKS Variations

While the GPOKS is a well defined scheme there exists several fascinating as-
pects of the algorithm that we can modify to provide conceptual clarity on why
GPOKS work as it does and highlight possible improvements.

7.1.1 GPOKS Variants

The GPOKS Variants presented here can be divided into two groups: Those
who modify the rejection sampling phase, and those who select the fi functions
in some other fashion. In total, we present seven different schemes of this type:

GPOKS:GPR – Here we use mean of the GP found using Gaussian Process
Regression (GPR) as in section 4.4.2 instead of utilizing any Thompson Sam-
pling. This is very similar to the technique found in Bayesian Optimization
(BO), used in the GP-UCB algorithm covered in Section 5.3.

GPOKS:UCB – Inspired by the success of UCB-1 in the MAB context (Section
3.2.1) we adapt the GPOKS scheme to use the upper 95% confidence interval21

instead of utilizing any TS to sample fi(·).

GPOKS:IPS and GPOKS:IPS-OTS – Independent Point Sampling (IPS)
replace the function sampling found in GPOKS with independent point sam-
pling. This is done by generating a Gaussian distribution over each separate
discrete point in the index set. And for each marginal Gaussian distribution
sample a point, where fi is then defined as the collection of these point samples.
Let GPOKS:IPS-OTS denote the OTS version of this variant.

GPOKS:TS – While this variant of GPOKS utilize the regular setup found
in section 6 we remove the rejection-sampling phase and instead use a “naive”
implementation where the first sample function is used as an estimator. This is
the GPOKS form closest to the “pure” Thompson Sampling algorithm.

GPOKS:MONO – The rejection sampling phase only uses the monotonic de-
creasing TS criteria.

21Since each point is marginally distributed as Gaussian Distribution we can use µ+ 2σ to
find the 95% confidence interval, cf. The 68-95-99.7 rule
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GPOKS:OTS – The rejection sampling phase only uses the optimistic TS cri-
teria.

7.2 Contending Algorithms

We can divide the contending algorithms into three different types; (1) Learn-
ing Automata based algorithms (2) Multi-Armed-Bandit Algorithms (3) Naive
techniques, such as a uniform distribution.

7.2.1 Learning Automata based Solvers

LA:LAKG – Learning Automata Knapsack Game as covered in section 5.1 is
used with N the number of states per LA set to 100.

LA:H-TRAA – Hierarchy of Twofold Resource Allocation Automata as cov-
ered in section 5.2 is used with N the number of states per LA set to 100, while
the number of materials is restricted to a power of two, hence the material
amounts used in the different experiments.

7.2.2 MAB Solvers

The Multi-Armed-Bandit solver are not in general made to handle mixture
strategies but represent a definite focus of research within the reinforcement
learning literature and is therefore included here. However, as outlined in Sec-
tion 5.3.1 we can by using a higher number of arms represent the entire search
space and thus allow MAB to potentially reach an optimal mixture. This is tech-
nique is used for all the MAB solver except for MAB:UCB-1-RAW who operate
directly on the materials, but is in every other sense identical to MAB:UCB-1.

MAB:UCB-1 – Starts by selecting each arm once, and proceeds to select the
arm with the highest confidence interval. As the number of plays grows so will
the confidence intervals where we are sure of the mean value decrease, as such
exploration is achieved. It also incorporates an exploration term that boost
performance in areas that potentially could be better.

MAB:UCB-1-RAW – Identical to MAB:UCB-1 except it works directly on
the materials and not on a distribution over the possible mixture values.

MAB:TS – This is the Thompson Sampling as applied to MAB problem as
described in Section 3.3.1. We will use a Gaussian Distribution as our conjugate
prior. The prior distribution over each arm is ∼ N (0.7, 0.2 and the likelihood
variance is set as: σ2

ob = 0.05.
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MAB:GP-UCB – This represent the state-of-art when it comes to dependent
arm MAB problems as described in Section 5.3. We us a SE-Kernel with hyper-
parameters:
{l2 = 1.0, σ2

f = 1.0, σ2
n = 0.1}.

7.2.3 Naive solvers

Optimal – This plays the optimal setting found using Lagrange Multipliers.
Uniform – Plays a uniform fashion i.e. uses a equal amount of each material.

7.2.4 Multiple sites

To generate realistic update probabilities for multiple web sites, a Zipf [52] like
distribution is recommended [36] [51] see equation 7.1. The form of the distri-
bution is controlled by a pair of hyper-parameters, s that control the skewness
of the distribution and N that is the number of elements in the distribution.
The parameter k referees to the rank of a web-page.

Zk(s,N) =
1/ks∑N

n=1(1/ns)
(7.1)

As to easier draw comparisons to existing algorithms we a follow the lead
of [17] [19] and rank our web-pages from 1 to n. Each web-page the is given a
update probability from the distribution found in eq 7.2.

q(α,β)(k) =
α

kβ
(7.2)

To give some insight in how this distribution behaves we provide both a
linear and a logarithmic plot for the case with 10 web pages in figure 7.1. What
we can clearly see from this figure is that the update probability of the higher
ranked sites gradually approaches 0 given that β is less than 1.0.

Linear scale Logarithmic scale

Figure 7.1: Zipf distribution with α = 0.9 and β = 1.5
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The distributions of α β that we will test is given in table 7.2 below, alongside
their total update probability,

∑
q(α,β)(k). A note of interest in this table is that

not all the probability distributions sum to one, the environment α = 0.9;β =
1.5 is of special interest as it is highly skewed and thus will have the largest
difference between the optimal policy and the proportional one.

α 0.3 0.6 0.9
β 1.0 1.0 1.5∑

0.87 1.75 1.80

Figure 7.2: The test environments

8 Experiment Results

The following section gives the main results in this thesis. We here only report
a representative sub-set of the experiments run, as the rest of the experiments
show the same trend. Each configuration is run using a ensemble of 1000 inde-
pendent trials and the averages (when applicable) are reported here.

8.1 Two Web Resources

This subsection we consider a scenario where only two web-pages are available
for polling. We organize it as follows: First we will review the GP optimiza-
tion done as part of GPOKS in Section 6.3.1 under a two material configura-
tion. Then we report the performance characteristic of the Rejection Sampling
Schemes found in GPOKS. We finish off by comparing the GPOKS Variations
and the state-of-the-art algorithms. For the configuration parameters used by
the different algorithms we refer to Section 7.

The main scenarios in this section is when p1 = 0.75, p2 = 0.25 since it leads
to a good trade-off where it is imperative to exploit the best material, while
on the other hand it is important to add a small fraction of the sub-optimal
material 2.

