
Secure Multi-party based Cloud Computing

Framework for Statistical Data Analysis of

Encrypted Data

by

G. P. Harsha Sandaruwan

P. S. Ranaweera

Supervisor

Professor Vladimir Oleshchuk

This Master’s Thesis is carried out as a part of the education at the University of

Agder and is therefore approved as a part of this education. However, this does not

imply that the University answers for the methods that are used or the conclusions

that are drawn.

University of Agder, 2013

Faculty of Engineering and Science

Department of Information & Communication Technology

Abstract

Secure Multi-party Computation (SMC) is a paradigm used to accomplish a common

computation among multiple users while keeping the data of each party secret from

others. In recent years there has been a keen interest among the research community

to look for techniques that can be adopted for the evolvement of SMC based solutions

for improving its efficiency and performance. Cloud computing is a next generation

computing solution in the field of Information and Communication Technology (ICT)

which allows its users to use high speed infrastructure and services provided by Cloud

Service Providers (CSP) in a cost effective manner with a higher availability. There-

fore, deployment of cloud based architecture for SMCs would aid in improving its

performance and efficiency. However, cloud based solutions raises concerns over secu-

rity of users’ private data, since data is handled by an external party that cannot be

trusted. Hence, it is necessary to incorporate necessary security measures to ensure

the security of users’ private data.

In this master’s thesis we have addressed this issue by proposing a Secure Multi-

party based Cloud Computing Framework which can ensure security, privacy and

anonymity of users private data. In order to achieve this, we have formulated a case

involving sales data analysis of a certain organization through computing statistical

parameters of sales persons private sales data on a cloud environment. Furthermore,

we have implemented a prototype of the proposed security framework which aids us

to evaluate its performance. Moreover, considering the results that we have obtained,

it is conclusive that cloud platforms can be successfully deployed to improve efficiency

of SMCs while ensuring the security of users’ private data; which in turn provides

evidence for the practicability of multi-party based cloud computing solutions.

Keywords: secure multi-party computation, cloud computing, homomorphic encryp-

tion, data security, privacy, anonymity

Preface

This report serves as a Master’s Thesis in Information Security to fulfill the require-

ments of the Master’s Program in Information and Communication Technology (ICT)

at the Faculty of Engineering and Science, University of Agder (UiA) in Grimstad,

Norway. The research was started on 7th January 2013 and ended on 3rd June 2013.

The main objective of this thesis is to propose and implement a Secure Multi-party

based Cloud Computing Framework which can cater the security requirements of the

associated users.

We are delighted to take this opportunity to show our sincere gratitude to all the

ones who have helped us in achieving our goals. We are greatly obliged to our super-

visor, Professor Vladimir A. Oleshchuk for his valuable assistance in giving feedback

on project work throughout the semester. We are also grateful to Indika Anuradha

Mendis who is a Doctoral Fellow in the department of ICT for his valuable thoughts

especially on the report writing. It is our duty to also thank Sigurd K. Brinch who is

working as a Chief Engineer at the University of Agder for allowing us to use university

computing resources which was very important for us to carry out our experiments.

Last, but certainly not the least, we would like to express our gratefulness and humility

to our parents and friends for their support during the Master’s Thesis.

Grimstad

June, 2013

G.P. Harsha Sandaruwan

P.S. Ranaweera

ii

Contents

Contents iv

List of Figures viii

List of Tables x

Abbreviations xii

1 Introduction 1

1.1 Cloud Computing . 1

1.2 Secure Multi-party Computation . 2

1.3 Motivation for Secure Multi-party based Cloud Computing 3

1.4 Problem Statement . 4

1.4.1 Research Objectives (RO) . 4

1.4.2 Research Questions (RQ) . 4

1.5 Related Work . 5

1.5.1 Security Issues Related to Cloud Computing 5

1.5.2 Computations on Encrypted Data 6

1.5.3 Secure Multi-party Statistical Computations 7

1.5.4 Secure Cloud based Computations 8

1.6 Thesis Outline . 9

2 Theoretical Background 11

2.1 Cryptographic Primitives used in the Proposed Solution 11

2.1.1 Homomorphic Cryptosystems 11

2.1.2 Extended ElGamal Encryption Scheme 13

2.1.3 RSA Public Key Cryptosystem 16

2.1.4 Data Encryption Standard (DES) 18

2.1.5 Timestamp (TS) . 19

2.1.6 Message Authentication Codes (MAC) 20

iv

CONTENTS

2.2 Client-Server Architecture . 21

3 Secure Multi-party based Cloud Computing Solution 25

3.1 Case Description . 25

3.2 Secure Multi-party based Cloud Computing

Framework . 26

3.3 Key Generation Phase . 28

3.4 Authentication and Key Exchange Phase 28

3.4.1 Mutual Authentication between Cloud Server and Analyzer . . . 29

3.4.2 Mutual Authentication between Proxy Server and Cloud Server 30

3.4.3 Authentication of Users . 31

3.5 User Data Encryption . 32

3.6 Proxy Server Functionality . 33

3.7 Cloud Server and Analyzer Functionality 34

3.7.1 Computing Mean Value . 36

3.7.2 Computing Variance, Standard deviation, Skewness and Kurtosis 39

3.8 Overall Process . 43

4 Performance Analysis 45

4.1 Experimental Setup . 45

4.2 Test Cases . 47

4.2.1 Authentication Time . 47

4.2.2 Variation of User Data Encryption Time 50

4.2.3 Comparison on Computational Time for Different Statistical Pa-

rameters . 53

4.2.4 Effect of Number of Users and Size of User Inserted Data on

Process Time and Total Time 56

4.2.5 Effect of Transmission Delay . 60

5 Discussion 67

5.1 Security Analysis of the Proposed Solution 68

5.2 Analysis on Experimental Results . 70

5.3 Limitations of Proposed Solution . 71

6 Conclusions 73

6.1 Contribution to Knowledge . 74

6.2 Future Work . 75

v

CONTENTS

Bibliography 77

A Attached Publication 81

B JAVA Programs 89

B.1 User.java File . 89

B.2 ProxyServer.java File . 96

B.3 CloudServer.java File . 109

B.4 Analyzer.java File . 127

vi

List of Figures

1.1 Ideal and Practical SMC Scenarios . 2

2.1 Process of checking TS to detect Replay Attacks 20

2.2 Process of checking HMAC to detect Integrity Violations 21

2.3 Client Server Architecture Illustration 22

3.1 Illustration of the Case Study . 26

3.2 Proposed Secure Multi-party based Cloud Computing Framework . . . 27

3.3 Mutual Authentication between Analyzer and Cloud Server 29

3.4 Mutual authentication between Proxy server and Cloud server 30

3.5 User Authentication Procedure with Proxy Server 31

3.6 Structure of User Data Message sent to the Proxy Server 33

3.7 Structure of the Packet sent from Proxy Server to Cloud Server 34

3.8 Flow Diagram of the Process when the Proxy Server Message is received

at Cloud Server . 35

3.9 Structure of the Summation Frame sent from Cloud to Analyzer 37

3.10 Structure of the message which carries encrypted Mean value to Cloud 38

3.11 Structure of the Message sent from Cloud to Analyzer with Computed

Statistical Values . 42

3.12 Overall Process of the Proposed Model 43

4.1 Experimental Setup . 46

4.2 Variation of Mutual Authentication (MA) Time as a function of Size of

the RSA Prime Values . 49

4.3 Variation of ElGamal Encryption Time as a function of Size of the

ElGamal Prime Values . 51

4.4 Variation of ElGamal Encryption Time for 64 bit Prime Values as a

function of Input Data Size . 53

viii

LIST OF FIGURES

4.5 Variation of Computational Time for Statistical Parameters as a func-

tion of Number of Users . 55

4.6 Variation of Entity Process Time as a function of Number of Users . . 58

4.7 Variation of Total Process Time as a function of Number of Users . . . 58

4.8 Variation of Entity Process Time & Total Process Time as a function

of Input Data Size . 60

4.9 Variation of Total Process Time & Total Time as a function of Number

of Users . 63

4.10 Variation of Total Process Time & Total Time as a function of Number

of Users when HC =1 & HC = 17 . 64

ix

List of Tables

4.1 Variation of Authentication Time with RSA Prime Size 48

4.2 Mutual Authentication Times for RSA Prime Size of 512 bits 50

4.3 ElGamal Encryption Time Variation with Prime Size 51

4.4 ElGamal Encryption Time Variation for 64 bit Prime Size against Input

Data Size . 52

4.5 Computational Times of Statistical Prameters 54

4.6 Variation of Entity & Total Process Time with Number of Users 57

4.7 Entity & Total Process Time Variation with Input Data Size 59

4.8 Variation of Total Process Time & Total Time with Number of Users . 62

x

Abbreviations

3DES Triple Data Encryption Standard

CSP Cloud Service Provider

FHE Fully Homomorphic Encryption

HMAC Hashed Message Authentication Code

IaaS Infrastructure as a Service

ICT Information and Communication Technology

IDS Intrusion Detection System

IHC Iterated Hill Cipher

IT Information Technology

MAC Message Authentication Code

MA Mutual Authentication

MD5 Message Digest Algorithm 5

MRS Modified Rivest Scheme

P-box Permutation Box

PaaS Platform as a Service

PC Personal Computer

RO Research Objectives

RQ Research Questions

S-box Substitution Box

xii

LIST OF TABLES

SaaS Software as a Service

SDS Secure Data Sharing

SHA1 Secure Hash Algorithm 1

SMCC Secure Multi-party Cloud Computing

SMC Secure Multi-party Computation

TRN Token Ring Networks

TS Timestamps

TTP Trusted Third Party

VPP Virtual Party Protocols

WSN Wireless Sensor Networks

xiii

Chapter 1

Introduction

In this chapter, we attempt to provide background information regarding cloud com-

puting and Secure Multi-party Computations (SMC) while emphasizing the significance

of moving towards secure multi-party based cloud computing solutions. Then we have

stated the problem statement along with a case which we are going to address during

our thesis followed by relevant research work carried out in the area of interest. Finally,

an outline describing the structure of the upcoming chapters is provided.

1.1 Cloud Computing

Cloud computing is vast developing and a most discussed topic among the individ-

uals and business organizations who utilize and research over the newest trends in

Information Technology (IT). Some of the leading IT companies in the world such as

IBM, Google, Yahoo, Amazon have already developed large scale cloud systems for

providing various types IT services through the cloud. The term cloud is analogical

to the Internet. Hence cloud computing can be visualized as computing over Internet.

More precisely it is a set of resources and facilities offered via the Internet [1].

Cloud architecture consist of a large number of shared servers distributed all over

the world providing software, infrastructure, platform, devices and other required re-

sources and hosting to subscribers on a “pay as you use it basis”. The services provided

over a cloud are categorized into three service models depending on the type of re-

sources allocated by the cloud service provider for the customers. They are Software as

a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS).

1

1.2. SECURE MULTI-PARTY COMPUTATION

A cloud makes it possible for a user to access his information in the cloud from

anywhere, anytime through the Internet. On the other hand users do not need to

worry about the maintenance and availability of resources purely because it is the

responsibility of the cloud service provider. More importantly cloud computing is an

on demand service, where users are charged only based on their resource consumption.

Because of these aspects, cloud computing has become more and more popular among

public as well as organizations.

1.2 Secure Multi-party Computation

The concept of Secure Multi-party Computation (SMC) was first introduced by Yao

in 1982, in which he explained this through a well-known problem called ”millionaire

problem” [2].

“Two millionaires wish to know who is richer; however, they do not want to find out

inadvertently any additional information about each other’s wealth. How can they

carry out such a conversation?”

In general terms, a SMC can be defined as a situation where n parties who are having

private inputs x1, x2 ..., xn interested in computing the value of the public function

f(x1, x2, ..., xn) in such a way that at the end of the computation no party is revealed

any of the private inputs of other parties [3]. This process can be theoretically rep-

resented with the existence of a Trusted Third Party (TTP), where each user party

sends its private data to the TTP to compute the value of the function of common

interest as shown in the left side of Figure 1.1.

Figure 1.1: Ideal and Practical SMC Scenarios

2

1.3. MOTIVATION FOR SECURE MULTI-PARTY BASED CLOUD
COMPUTING

The right side of Figure 1.1 illustrates the way in which a practical SMC works without

the existence of a TTP, which is equivalent in functionality to the ideal representation

with a TTP. Therefore, SMC is all about finding appropriate cryptographic protocols

that can replace the use of a TTP, to carry out a certain user intended function while

ensuring data privacy of users [4]. Furthermore, SMCs are used in a variety of other

applications other than the “millionaire problem” as listed below.

• Electronic voting and elections

• Privacy preserving data mining

• Auctions and bidding systems

• Business related computations

1.3 Motivation for Secure Multi-party based Cloud

Computing

Even though SMC algorithms capable of achieving privacy of user data even at the

computation time, most of the existing multi-party computation approaches incur a lot

of communication overhead [5]. Thus, a greater interest is evolved among the research

personals in recent times regarding the possibility of outsourcing the computations

to a Cloud Service Provider (CSP) which in turn will reduce the expenditure and

operation overhead while improving the efficiency. However, outsourcing data to clouds

for computational purposes may lead to privacy issues due to the fact that data is

handled by an un-trusted external entity. So, it is clear that users simply cannot send

private data as raw data to the cloud. This makes way for an interested topic of “how

to do the computations on encrypted data”. If this is achieved then it is possible for

users to send the encrypted data to the cloud and carry out the required computation

on encrypted data while decrypting computational result at the user end revealing

the raw answer of the intended computation. Furthermore, this type of a framework

capable of reducing the computational overhead on the user side, since the bulk of

the work is carried out at the cloud. On the other hand maintaining and managing

computing resources are under the control of the CSP which is another plus for the

end users. So, it is a challenging task to come up with such a protocol which is capable

of performing computations on encrypted data while ensuring security requirements.

3

1.4. PROBLEM STATEMENT

1.4 Problem Statement

In the previous section we discussed the importance of using cloud based solutions

for SMCs, considering the reduction of communication and computational overhead

which ultimately leads to an improved efficiency. Even though such benefits exist, it

is necessary to overcome the security concerns associated with cloud systems simply

because users cannot send the unencrypted private data to the cloud to carry out the

computations. Once data is encrypted, in normal circumstances it is not possible to

perform the user intended computations.

Therefore, it is necessary to encrypt the data in such a way that computations

can be carried out on the encrypted data. Moreover, it is important to provide iden-

tity anonymization at the cloud, since it is not necessary to provide any additional

information to the cloud except what is required for the computation.

1.4.1 Research Objectives (RO)

In order to address this issue we are going to consider a case where an organization re-

quires computing and analyzing statistical parameters about their sales. In this case,

organization is required to compute statistical parameters such as mean, variance,

standard deviation, skewness and kurtosis of sales values which were gathered from

sales personnel. Furthermore, an external entity is responsible for analyzing computed

statistical results. Moreover, data privacy and identity anonymization of sales per-

sons are vital aspects. In the process of providing a solution for this case, following

objectives must be accomplished.

RO 1 Proposing an appropriate secure multi-party based cloud computing frame-

work which satisfies the requirements of the above mentioned case.