8.1.1 Effective GPOKS

In Section 6.3.1 we outline a technique for exploiting the finite index set of
GPOKS to increase the efficiency of the GP regression phase in GPOKS, lets
call this the FAST-GPOKS, and the regular GP regression scheme (while still
using a finite index set) REGULAR-GPOKS. While both algorithm versions give
the exact same results, FAST-GPOKS significantly decrease the running time
for longer trials, as can be seen in table 8.1. And is as such outright necessary
for longer trials i.e., in a setting where the GPOKS is always running and trying
to gradually improve the on the results as new observations constantly arrive.
Note that the time for REGULAR-GPOKS at t = 10000 is missing, due to its
extremely long running time (more than 10 hours).
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t=10 t=100 t=1000 t=2000 t=4000 t=10000
FAST-GPOKS 1.9s 3.1s 1.4 min 2.0 min 4 min 4 min
REGULAR-GPOKS 1.9s 3.1s 2.1 min 20.7min 2.8 hours -
difference 0s 0s 0.7 min 18.7min ∼ 2.8 hours -

Figure 8.1: Average running time for a single trial using FAST-GPOKS and
REGULAR-GPOKS. Here p1/p2 = 0.75/0.25

8.1.2 GPOKS Rejection Sampling

For the GPOKS variants we first take a look on the different ways the rejec-
tion sampling affect GPOKS. In table 8.2 one can clearly see that the usage
of rejection sampling enhance the performance of GPOKS. However, what is
more interesting, is the fact that both the optimistic and the monotonic vari-
ant exhibits nearly identical performance in all three configurations, leading to
the conclusion that both are equally valid choices in-average. The performance
gain by combining them into a single hybrid criteria for rejection sampling in
GPOKS is minimal but noticeable, while the unmodified Thomson Sampling
(GPOKS:TS) suffers from a slight loss off performance compared to the rejec-
tion sampling based variants.

Scheme p1/p2 Avg[#Updates] t=10 Avg[#Updates] t=100 Avg[#Updates] t=1000
GPOKS 0.55/0.45 7.0 73.5 749.7
GPOKS:TS 0.55/0.45 5.9 68.8 738.5
GPOKS:OTS 0.55/0.45 6.1 70.4 744.4
GPOKS:MONO 0.55/0.45 6.7 72.1 746.1

GPOKS 0.75/0.25 7.3 79.8 807.5
GPOKS:TS 0.75/0.25 6.6 74.7 787.9
GPOKS:OTS 0.75/0.25 6.9 76.5 800.1
GPOKS:MONO 0.75/0.25 7.3 77.7 802.9

GPOKS 0.90/0.10 8.3 89.5 903.4
GPOKS:TS 0.90/0.10 7.8 86.6 888.8
GPOKS:OTS 0.90/0.10 8.2 88.9 900.8
GPOKS:MONO 0.90/0.10 8.3 89.2 902.3

Figure 8.2: Rejection Sampling in GPOKS for the two material case

Variance
We can also observe a big disparity in the variance for each of the different
rejection sampling schemes. In table 8.3 we report the variance over the indi-
vidual trial runs for each criteria, the web-polling probability used is p1 = 0.75
and p2 = 0.25 where each trial was performed using a 1000 iterations. Again,
we see that GPOKS (with both monotonic and optimistic rejection sampling)
compare favorable with the other rejection sampling schemes having the lowest
variance. Surprisingly GPOKS:MONO have a observable larger variance than
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GPOKS:OTS indicating that while GPOKS:MONO might deliver good results
in-average, GPOKS:OTS will consistently deliver good results, if slightly lower
than GPOKS:MONO would. Also, the clear advantage of enhancing the explo-
ration using a rejection sampling scheme is displayed as GPOKS:TS delivers a
highly variable result.

GPOKS GPOKS:TS GPOKS:OTS GPOKS:MONO
Variance 6.29 34.04 7.93 8.14

Figure 8.3: Variance in GPOKS Rejection Sampling Schemes for two materials,
p1/p2 = 0.75/0.25

White-noise tolerance
While the original web-polling problem have a inherently stochastic nature, by
utilizing the alternative definition of di(xi) found in equation: 2.3. Allowing us
to test the TS schemes under varying level of white noise σ2

ws as a measurement
on how robust they are. From Table 8.4 it is clear that the usage of rejec-
tion sampling increase the noise tolerance significantly, compared to the naive
GPOKS:TS algorithm.

p1/p2 GPOKS GPOKS:TS GPOKS:OTS GPOKS:MONO
σws = 0.0 0.75/0.25 807.5 787.9 804.1 802.9
σws = 0.2 0.75/0.25 804.9 786.4 803.8 800.4
σws = 0.4 0.75/0.25 802.7 772.8 797.5 799.5

Figure 8.4: White noise sensitivity in GPOKS Rejection Sampling Schemes for
the two material configuration, p1/p2 = 0.75/0.25

8.1.3 GPOKS Variations

The performance of the many variations of GPOKS is found in 8.5. There
are two noteworthy candidates in this table, GPOKS and GPOKS:UCB. Both
delivering equal performance in terms of number of average updates found and
are close to the OPTIMAL strategy.
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Scheme p1/p2 Avg[#Updates] t=10 Avg[#Updates] t=100 Avg[#Updates] t=1000
OPTIMAL 0.55/0.45 7.5 75.2 752.4
GPOKS 0.55/0.45 7.0 73.5 749.7
GPOKS:GPR 0.55/0.45 5.3 51.7 721.7
GPOKS:UCB 0.55/0.45 6.7 72.9 747.5
GPOKS:IPS 0.55/0.45 6.0 69.1 738.3
GPOKS:IPS-OTS 0.55/0.45 6.0 68.9 738.6
UNIFORM 0.55/0.45 7.4 74.7 747.5

OPTIMAL 0.75/0.25 8.1 81.2 812.4
GPOKS 0.75/0.25 7.3 79.8 807.5
GPOKS:GPR 0.75/0.25 6.3 73.9 798.7
GPOKS:UCB 0.75/0.25 7.4 78.7 807.4
GPOKS:IPS 0.75/0.25 5.7 72.0 775.3
GPOKS:IPS-OTS 0.75/0.25 5.5 72.6 778.4
UNIFORM 0.75/0.25 6.8 68.7 687.5

OPTIMAL 0.90/0.10 9.0 90.9 909.9
GPOKS 0.90/0.10 8.3 89.5 903.4
GPOKS:GPR 0.90/0.10 8.6 89.8 902.8
GPOKS:UCB 0.90/0.10 8.4 89.3 904.8
GPOKS:IPS 0.90/0.10 7.9 87.1 890.4
GPOKS:IPS-OTS 0.90/0.10 7.8 86.9 890.6
UNIFORM 0.90/0.10 5.9 59.0 590.0

Figure 8.5: GPOKS Variation performance

Variance
The variance of the GPOKS Variations (Table 8.6) shows that while the differ-
ence in average updates, the performance characteristics can be subtle. Here
GPOKS and GPOKS:UCB shines, with their low variance, and thus their per-
formance stability will be high, i.e. we can expect the result of using either
GPOKS or GPOKS:UCB not to deviate too much from their average perfor-
mance.