RO 2 Implement a prototype of the framework.

RO 3 Evaluate the performance of the framework through the implementation.

1.4.2 Research Questions (RQ)

In order to achieve our research goals, it is necessary to find solutions to following

research questions.

4

1.5. RELATED WORK

RQ 1 Which data encryption method allows computation of required statistical paramet-

ers on encrypted data?

RQ 2 How to hide the identity of the user parties from the cloud?

RQ 3 How to develop the framework in such a way that it can withstand the sec-

urity threats such as replay attacks and integrity violations ?

RQ 4 How to keep a satisfactory level of efficiency in the proposed framework wh-

ile ensuring the security requirements?

RQ 5 What parameters we can use to measure the performance of our implement-

ed framework?

1.5 Related Work

This section describes the researches been conducted in the area of our interest. We

have categorized the related researches into cloud security, computations on encrypted

data, secure multi-party statistical computations and secure cloud based computations.

1.5.1 Security Issues Related to Cloud Computing

The growth and wide spread of Information and Communication Technologies (ICT)

promoted the development of cloud computing which is based on the concept of dis-

tributed computing. According to La’Quata “The rise in the scope of cloud computing

is continuously increasing” [6]. Though cloud techniques seem quite lucrative for the

users, it was found that the cloud architecture and its’ communication protocols do not

guarantee the level of safety that the users typically expected to have. Consumers of

the cloud computing services have serious concerns about the availability of their data

when required. Users also concern about the confidentiality, integrity of the data that

has been uploaded in the cloud servers [7]. Oren et al. [8] mentioned that advantages

of cloud computing is shadowed with data security, safety, privacy and anonymity

challenges. Therefore, the adoption of cloud computing has been inhibited to a great

extent.

5

1.5. RELATED WORK

In the quest of finding solutions to enhance security of the data resides in a cloud,

researchers have followed different methods. Qingkai Ma et al. [5] introduced a new

protocol for secure data protection in cloud computing, which yields better perfor-

mance at normal execution time while still assures data protection at the presence of

security threats. Research carried out by Jun Feng et al. [9] took alternative perspec-

tive and proposed a protocol to enhance cloud storage security interms of repudiation,

fairness and rollback attacks.

Pearson came up with a solution by introducing a privacy manager for cloud com-

puting environments based on multi-party protocols, which can reduce the risk of cloud

computing user by stealing or misusing his or her private data [10]. Afterwards, he

dug it further and revealed that the most important obstacle to wide acceptance of

cloud computing is services security and privacy issues [11]. In this paper he has dis-

cussed some real and practical scenarios, where the use of sensitive information must

be minimized when data is processed on clouds in order to assure the privacy of end

users.

According to D. K. Mishra [12], it is quite important to keep the user’s identity

ambiguous, since no party would like to expose their confidential data that can be

exploited by its competitors. In order to fulfil this requirement; he has used a secure

external entity or a TTP. In addition, anonymity could be essential for the safety,

security and personal integrity of the users’ data. Richard Mortier et al. [13] described

a method of using Dust Clouds to enhance anonymous communication in cloud com-

puting, which can effectively facilitate anonymity communications over un-trusted

networks such as the Internet.

1.5.2 Computations on Encrypted Data

Issues with data confidentiality of cloud users have tempted the requirement for en-

crypting the user data before sending it to cloud. As a solution homomorphic encryp-

tion schemes have been introduced. Homomorphic encryption schemes could be either

public key or symmetric key. According to M. Tebaa et al. [14], operations like addition

and multiplication could be performed on encrypted data by Paillier and RSA public

key encryption systems. Furthermore, A. Chan [15] suggested two additive symmetric

key homomorphic schemes called as Iterated Hill Cipher (IHC) and Modified Rivest

Scheme (MRS). Once such a scheme is supporting addition, it should support scalar

multiplication as well [15].

6

1.5. RELATED WORK

Deploying homomorphic encryption schemes in cloud systems would aid to enhance

security in computational as well as data storage applications. The research carried out

by B.K. Samanthula et al. [16] have proposed a Secure Data Sharing (SDS) framework

for such a data outsourcing application. SDS framework includes three main parties.

They are data owners, data consumers and cloud server. Data owners are encrypting

the data and outsourcing them in the cloud whereas consumers have to access data

through the cloud. Cloud is responsible for the authorization process. Cryptosystem

adopted in this paper is Paillier cryptosystem.

When we consider practical implementations of encrypted data based computa-

tions, Wireless Sensor Network (WSN) based applications are a prime example. Since,

sensors are tiny devices with limited energy resources; it is infeasible to carry out the

computations on sensor data within the sensor network itself [17]. In the process of ad-

dressing this issue, C. Castelluccia et al. [17] have presented a method by aggregating

sensor data and forwarding them to an entity which has higher computational power

to find out statistical measures such as mean and variance of sensor measurements.

Their framework consists with a set of sensors, intermediate aggregator nodes and a

computational entity (sink node) arranged in the structure of a balanced tree. The

use of aggregator nodes meant that sensor data must be encrypted otherwise it would

reveal raw data to aggregators which are deemed to be un-trusted. So, they have

introduced an additive homomorphic scheme based on a symmetric key cryptosystem

to encrypt the data at the sensor nodes. Then aggregator nodes simply add up the

encrypted sensor values and forward to the sink node where the values decrypted and

computations is carried out to find statistical parameters. A similar approach was also

presented by J.Wei et al. [18] to address this issue, while the only difference is being

using a public key based scheme for achieving data privacy.

1.5.3 Secure Multi-party Statistical Computations

In cooperative environments, multi-party computation has a wide range of applica-

tions. Over the years researchers have emphasized the need for securing such compu-

tational procedures to deploy them under practical circumstances. But such methods

to secure multi-party computations are application specific. The possibility of univer-

sally adoptable approach has become unviable. W. Luo et al. [19] suggested a secure

k-party real product protocol to perform statistical analysis by extending the secure

two party real product protocols.

7

1.5. RELATED WORK

Various cryptographic primitives such as 1-out-of-k oblivious transfer protocol, se-

cure two party vector scalar protocol and RSA public key streams have been used to

develop this method.

Virtual Party Protocols (VPP) has been adopted to develop and enhance the se-

curity of multi-party computation schemes by researchers. Such a scenario has been

followed by D.K. Mishra et al. [20] to implement a SMC protocol using Token Ring

Networks (TRN). According to the method that has been suggested in [20], compu-

tation is performed in a token ring in which all the parties involved along with the

TTP who is responsible for conducting computation are placed in the ring. Original

data is first encrypted and conveyed to TTP through the virtual party layer. The

computations are performed on encrypted data. This paper has focused on calculat-

ing statistical parameters such as mean, variance, standard deviation, skewness and

kurtosis. The proposed protocol is proven secured, due to its lower hacking probability.

1.5.4 Secure Cloud based Computations

Cloud based computations often raises concerns over the confidentiality of users’ pri-

vate data. So, as a solution for overcoming such security issues A. Bouti et al. [21]

presented a protocol to delegate computations to clouds with encrypted data. In this

protocol, they have used Paillier and RSA cryptosystems to provide additive and mul-

tiplicative homomorphism; which allows carrying out a combination of additive and

multiplicative operations. Their framework contains a user party and another party

with high computational power (cloud server). According to the protocol, user party

first encrypts the data using the corresponding encryption scheme depending on the

operation to be performed on data and sends the encrypted values to the delegated

party where the computation is carried out. After the computation, result is forwarded

to the user end which is decrypted to find the answer of the computation. Since this

protocol uses two independent homomorphic algorithms to provide additive and mul-

tiplicative homomorphism, it is only possible to carry out a single operation (additive

or multiplicative) at a time.

When we consider the development of multi-party computations on cloud envi-

ronments, N. Maheshwari et al. [3] carried out a research where they have proposed

a Secure Multi-party Cloud Computing (SMCC) architecture which allows multiple

cloud users to jointly compute a function of common interest. The architecture that

they have proposed contains three layers as data encryption, data anonymization and

computational.

8

1.6. THESIS OUTLINE

According to their framework, each user encrypts its private data using a specific

homomorphic cryptographic scheme and forwards the encrypted data stream to a ran-

domly selected anonymizer on the anonymization layer. Anonymizers disguise the

identities of users who have sent the data and forward the data to the private cloud

where the computation takes place. At the reception of data at the cloud, one of

the available servers is allocated for the computation and after the completion of the

computation; the result is broadcasted to all the users. Finally, each user decrypts the

result to determine the result of the computation. On the positive side this framework

capable of providing data privacy and identity anonymization to the users while its

main limitation is that they have not validated their work considering specific practical

scenarios. Furthermore, they also have not considered about possible security threats

such as replay attacks and integrity violations during information exchange between

users and the cloud.

1.6 Thesis Outline

This report is organized into six chapters. The first chapter provides a brief introduc-

tion on cloud computing and its associated security concerns along with SMC while

illustrating the motivation behind the concept of Multi-party based Cloud Computing.

Then we have defined the problem statement, research objectives and research ques-

tions that we must answer during the progression of our thesis, followed by a literature

study on the area of our interest.

In Chapter 2, the background knowledge required to understand the solution is dis-

cussed in detail. We have explained all the cryptographic theories which we have used

when developing the proposed solution while concluding the chapter by illustrating

the Client-Server architecture which provides the basis for our implementation.

The Chapter 3 is solely dedicated to illustrate the proposed Secure Multi-party

based Cloud Computing Framework. We start the Chapter 3 by explaining the case

which we have used to build around our solution and then the complete solution

is elucidated by dividing it to several functional components using both theoretical

aspects and code fragments of the implemented framework.

In Chapter 4, our focus is to analyze the performance of the implemented frame-

work. We have measured the performance of the framework by using a set of perfor-

mance parameters through a variety of experiments which would allow us to come to

conclusions on the efficiency of the implementation.

9

1.6. THESIS OUTLINE

The Chapter 5 of our thesis is dedicated to discuss some important aspects of our

proposed framework as well as the implementation. In the beginning we have illus-

trated how the proposed framework is capable of living up to the security requirements

expected by the users. Then a brief analysis is given on the performance characteristics

of our implementation considering the insights gathered from the experiments that we

have carried out using the implementation. Finally, we have discussed the associated

limitations in our proposed solution.

In Chapter 6, we have summarized the main findings of our thesis and pointed

out our contribution to the scientific community. Finally, important extensions to the

thesis are presented as future work.

Appendix A: The paper which is prepared based on this thesis work and which is

planned to be submitted to 14th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGrid 2014).

Appendix B: The complete JAVA programs related to implemented prototype of the

framework.

10

Chapter 2

Theoretical Background

In this chapter our main focus is to introduce the theoretical aspects which provide

the necessary foundation to understand the Secure Multi-party based Cloud Computing

solution which we are going to put forward in the following chapter. In the first part of

this chapter, we closely look at the cryptographic primitives which we have considered

when developing our security framework. Finally, we conclude the chapter by intro-

ducing the concepts related to client-server architecture which provides the base to our

implementation of the proposed security framework.

2.1 Cryptographic Primitives used in the Proposed

Solution

In the process of developing our solution, we have incorporated several cryptographic

algorithms such as homomorphic cryptosystems, RSA PublicKey encryption scheme,

Triple Data Encryption Standard (3DES) Symmetric Key cryptosystem, Message Au-

thentication Codes (MAC) and Timestamps (TS). This section provides a general

overview of those cryptographic fundamentals.

2.1.1 Homomorphic Cryptosystems

It is a well known fact that the main obstacle for the wide acceptance of cloud com-

puting based solutions is the associated security risk of handing over the unencrypted

private data of users to public CSPs.

11

2.1. CRYPTOGRAPHIC PRIMITIVES USED IN THE PROPOSED SOLUTION

Although, it is possible to send the data in an encrypted form to cloud providers’

data centers; the cloud servers were not capable of processing the encrypted data

prior to the emergence of ‘homomorphic encryption’. In order to allow the processing

of encrypted data, the key is to encrypt the data in such a way that performing a

mathematical operation on the encrypted information and then decrypting the result

produces the same answer as performing an analogous operation on the unencrypted

data. This corresponding relationship between the operations performed on unen-

crypted data and operations performed on encrypted data is known as a homomorphic

scheme. The following general expression shows an encryption scheme which is homo-

morphic with respect to an operation ‘�’ for some operation ‘∗’ on encrypted data.

Decrypt(Encrypt(m1) ∗ Encrypt(m2)) = Decrypt(Encrypt(m1 �m2)) = m1 �m2;

(2.1)

where, m1 and m2 represent unencrypted data.

There are two main operations that could be performed on ciphertexts which are

encrypted using a homomorphic scheme. They are additive and multiplicative op-

erations. We call a homomorphic cryptosystem as partially homomorphic, if it is

capable of performing either one of these operations. For instance, RSA public key

cryptosystem exhibits multiplicative homomorphism whereas Paillier cryptosystem ex-

hibits additive homomorphism. Moreover, a homomorphic system is deemed as fully

homomorphic if it can perform an unlimited number of both types of operations.

However, the development of Fully Homomorphic Encryption (FHE) schemes is not

yet being completely perfected, though there have been several encryption schemes

proposed which exhibits fully homomorphism under certain conditions.

In our case study, we require a homomorphic cryptosystem which is additively

homomorphic as well as exhibiting homomorphism on powers of the values, in order

to carry out the necessary statistical computations on encrypted data. Therefore, we

have used a somewhat fully homomorphic encryption scheme, which is extended from

the ElGamal Public Key Cryptosystem [22] to cater our requirements. Furthermore

in the subsections to follow, we have illustrated the concepts of extended ElGamal

encryption scheme while proving its relevant homomorphic properties.

12

2.1. CRYPTOGRAPHIC PRIMITIVES USED IN THE PROPOSED SOLUTION

2.1.2 Extended ElGamal Encryption Scheme

This encryption scheme is also a public key based and similar to the original ElGamal

encryption scheme; except that it exhibits more homomorphic properties than the

original scheme which only satisfies multiplicative homomorphism. Before we come to

terms with encryption and decryption processes, it is necessary to find out how the

public, private key pair for a particular user is generated according to this scheme.

First of all, it is necessary to select two large secure prime numbers p, q and compute

N = p.q. Then, a generator (g) which is the root of finite field GF (p) and a secret

value x must be selected in such a way that g, x < p.

After that it is possible to compute y as;

y = gx mod p (2.2)

Then, the following public and private key pair can be achieved.

Public Key : (y, g, p, N)

Private Key : x

Since, the public key is used to encrypt the data it is send to all the other users while

the private key is kept as a secret, which is required by the user to decrypt the data

encrypted from the public key.

Let us consider that a message (M) needs to be encrypted using this encryption

scheme. In order to proceed with the encryption process, first a user needs to select

two random positive integers r and k. If the ciphertext of M is given by Eg(M);

Eg(M) = (a, b) = (gk mod p, ykEI(M) mod p), (2.3)

where, EI(M) is given by;

EI(M) = (M + r × p) mod N (2.4)

According to the above relation, it is clear that the encryption scheme generates two

cipertext components a and b for a particular message.

In order to illustrate the relation for the decryption process, consider the ciphertext

to be decrypted as (a, b) while the related private key is given by x. If the decrypted

message is represented by Dg(a, b);

13

2.1. CRYPTOGRAPHIC PRIMITIVES USED IN THE PROPOSED SOLUTION

Dg(a, b) = b× (ax)−1 mod p (2.5)

Additive Homomorphism of Extended ElGamal Scheme

In order to illustrate how additive homomorphism can be achieved through this en-

cryption scheme; consider two plaintexts M1, M2 and their encryptions be denoted

by Eg(M1) and Eg(M2) respectively. Furthermore, assume that both encryptions are

made with the same public key (y, g, p,N) and use the same constant k.

According to Equation 2.3, Eg(M1) and Eg(M1) can be written as;

Eg(M1) = (a1, b1) = (gk mod p, ykEI(M1) mod p) (2.6)

Eg(M2) = (a2, b2) = (gk mod p, ykEI(M2) mod p) (2.7)

So, it is clear that;

a1 = a2 = gk mod p = a (2.8)

Furthermore, the property of additive homomorphism for two plaintexts in extended

ElGamal scheme is defined as follows.

M1 +M2 = Dg(Eg(M1)⊕ Eg(M2)) (2.9)

where;

Eg(M1)⊕ Eg(M2) = (a, b1 + b2) (2.10)

In order to prove this property, consider the decryption of both sides in Equation 2.10.

Dg(Eg(M1)⊕ Eg(M2)) = Dg(a, b1 + b2) (2.11)

By substituting for a, b1, b2 from Equation 2.6 and Equation 2.7;

Dg(Eg(M1)⊕ Eg(M2)) = Dg(g
k mod p, ykEI(M1) mod p+ ykEI(M2) mod p) (2.12)

Dg(Eg(M1)⊕ Eg(M2)) = Dg(g
k mod p, yk(EI(M1) + EI(M2)) mod p) (2.13)

By considering the decryption relation in Equation 2.5;

Dg(Eg(M1)⊕ Eg(M2)) = (yk(EI(M1) + EI(M2)) mod p) (2.14)

×((gk mod p)x)−1 mod p

14

2.1. CRYPTOGRAPHIC PRIMITIVES USED IN THE PROPOSED SOLUTION

Then, by substituting y = gx mod p;

Dg(Eg(M1)⊕ Eg(M2)) = ((gx)k(EI(M1) + EI(M2)) mod p) (2.15)

×((gk mod p)x)−1 mod p

Dg(Eg(M1)⊕ Eg(M2)) = (EI(M1) + EI(M2)) mod p (2.16)

After that by substituting for EI(M1) and EI(M2) using the relation given in Equation

2.4;

Dg(Eg(M1)⊕Eg(M2)) = ((M1 + r1× p)mod N + (M2 + r2× p)mod N) mod p (2.17)

Then, it is possible to deduce that;

Dg(Eg(M1)⊕ Eg(M2)) = M1 +M2 (2.18)

Hence, Equation 2.18 proves that extended ElGamal encryption scheme exhibits ad-

ditive homomorphism.

Homomorphism on Powers of Values

In this section, our focus is to prove that the extended ElGamal encryption scheme

possesses homomorphism on powers of values. In order to prove this property, consider

a plaintext message denoted by M .

Then, the encryption of M is given by;

Eg(M) = (gk mod p, ykEI(M) mod p) (2.19)

Let us define jth power of Eg(M) as;

(Eg(M))j = ((gk mod p)j, (ykEI(M) mod p)j) (2.20)

Then by using the Equation 2.5, we can write Dg[(Eg(M))j] as;

Dg((Eg(M))j) = (ykEI(M) mod p)j × (((gk mod p)j)x)−1 mod p (2.21)

After substituting y = gx mod p, we can get;

Dg((Eg(M))j) = ((gx)kEI(M) mod p)j × (((gk mod p)j)x)−1 mod p (2.22)

15

2.1. CRYPTOGRAPHIC PRIMITIVES USED IN THE PROPOSED SOLUTION

Dg((Eg(M))j) = (EI(M))j mod p (2.23)

Since, the function EI() is multiplicatively homomorphic, we can write;

(EI(M))j = EI(M
j) (2.24)

Then from Equation 2.23, we can get;

Dg((Eg(M))j) = EI(M
j) mod p (2.25)

By substituting for EI(M
j) using the relation given in Equation 2.4;

Dg((Eg(M))j) = (M j + r × p) mod N mod p (2.26)

Then, it is possible to deduce that;

Dg((Eg(M))j) = M j (2.27)

So, the Equation 2.28 depicts that the extended ElGamal encryption scheme is homo-

morphic for powers of values.

We have used the homomorphic properties that we have proved above, to compute

the required statistical parameters of user inserted data by processing the correspond-

ing encrypted data in our solution.

2.1.3 RSA Public Key Cryptosystem

Ron Rivest, Adi Shamir and Leonard Adleman created a public key encryption scheme

called RSA in 1977. The RSA algorithm involves three steps, which are key generation,

encryption and decryption.

The key generation phase, deals with producing two keys namely a public key and

a private key. The public key is advertised to everyone where as the private key is kept

as a secret. In order to generate a public, private key pair for a user, it is required

to select two different random prime numbers p and q and compute n = p.q. Then a

smaller odd integer a is selected which is relatively prime with φ(n).

gcd (a, φ(n)) = 1, (2.28)

16

2.1. CRYPTOGRAPHIC PRIMITIVES USED IN THE PROPOSED SOLUTION

where;

φ(n) = (p− 1).(q − 1) (2.29)

After that it is possible to compute b which is a multiplicative inverse to a mod φ(n).

b = a−1 mod φ(n) (2.30)

Then, it is possible to use (a, n) as the public key and b as the secret or private key

for encryption and decryption respectively. So, we can define the encryption function

ek(x) and decryption function dk(y) as given below.

ek(x) = xa mod n (2.31)

dk(y) = yb mod n (2.32)

where;

x - Data to be encrypted

y - Data to be decrypted

Moreover, it is also possible for the owner of a particular RSA key pair to use the

private key to create a signed digest, which makes it unique since the private key is

only known to the owner while the relevant public key can be used to verify the digest

at the other end. If the signed digest is given by Sk(x);

Sk(x) = xb mod n (2.33)

x = [Sk(x)]a mod n, (2.34)

where x is the information to be signed.

We have used both RSA encryption and signing procedures to implement mutual

authentication between the entities in our proposed solution. Furthermore, it is im-

portant to note that we have used the conventional notations of RSA encryption and

signing which are given below in the rest of the report.

{data}A - Data is encrypted using the public key of A

[data]A - Data is signed using the private key of A

17

2.1. CRYPTOGRAPHIC PRIMITIVES USED IN THE PROPOSED SOLUTION

2.1.4 Data Encryption Standard (DES)

DES is a symmetric key encryption scheme which was first introduced by IBM in

1970s based on a Feistel cipher called as Lucifer cipher [23]. It is a simple block cipher

scheme in which plaintext is split into fixed sized blocks and fixed sized ciphertext

blocks being generated in an iterative manner. In a block cipher, algorithm is mainly

contributed by a function called as a ‘Round function’, which is used in each of the

iteration of the process. The output of the round function depends on the output of

the previous iteration and a sub key which is generated from the main symmetric key.

DES uses a 56-bit symmetric key which is responsible for generating 48-bit sub

keys in each round. The sub key is consisting with a subset of the main key. There are

16 rounds to DES algorithm in which it uses 64-bit block length for plaintext. In each

round the plaintext block is segmented into two parts of equal bit length and processed

under different steps. Right side block of plaintext is expanded, X-ORed with the key

before it is processed in the Substitution box (S-box). Then, it is processed through

the Permutation box (P-box) and finally X-ORed with the left side segment of the

plaintext to obtain the ciphertext [23].

DES has been found to be insecure due to its relatively smaller size 56-bit key. Novel

methods of key cracking could easily figure out the key and hence the plaintext of the

DES encrypted data. To overcome this issue, a variant of DES has been developed

with two 56-bit keys which is known as “3DES”. In this method, same DES encryption

and decryption algorithms are followed. In order to obtain the ciphertext, plaintext is

initially encrypted with first key K1. Then it is decrypted with second key K2. Finally,

encryption is followed again with K1. The decryption process is the reverse process of

this phenomenon. The encryption process of 3DES is mentioned below.

C = (E(D(E(P,K1), K2), K1) (2.35)

where;

C - 3DES Ciphertext

P - Plaintext

E() - DES Encryption function

D() - DES Decryption function

Furthermore, we have used 3DES for establishing symmetric key communication

channels between the entities in our implementation.

18

2.1. CRYPTOGRAPHIC PRIMITIVES USED IN THE PROPOSED SOLUTION

2.1.5 Timestamp (TS)

A TS is a string value which indicates the occurrence of a certain event in time. Ap-

parently, TS is the date and time of a specific event as recorded in the corresponding

computer system. This value is considered to be accurate up to the levels of millisec-

onds. Furthermore, TS is represented according to the standards of ISO8601 (e.g.: TS

= 2013-04-27 21:08:35.146 which is in the format YYYY-MM-DD HH:MM:SS.MS).

TSs could be used for number of reasons in cryptography. It is possible to deploy

TSs instead of a randomly generated onetime number (nonce) in authentication pro-

tocols, since a current TS ensures freshness. Furthermore, the usage of TSs improves

the efficiency of such protocol, due to the fact that it is not necessary to carry out

any message exchange of nonces. Other than that, usage of TSs will provide a precau-

tionary measure for avoiding ‘Replay attacks’. Replay attacks are kind of a network

attack which allows a malicious agent to send a valid data transmission repeatedly

or delayed to sabotage a security protocol. Although TSs provide such benefits, one

problem attached is that it makes time a security critical parameter. Furthermore, we

cannot expect that clocks at the sender of a message and a receiver are always syn-

chronized meaning that a received TS must be accepted within a certain time range

from the current time. This timing window is defined as a “clock skew”. Moreover, it

is important to select the clock skew intelligently, since a larger clock skew will open

up a window for replay attacks whereas very small clock skew will lead for the rejection

of fresh messages.

Figure 2.1 shows how we have deployed validation of TSs for determining replay

attacks. In the figure, getCurrentT imestamp() function returns the current TS of

the system at message initiation while CheckT imestamp() function computes the

difference between the current TS at reception of the message and TS attached to the

received message (TSD). Then the system will check the value of TSD with the clock

skew to determine whether the received frame is a fresh one or not.

19

2.1. CRYPTOGRAPHIC PRIMITIVES USED IN THE PROPOSED SOLUTION

Figure 2.1: Process of checking TS to detect Replay Attacks

2.1.6 Message Authentication Codes (MAC)

MACs are used for the purpose of integrity protection and authentication of messages

as the name derives. The principle of such a code is to generate a digest of a message

which can uniquely identify the corresponding message. In fact there are several known

approaches to create message digests such as symmetric key block cipher modes and

hash functions.

The method of computing MAC using a hash function is known as Hashed Mes-

sage Authentication Code (HMAC). The deployment of hash functions is quite pop-

ular, since it is efficient and does not require a key to generate it. There are several

hash functions that can be used to compute a HMAC. Some of the hash functions

are Message Digest Algorithm 5 (MD5), Secure Hash Algorithm 1 (SHA1), SHA256

and SHA512. In our solution we have used SHA1 hashing algorithm to generate the

message digests to integrity protect the data sent over the un-trusted networks. Figure

2.2 illustrates how we have used HMAC for validation of integrity of messages.

20

2.2. CLIENT-SERVER ARCHITECTURE

Figure 2.2: Process of checking HMAC to detect Integrity Violations

As seen from Figure 2.2, the HMAC is computed from the function SHA1() by feeding

the ‘Message’ as the input parameter. The computed HMAC is sent to the receiving

party along with the message in an encrypted environment. At the reception, system

will compute the HMAC from the received message and checks it with the received

HMAC. Hence, the received message can be identified as a valid one or a tampered

one.

2.2 Client-Server Architecture

The client-server model is a computer network architecture which enables the operation

of most of the current day web applications. Such web applications could be file

sharing, network printing, webmail, collaborating applications, etc. In this system,

each process is either a client or a server. Client is a computer terminal or a process

which requires accessing or maneuvering a certain web service and its resources. On

the other hand, server is a device which shares its resources through a web service or

a function. Under normal circumstances, client is usually a computer program or a

web application which possess a network connection while server is a high performing

computer with a large storage capacity.

21

2.2. CLIENT-SERVER ARCHITECTURE

Furthermore, client-server architecture could be either two-tier or three-tier. Figure

2.3 illustrates a two-tier client-server architecture in which clients are communicating

with the server directly. In three-tier architecture, a middleware or an application

server exists between clients and the server.

Figure 2.3: Client Server Architecture Illustration

As seen from Figure 2.3, a server serves number of clients simultaneously. Num-

ber of client which can be handled by the server is dependent upon the performance

and resource capacity of the server. Availability of the server is a vital factor. In

order to establish communication between client and a server, certain communication

protocols should be adopted. Most of such client-server protocols are implemented as

application layer protocols. The methodology of “socket communication” is a com-

monly developed inter-process bi-directional communication method which is suited

for client-server architectures. A “socket” is defined for a process where an IP address

along with a PORT number forms a socket. There are different port numbers being

defined for different processes. Once a client socket is initiated, it will send a request

to the server which is running the specific web service under the given PORT num-

ber. Then the server will respond to the request and establishes the communication

between client and server after authentication procedure. Developing such communica-

tion protocols using socket communication concepts is called as “socket programming”.

22

2.2. CLIENT-SERVER ARCHITECTURE

Most of the programming languages such as Java, C and Python are supporting socket

implementations with their inbuilt libraries and packages.

The Secure Multi-party based Cloud Computing Framework which we are going to

put forward in the next chapter follows a certain resemblance to client-server archi-

tectural properties. Therefore when implementing the proposed framework, we have

adopted socket communication concepts to achieve higher efficiency from the imple-

mented system.

23

Chapter 3

Secure Multi-party based Cloud

Computing Solution

This chapter of the report mainly describes our solution of Multi-party based Cloud

Computing Framework and its implementation scenario in a descriptive manner. Pre-

liminarily, the case which we have formulated is elaborated furthermore. Afterwards,

our solution is explicated under different phases of the proposed framework while ex-

emplifying our application by different code segments we used in the implementation.

3.1 Case Description

Before we start the discussion on the proposed secure multi-party based cloud com-

puting model, it is quite important to first remind the case which we build around.

The formulated case deals with sales management in a particular organization called

‘ABC’. This organization is interested in calculating mean, variance, standard devia-

tion, skewness and kurtosis of their overall sales income at a certain instance of time.

Employees of the ABC organization are represented by Sales Person 1, Sales Person

2,..., Sales Person n and they are responsible for selling the products manufactured

by them. As shown in Figure 3.1, employees are entitled to send the daily sales income

details to the servers in the organization’s computer network via a software designed

for managing daily sales of ABC. Furthermore, the organization wants to outsource

the statistical computations to an external entity with higher computational power

due to the fact that it lacks computational resources and as well as to overcome the

burden of maintaining such resources inside the organization.