GPOKS GPOKS:GPR GPOKS:UCB GPOKS:IPS GPOKS:IPS-OTS
Variance 6.29 77.66 7.93 62.91 62.30

Figure 8.6: Variance in the performance of the GPOKS Variations for the two
material configuration.

White-noise tolerance
As with the GPOKS rejection sampling we test the how the GPOKS variations
perform under varying level of white noise, this is found in Table 8.7. While the
performance of all the algorithms decrease with a rising level of noise, GPOKS
and GPOKS:UCB stands out due to their resistance to noise, here GPOKS:UCB
gains a small edge on GPOKS.
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p1/p2 GPOKS GPOKS:GPR GPOKS:UCB GPOKS:IPS-OTS GPOKS:IPS
σws = 0.0 0.75/0.25 807.5 798.7 807.4 778.4 775.3
σws = 0.2 0.75/0.25 804.9 788.1 806.6 767.6 764.2
σws = 0.4 0.75/0.25 802.7 769.4 804.0 756.3 753.4

Figure 8.7: White noise sensitivity in GPOKS Variations for the two material
configuration.

8.1.4 GPOKS Contenders

The contenting algorithms to GPOKS is tested against GPOKS in this section
and is reported in Table 8.8. While both LA:LAKG and LA:H-TRAA have
proven capabilities, they here display a severe limit in their speed of conver-
gence, not improving by any noticeable factor between the different configura-
tions. This is in stark contrast to all the other algorithms that take more of an
advantage of the configuration at hand. A additional contender worth noting
here is the MAB:GP-UCB, delivering a performance almost equal to GPOKS,
while beating both LA:LAKG and LA:H-TRAA with a good margin. Consider-
ing that MAB:GP-UCB is not constructed specifically for this application this
is a very good result. It is also interesting to observe that MAB:UCB-1-RAW
outperforms MAB:UCB-1.
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Scheme p1/p2 Avg[#Updates] t=10 Avg[#Updates] t=100 Avg[#Updates] t=1000
OPTIMAL 0.55/0.45 7.5 75.2 752.4
GPOKS 0.55/0.45 7.0 73.5 749.7
MAB:UCB-1 0.55/0.45 4.9 66.3 668.5
MAB:UCB-1-RAW 0.55/0.45 6.5 63.9 603.1
MAB:TS 0.55/0.45 6.6 66.4 709.2
MAB:GP-UCB 0.55/0.45 5.4 67.3 732.4
LA:LAKG 0.55/0.45 6.7 69.5 709.8
LA:H-TRAA 0.55/0.45 6.8 68.8 676.4

OPTIMAL 0.75/0.25 8.1 81.2 812.4
GPOKS 0.75/0.25 7.3 79.8 807.5
MAB:UCB-1 0.75/0.25 3.0 63.0 659.9
MAB:UCB-1-RAW 0.75/0.25 6.5 71.8 738.0
MAB:TS 0.75/0.25 6.3 64.1 756.7
MAB:GP-UCB 0.75/0.25 6.4 73.9 783.6
LA:LAKG 0.75/0.25 6.7 69.5 709.7
LA:H-TRAA 0.75/0.25 6.8 68.6 676.2

OPTIMAL 0.90/0.10 9.0 90.9 909.9
GPOKS 0.90/0.10 8.3 89.5 903.4
MAB:UCB-1 0.90/0.10 1.5 57.0 654.0
MAB:UCB-1-RAW 0.90/0.10 7.0 83.4 881.5
MAB:TS 0.90/0.10 5.6 60.0 842.4
MAB:GP-UCB 0.90/0.10 7.2 87.2 895.6
LA:LAKG 0.90/0.10 6.7 69.6 709.8
LA:H-TRAA 0.90/0.10 6.8 68.7 676.3

Figure 8.8: Average #updates for the GPOKS Contenders in a two material
setting.

Variance
The variance in Table 8.9 should be seen in light of the performance given by the
different algorithms. As such only MAB:UCB-1-RAW and LA:H-TRAA delivers
results with a noteworthy high variance, the others, while still less stable than
GPOKS, are fairly stable.

GPOKS MAB:UCB-1 MAB:TS MAB:UCB-1-RAW MAB:GP-UCB LA:LAKG LA:H-TRAA
Variance 6.29 13.3 52.2 162.9 62.91 2.9 651.0

Figure 8.9: Variance in the performance of the GPOKS Contenders in a two
material configuration: p1/p2 = 0.75/0.25.

8.2 Multiple Web Sites

This is a multi-page web polling configuration, where a number of web sites have
been generated using the procedure outlined in Section 7.2.4. Table 8.10 gives
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the main result for the case of 8 web-pages where, again, the token of interest
is the average number of updates detected. Due to the sometimes almost flat
material unit value function fi(xi) used under some of these configurations
GPOKS is only represented using GPOKS:TS and GPOKS:OTS as it is very
time consuming to sample a monotonic decreasing function from a flat function.

From the Table we can see that the clear winner is GPOKS, or more specif-
ically, it is GPOKS:UCB with GPOKS:OTS following close behind. LA:LAKG
does deliver the best result for the α/β = 0.3/1.0 configuration, however the
poor result on the other configurations makes it loose out in the end.

Scheme α/β Avg[#Updates] t=10 Avg[#Updates] t=100 Avg[#Updates] t=1000
OPTIMAL 0.3/1.0 5.9 59.2 592.1
GPOKS:TS 0.3/1.0 3.2 42.1 535.2
GPOKS:OPT 0.3/1.0 3.2 43.1 545.9
GPOKS:GPR 0.3/1.0 2.6 33.2 539.0
GPOKS:UCB 0.3/1.0 2.9 45.2 563.7
LA:H-TRAA 0.3/1.0 4.9 49.6 470.0
LA:LAKG 0.3/1.0 4.9 51.9 571.8

OPTIMAL 0.6/1.0 8.7 87.1 871.7
GPOKS:TS 0.6/1.0 4.8 65.3 802.6
GPOKS:OPT 0.6/1.0 4.7 66.0 814.7
GPOKS:GPR 0.6/1.0 5.4 62.4 799.9
GPOKS:UCB 0.6/1.0 5.5 69.4 837.6
LA:H-TRAA 0.6/1.0 7.1 70.2 645.4
LA:LAKG 0.6/1.0 7.0 73.4 828.9

OPTIMAL 0.9/1.5 9.5 95.9 959.4
GPOKS:TS 0.9/1.5 5.2 76.4 894.1
GPOKS:OPT 0.9/1.5 4.9 78.9 925.0
GPOKS:GPR 0.9/1.5 8.1 90.3 926.4
GPOKS:UCB 0.9/1.5 7.3 80.6 934.5
LA:H-TRAA 0.9/1.5 6.0 60.1 566.4
LA:LAKG 0.9/1.5 6.0 64.9 855.9

Figure 8.10: Average #updates using 8 web-pages.