25

3.2. SECURE MULTI-PARTY BASED CLOUD COMPUTING
FRAMEWORK

Figure 3.1: Illustration of the Case Study

However, employees value the privacy regarding their sales income which meant that

it is not feasible to feed the external party with sales data as plaintext. Moreover, the

organization has assigned a third party (Analyzer) to ultimately analyze the computed

statistical parameters to aid in the cause of organization’s sales related decision mak-

ing. On the other hand, security and privacy of user inserted data becomes a crucial

aspect due to the engagement of external parties invoking the necessity of an effi-

cient security protocol. We are going to consider this case for presenting our solution

throughout this report.

3.2 Secure Multi-party based Cloud Computing

Framework

Figure 3.2 illustrates the architecture of secure multi-party based cloud computing

framework that we have considered to address the case which is discussed in the

previous section.

26

3.2. SECURE MULTI-PARTY BASED CLOUD COMPUTING
FRAMEWORK

Figure 3.2: Proposed Secure Multi-party based Cloud Computing Framework

The proposed architecture contains four major entities namely cloud server, ana-

lyzer, proxy server and parties who provide data for the statistical computations. In

order to fulfil the computational requirements of the organization, we have deployed a

cloud server considering the benefits of cloud computing such as computational power,

high availability, low cost and no burden of maintenance on the perspective of the

organization.

As a means of achieving the privacy requirements of users, we are encrypting users’

private sales data with a homomorphic encryption scheme which allows the required

computations to be carried out on the encrypted data at the cloud. These encrypted

user sales data are transferred to the cloud through a proxy server which is the exit

point of the organization’s internal network. The main functionality of the proxy is to

obscure the identities of user data from the cloud server. The analyzer is the external

party which receives the statistical parameters of user sales data which is used for

analytical purposes. In the sections to follow, we have discussed the operations of

each of those entities while explaining how this architecture can achieve a secure cloud

computation by enhancing security, privacy and anonymity of user data.

27

3.3. KEY GENERATION PHASE

3.3 Key Generation Phase

Before we explain the process of our security framework, it is important to have an idea

about the cryptographic keys which we have incorporated with the proposed system.

• Authentication process requires RSA key pairs for proxy server, cloud server and

for the analyzer which are generated at the entity itself. For an instance cloud

server’s RSA key pair is generated at the cloud server, etc. Furthermore, we have

shared the RSA public keys among entities before initiating the authentication.

Theoretical aspects behind generation of RSA key pairs were stated in Subsection

2.1.3.

• We have used extended ElGamal encryption scheme to encrypt users’ private

data. Since the computed statistical results of encrypted user data are displayed

at the analyzer, an ElGamal key pair for the analyzer is generated at its end

while encryption parameters are transferred to the users’ end. Furthermore, we

have explained the generation of ElGamal parameters in Subsection 2.1.2.

• We also require two 3DES symmetric keys to encrypt data transferred between

proxy server and cloud server (KDES PC) as well as cloud server and analyzer

(KDES CA). We generate the symmetric key KDES PC at the proxy server while

KDES CA is generated at the cloud server. Furthermore the theoretical concepts

behind generation of 3DES keys were explained in Subsection 2.1.4.

3.4 Authentication and Key Exchange Phase

When we consider from the organization’s perspective cloud server and the analyzer

in our framework are external entities. Therefore, it is necessary to mutually authen-

ticate proxy server to the cloud server as well as cloud server to the analyzer prior to

the initiation of information flow between those entities. Furthermore, we also used

the process of mutual authentication to share the symmetric keys which are required

to encrypt data when sending data from proxy server to the cloud server, cloud server

to the analyzer and vice versa. Moreover, we have also established an authentication

process for user parties to make sure that only the valid users are involved for the

computations. In the following subsections we have put forward those authentication

methods in detail.

28

3.4. AUTHENTICATION AND KEY EXCHANGE PHASE

3.4.1 Mutual Authentication between Cloud Server and An-

alyzer

The diagram shown in Figure 3.3 illustrates how we have achieved mutual authenti-

cation between analyzer and the cloud server.

Figure 3.3: Mutual Authentication between Analyzer and Cloud Server

The authentication process is initiated by the analyzer, by sending authentication re-

quest message (Analyzer AUTH REQ). After the reception of this message, cloud

server generates a message that includes the current timestamp (TS) and the secret key

phrase (KPDES CA) to generate the 3DES key to be shared with the analyzer(KDES CA).

Then the complete message is first signed with its’ RSA private key and encrypt again

with the RSA public key of the analyzer in order to be forwarded to the analyzer. At

the analyzer end, it decrypts the above message by first decrypting it with the RSA

private key of the analyzer and thereafter by the public key of the cloud server. After

that by considering the content of the decrypted message which is the timestamp (TS);

if it is within the defined clock skew, analyzer can authenticate the cloud server and

the secret key phrase is saved and shared 3DES key, KDES CA is being generated.

In order to authenticate itself to the cloud server, analyzer then generates a mes-

sage by incrementing received timestamp (TS) value by one and attaching ElGamal

parameters (y, g, N, p, k) after signing with its private key and then by encrypting it

with the public key of the proxy server.

29

3.4. AUTHENTICATION AND KEY EXCHANGE PHASE

It is important to note that we are sending ElGamal parameters which are required to

encrypt user data, in an encrypted environment due to the fact that, the component

k is a security critical parameter. Thereafter, the complete message is signed and en-

crypted with RSA private key of the analyzer and RSA public key of the cloud server

respectively. After receiving this message at the cloud server, it decrypts the complete

message (first by the private key of the cloud server then by the public key of the

analyzer) and extracts the timestamp value. Finally, it checks whether the received

value is equals to the value of the original timestamp (TS) value sent to the analyzer

incremented by one. If it is verified, analyzer is authenticated to the cloud server

whereas the encrypted ElGamal parameters (El para) are retrieved and saved to be

sent to the proxy server.

3.4.2 Mutual Authentication between Proxy Server and Cloud

Server

In order to authenticate proxy server to the cloud server and vice versa, we have used

a similar approach as discussed above and it is graphically represented in the following

Figure 3.4.

Figure 3.4: Mutual authentication between Proxy server and Cloud server

30

3.4. AUTHENTICATION AND KEY EXCHANGE PHASE

In this case, authentication is initiated by the proxy server by sending an au-

thentication request (Proxy AUTH REQ). At the reception of this request, cloud

server generates a similar response (Cloud AUTH RES) and sends it to the proxy

server. Then, the proxy server generates a message by including the current times-

tamp (TS) and the secret key phrase (KPDES PC) which is required to generate the

3DES symmetric key shared between proxy and the cloud server (KDES PC). After

that, the complete message is signed and encrypted using the private key of the proxy

and public key of the cloud server respectively. The rest of the authentication pro-

cess is identical to what we have discussed in the previous section. So, ultimately

when mutual authentication is established, cloud server will be able to generate the

3DES symmetric key, KDES PC from the shared secret key phrase while proxy server

attains the ElGamal parameters (El para). Then the proxy server could attain the

unencrypted ElGamal parameters by first decrypting it with its’ RSA private key and

thereafter by the public key of the analyzer.

3.4.3 Authentication of Users

It is quite important to authenticate users which assure only the valid users are allowed

to take part in the computations. Furthermore, the diagram shown in Figure 3.5

illustrates how we have established the authentication procedure for user parties.

Figure 3.5: User Authentication Procedure with Proxy Server

31

3.5. USER DATA ENCRYPTION

In order to accomplish this, we have created a file in the proxy server which includes

SHA1 hashes of username and password pairs of valid users. When a user logs into

the system, SHA1 hashes of the entered username and password are transferred to the

proxy server in order to be validated. If login information is validated, then the user

will be authenticated and the proxy server will forward the ElGamal parameters to

the user end which are necessary for the users to encrypt the private data that are

sent for the computation.

3.5 User Data Encryption

Each user can start sending private data for computations after being successfully

authenticated into the system as we have discussed in the previous section. When

data is entered by a user party, first it is encrypted using the extended ElGamal ho-

momorphic cryptosystem which exhibits somewhat fully homomorphic properties [22].

Furthermore, the concepts related to this encryption scheme were given in Subsec-

tion 2.1.2. The following code fragment shows how we have implemented extended

ElGamal encryption function in our system.

Code Fragment 3.1: Extended ElGamal Encryption Function

1 public void Encryption(String SalesValue){

2 BigInteger N; // N

3 N = p.multiply(q); // N = p * q

4 BigInteger SV = new BigInteger(SalesValue);

5 // bx = SV + (r * p) mod N

6 BigInteger bx = SV.add(r.multiply(p)).mod(N);

7 // b = (bx * (y ^ k) mod p) mod p

8 BigInteger b = bx.multiply(y.modPow(k, p)).mod(p);

9 // a = (g ^ k) mod p

10 BigInteger a = g.modPow(k, p);

11 A = a.toString();

12 B = b.toString();

13 }

According to the encryption scheme, p, q, k, y, g, and r values are pre-computed

before the encryption step. In our program, sales value of a certain sales person is

fetched into the encryption function (e.g.: Encryption (SALES V ALUE);).

32

3.6. PROXY SERVER FUNCTIONALITY

First of all, the value N is computed according to the formula, N = p.q. It is important

to note that all these values are represented as Big Integers. This data type is the

convenient option for modular operations. Line 4 in Code Fragment 3.1, converts the

input string ‘sales value’ into a ‘BigInteger’. Lines 6, 8 and 10 of the above code

fragment corresponds to the Equations 2.3 and Equation 2.4 in the extended ElGamal

algorithm. Finally, generated encrypted values a and b are converted to String data

type values A and B in order to be conveyed to the proxy server. Thereafter each

user party will transmit the encrypted information to the proxy server. Figure 3.6

illustrates the structure of the message sent from a user party to the proxy server.

Figure 3.6: Structure of User Data Message sent to the Proxy Server

3.6 Proxy Server Functionality

The main idea of having a proxy server is to hide the identity of data sent from each

user from the cloud server. At the beginning of a computation, proxy server waits till

it receives encrypted data from all the users. After receiving all of them, it will create

a new message including encrypted data of all the users, number of users (n) and uses

the SHA 1 algorithm to generate a Hashed Message Authentication Code (HMAC) of

the preceding message. Then the generated message digest is appended to the original

message along with the current timestamp. It is important to note that the theoretical

aspects related to timestamps and SHA 1 message digest were given in Subsections

2.1.5 and 2.1.6.

Finally, the complete message is encrypted with the 3DES symmetric key shared

between the proxy and cloud server (KDES PC) and forwarded to the cloud server.

Furthermore, the structure of the message sent from the proxy server is illustrated

through the following Figure 3.7.

33

3.7. CLOUD SERVER AND ANALYZER FUNCTIONALITY

Figure 3.7: Structure of the Packet sent from Proxy Server to Cloud Server

3.7 Cloud Server and Analyzer Functionality

In order to explain the rest of the process, consider that the cloud server is already

authenticated to the analyzer as well as to the proxy server. Then, it continuously

waits for encrypted data of users from the proxy end which needs to be handled.

After receiving such a data set, cloud server first decrypts it with the 3DES key

shared with the proxy (KDES PC) and separates the three components of the complete

message which are timestamp, HMAC of the original message and the original message.

Furthermore, original message refers to the ElGamal encrypted private data of all users

which must be statistically processed and the number of users (n). Firstly, the cloud

server checks the received timestamp is within the defined clock skew to make sure

that it is not a replayed frame and if it is verified, then a HMAC is created with

the original message part and check whether the computed and received HMACs are

matching. If so, the private data of users are accepted and otherwise a message will

be sent to the proxy server to resend the message. The process that we have discussed

is represented by the following Figure 3.8.

34

3.7. CLOUD SERVER AND ANALYZER FUNCTIONALITY

Figure 3.8: Flow Diagram of the Process when the Proxy Server Message is received
at Cloud Server

Now we can discuss the procedure that we have followed to compute statistical

parameters from encrypted user data. Let us consider that the ElGamal encrypted

user data received at the cloud server of the n users who involved in the computation

are represented as (a1, b1), (a2, b2),..., (an, bn). However, according to the ElGamal en-

cryption formula given in Equation 2.3 which compute the first encryption component

of a particular sales data of a user (a1, a2,..., an);

ai = gk mod p, for i = 1, 2, ..., n

Since, we have kept g, k and p common for all the users; it is clear that;

a1 = a2 = a3 = = an = a (3.1)

Then, ElGamal encrypted sales data received at the cloud server can be simplified to

(a, b1), (a, b2),..., (a, bn).

35

3.7. CLOUD SERVER AND ANALYZER FUNCTIONALITY

In the subsections to follow we have discussed how we can compute statistical param-

eters of sales data by processing encrypted sales data at the cloud server and made

them available at the analyzer end. First of all, we start with the computation of mean

value of sales data.

3.7.1 Computing Mean Value

By using the property of additive homomorphism of the extended ElGamal encryption

scheme, we process the sales data at the cloud server according to the formula given

below.

b = b1 + b2 + b3 ++ bn (3.2)

Implementation of the property of additive homomorphism in extended ElGamal algo-

rithm is achieved from the following Addition() function given in the Code Fragment

3.2.

Code Fragment 3.2: Function for Computing Summation over Encrypted Data

1 public static String Addition(BigInteger A[], BigInteger B[], Integer n){

2 BigInteger BIA = A[0];

3 BigInteger BIB = new BigInteger("0");

4 for(int j = 0 ; j < n ; j++){

5 BIB = BIB.add(B[j]);

6 }

7 return (BIA.toString()+" "+BIB.toString());

8 }

This function is fed with arrays of A and B, which represent the components of

encrypted values along with total number of users n (i.e. Components A[i] and B[i]

represent the encrypted value of the user party i). According to the Equation 3.2,

only B[] array components are added under the for() loop whereas A[] is unaltered

(i.e. A[i] = ASum ∀ i). Finally, the result is returned as a combined String of ASum

and BSum components.

Then, cloud server generates a new message by including the values ASum, BSum

and the number of users n. It is important to note that the exteded ElGamal en-

cryption scheme does not possess homomorphism for division, so that the mean is

calculated from the summation at the analyer end.

36

3.7. CLOUD SERVER AND ANALYZER FUNCTIONALITY

After that HMAC of the created message is generated through SHA 1 hash algorithm

and it is appended to the original message along with the current timestamp. Finally,

the complete frame is encrypted with the 3DES symmetric key shared with the ana-

lyzer (KDES CA) and transmit it to the analyzer. Moreover, Figure 3.9 represents the

above mentioned transmitted data frame by the cloud server.

Figure 3.9: Structure of the Summation Frame sent from Cloud to Analyzer

After receiving the data frame from the cloud server, as usual the analyzer segment

the complete message to timestamp, HMAC and the original message by decrypting

it with KDES CA. Then the analyzer verifies the timestamp as well as the HMAC by

recreating the HMAC from the received original message and matching it with the

received HMAC. If the process is successful, the original message is saved, otherwise a

message is sent to the cloud server asking to resend the message. Assuming the process

is successful, analyzer then separates the encrypted value (ASum, BSum) and the value

for number of users n. After that, the encrypted value (ASum, BSum) is decrypted

using the analyzer’s private key of the extended ElGamal cryptographic scheme.

The following Code Fragment 3.3 represents how we have implemented the De-

cryption() function of the extended ElGamal encryption scheme.

Code Fragment 3.3: Decryption Function of Extended ElGamal Scheme

1 public BigInteger Decryption(BigInteger A, BigInteger B,BigInteger p,

BigInteger x){

2 B = B.mod(p);

3 BigInteger ZX = A.modPow(x,p); // ZX = A ^ x mod p

4 // Z = B * ((ZX^(-1)mod p) mod p

5 BigInteger Z = B.multiply(ZX.modInverse(p)).mod(p);

6 return Z;

7 }

37

3.7. CLOUD SERVER AND ANALYZER FUNCTIONALITY

This function requires the input parameters A, B, public ElGamal constant p and x

which is the private key as BigIntegers. First, the modular value of B is taken w.r.t

the base value p. Line 3 corresponds to the formula ZX = Ax mod p. In the same way

line 5 corresponds to the Equation 2.5. Finally, the decrypted value is returned as a

‘BigInteger’.

If the resulting decrypted value is given by M1, it is possible to recover the mean value

of sales data as given below.

Mean value of user sales data =
M1

n
(3.3)

In order to compute the rest of the statistical parameters variance, standard de-

viation, skewness and kurtosis; it is necessary to obtain the mean value which is

encrypted using the extended ElGamal scheme. Therefore, after recovering the mean

value by the analyzer, it re-encrypts the mean value using the same ElGamal pa-

rameters (y, g,N, p, k) which gives us the encrypted components AMean and BMean.

Furthermore, the analyzer generates a HMAC for the newly encrypted mean and ap-

pends it to the encrypted mean. Finally, the current timestamp is also attached to the

tail of the message and forwards it to the cloud server after encrypting the complete

frame with the shared 3DES symmetric key, KDES CA. The generated new data frame

is illustrated in Figure 3.10.

Figure 3.10: Structure of the message which carries encrypted Mean value to Cloud

After receiving the above data frame, cloud server decrypts it with the shared 3DES

key, KDES CA and extracts the encrypted mean value, if the timestamp and HMAC of

encrypted mean is validated. Now, it is possible for us to discuss how we can compute

the rest of the statistical parameters.

38

3.7. CLOUD SERVER AND ANALYZER FUNCTIONALITY

3.7.2 Computing Variance, Standard deviation, Skewness and

Kurtosis

According to the definitions of variance, standard deviation, skewness and kurtosis

given below;

V ariance : S2 =
1

n

n∑

i=1

(xi − x̄)2 (3.4)

Standard Deviation : S =

√√√√ 1

n

n∑

i=1

(xi − x̄)2 (3.5)

Skewness : γ1 =
n∑

i=1

(
xi − x̄
S

)3

(3.6)

Kurtosis : γ2 =
n∑

i=1

(
xi − x̄
S

)4

(3.7)

where;

xi - Sample value of ith sample

x̄ - Mean of sample values

n - Number of samples

It is required to calculate the deviation values (xi − x̄) in order to compute the above

mentioned statistical parameters. So, we need to use subtraction property which is

obtained from the additive homomorphism of the extended ElGamal cryptosystem.

Code Fragment 3.4 given below explains the Subtraction() function that we have

implemented.

Code Fragment 3.4: Function for Computing Subtraction over Encrypted Data

1 public static String Subtraction(BigInteger A1, BigInteger

B1,BigInteger A2, BigInteger B2){

2 BigInteger BIA = A1;

3 BigInteger BIB = B1.subtract(B2);

4 return BIA.toString()+" "+BIB.toString();

5 }

39

3.7. CLOUD SERVER AND ANALYZER FUNCTIONALITY

This function will result the subtraction of two values V1 and V2 in which input param-

eters A1, B1 and A2, B2 represent the encrypted components of V1 and V2 respectively.

Line 3 of the above code segment computes the value (B1−B2) while A component of

the answer remains common same as the Addition() function discussed earlier. The

output will be returned as a combined String value. Then we can find the mean

deviations of encrypted user data from the following expression.

String Deviation = Subtraction(A[i], B[i],MeanA,MeanB)

As for the above relation, Ai and Bi components (same as A[i] and B[i] array ele-

ments) of the ith user’s encrypted sales value and MeanA, MeanB components of

the encrypted mean are inserted as input parameters for the function Subtraction()

which results the required deviation. Since, Subtraction() function returns a String

value, the variable Deviation acquires the returning value of the function. Once the

deviation is calculated, it is necessary to compute (xi − x̄)2, (xi − x̄)3 and (xi − x̄)4.

For that, computing 2nd, 3rd and 4th powers of encrypted values is a necessity. If the

encrypted (with ElGamal) value of Vi is represented by Ai and Bi components; then,

jth power of Vi (or Vi
j) is obtained by Ai

j and Bi
j components. Accordingly, 2nd, 3rd

and 4th powers of encrypted values are implemented through following Code Fragment

3.5.

Code Fragment 3.5: Functions for Computing 2nd, 3rd and 4th Powers of Encrypted

Data

1 public static String Square(BigInteger A, BigInteger B){

2 BigInteger BIA = A.pow(2);

3 BigInteger BIB = B.pow(2);

4 return BIA.toString()+" "+BIB.toString();

5 }

6 public static String Cube(BigInteger A, BigInteger B){

7 BigInteger BIA = A.modPow(new BigInteger("3"), p);

8 BigInteger BIB = B.modPow(new BigInteger("3"), p);

9 return BIA.toString()+" "+BIB.toString();

10 }

11 public static String Biquadrate(BigInteger A, BigInteger B){

12 BigInteger BIA = A.modPow(new BigInteger("4"), p);

13 BigInteger BIB = B.modPow(new BigInteger("4"), p);

14 return BIA.toString()+" "+BIB.toString();

15 }

40

3.7. CLOUD SERVER AND ANALYZER FUNCTIONALITY

Code Fragment 3.6 shows the computation of square, cubic and biquadratic mean

deviations of each Ai and Bi values which are acquired by SDA[], SDB[], CDA[],

CDB[], QDA[] and QDB[] arrays respectively.

Code Fragment 3.6: Functions for Computing Square, Cube and Biquadratic Mean

Deviations on Encrypted Data

1 for(int j = 0 ; j < i ; j++){

2 String Deviation = Subtraction(A[j],B[j],MeanA,MeanB);

3 String Z[] = Deviation.split(" ");

4 BigInteger DA = new BigInteger(Z[1]);

5 BigInteger DB = new BigInteger(Z[2]);

6 String SquareDeviation = Square(DA,DB);

7 String O[] = SquareDeviation.split(" ");

8 SDA[j] = new BigInteger(O[1]);

9 SDB[j] = new BigInteger(O[2]);

10 String CubicDeviation = Cube(DA,DB);

11 String O1[] = CubicDeviation.split(" ");

12 CDA[j] = new BigInteger(O1[1]);

13 CDB[j] = new BigInteger(O1[2]);

14 String BiquadrateDeviation = Biquadrate(DA,DB);

15 String O2[] = BiquadrateDeviation.split(" ");

16 QDA[j] = new BigInteger(O2[1]);

17 QDB[j] = new BigInteger(O2[2]);

18 }

Once these values are calculated, all the array elements are added to obtain variance

and other values as illustrated by the following Code Fragment 3.7.

Code Fragment 3.7: Computation of Variance, Skewness and Kurtosis

1 String Variance = Addition(SDA,SDB,i);

2 String Skewness = Addition(CDA,CDB,i);

3 String Kurtosis = Addition(QDA,QDB,i);

The addition of array elements will produce the two encrypted components of en-

crypted variance, encrypted skewness and encrypted kurtosis as (AV ariance, BV ariance),

(ASkewness, BSkewness) and (AKurtosis, BKurtosis) respectively.

41

3.7. CLOUD SERVER AND ANALYZER FUNCTIONALITY

Finally, these computed values are sent to the analyzer by attaching the HMAC

of the computed set of values, current TS while encrypting the complete frame with

the symmetric key KDES CA. Furthermore, the structure of the message sent to the

analyzer is shown in Figure 3.11.

Figure 3.11: Structure of the Message sent from Cloud to Analyzer with Computed
Statistical Values

When the above message is received at the analyzer, it will first decrypt the frame

using the shared symmetric key KDES CA and check the validity of TS and HMAC.

Once those checks are cleared, rest of the message will be segmented to obtain the

encrypted statistical values. Then, those values are decrypted from the ElGamal

private key which is possessed by the analyzer.

If the resulting decrypted values are given by V1, S1 and K1; then,

V ariance of the users′ sales data : V ariance =
V1
n

(3.8)

Standarad Deviation of the users′ sales data : S.D. =

√
V1
n

(3.9)

Skewness of the users′ sales data : Skewness =
S1

(S.D.)3
(3.10)

42

3.8. OVERALL PROCESS

Kurtosis of the users′ sales data : Kurtosis =
K1

(S.D.)4
(3.11)

3.8 Overall Process

The complete algorithm of the proposed framework that we have discussed throughout

the previous sections is summarized in the following flow diagram shown in Figure 3.12.

Figure 3.12: Overall Process of the Proposed Model

43

3.8. OVERALL PROCESS

As shown in Figure 3.12, at the initiation it is necessary to first mutually authenti-

cate all the external entities. After that users who are willing to participate for the

computation must authenticate themselves to the proxy server using their usernames

and passwords. When users insert their private sales values, these values will be en-

crypted using the extended ElGamal encryption scheme and forwarded to the proxy

server. After receiving encrypted values from all the users, it creates a new message

by combining all those data and transmits to the cloud server.

At the cloud server, it first computes the summation of received encrypted data

and sends it along with the number of users (n) to the analyzer. Then, the analyzer

can compute the mean sales value by decrypting the received encrypted summation

value. In order to compute the other statistical parameters, it is necessary to have

encrypted mean value of sales data. So, the analyzer re-encrypts the calculated mean

value using the same extended ElGamal parameters and transmits to the cloud server.

Finally, the cloud server computes the parameters V1, S1, K1 and forwards to the

analyzer, where those values are decrypted and computed to obtain the actual variance,

standard deviation, skewness and kurtosis of user inserted sales data.

After the completion of a computing session, analyzer will send a message to all the

users through the proxy server to initiate the next session. Moreover, it is not necessary

to carry out mutual authentication between entities again at the start of a new session.

However, to ensure the freshness, we flush all existing keys after consecutive 10 sessions.

At that time, it is necessary to carry out the mutual authentication process again before

starting a computing session.

44

Chapter 4

Performance Analysis

In this chapter our main focus is to analyze the performance of our Secure Multi-party

based Cloud Computing implementation. So, we start the chapter by introducing the

experimental setup that we have considered and then we illustrate the various test cases

and the corresponding results which aid us to define performance parameters related to

our implementation.

4.1 Experimental Setup

It is important for us to carry out certain experiments to evaluate the performance

of our proposed model. So, in order to achieve that goal, we have formulated an

experimental setup which is illustrated in Figure 4.1. Furthermore, the structure of the

setup is identical to the proposed model given in Figure 3.2. The Java program which

we have constructed, executes each entity (Users, Proxy Server, Cloud Server and

Analyzer) as a separate program having interfaces of their own. Each user is accessing

the system as a client to the proxy server program while it sends collective data

gathered from users to the cloud server in order to be processed. In our experimental

setup, we are running all the user programs in one Personal Computer (PC). We have

used other PCs for deploying proxy server and analyzer programs. Moreover, the cloud

server program is running on a separate server at the University of Agder. We have

established the communication between the entities using a socket communication

approach. Once all the user data is entered into the interfaces of user programs and

after processing the encrypted data at the cloud, the analyzer program interface would

display the results of the computation.

45

4.1. EXPERIMENTAL SETUP

Furthermore, we have generated timing values which indicate the data acquiring time

and conveying time along with computational times at interfaces of each entity in order

to capture the required time parameters to evaluate the performance of the model.

Figure 4.1: Experimental Setup

The system specifications of the PCs and servers are mentioned below.

• System specifications of the Server which runs the cloud server program:

– Processor: Intel(R) Xeon(R) CPU X5650 @ 2.67GHz (4 CPUs), ∼2.7 GHz.

– Memory: 8190 MB RAM.

– Operating System : Windows Server 2008 Standard (6.0, Build 6001).

– Java Version : 1.7.

46

4.2. TEST CASES

• System specifications of the PC which runs the Proxy Server program :

– Processor:Intel(R) Core(TM) i5 CPU M460 @ 2.67GHz (4 CPUs),∼ 2.7GHz.

– Memory: : 4096 MB RAM.

– Operating System : Windows 7 Home Premium 32-bit (6.1, Build 7600).

– Java Version : 1.6.0 37.

• System specifications of the PCs which runs user program and Analyzer program

(Both PCs have identical specifications) :

– Processor: Intel(R) Core(TM)2 Duo CPU P8700 @ 2.53GHz (2CPUs),

∼2.5GHz.

– Memory: : 3072 MB RAM.

– Operating System : Windows 7 Home Premium 32-bit (6.1, Build 7601).

– Java Version : 1.7.0 21.

4.2 Test Cases

In order to measure the performance of the proposed Multi-party based Cloud Com-

puting Framework implementation, we have considered the following test cases.

• Authentication Time.

• Variation of User Data Encryption Time.

• Comparison on Computational Time for different Statistical Parameters.

• Effect of Number of Users and Size of User inserted Data on Entity Process Time

and Total Process Time.

• Effect of Transmission Delay.

4.2.1 Authentication Time

In our proposed solution, as we have already mentioned in Chapter 3, it is necessary

to establish a mutual authentication between cloud server and the analyzer as well as

cloud server and the proxy server at the initiation.

47

4.2. TEST CASES

Furthermore, we need to establish mutual authentication again, after a pre-defined

number of computations where we flush the existing keys and re-generate keys to

improve the level of security. So, it is important for us to first find out the associated

delays for the authentication process.

As we have discussed in Section 3.3 and 3.4, we have implemented the mutual au-

thentications by using RSA Public Key cryptosystem. Therefore, authentication time

mainly depends upon the bit size of the prime numbers (p, q) which are used to gen-

erate respective RSA keys, for the intention of signing and encrypting authentication

messages. Furthermore, it is important to select RSA primes according to the size of

the authentication messages. So, it is necessary for us to use at least 512 bit RSA

keys, since our authentication messages consists of current Timestamp (approximately

184 bits) value and ElGamal parameters required for encryptions (approximately 320

bits). Table 4.1 and Figure 4.2 shown below illustrate the variation of authentication

time along with the RSA prime value size starting from 256 bits.

Table 4.1: Variation of Authentication Time with RSA Prime Size

RSA Prime Value Size
(bits)

Proxy-Cloud
Authentication Time (ms)

Analyzer-Cloud
Authentication Time (ms)

256 40 278

384 70 318

512 114 376

640 208 450

768 327 586

896 473 736

1024 696 948

1152 971 1216

1280 1317 1541

1408 1695 1865

1536 2153 2431

1664 2716 2975

1792 3415 3742

1920 4277 4387

2048 5001 5298

48

4.2. TEST CASES

Figure 4.2: Variation of Mutual Authentication (MA) Time as a function of Size of
the RSA Prime Values

Figure 4.2 depicts that both cloud-analyzer MA time and proxy-cloud MA time varies

exponentially with the size of RSA prime values. Furthermore, we can also observe

that cloud-analyzer authentication time is slightly higher than the proxy-cloud au-

thentication time. We can explain the reason for such behavior as follows. When

we establish the authentication, as we have explained in Chapter 3 we also share the

symmetric keys shared between cloud and proxy (KDES PC) and cloud and analyzer

(KDES CA). Furthermore, KDES PC is generated at the proxy before the initiation of

authentication where as KDES CA is generated at the cloud server in between the au-

thentication process. This causes the increase of analyzer-cloud authentication time

with respect to proxy-cloud authentication time.