Variance
The variance measurement is based on the 8 pages setup, where α/β = 0.6/1.0.
To backup the several-order of magnitude difference between H-TRAA based al-
gorithms we state the best and worst trial for H-TRAA: min=396.6 max=766.7.
From Table 8.11 we can see that the usage of rejection sampling have a great
effect in decreasing the variance and allows GPOKS:OTS to deliver strong and
stable result. GPOKS:UCB have the most stable results, while LAKG follows
on a 3rd place, behind GPOKS:OTS.
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GPOKS:OTS GPOKS:TS GPOKS:GPR GPOKS:UCB LA:LAKG LA:H-TRAA
Variance 43.9 92.5 774.3 25.7 62.91 1008.4

Figure 8.11: Variance for the different algorithms using 8 web-pages with α/β =
0.6/1.0

9 Conclusions and Future Work

The stochastic non-linear fractional knapsack problem is a challenging opti-
mization problem with numerous applications, including resource allocation.
The goal is to find the most valuable mix of materials that fits within a knap-
sack of fixed capacity. When the value functions of the involved materials are
fully known and differentiable, the most valuable mixture can be found by di-
rect application of Lagrange multipliers. In this thesis we introduced Gaussian
Process based Optimistic Knapsack Sampling (GPOKS) – a novel model based
reinforcement learning scheme for solving stochastic fractional knapsack prob-
lems. The scheme is founded on Gaussian Process (GP) enabled Optimistic
Thompson Sampling (OTS).

To summarize our most important empirical findings:

• Our empirical results demonstrates that the GPOKS scheme converge
significantly faster than both LAKG and H-TRAA for the two material
case as well as the multi-web-page configuration. This while providing
more stable average results.

• We have demonstrated that Rejection Sampling, applied to OTS principle
can provide a positive effect on the performance. In addition it leads to
a more guided exploration lowering the variance in the result, and thus
making the algorithm less sensitive to white-noise.

• By exploiting the restricted index set we where able to speed up the pro-
cessing of GPOKS significantly. Ensuring that GPOKS can be considered
as a practical solver when applying the SNEFK problem.

• The overall architecture of GPOKS is working flawlessly for a host of
variations, where the original: model ⇒ solve ⇒ update scheme, is used
a basis.

• To the best of our knowledge this is the first time the MAB:GP-UCB
have been utilized for the SNEFK problem and we have shown that it is
a worthy contender as a SNEFK solver, outperforming both LAKG and
H-TRAA, for the two material case.

Future Work
In our further work, we will address games of interacting GPOKS for solving net-
worked and hierarchical resource allocation problems alongside with providing a
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stronger theoretical background for GPOKS. We are also working on extending
the GPOKS to handle resource allocation problems of a non-convex nature.
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A DET-KS Proof

The DET-KS algorithm in section 6.1.1 is proved in two steps. First a simpler
problem is presented and solved in a obvious optimal manner. Then DET-KS
is mapped onto this simple algorithm, and the result follows. We have taken
the liberty of restating the DET-KS algorithm here for readability.

Algorithm: DET-KS
Input: Set of functions f = {f1, . . . , fn} and c the knapsack capacity.
Initialization: M[1] = . . . = M[n] = ε;
# Typically ε can be set to some sufficiently small value.
Method:
While sum(M) =< c Do

1. Find the material i that have the smallest delta value weighted by its
mixture:

i = argmin
j∈{1,n}

[M[j]× f(M[j])]− [(M[j] + ε)× f(M[j] + ε)].

2. Increase the amount of fi in the mixture: M[i] = M[i] + ε.

End While
Return M
End Algorithm: DET-KS

Proof:
Imagine a rich but stingy man; let’s call him Scrooge, who has money lying
around in bags of assorted size. He has been made to promise away a fixed
amount of moneybags, but wants to give away as little as possible. The obvious
optimal way of doing this, is to give away the smallest bags. His strategy for
picking bags is to iteratively pick the smallest remaining bag until he has picked
the requisite number of bags. It is also possible to see that this algorithm is
optimal in that it produces the smallest bags.

Now, we complicate this problem a little bit, by sorting the bags into piles
sorted by increasing bag size. Again, we see that if the rich man wants to give
away as little as possible, an optimal pick strategy will be to iteratively see
which pile has the smallest bag at the top, and then to pick this smallest bag.
Let’s call this Scrooge’s algorithm.

In the DET-KS setting, we are dealing with concave functions 22 fi, and we
want to minimize

∑
i kiε × fi(kiε) where the sum of the non-negative integers

ki is a fixed constant c. For each i, the concavity property means that ∆i,m =
∆fi(mε) = (m− 1)εfi((m− 1)ε)−mεfi(mε) is an increasing sequence.

22Note that fi keeps it concave property when scaled by an arbitrary positive scalar
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We now translate this into the Scrooge setting, by letting each ∆i,m cor-
responds to a money bag to be given away, and each function fi to a pile of
such ∆i,m sorted by increasing value of the parameter m, this holds due to the
concave property of fi. The optimal solution remains to iteratively give away
the smallest money bag (∆i,m), and an optimal algorithm for this is Scrooge’s
algorithm.

B Short Paper

We here include the paper that was presented at MAICS 2013 as part of the
master thesis process.
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Abstract

The stochastic non-linear fractional knapsack problem
is a challenging optimization problem with numerous
applications, including resource allocation. The goal is
to find the most valuable mix of materials that fits within
a knapsack of fixed capacity. When the value functions
of the involved materials are fully known and differen-
tiable, the most valuable mixture can be found by direct
application of Lagrange multipliers. However, in many
real-world applications, such as web polling, informa-
tion about material value is uncertain, and in many cases
missing altogether. Surprisingly, without prior informa-
tion about material value, the recently proposed Learn-
ing Automata Knapsack Game (LAKG) offers arbitrar-
ily accurate convergence towards the optimal solution,
simply by interacting with the knapsack on-line.
This paper introduces Gaussian Process based Op-
timistic Knapsack Sampling (GPOKS) — a novel
model-based reinforcement learning scheme for solving
stochastic fractional knapsack problems, founded on
Gaussian Process (GP) enabled Optimistic Thompson
Sampling (OTS). Not only does this scheme converge
significantly faster than LAKG, GPOKS also incorpo-
rates GP based learning of the material values them-
selves, forming the basis for OTS supported balancing
between exploration and exploitation. Using resource
allocation in web polling as a proof-of-concept appli-
cation, our empirical results show that GPOKS consis-
tently outperforms LAKG, the current top-performer,
under a wide variety of parameter settings.