In the implemented system, we have kept RSA prime size for 512 bits since the

maximum size of the authentication messages that are exchanged among the entities

is approximately 504 bits (i.e. 320 + 184).

49

4.2. TEST CASES

Table 4.2 illustrates the experimental authentication times that we have obtained for

10 computations by keeping RSA prime size to 512 bits.

Table 4.2: Mutual Authentication Times for RSA Prime Size of 512 bits

Authentication Session Proxy-Cloud
Authentication Time

(ms)

Analyzer-Cloud
Authentication Time

(ms)

1 114 355

2 115 360

3 118 385

4 111 385

5 114 352

6 119 344

7 114 385

8 110 362

9 111 382

10 119 370

According to the Table 4.2;

Average cloud server-analyzer authentication time = 368 ms

Average cloud server-proxy authentication time = 114.5 ms

4.2.2 Variation of User Data Encryption Time

In this subsection, our focus is to analyze the encryption time variations of the extended

ElGamal encryption scheme which we have used to encrypt the users’ private sales data

in order to induce the necessary homomorphic properties. As we have explained in the

previous subsection, encryption time is mainly depending upon the size of the prime

numbers (p, q and k) which are used to generate the required ElGamal keys. In Table

4.3, we have tabulated the results that we have obtained for encryption time while

varying the ElGamal prime size whereas in Figure 4.3 we have graphically illustrated

the results in Table 4.3.

50

4.2. TEST CASES

Table 4.3: ElGamal Encryption Time Variation with Prime Size

ElGamal Prime Value Size (bits) Encryption Time (ms)

16 12

32 17

64 20

128 22

256 34

384 49

512 70

768 110

1024 180

Figure 4.3: Variation of ElGamal Encryption Time as a function of Size of the
ElGamal Prime Values

According to Figure 4.3, it is clear that the encryption time of extended ElGamal

encryption scheme increases exponentially with the size of prime values. If we increase

the size of primes it will help to strengthen the security of the cryptosystem while

degrading the efficiency. Therefore, it is important to select an appropriate size for

prime numbers considering the level of security, efficiency and the application. In our

solution, we have kept the prime size as 64 bits.

51

4.2. TEST CASES

Furthermore, prime size of 64 bits depicts that the values that can users encrypt will

be limited to a maximum of (264 − 1) bits. However, in our application, since we are

considering sales values of users as the message to be encrypted, the above mentioned

range is quite adequate.

Then, it is important for us to consider how encryption time change with the size

of the encrypting message while keeping the size of ElGamal prime numbers as 64

bits. Table 4.4 shown below shows the experimental data that we have gathered on

encryption time while varying input message size from 4 bits to 64 bits. Furthermore,

Figure 4.4 graphically represents the results in Table 4.4.

Table 4.4: ElGamal Encryption Time Variation for 64 bit Prime Size against Input
Data Size

Input Message Size (bits) Encryption Time (ms)

4 19

8 18

12 20

16 20

20 20

24 19

28 19

32 17

36 19

40 20

44 21

48 20

52 18

56 19

60 20

64 21

52

4.2. TEST CASES

Figure 4.4: Variation of ElGamal Encryption Time for 64 bit Prime Values as a
function of Input Data Size

According to Figure 4.4, we can see that the encryption time does not show any

significant variation with input data size. Therefore, we can conclude that input data

size does not influence to the encryption time when the prime size is fixed.

4.2.3 Comparison on Computational Time for Different Sta-

tistical Parameters

According to the case description presented under Section 3.1, main outcome of our

proposed model is to compute statistical parameters of sales values within the or-

ganizational sales personnel. Therefore, it is important to identify the relationship

between timing values for the computation of each statistical parameter that we have

considered. We have tabulated the experimental results for computational time of

each statistical parameter by varying the number of users in Table 4.5 while graphi-

cally representing them in Figure 4.5. These computational times are measured from

the instance where computation is initiated at the cloud server to the instance where

the answer is displayed in the interface of the analyzer program.

53

4.2. TEST CASES

Table 4.5: Computational Times of Statistical Prameters

Number of
Users

Mean
Time (ms)

Variance
Time (ms)

Standard
Deviation
Time (ms)

Skewness
Time (ms)

Kurtosis
Time (ms)

3 57 9 9 8 7

4 53 9 9 7 7

5 59 10 10 6 9

6 48 7 7 4 4

7 52 24 24 14 13

8 38 11 11 7 7

9 51 17 18 15 14

10 56 8 8 6 6

11 55 15 15 12 11

12 59 12 12 7 10

13 62 13 13 11 13

14 51 14 14 11 10

15 59 11 11 6 6

16 64 11 11 6 6

17 50 10 10 7 7

18 53 10 10 4 4

19 76 13 13 7 8

20 55 9 9 6 6

21 50 14 17 9 9

22 44 16 17 10 9

23 56 14 14 8 8

24 53 13 13 12 11

25 59 16 16 10 11

30 43 21 21 11 12

35 57 16 16 11 11

40 53 10 10 5 4

45 51 16 17 9 8

50 59 30 30 13 10

54

4.2. TEST CASES

Figure 4.5: Variation of Computational Time for Statistical Parameters as a function
of Number of Users

According to the graph, computational time of mean value exhibits a significant

increment with regard to other computing times. In order to compute statistical data

at cloud server, it is required to separate each users encrypted data component from

the received message from the proxy server. Afterwards, those values should be stored

in the program which requires a substantial amount of time. Hence, the mean value

computation takes a higher time than the other computations purely because such

a delay will not be present when computing other parameters since the users’ data

are already saved. However, it seems that variance and standard deviation requires

higher computation time than skewness and kurtosis. The reason for this might be

that, the complexity associated with the computation of skewness and kurtosis. These

particular computations require division by 3rd and 4th power of the standard deviation,

in contrast to computation of variance which only requires the division by number of

users. Furthermore from the Figure 4.5, we can observe that computational time

does not vary significantly with the number of users. Hence, it is conclusive that the

computational time of each statistical parameter is independent of the number of users

associated in the system.

55

4.2. TEST CASES

4.2.4 Effect of Number of Users and Size of User Inserted

Data on Process Time and Total Time

In this subsection we intend to find the relationship between the associated times

which takes to handle encrypted data at all entities along with number of users and

the size of user inserted data. First of all, it is important for us to define the two time

components, entity process time and total process time for a computing session.

• Entity Process Time: Consider that all the users who are participating for the

computation have already sent their encrypted sales data to the proxy server.

Then, we define the entity process time as the complete time duration that

encrypted data are handled at entities proxy server, cloud server and analyzer

until the computation results are revealed at the analyzer.

• Total Process Time: We define the total process time as the combination of

entity process time and the time it takes to encrypt private sales data of all

the users. So, total process time corresponds to total time that users’ data are

handled at all the entities in our model from the initiation of a computing session

till the end.

In order to find the effect of number of users on entity process time and total

process time, we have varied the number of users from 3 to 50 while keeping all the

other parameters (such as ElGamal prime size, message size, etc...) unchanged. The

results that we have obtained are tabulated in Table 4.6. Furthermore in Figure 4.6

and Figure 4.7 we have illustrated the variation of entity process time and total process

time on number of users respectively.

56

4.2. TEST CASES

Table 4.6: Variation of Entity & Total Process Time with Number of Users

Number of Users Entity Process Time (ms) Total Process Time (ms)

3 165 225

4 166 250

5 160 270

6 147 261

7 171 297

8 141 309

9 167 347

10 157 357

11 158 389

12 166 418

13 167 414

14 144 452

15 159 444

16 173 493

17 166 506

18 145 505

19 196 557

20 166 546

21 162 603

22 158 598

23 171 631

24 163 643

25 179 679

30 149 749

35 176 876

40 180 1020

45 171 1026

50 194 1194

57

4.2. TEST CASES

Figure 4.6: Variation of Entity Process Time as a function of Number of Users

Figure 4.7: Variation of Total Process Time as a function of Number of Users

58

4.2. TEST CASES

According to Figure 4.6, entity process time varies within the range of 141 ms to 196

ms with the increase of number of users in the system. Even though the introduction of

more users to the system will increase the number of encrypted data segments received

at the cloud, it will not cause any additional delay when processing the encrypted data

at the cloud. This fact has been confirmed through the analysis given in Subsection

4.2.3. Therefore, the entity process time is not greatly affected by the number of users

who are taking part in the computation. On the other hand, increased number of users

will proportionally increase the total encryption time which causes the total process

time to increase linearly with the number of users as shown in Figure 4.7.

In order to find the relationship between entity process time and total process

time with the size of user input, we have acquired the results shown in Table 4.7 by

varying input data size from 4 bits to 64 bits while keeping all the other parameters

constant. It is important to note that we have kept the number of users to 10 and

ElGamal prime size to 64 bits throughout the experiment which is the default setting

for ElGamal primes. Furthermore, the results obtained are illustrated in Figure 4.8.

Table 4.7: Entity & Total Process Time Variation with Input Data Size

Input Message Size (bits) Entity Process Time (ms) Total Process Time (ms)

4 158 348

8 162 342

12 157 357

16 153 353

20 157 357

24 168 358

28 151 341

32 185 355

36 155 345

40 167 367

44 154 364

48 156 356

52 164 344

56 153 343

60 156 356

64 163 373

59

4.2. TEST CASES

Figure 4.8: Variation of Entity Process Time & Total Process Time as a function of
Input Data Size

Figure 4.8 depicts that both entity process time and total process time are inde-

pendent of the input data size. Furthermore, total process time is shifted upwards

approximately about 200 ms which accounts for the total encryption time of the 10

users with 64 bit ElGamal parameters. However, if the prime size is increased, then

the encryption time will increase according to Figure 4.3 and the total process time

would be shifted further upwards. Therefore, when the prime size is constant, we can

conclude that the variation of input data size does not have any effect on either of

entity process time or total process time.

4.2.5 Effect of Transmission Delay

In order to explain the effect of transmission delay in our system, we would like to first

introduce a new parameter as total time which is defined below.

60

4.2. TEST CASES

• Total Time: The time duration between the instance at which a computing

session is initiated and the instance in which the statistical answers are displayed

at the analyzer.

Therefore, we can write total time as;

total time = total process time+ transmission delay (4.1)

According to the communication process of our proposed model, transmission delay

includes the following.

• Time required to send encrypted data of users to the proxy server (TUP).

• Time required to send all encrypted user data from proxy server to the cloud

server (TPC).

• Time required by the cloud sever to send encrypted summation message to the

analyzer (TCA1).

• Time required to send encrypted mean value to cloud server by the analyzer

(TAC).

• Time required to finally send the encrypted answers of other statistical parame-

ters to the analyzer (TCA2).

That is;

transmission delay = TUP + TPC + TCA1 + TAC + TCA2 (4.2)

Therefore;

total time = total process time+ (TUP + TPC + TCA1 + TAC + TCA2) (4.3)

In order to find the variation of transmission delay in our system with number of

users who are taking part in a computation, consider the tabulated results in Table

4.8 which shows the variation of total time and total process time with number of

users. Furthermore, we have graphically illustrated the variation of total time and

total process time in Figure 4.9.

61

4.2. TEST CASES

Table 4.8: Variation of Total Process Time & Total Time with Number of Users

Number of Users Total Process Time (ms) Total Time (ms)

3 225 228

4 250 254

5 270 276

6 261 267

7 297 303

8 309 313

9 347 352

10 357 360

11 389 392

12 418 419

13 414 422

14 452 455

15 441 451

16 493 498

17 506 513

18 505 512

19 557 562

20 546 557

21 603 609

22 598 607

23 631 633

24 643 645

25 679 689

30 749 756

35 876 884

40 1020 1026

45 1026 1033

50 1194 1206

62

4.2. TEST CASES

Figure 4.9: Variation of Total Process Time & Total Time as a function of Number
of Users

According to Equation 4.1, the difference between total time and total process time

represents the associated transmission delay in the system. Thus, Figure 4.9 shows

that transmission delay is independent of the number of users. Furthermore, our

experimental setup possesses a small transmission delay about 4 ms, which is mainly

due to the fact that we have created the setup inside the University of Agder network.

However, according to the metrics such as bandwidth, hop count, etc. of the links

between the entities would result in different transmission delays.

In order to determine the behavior of total time related to the distance between

the entities, we have placed a server in Sri Lanka to run the cloud server program. The

Hop Count (HC) between the proxy server and the cloud server is 17 hops. Figure

4.10 shows the variation of total process time and total time with the number of users

at instances when HC is 1 and 17 respectively.

63

4.2. TEST CASES

Figure 4.10: Variation of Total Process Time & Total Time as a function of Number
of Users when HC =1 & HC = 17

According to Figure 4.10, behavior of the total process time when HC is 1 and 17

are both identical and their values lie in a closer range. This fact proves that total

process time is independent of the distance between the entities. On the other hand,

total time when HC is 17 exhibits a significant escalation compared to other timing

values. The reason for this is the increment in transmission delay associated with the

increased hop count. Therefore, total time is dependent upon the distance between the

entities.

According to our analysis it is obvious that either the number of users or input

data size (with constant ElGamal prime size of 64 bits) does not impose a significant

impact on the entity process time of the implementation.

Hence, we can estimate average entity process time of the system from Table 4.6 and

Table 4.7 as;

Average entity process time of the proposed system = 162.53 ms

64

4.2. TEST CASES

Furthermore, when we consider the total process time, we have to consider encryption

time in addition to the entity process time. We have shown that the encryption time

is largely affected by the bit size of ElGamal encryption parameters. Since, we have

used 64 bit ElGamal parameters for the implementation we can estimate the average

total process time as;

Average total process time of the proposed system = average entity process time +

(average encryption time)×n

According to Table 4.4, average encryption time with 64 bit ElGamal parameters is

approximately 20 ms. Therefore;

Average total process time of the proposed system = (162.53 + 20 × n) ms,

where, n denotes the number of users

It is important to note that, both entity process time and total process time are inde-

pendent of the network parameters and only be depending upon the specifications of the

PCs and server used in the experimental setup.

65

Chapter 5

Discussion

This chapter is dedicated to discuss some important aspects about our proposed solu-

tion. We have started the chapter by discussing security attributes of existing Multi-

party Cloud Computing solutions and thereafter explicating how our solution can with-

stand the necessary security requirements. Then we have discussed the performance

characteristics of our implemented model while concluding the chapter by illustrating

the associated limitations.