1 Introduction
The Internet can be seen as a massive collection of ever-
changing information, continuously evolving as web re-
sources are created, edited, deleted, and replaced (Pandey,
Ramamritham, & Chakrabarti 2003). Obtaining adequate
information from the Internet is crucial for many tasks, in-
cluding social media analytics, counter terrorism, and busi-
ness intelligence. It is thus important that the applied search
engines and web-monitoring frameworks are able to keep
their indexes and caches complete and up-to-date. Achiev-
ing this, of course, relies on detecting the changes that the
web resources undergo, typically by means of polling.

The problem of balancing polling capacity optimally
among web resources, with limited prior information, was

essentially unsolved until the Learning Automata Knap-
sack Game (LAKG) was introduced in 2006 as a generic
and adaptive solution to the so-called Stochastic Non-linear
Equality Fractional Knapsack (NEFK) Problem (Granmo et
al. 2006). Before that, the simplest and perhaps most com-
mon polling approach was to allocate the available polling
capacity uniformly among the web resources being moni-
tored, polling them all with the same fixed frequency, con-
strained by the available polling capacity. This uniform
polling strategy is clearly sub-optimal since web resources
evolve at different speed. For slowly changing web re-
sources, a high polling frequency translates into a corre-
spondingly large number of unfruitful polls. Conversely, for
quickly evolving web resources, a too low polling frequency
leads to potential loss of information or acting on out-dated
information. In brief, without balancing the allocation of
the available polling capacity, wasting resources polling one
resource may in turn prevent us from polling another more
attractive resource, thus degrading overall performance.

A two phase strategy has been proposed to address the
latter inefficiency: In the first phase, the uniform strategy is
applied, which allows the update probability of monitored
web resources to be estimated. By treating these probabil-
ity estimates as the true ones, Lagrange multipliers can be
applied to find an allocation of capacity that is optimal for
the estimated values (Pandey, Ramamritham, & Chakrabarti
2003). However, this method needs an arbitrary long esti-
mation phase to approach the optimal solution in the second
phase. That is, one either has to accept a sub-optimal final
solution because the update probability estimates are inac-
curate, or one must wait an extensive amount of time till
the estimates have become sufficiently accurate, allowing a
better solution in the second phase. Also note that evolving
update probabilities render the solution found with the latter
approach progressively more inaccurate.

This paper introduces Gaussian Process based Optimistic
Knapsack Sampling (GPOKS) — a novel scheme for solv-
ing stochastic knapsack problems founded on Gaussian Pro-
cess (GP) (Rasmussen & Williams 2006) based Thompson
Sampling (TS) (Thompson 1933; Granmo 2010), enhanced
by the principles of Optimistic TS (May et al. 2012). As
we shall see, not only does this scheme converge signif-
icantly faster than LAKG, GPOKS also incorporates GP
based learning of the material unit values themselves, form-



ing the basis for TS based exploration and exploitation. This
allows GPOKS to gradually shift from estimation to opti-
mization, starting with pure estimation and converging to-
wards pure optimization.

In (Granmo 2010) we reported a Bayesian technique for
solving bandit like problems, revisiting the Thompson Sam-
pling (Thompson 1933) principle pioneered in 1933. This
revisit lead to novel schemes for handling multi-armed and
dynamic (restless) bandit problems (Granmo & Berg 2010;
Gupta, Granmo, & Agrawala 2011a; 2011b), and empiri-
cal results demonstrated the advantages of these techniques
over established top performers. Furthermore, we provided
theoretical results stating that the original technique is in-
stantaneously self-correcting and that it converges to only
pulling the optimal arm with probability as close to unity as
desired. We now expand this principle to support Thompson
Sampling for Stochastic NEFK Problems.

1.1 Formal Problem Formulation
In order to appreciate the qualities of the Stochastic NEFK
Problem, it is beneficial to view the problem in light of the
classical linear Fractional Knapsack (FK) Problem. Indeed,
the Stochastic NEFK Problem generalizes the latter problem
in two significant ways. Both of the two problems are briefly
defined below.

The Linear Fractional Knapsack (FK) Problem: The
linear FK problem is a classical continuous optimization
problem which also has applications within the field of re-
source allocation. The problem involves n materials of dif-
ferent value vi per unit volume, 1 ≤ i ≤ n, where each
material is available in a certain amount xi ≤ bi. Let
fi(xi) denote the value of the amount xi of material i, i.e.,
fi(xi) = vixi. The problem is to fill a knapsack of fixed vol-
ume c with the material mix ~x = [x1, . . . , xn] of maximal
value

∑n
1 fi(xi) (Black 2004).

The Nonlinear Equality FK (NEFK) Problem: One im-
portant extension of the above classical problem is the Non-
linear Equality FK problem with a separable and concave
objective function. The problem can be stated as follows
(Kellerer, Pferschy, & Pisinger 2004):

maximize f(~x) =
∑n

1 fi(xi)
subject to

∑n
1 xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

Since the objective function is considered to be concave,
the value function fi(xi) of each material is also concave.
This means that the derivatives of the material value func-
tions fi(xi) with respect to xi, (hereafter denoted f ′i ), are
non-increasing. In other words, the material value per unit
volume is no longer constant as in the linear case, but de-
creases with the material amount, and so the optimization
problem becomes:

maximize f(~x) =
∑n

1 fi(xi),
where fi(xi) =

∫ xi

0
f ′i(xi)dxi

subject to
∑n

1 xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

Efficient solutions to the latter problem, based on the princi-
ple of Lagrange multipliers, have been devised. In short, the
optimal value occurs when the derivatives f ′i of the material

value functions are equal, subject to the knapsack constraints
(Bretthauer & Shetty 2002):

f ′1(x1) = · · · = f ′n(xn)∑n
1 xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

The Stochastic NEFK Problem: In this paper we gener-
alize the above nonlinear equality knapsack problem. First
of all, we let the material value per unit volume for any xi
be a probability function pi(xi). Furthermore, we consider
the distribution of pi(xi) to be unknown. That is, each time
an amount xi of material i is placed in the knapsack, we are
only allowed to observe an instantiation of pi(xi) at xi, and
not pi(xi) itself.1 Given this stochastic environment, we in-
tend to devise an on-line incremental scheme that learns the
mix of materials of maximal expected value, through a series
of informed guesses. Thus, to clarify issues, we are provided
with a knapsack of fixed volume c, which is to be filled with
a mix of n different materials. However, unlike the NEFK,
in the Stochastic NEFK Problem the unit volume value of a
material i, 1 ≤ i ≤ n, is a random quantity — it takes the
value 1 with probability pi(xi) and the value 0 with proba-
bility 1−pi(xi), respectively. As an additional complication,
pi(xi) is nonlinear in the sense that it decreases monotoni-
cally with xi, i.e., xi1 ≤ xi2 ⇔ pi(xi1) ≥ pi(xi2).

Since unit volume values are random, we operate with ex-
pected unit volume values rather than the actual unit volume
values. With this understanding, and the above perspective
in mind, the expected value of the amount xi of material i,
1 ≤ i ≤ n, becomes fi(xi) =

∫ xi

0
pi(u)du. Accordingly,

the expected value per unit volume2 of material i becomes
f ′i(xi) = pi(xi). In this stochastic and non-linear version
of the FK problem, the goal is to fill the knapsack so that
the expected value f(~x) =

∑n
1 fi(xi) of the material mix

contained in the knapsack is maximized. Thus, we aim to:

maximize f(~x) =
∑n

1 fi(xi),
where fi(xi) =

∫ xi

0
pi(u)du, pi(xi) = f ′i(xi)

subject to
∑n

1 xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

A fascinating property of the above problem is that the
amount of information available to the decision maker is
limited — the decision maker is only allowed to observe the
current unit value of each material (either 0 or 1). That is,
each time a material mix is placed in the knapsack, the unit
value of each material is provided to the decision maker. The
actual outcome probabilities pi(xi), 1 ≤ i ≤ n, however, re-
main unknown. As a result of the latter, the expected value of
the material mix must be maximized by means of trial-and-
error, i.e., by experimenting with different material mixes
and by observing the resulting random unit value outcomes.

1For the sake of consistency with previous work on the Stochas-
tic NEFK Problem, we here model stochastic material unit values
using Bernoulli trials. However, since GPOKS is based on Gaus-
sian Processes, the central limit theorem opens up for addressing
a number of other distributions too. Furthermore, there exist dedi-
cated kernel functions for a variety of distributions.

2We hereafter use f ′
i(xi) to denote the derivative of the ex-

pected value function fi(xi) with respect to xi.



1.2 Paper Contributions
The contributions of this paper can be summarized as fol-
lows:

1. We combine Bayesian modeling with reinforcement
learning to provide a novel solution to the Stochastic
NEFK Problem.

2. We propose the first reinforcement learning scheme that
combines Gaussian Processes (Rasmussen & Williams
2006) with Thompson Sampling (Thompson 1933;
Granmo 2010).

3. We introduce GP based sampling mechanisms in the spirit
of Optimistic Thompson Sampling (May et al. 2012) for
increased performance.

4. The resulting scheme persistently outperforms state-of-
the-art approaches when applied to resource allocation in
web polling.

These contributions form the first steps towards establishing
a new family of reinforcement learning schemes that pro-
vide on-line solutions to stochastic versions of classical op-
timization problems. This is achieved by carefully design-
ing Bayesian models that capture the nature of the optimiza-
tion problems, applying TS principles to address the explo-
ration/exploitation dilemma in on-line learning and control.

1.3 Paper Outline
In Section 2, we present our scheme for Gaussian Pro-
cess Based Optimistic Knapsack Sampling (GPOKS). We
start with a brief introduction to Gaussian Processes before
we propose how Gaussian Processes can enable Thomp-
son Sampling — the current leader when it comes to solv-
ing Bernoulli Bandit Problems (Granmo 2010) — for ex-
ploration and exploitation when solving on-line Stochastic
NEFK problems. Then, in Section 3, we define the web re-
source allocation polling problem in more detail, following
up with an evaluation of GPOKS compared with state-of-
the-art. We conclude in Section 4 and present pointers for
further work.

2 Gaussian Process Based Optimistic
Knapsack Sampling (GPOKS)

The conflict between exploration and exploitation is a well-
known problem in reinforcement learning, and other areas
of artificial intelligence. The multi-armed bandit problem
captures the essence of this conflict, and has thus occupied
researchers for over fifty years (Wyatt 1997). In brief, an
agent sequentially pulls one of multiple arms attached to a
gambling machine, with each pull resulting in a random re-
ward. The reward distributions are unknown, and thus, one
must balance between exploiting existing knowledge about
the arms, and obtaining new information.

We are here facing a similar problem, however, instead of
seeking the singly best material (bandit arm), we need to find
a mixture of materials, also referred to as a mixed strategy
in Game Theory. Recently, GP optimization has been ad-
dressed from a bandit problem perspective (Srinivas N. & M.
2010), allowing the GP to be explored globally with as few

evaluations as possible based on so-called upper confidence
bounds. Inspired by the success of GP based optimiza-
tion, we here propose a novel GP based model for stochastic
NEFK problems, where a collection of GPs captures the in-
dividual material unit values. Based on the GP colletion,
Thompson Sampling is applied to sample likely determinis-
tic NEFK problem instances from the GPs. These, in turn,
are solved based on Lagrange Multipliers, producing a po-
tential solution to the problem at hand.

2.1 Gaussian Processes based Representation of
Material Unit Value

A Gaussian Process (GP) is a stochastic process that rep-
resents a function as a multivariate Gaussian distribution
(Rasmussen & Williams 2006). It is specified as a tuple
GP = (µ(~x),K(·, ·)) where µ(·) is the mean function, typi-
cally assigned µ(~x) = ~0, andK(·, ·) is a kernel that specifies
the covariance matrix for the random vector ~x. In this paper,
we use the one dimensional Squared Exponential kernel (eq.
1), configured by the hyper parameters ~θ = {l, σ2

f , σ
2
n}.

K(xp, xq) = σ2
fexp(−

1

2l2
(xp − xq)2)) + σ2

nδpq (1)

Here l is the characteristic length-scale parameter that deter-
mines how rapidly the correlation should decay as the dis-
tance between xp and xq increases, σ2

f is the signal variance
and σ2

n is white noise (note that δpq here denotes the Kro-
necker delta between xp and xq). For further information on
GPs we refer to (Rasmussen & Williams 2006).

By way of example, Figure 1 illustrates how the posterior
distribution over possible material unit value functions for a
given material i can be represented by means of a GP. The
x-axis measures the amount of material, xi, while the y-axis
provides the material unit value f ′i(xi). The mean and 95%
confidence interval is included, as well as four samples indi-
cating possible candidates for f ′i(xi). Note that since the
Stochastic NEFK problem deals with non-increasing unit
value functions, f ′i(xi), we apply Rejection Sampling to
sample from the distribution of non-increasing functions.
Similarly, ”optimistic” sampling, as pioneered by May et al.
(May et al. 2012), is realized by rejecting sampled functions
that drop below the estimated mean.