The literature analysis that we have put forward in Section 1.5 suggests that, even

though there have been a variety of research work carried out in areas such as cloud

security, multi-party computations and cloud based computations, a few of them actu-

ally looked at developing SMCs on cloud environments. When considering such efforts,

we came across a solution proposed by N. Maheshwari et.al [3]; where they provided a

framework for cloud computing using SMC which exhibits conceptual resemblance to

our work. As we have discussed in Subsection 1.5.4 their solution capable of achieving

identity anonymization and data availability. They have mentioned the idea of han-

dling encrypted data in clouds (deep cloud confidentiality) to provide data privacy, but

they have not specified a method to achieve the requirement by considering practical

scenarios. Furthermore, they have not considered the possible security threats when

exchanging information among users and the cloud, due to the insecurity of public

networks.

In this thesis, we have proposed our Secure Multi-party based Cloud Computing

Framework considering a practical scenario of outsourcing statistical computations of

user inserted sales data which we have illustrated in Section 3.1.

67

5.1. SECURITY ANALYSIS OF THE PROPOSED SOLUTION

Furthermore, our solution is capable of ensuring security, privacy and anonymity of

user inserted data as well as withstanding possible replay attacks and integrity viola-

tions. Moreover, in the following section, we have broadly analyzed how our solution

can cater the security requirements that we have mentioned above.

5.1 Security Analysis of the Proposed Solution

In the proposed solution, we have included a proxy server in between the user parties

and the cloud server. As we have explained in Section 3.6, it authenticates each user

party and creates a new data frame including private data from all the users in order

to be transmitted to the cloud server. Therefore, the cloud server does not get any

information regarding which data component is actually belongs to which user party.

Hence, user data anonymity is guaranteed with the introduction of the proxy server.

On the other hand, all the data sent from each user party for computation is

encrypted using extended version of ElGamal cryptosystem [22] and the cloud server

also carry out the required statistical computations on the encrypted data. So, users

do not want to worry that their private data regarding sales will be mislead at the

cloud server or else will be revealed by other competitive users. This suggests that the

privacy of user data is also established through the proposed solution.

When we consider the architecture of the proposed security framework which we

have illustrated in Figure 3.2, the proxy server and user parties belong to the same

organizational entity where as the cloud server and the analyzer are external entities.

So, we can assume that data communication between user parties and proxy server is

secured, since we are referring to transmission of data within an organization. How-

ever, when the data is released from the proxy server to the cloud, the communication

process is not at all secured and data can be tampered by numerous ways. Therefore,

it is clear that first we should make sure that the proxy is actually communicating with

the cloud server before sending user data. We have achieved this by establishing a mu-

tual authentication between the considered parties through strong RSA cryptosystem.

Furthermore, we have also shared a 3DES key when establishing the mutual authen-

tication, which we have used to encrypt the data frame when sending users’ private

data to the cloud server for computations. Since data frame is encrypted with such

shared key, there is no possibility to decrypt the frame by any other external party

except for proxy and cloud server.

68

5.1. SECURITY ANALYSIS OF THE PROPOSED SOLUTION

When we send data from proxy to the cloud server, first we generate a data frame

at the proxy that includes users’ data, HMAC of users’ data and the current timestamp

which is ultimately be encrypted by the shared 3DES key. The introduction of HMAC

allows us to detect any tampering of data on the way to the cloud server. This makes it

possible, since tampering will change the bit pattern of the message and when HMAC is

recalculated at the cloud server with the received message, it will be different from the

HMAC that is attached to the received message. Moreover, the timestamp attached

to the messages sent from proxy server allows to identify the received data frame is

a replayed frame or a fresh one. The frame will be considered a fresh one, if the

timestamp of the received message is within the defined clock skew of 2000 ms and

otherwise it will be considered as a replayed one and it will be discarded while asking

proxy server to resend the data frame again. It is also important to note that we have

taken similar security measures for the communication process between cloud server

and the analyzer as we have explained for proxy and cloud server.

The security of a cryptographic scheme mainly depends upon the security of as-

sociated keys. Hence, it is important to generate the relevant keys using large prime

numbers as well as ensuring the secrecy of private and symmetric keys. Thus, in

our solution we have used 64 bit prime values to generate ElGamal keys and 512 bit

prime values to develop RSA keys. There is always a possibility of leaking keys when

using the same set of keys over long periods of time. In order to overcome this, we

flush the existing keys and re-generate a new set of keys after every consecutive 10

computational sessions.

We can point out that the associated security of proxy server as the major concern

for the proper functionality of the whole framework. It is necessary for us to share the

ElGamal parameter k between the analyzer and users which is required for the users

to encrypt user data whereas analyzer needs it to encrypt the mean value. Because

of that, we generate the value k at the analyzer end and forward to the proxy server

by signing and encrypting by analyzer’s RSA private key and proxy server’s public

key as discussed in Subsection 3.4.2. Since, the ElGamal parameter k is a security

critical one, compromise of the proxy server will expose k which may ultimately affect

the privacy of user data. However, the proxy server is considered to be a well secured

entity purely because it lies inside the organization and protected through security

mechanisms such as firewalls and Intrusion Detection Systems (IDS).

69

5.2. ANALYSIS ON EXPERIMENTAL RESULTS

5.2 Analysis on Experimental Results

As explained in the previous chapter of this report, we have considered several test

cases for evaluating the performance of our proposed framework. Such test cases

measure the timing values for parameters such as authentication time, encryption

time, entity process time, total process time and total time. According to the results

we have obtained regarding authentication time, it varies exponentially with the size

of the prime values used in the RSA algorithm. In order to obtain these results,

we have kept all other factors constant. The distance between the servers and the

analyzer might be another factor which could contribute as a dependent variable for

authentication time along with system specifications of the PCs and server. Increasing

the distance between the entities would ultimately increase the transmission delay of

the authentication process. Hence the overall timing values would be raised.

User data encryption time also exhibits a similar behavior as authentication time

when varying the size of the prime values in ElGamal encryption algorithm. Further-

more, our results indicate that size of the user input does not affect the encryption

time when ElGamal prime values are unchanged. Therefore, encryption time of a

certain user for a particular computational session would be independent and falls ap-

proximately in the range of 18 ms to 23 ms. This fact suggests that encryption time

causes the total process time to linearly increase with the increasing number of users

participating in a computational session. On the other hand, entity process time is

independent of the number of users and size of the user input respectively. Therefore,

entity process time is only dependent on the system specifications of the entities in

the framework. Moreover, the total process time also behaves similarly, because both

encryption time and entity process time are depending only upon the system specifi-

cations of the entities. These facts suggests that the average values we obtained for

entity process time and total process time are universally applicable for a system with

entities of similar specifications that we have mentioned in Section 4.1. However, total

time is a parameter which is dependent upon the transmission delay according to the

Equations 4.1 and 4.2. Therefore, the value of total time may vary depending on the

positioning of the entities.

70

5.3. LIMITATIONS OF PROPOSED SOLUTION

5.3 Limitations of Proposed Solution

The proposed model possesses certain limitations. Mainly, the framework which we

have introduced would only be fully compatible for the application that we have stated

in case description under Section 3.1. Furthermore, it might not be universally appli-

cable for all the secure multi-party based cloud computing applications.

The extended ElGamal algorithm that we have used to encrypt user inserted data,

exhibits additive and multiplicative homomorphism properties. In our system, we

have developed addition, subtraction, 2nd power, 3rd power and 4th power operations

on encrypted data exploiting above mentioned properties in the algorithm. These

operations are adequate to compute the statistical parameters that we have mentioned

in the Subsection 3.7.2. However, complex computations require more operations to

be performed on encrypted data. Since the algorithm which we have used is not fully

homomorphic, complex computations cannot be performed due to the limitations of

operations. Furthermore, division and square root operations cannot be performed

on encrypted data since extended ElGamal algorithm is not homomorphic for such

operations. Because of that, we do all the required divisions and square root operations

at the analyzer end in our implementation. Furthermore, considering that the timing

parameters are varying in the range of milliseconds, it is important that all the entities

of the framework are properly synchronized to operate efficiently.

71

Chapter 6

Conclusions

In this chapter, we conclude the thesis by providing a summarization on the problem

that we have addressed, main results and our contribution as well as introducing new

research directions that have invoked as a result of our analysis.

The main problem associated with most of the existing multi-party computing ap-

proaches is that they incur a lot of communication overhead which ultimately affects

the efficiency of the whole system. However, the use of cloud based solutions severely

suffers from security and privacy issues. Therefore, our main objective of this thesis

was to propose and implement a Secure Multi-party based Cloud Computing Frame-

work which can ensure security, privacy and anonymity of users’ private data. In order

to fulfill our main objective, we considered a case where an organization requires out-

sourcing statistical computations of their sales data to a CSP, while ensuring privacy

and security of users’ private sales data.

In the proposed solution, we have used three main entities as proxy server, cloud

server and an analyzer to solve the problem that we have considered. The main func-

tionality of the proxy server is to hide identities of each user party from the cloud

server’s perspective to ensure identity anonymization. The cloud server carries out

the required statistical computations on the encrypted sales data of users while the

analyzer is the party which receives the encrypted statistical answers from the cloud

server. Furthermore, analyzer is capable of decrypting the received encrypted answers

to reveal statistical values (mean, variance, standard deviation, skewness and kurto-

sis) of users’ sales data which are used to make organization’s sales related decisions.

Since, the cloud server is carrying out the computations on the encrypted data; our

framework ensures privacy of user data.

73

6.1. CONTRIBUTION TO KNOWLEDGE

Furthermore, we have established mutual authentication between entities at the be-

ginning to ensure data availability of the system. Moreover, we have made the commu-

nication among entities secure by using the concepts of timestamps and HMAC while

sending the data in an encrypted environment. Hence, the proposed Secure Multi-

party Cloud Computing Framework ensures data security, privacy and anonymity of

user inserted data. This suggests that we have fulfilled the requirements of Research

Objective RO 1 in Subsection 1.4.1.

In order to show the practicability of the framework, it is quite necessary to evaluate

the performance. Therefore, we have implemented a prototype of the cloud computing

framework and analyzed its’ performance through performance parameters of authen-

tication time, encryption time, entity process time, total process time and total time.

Furthermore, we have illustrated how those parameters behave when changing system

constraints such as number of users, size of the input and the size of prime values

that are used to generate respective encryption keys. Hence, this shows that we have

achieved the Research Objectives RO 2 and RO 3.

The findings of this thesis provide deep insights on practicability of Multi-party

based Cloud Computing Frameworks. Furthermore, from the security analysis of our

framework and numerical results, we conclude that cloud environments can be suc-

cessfully deployed to improve the efficiency of multi-party computations while ensuring

the security requirements of user parties.

Furthermore, it is important to highlight the contributions that we have made

through fulfilling the thesis objectives and several interesting research areas that are

emerged.

6.1 Contribution to Knowledge

Our solution suggests a novel way to carry out SMCs using cloud environments in an

efficient manner while ensuring security requirements of users such as data security,

privacy and anonymity of users’ private data. According to our summarization of re-

lated work in Chapter 1, it is clear that none of them actually succeeded in proposing

a fully functioning secure multi-party cloud computing framework, though there have

been lot of researches on the related areas such as cloud based computations, SMCs

and cloud security. Therefore, our endeavor of proposing a secure multi-party based

cloud computing framework would be a new knowledge for ICT research community.

74

6.2. FUTURE WORK

Furthermore, the performance measurements that we have obtained through the im-

plementation of our secure multi-party based cloud computing framework would be

helpful for researchers to evaluate the performance of similar solutions as well as build

on it to develop more secure and efficient solutions in future. Therefore, these facts

will contribute to scientific community for enhancing cloud based security frameworks.

6.2 Future Work

We have used the extended ElGamal encryption scheme [22] to encrypt users’ private

data to induce homomorphic properties to the user data; in order to allow the required

statistical computations to be carried out on the encrypted data. However, as we have

mentioned in limitations of our framework in Section 5.3, we pointed out that we

could not carry out divisions and square root operations at the cloud server since

the extended ElGamal encryption scheme does not support homomorphism on those

operations. Therefore, it is an interesting topic to be considered in the future, that

how we can incorporate a method which allows such operations to be carried out on

encrypted data. Then, our solution can be made more efficient, since we would be able

to compute all the statistical parameters at once at the cloud server.

The privacy of user data in our framework greatly depends upon the security of

the extended ElGamal encryption scheme. Furthermore, we have shown that the

parameter k is a critical component in terms of security and leaking of parameter k

may lead to privacy violations. Hence, it is quiet important to look at ways to make

the cryptosystem more secure, which makes our approach more practicable.

75

Bibliography

[1] F. Shaikh, and S. Haider, “Security Threats in Cloud Computing,” in Proceedings
of International Conference for Internet Technology and Secured Transactions
(ICITST), IEEE, Abu Dhabi, UAE, Dec. 2011.

[2] A. C. Yao, “Protocols for Secure Computations,” Annual Symposium on Founda-
tions of Computer Science, IEEE, vol. 0, pp. 160–164, Nov. 1982.

[3] N. Maheshwari, and K. Kiyawat, “Structural Framing of Protocol for Secure Mul-
tiparty Cloud Computation,” in Proceedings of 5th Asia Modelling Symposium
(AMS), IEEE, Kuala Lampur, Malaysia, May 2011.

[4] R. Oppliger, “Contemporary Cryptography,” Artech House Computer Security
Library, Norwood, 2005.

[5] Q. Ma, L. Xiao, I.-L. Yen, M. Tu, and F. Bastani, “An Adaptive Multiparty Pro-
tocol for Secure Data Protection,” in Proceedings of 11th International Conference
on Parallel and Distributed Systems, Fukuoka, Japan, Jul. 2005.

[6] L. Sumter, “Cloud computing: security risk,” in Proceedings of the 48th Annual
Southeast Regional Conference, ACM, New York, USA, Apr. 2010.

[7] S. Chakraborty, S. Sehgal, and A. Pal, “Privacy Preserving E-negotiation Proto-
cols based on Secure Multi-party Computation,” in Proceedings of SoutheastCon.,
IEEE, Fort Lauderdale, USA, Apr. 2005.

[8] S. Bleikertz, M. Schunter, C. W. Probst, D. Pendarakis, and K. Eriksson, “Secu-
rity Audits of Multi-tier Virtual Infrastructures in Public Infrastructure Clouds,”
in Proceedings of the ACM Workshop on Cloud Computing Security Workshop
(CCSW), ACM, New York, USA, Oct. 2010.

[9] J. Feng, Y. Chen, D. Summerville, W.-S. Ku, and Z. Su, “Enhancing Cloud
Storage Security against Roll-back Attacks with a new fair Multi-party Non-
repudiation Protocol,” in Proceedings of Consumer Communications and Net-
working Conference (CCNC), IEEE, Las Vegas, USA, Jan. 2011.

[10] S. Pearson, Y. Shen, and M. Mowbray, “A Privacy Manager for Cloud Com-
puting,” in Proceedings of the 1st International Conference on Cloud Computing,
Springer-Verlag, Berlin, Germany, 2009.

77

BIBLIOGRAPHY

[11] M. Mowbray, and S. Pearson, “A Client-based Privacy Manager for Cloud Com-
puting,” in Proceedings of the 4th International ICST Conference on Communi-
cation System Software and Middleware, ACM, New York, USA, Jun. 2009.