2.2 Architectural Overview of GPOKS
Figure 2 provides an architectural overview of our scheme.
As illustrated in the figure, GPOKS operates as follows:

1. A collection of GPs, one Gaussian Process, GPi, for each
material i, attempts to estimate the material unit value
functions, f ′i(xi), 1 ≤ i ≤ n.

2. One candidate material unit value function, f̂ ′i(xi), 1 ≤
i ≤ n, is then sampled from each GPi , thus applying the
TS principle of sampling functions proportionally to their
likelihoods.

3. The DET-KS component in the architectue finds the opti-
mal material mixture M̂ = [x1, . . . ,xn] for the sampled
material unit value functions, f̂ ′i(xi), 1 ≤ i ≤ n, using
Lagrange multipliers.



Figure 1: Gaussian Process based representation of material
unit value
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Figure 2: GPOKS Architectural Overview

4. One of the materials is then selected by the Scheduler
component for evaluation, ensuring that each material i
is selected with a frequency that is proportional to the
amount of material, xi, assigned by M̂.

5. Finally, the Stochastic Environment, i.e., the Stochastic
NEFK, samples the true outcome probability function,
pi(xi), at xi, providing feedback vi to the corresponding
GPi, which updates its Bayesian estimate of f ′i(xi).

By following the above steps our goal is to gradually im-
prove our ”best guesses” so that each iteration successively
brings us closer to the optimal solution of the targeted
Stochastic NEFK problem.

2.3 Example Steps
Figure 3 and 4 show the GP based estimates for the unit
value of two materials, f ′1(x1) and f ′2(x2), after only 5 ma-
terial value observations. As can be seen, uncertainty about
the material unit value functions is significant, and the esti-
mated optimal material amounts M̂ = [x̂1, x̂2] are far from
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Figure 6: Web resource changes occurring over time. An ’x’
on the time-lines denotes that the respective web resource
has changed.

the optimal amounts M = [x1, x2].
However, after 193 iterations of the GPOKS algorithm,

we observe a number of fascinating properties in Figure 5.
First of all, the Bayesian estimates of the material unit val-
ues, f ′1(x1) and f ′2(x2), have become more accurate. Fur-
thermore, we observe that the estimated optimal material
mixture is now much closer to the optimal mixture. Finally,
observe that the uncertainty concerning f ′1(x1) and f ′2(x2)
varies with x1 and x2. The beauty of Thompson Sampling is
that the observations are collected with gradually increasing
exploitation, zooming in on the areas that are most likely to
contain the optimal material mixture.

3 Application: Web Polling
Having obtained a solution to the model in which we set the
NEFK, we shall now demonstrate how we can utilize this
solution for the current problem being studied, namely, the
optimal web-polling problem.

Web resource monitoring consists of repeatedly polling
a selection of web resources so that the user can detect
changes that occur over time. Clearly, as this task can be
prohibitively expensive, in practical applications, the sys-
tem imposes a constraint on the maximum number of web
resources that can be polled per time unit. This bound is
dictated by the governing communication bandwidth, and by
the speed limitations associated with the processing. Since
only a fraction of the web resources can be polled within
a given unit of time, the problem which the system’s ana-
lyst encounters is one of determining which web resources
are to be polled. In such cases, a reasonable choice of ac-
tion is to choose web resources in a manner that maximizes
the number of changes detected, and the optimal allocation
of the resources involves trial-and-error. As illustrated in
Figure 6, web resources may change with varying frequen-
cies (that are unknown to the decision maker), and changes
appear more or less randomly. Furthermore, as argued else-
where, (Granmo & Oommen 2006; Granmo et al. 2006;
2007), the probability that an individual web resource poll
uncovers a change on its own decreases monotonically with
the polling frequency used for that web resource.

Although several nonlinear criterion functions for mea-
suring web monitoring performance have been proposed
in the literature (e.g., see (Pandey, Ramamritham, &
Chakrabarti 2003; Wolf et al. 2002)), from a broader view-
point they are mainly built around the basic concept of up-
date detection probability, i.e., the probability that polling a
web resource results in new information being discovered.
Therefore, for the purpose of conceptual clarity, we will use



Figure 3: Estimate of material unit value f ′1(x1) af-
ter 7 observations, with optimal and estimated material
amounts x1.

Figure 4: Estimate of material unit value f ′2(x2) af-
ter 7 observations, with optimal and estimated material
amounts x2.

the update detection probability as the token of interest in
this paper. To further define our notion of web monitoring
performance, we consider that time is discrete with the time
interval length T to be the atomic unit of decision making. In
each time interval every single web resource i has a constant
probability qi of remaining unchanged. Furthermore, when
a web resource is updated/changed, the update is available
for detection only until the web resource is updated again.
After that, the original update is considered lost. For in-
stance, each time a newspaper web resource is updated, pre-
vious news items are replaced by the most recent ones.

In the following, we will denote the update detection
probability of a web resource i as di. Under the above con-
ditions, di depends on the frequency, xi, that the resource is
polled with, and is modeled using the following expression:

di(xi) = 1− qi
1
xi .

By way of example, consider the scenario that a web re-
source remains unchanged in any single time step with prob-
ability 0.5. Then polling the web resource uncovers new
information with probability 1 − 0.53 = 0.875 if the web
resource is polled every 3rd time step (i.e., with frequency
1
3 ) and 1 − 0.52 = 0.75 if the web resource is polled ev-
ery 2nd time step. As seen, increasing the polling frequency
reduces the probability of discovering new information on
each polling.

Given the above considerations, our aim is to find the
resource polling frequencies ~x that maximize the expected
number of pollings uncovering new information per time
step:

maximize
∑n

1 xi × di(xi)
subject to

∑n
1 xi = c and ∀i = 1, . . . , n, xi ≥ 0.

3.1 GPOKS Solution
In order to find a solution to the above problem we must
define the Stochastic Environment that GPOKS is to inter-
act with. As seen in Section 2, the Stochastic Environment
consists of the unit volume value functions {f ′1(x1), f ′2(x2),
. . . , f ′n(xn)}, which are unknown to GPOKS. We identify
the nature of these functions by applying the principle of
Lagrange multipliers to the above maximization problem.
In short, after some simplification, it can be seen that the
following conditions characterize the optimal solution:

d1(x1) = d2(x2) = · · · = dn(xn)∑n
1 xi = c and ∀i = 1, . . . , n, xi ≥ 0.

Since we are not able to observe di(xi) or qi directly, we
base our definition of {f ′1(x1), f ′2(x2), . . . , f ′n(xn)} on the
result of polling web resources. Briefly stated, we want
f ′i(xi) to instantiate to the value 0 with probability 1−di(xi)
and to the value 1 with probability di(xi). Accordingly, if
the web resource i is polled and i has been updated since
our last polling, then we consider f ′i(xi) to have been in-
stantiated to 1. And, if the web resource i is unchanged, we
consider f ′i(xi) to have been instantiated to 0.

3.2 Empirical Results
In this section we evaluate GPOKS and compare its perfor-
mance with the currently best performing algorithm, LAKG.
While H-TRAA possesses better scalability than LAKG
(Granmo & Oommen 2010), for two material problems,
their performance is identical because the hierarchical setup
of H-TRAA does not come into play. For clarification we
will also include some promising variants of GPOKS. Here
follows an overview of a selection of the policies that we
have investigated:

Uniform: The uniform policy allocates monitoring re-
sources uniformly across all web resources. This classical



Figure 5: Estimate of material unit values f ′1(x1) and f ′2(x2) after 193 observations, with optimal and estimated material
amounts x1 and x2.

policy can, of course, be applied directly in an unknown en-
vironment.

LAKG: The LAKG scheme is basically a game between
so-called Learning Automata (Narendra & Thathachar
1989). They start off from a uniform policy and gradu-
ally improves toward the optimal configuration through a
sequence of small jumps across a discretized search space.
In all our experiments the resolution of LAKG is set to 100
states.

Optimal: This policy requires that update frequencies are
known, and finds the optimal solution based on the prin-
ciple of Lagrange multipliers (Pandey, Ramamritham, &
Chakrabarti 2003; Wolf et al. 2002).

GPOKS - Mean: To highlight the advantage of our Opti-
mistic Thompson Sampling approach, we also test a simpler
scheme where we use the mean of the GPs when estimating
the optimal solution rather than sampling functions from the
GPs.

We have conducted numerous experiments using various
configurations, such as different noise parameters and up-
date probabilities. Here, we present a representative subset
of these, as they all show the same trend. Performance is
measured as the average accumulated number of web re-
source updates found.

For these experiments, we used an ensemble of 1000 in-
dependent replications, each random generator seeded with
a unique number, to maximize the precision of the reported
results. In order to provide a robust overview of the perfor-
mance of GPOKS, we investigated three radically different
update probability configurations for web resource pairs. In

the first one, q1 = 0.9/q2 = 0.1, one web resource is up-
dated significantly more often than the other. A more moder-
ate version of the latter configuration, q1 = 0.75/q2 = 0.25,
was also investigated. Furthermore, we measured perfor-
mance when the two web resources have almost equal up-
date probability, q1 = 0.55/q2 = 0.45. Finally, we also
investigated the robustness of GPOKS by adding increas-
ing amount of white-noise, (wσ), to the feedback given to
GPOKS. Note that, for the sake of fairness, we applied the
same kernel hyper-parameters, θ = {1.0, 1.0, 0.1}, for all
the GP based strategies, without further optimization.

Table 1 reports the performance of the different poli-
cies3. As can be seen, GPOKS clearly outperforms LAKG
when facing the q1 = 0.9/q2 = 0.1 configuration, with
GPOKS detecting on average approximately 8 more updates
than LAKG over 1000 time steps. Also note how remark-
ably close GPOKS gets to the optimal performance, missing
on average merely 7 web resource updates over 1000 time
steps. We observe similar results for the q1 = 0.75/q2 =
0.25 configuration. Finally, for the q1 = 0.55/q2 = 0.45
configuration, we observe that the performance of LAKG
and GPOKS becomes more similar. This can be explained
by the prior bias of LAKG, starting from a uniform allo-
cation of resources. This gives LAKG an advantage over
GPOKS, which are largely unbiased when it comes to prior
belief about update probabilities. Finally, notice the perfor-
mance loss caused by using the mean of the GPs (GPOKS-
Mean) instead of TS. This trend is further explored in Ta-

3Note that all of the setups apply a small degree of white noise
(wσ = 0.1).



ble 2, where we increase the amount of white noise affect-
ing feedback. We then observe that GPOKS is surprisingly
robust towards noisy feedback compared to GPOKS-Mean.
This can be explained by the greedy nature of GPOKS-
Mean, which is less inclined to explore the space of func-
tions encompassed by the GPs, thus being more easily mis-
lead by noise.

4 Conclusions and Further Work
The stochastic non-linear fractional knapsack problem is a
challenging optimization problem with numerous applica-
tions, including resource allocation. The goal is to find the
most valuable mix of materials that fits within a knapsack
of fixed capacity. When the value functions of the involved
materials are fully known and differentiable, the most valu-
able mixture can be found by direct application of Lagrange
multipliers.

In this paper we introduced Gaussian Process based Op-
timistic Knapsack Sampling (GPOKS) — a novel model-
based reinforcement learning scheme for solving stochastic
fractional knapsack problems. The scheme is founded on
Gaussian Process (GP) enabled Optimistic Thompson Sam-
pling (OTS). Our empirical results demonstrates that this
scheme converge significantly faster than LAKG. Further-
more, GPOKS incorporates GP based learning of the mate-
rial unit values themselves, forming the basis for OTS sup-
ported balancing between exploration and exploitation. Us-
ing resource allocation in web polling as a proof-of-concept
application, our empirical results show that GPOKS consis-
tently outperforms LAKG, the current top-performer, under
a wide variety of parameter settings.

In our further work, we will address games of interacting
GPOKS for solving networked and hierarchical resource al-
location problems. Furthermore, we are investigating tech-
niques for decomposing the GP calculations for increased
computational performance.
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Scheme p1/p2 Avg[#Updates] t=10 Avg[#Updates] t=100 Avg[#Updates] t=1000
Optimal 0.90/0.10 9.1 91.0 909.9
Uniform 0.90/0.10 5.9 59.0 590.0
LAKG 0.90/0.10 6.0 71.6 874.9
GPOKS 0.90/0.10 8.0 88.9 903.0
GPOKS-Mean 0.90/0.10 8.5 89.7 902.9
Optimal 0.75/0.25 8.1 81.2 812.5
Uniform 0.75/0.25 6.9 68.8 687.5
LAKG 0.75/0.25 6.9 74.1 793.1
GPOKS 0.75/0.25 7.4 78.8 807.9
GPOKS-Mean 0.75/0.25 6.6 69.6 792.2
Optimal 0.55/0.45 7.5 75.2 752.5
Uniform 0.55/0.45 7.5 74.8 747.5
LAKG 0.55/0.45 7.5 74.8 749.8
GPOKS 0.55/0.45 7.0 73.5 749.4
GPOKS-Mean 0.55/0.45 5.4 52.8 725.3

Table 1: Average number of updates at different times, wσ = 0.1

Scheme p1/p2 wσ = 0.0 wσ = 0.2 wσ = 0.4
GPOKS 0.75/0.25 808.2 804.5 804.1
GPOKS-Mean 0.75/0.25 793.9 787.2 769.1

Table 2: The performance of GPOKS variants under different levels of white noise