[12] D. Mishra, and M. Chandwani, “Anonymity Enabled Secure Multi-party Com-
putation for Indian BPO,” in Proceedings of Region 10 Conference - TENCON,
IEEE, Taipei, Republic of China, Nov. 2007.

[13] R. Mortier, A. Madhavapeddy, T. Hong, D. Murray, and M. Schwarzkopf, “Using
Dust Clouds to Enhance Anonymous Communication,” UK.

[14] M. Tebaa, S. El Hajji, and A. El Ghazi, “Homomorphic Encryption Method ap-
plied to Cloud Computing,” in Proceedings of National Days of Network Security
and Systems (JNS2), IEEE, Marrakech, Morocco, Apr. 2012.

[15] A.-F. Chan, “Symmetric-key Homomorphic Encryption for Encrypted Data Pro-
cessing,” in IEEE International Conference on Communications (ICC), IEEE,
Dresden, Germany, Jun. 2009.

[16] B. K. Samanthula, G. Howser, Y. Elmehdwi, and S. Madria, “An efficient and
Secure Data Sharing Framework using Homomorphic Encryption in the Cloud,”
in Proceedings of the 1st International Workshop on Cloud Intelligence, ACM,
New York, USA, Aug. 2012.

[17] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient Aggregation of Encrypted
Data in Wireless Sensor Networks,” in Proceedings of the 2nd Annual International
Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQ-
uitous), IEEE, San Diego, USA, Jul. 2005.

[18] J. Wei, S. Guo, and Q. Xu, “Secure Homomorphic Aggregation Algorithm of
Mixed Operations in Wireless Sensor Networks,” in Proceedings of International
Conference on E-Business and Information System Security (EBISS), IEEE,
Wuhan, China, May 2009.

[19] W. Luo, and X. Li, “A Study of Secure Multi-party Statistical Analysis,” in Pro-
ceedings of International Conference on Computer Networks and Mobile Comput-
ing (ICCNMC), IEEE, Shanghai, China, Oct. 2003.

[20] D. Mishra, R. Pathak, S. Joshi, and A. Ludhiyani, “Secure Multi-Party Compu-
tation for Statistical Computations using Virtual Parties on a Token Ring Net-
work,” in Proceedings of 7th International Conference On Wireless And Optical
Communications Networks (WOCN), IEEE, Colombo, Sri Lanka, Sep. 2010.

[21] A. Bouti and J. Keller, “Securing Cloud-based Computations against Malicious
Providers,” SIGOPS Oper. Syst. Rev., ACM, vol. 46, no. 2, pp. 38–42, July 2012.

[22] G. Xiang, B. Yu, and P. Zhu, “A Algorithm of Fully Homomorphic Encryption,”
in Proceedings of 9th International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), IEEE, Sichuan, China, May 2012.

78

BIBLIOGRAPHY

[23] M. Stamp, Information Security Principles and Practice. Wiley, 2006.

79

Appendix A

Attached Publication

Title: Secure Multi-party based Cloud Computing Framework for
Statistical Data Analysis of Encrypted Data

Affiliation: University of Agder, Faculty of Engineering and Science,

P.O. Box 509, 4898 Grimstad, Norway

Submission status: To be submitted to 14th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid 2014).

81

Secure Multi-party based Cloud Computing
Framework for Statistical Data Analysis of

Encrypted Data
G. P. H. Sandaruwan, P. S. Ranaweera

Dept. of Information and Communication Technology, University of Agder (UiA), N-4898 Grimstad, Norway
Email: hsg11@student.uia.no, psr11@student.uia.no

Abstract—Secure multi-party computation (SMC) is a
paradigm used to accomplish a common computation among
multiple users while keeping the data of each party secret
from others. Cloud computing is a next generation computing
solution which allows its users to use high speed infrastructure
and services provided by cloud service providers (CSP) in
a cost effective manner. Therefore, deployment of cloud
based architecture for SMCs would aid in improving its
performance and efficiency. However, cloud based solutions
raises concerns over security of users’ private data, since data
is under the control of an external entity when outsourced
to cloud platforms. In this paper we have proposed a Secure
Multi-party based Cloud Computing Framework which can
ensure security, privacy and anonymity of users’ private data.
This framework is modeled by considering a scenario which
requires outsourcing statistical parameter computation of
private sales data of an organization’s sales personnel. The
results that we have obtained, provides significant evidence for
the practicability of multi-party based cloud computing solutions.

Keywords: secure multi-party computation, cloud computing, data
security, privacy, anonymity

I. INTRODUCTION

In general terms, a SMC can be defined as a situation where
n parties who are having private inputs x1, x2 ..., xn interested
in computing the value of the public function f(x1, x2..., xn)
in such a way that at the end of the computation no party
is revealed any of the private inputs of other parties [1].
The concept of SMC was first introduced by Yao in 1982
through the “millionaire problem” [2] and since then SMCs
have being deployed in a variety of applications such as voting
systems, auctions, business related private computations and
privacy-preserving data mining, etc. Theoretically, a SMC is
represented with the existence of a trusted third party (TTP)
which does the required user intended multi-party computa-
tion. However, this is practically infeasible due to the fact that
an external entity cannot be trusted to hand over the private
data of users. Therefore, SMC is all about finding appropriate
cryptographic protocols that can replace the use of a TTP, to
carry out a certain user intended function while ensuring data
privacy of users [3].

The term cloud is analogical to the Internet. Hence, cloud
computing can be visualized as computing over Internet. More
precisely, it is a set of resources and facilities offered to

its users economically via the Internet [4]. A cloud makes
it possible for its users to access their information in the
cloud from anywhere, anytime through the Internet. On the
other hand users do not need to worry about the maintenance
and availability of resources, due to the fact that it is the
responsibility of the CSP. More importantly cloud computing
is an on demand service, where users are charged only based
on their resource consumption. Because of such benefits,
cloud computing has become more and more popular among
business entities.

The main issue with most of the traditional SMC protocols
is that they incur a significant amount of communication
overhead affecting the efficiency of the protocol [5]. As a
solution, it is possible to outsource the computations to a
CSP which would help to reduce the expenditure as well
as the operational overhead. However, the difficulty that we
face is how we can enforce the security requirements of a
multi-party computation such as data security, privacy and
anonymity; when we are dealing with an un-trusted external
entity. This issue can be addressed through secure multi-party
cloud computing solutions.

The rest of this paper is organized as follows. Related
work is explained in Sec. II and then the case that we have
formulated is introduced in Sec. III whereas Sec. IV describes
the proposed solution. The performance evaluation of the
proposed framework is given in Sec. V before the paper is
concluded in Sec. VI.

II. RELATED WORK

The requirement for the distributed computing systems
emphasized with the advancement of Information and Com-
munication Technology (ICT) has led to the introduction
of cloud computing concepts which provides a high speed
infrastructure for the users with low maintenance and high
availability. Though, users are mainly concerned about the
confidentiality and integrity of data in the cloud servers [6].
Therefore, the adoption of cloud computing techniques has
been greatly inhibited due to the issues of data security, privacy
and anonymity associated with them [7]. The researchers are
indicating different approaches to overcome the drawbacks in
cloud computing. A new security protocol has been introduced
in [5], which assures data protection while ensuring better

83

performance under normal circumstances. Reducing the usage
of sensitive information is another scenario which has been
considered to avoid misusing and stealing of user data [8][9].
It is also important to keep the identity of the user anonymous
[10].

Issues with data confidentiality of cloud users have tempted
the requirement for encrypting the user data before sending
it to cloud. As a solution homomorphic encryption schemes
have been introduced. Homomorphic encryption schemes such
as Paillier and RSA systems could perform operations like
addition and multiplication on encrypted data [11]. Further-
more, two additive symmetric key homomorphic schemes
called as iterated hill cipher (IHC) and modified Rivest scheme
(MRS) has been suggested in [12]. Researchers have con-
sidered deploying such encryption schemes for applications
concerning computations. Wireless sensor network (WSN)
based applications exemplifies the requirement of encrypted
data based computations due to the fact that such computations
are not feasible within the sensor [13]. Method introduced
in [13] aggregates the sensor data and forwards it to an
entity with high computational power. Similar method with
public key based scheme to ensure user privacy has been
presented by [14]. Paper [15] has presented a method to carry
out combination of additive and multiplicative operations on
encrypted data through Paillier and RSA cryptosystems.

Though there has been a significant improvement in the
areas of cloud security and encrypted data processing, multi-
party based cloud computing solutions has not yet being
evolved. Such solution is proposed in [1] where they have
introduced a secure multi-party cloud computing framework
(SMCC) which allows multiple users to perform any common
computation of their interest in the cloud. Even though the
SMCC method and security protocols introduced in [1] ensures
data security and identity anonymization of users, it has not
been validated against practical scenarios.

III. CASE DESCRIPTION

The formulated case involves sales management in a par-
ticular organization called ‘ABC’. The administrators of the
organization are interested in analyzing mean, variance, stan-
dard deviation, skewness and kurtosis of the daily sales values
of their employees for the purpose of sales related decision
making. It is of organization’s best interest to outsource the
multi-party statistical computations to a CSP while outsourc-
ing the analytical work to an external analyzer due to the lack
of computational resources. Furthermore, security and privacy
of user inserted sales data becomes a crucial aspect due to the
engagement of external parties invoking the necessity of an
efficient security protocol. We are going to consider this case
for presenting the secure multi-party based cloud computing
solution throughout this paper.

IV. SECURE MULTI-PARTY BASED CLOUD COMPUTING
FRAMEWORK

Fig.1 illustrates the architecture of the secure multi-party
based cloud computing framework that we propose to address

the case which we have discussed in the previous section.
Framework consists with four main entities namely proxy
server, cloud server, analyzer and parties who are taking part
in the computations.

Fig. 1. Proposed Secure Multi-party based Cloud Computing Framework

The main functionality of the cloud server is to perform the
required statistical computations upon the reception of user
data while the function of the proxy server is to hide the
identity of each of the users to provide identity anonymization.
Furthermore, the analyzer is the external party which receives
the statistical parameters of user sales data which is used
for analytical purposes. The functionalities of each of these
entities are illustrated in the following subsections while
explaining how a secure computation can be achieved with the
proposed framework. Moreover, we have used the following
cryptographic keys in the proposed framework.

• RSA public and private key pair for proxy server, cloud
server and the analyzer for authentication purposes.

• We have used extended ElGamal public key encryption
scheme (EEES) [16] to encrypt private sales data of users.
Therefore, we generate EEES keys at the analyzer end
and send the parameters required for encrypting the data
(El para) to the users via the authentication process.
El para includes integer values p, g,N, y and k. p is a
large secure prime value and N = p.q where q is also a
large secure prime value. Furthermore, g represents a root
of GF (p) and y = gx mod p where x denotes the private
key of the encryption scheme. k is a positive number
selected by users when encrypting the data [16].

• We have used two 3DES keys to encrypt messages
conveyed between the entities during computation time.

A. Authentication and Key Exchange

In the proposed framework, cloud server and analyzer
are external entities. Therefore, it is necessary to mutually
authenticate cloud server and analyzer as well as cloud server
and the proxy which is the exit point of the organization’s
network. Let us assume that RSA public keys of each entity
are known to all other entities. Fig.2 represents the procedure
for establishing authentication between the cloud server and
the analyzer. In Fig.2 RSA signing and encryption procedures
are denoted with usual notations [] and { } respectively. The
authentication process is initiated with analyzer sending an au-
thentication request. After receiving it, cloud server generates
a response including the current timestamp (TS), the secret key
phrase (KPDES CA) to generate the 3DES key to be shared

84

with the analyzer (KDES CA) and send it to the analyzer
after signing with RSA private key ([KPDES CA, TS]Cloud)
and then encrypting with the public key of the analyzer
({[KPDES CA, TS]Cloud}Analyzer). Then, at the analyzer
end, the received message is decrypted accordingly and check
whether the TS is within the defined clock skew to authenticate
the cloud server. If authenticated, analyzer attains KPDES CA

and generates KDES CA.

Fig. 2. Mutual Authentication between Cloud server & Analyzer

In order to authenticate itself to the cloud server, analyzer
generates a message by incrementing received TS value by
one and attaching El para which is signed and encrypted by
RSA private key of analyzer and public key of the proxy server
respectively. Among the values in El para; p, g,N and y are
public values while k is a positive number usually selected
by users when encrypting the data. Therefore, k becomes a
security critical parameter for the encryption scheme. Hence,
we are sending El para in an encrypted environment. There-
after, the complete message is signed and encrypted with RSA
private key of the analyzer and RSA public key of the cloud
server respectively. After receiving this message at the cloud
server, it decrypts the complete message and extracts the value
of TS. Finally, it checks whether the received value is equals
to the value of the original TS sent to the analyzer incremented
by one. If it is verified, analyzer is authenticated to the cloud
server whereas the encrypted El para are retrieved and saved
to be sent to the proxy server.

We have also adopted a similar approach to authenticate
proxy server to the cloud server. Hence, at the end of the
authentication of proxy server and cloud server, we are able to
share the 3DES symmetric key KDES PC between them while
El para will be saved at the proxy in order to be transferred
to the users.

It is also important for us to authenticate users with the
proxy server to make sure that only the valid users are allowed
to take part in the computing process. In order to accomplish
this, we have created a file in the proxy server which includes
secure hash algorithm 1 (SHA1) hashes of username and
password pairs of valid users. When a user logs into the
system, SHA1 hashes of the entered username and password
are transferred to the proxy server in order to be validated. If
the login information is validated, El para will be forwarded
to the user end in order to encrypt the values that needed to
be sent for the computations.

B. User Data Encryption

Each user can start sending private data for computations
after being successfully authenticated into the system. When
data is entered by a user party, first the data is encrypted with
EEES by using received El para. This encryption induces
the required homomorphic properties into user data allowing
required statistical computations to be carried out on the en-
crypted data at the cloud server. Furthermore, Eqn. 1 represents
the encrypted result (A,B) for a plaintext message M when
encrypted with EEES.

(A,B) = (gk mod p, (yk (M + r × p) mod N) mod p) (1)

It is important to note that (g, k, y, p,N) represents El para
and therefore common for all users whereas r is a positive
integer randomly selected by each user. Eqn. 1 also depicts
that component A of the ciphertext is independnt of M . After
encryption, the resulting ciphertext values of user sales data
is transmitted to the proxy server.

C. Proxy Server Functionality

The main idea of having a proxy server is to hide the identity
of data sent from each user from the cloud server. At the
beginning of a computation, proxy server waits for encrypted
data from all the users. After receiving all of them, it creates
a new message by including all the encrypted values of users
(A,B1), (A,B2), (A,B3)..., (A,Bn) and the number of users
(n). Then a hashed message authentication code (HMAC) of
the preceding message is generated with SHA1. After that
HMAC is appended to the message along with the current
TS. Finally, the whole message is encrypted with the 3DES
key, KDES PC and forwarded to the cloud server to begin the
computational process. The structure of the message sent from
proxy server is illustrated in Fig.3.

Fig. 3. Structure of the Frame sent from Proxy to Cloud Server

D. Cloud Server and Analyzer Functionality

After cloud server is authenticated to both analyzer and
proxy server, it waits for encrypted user data from the proxy
server. When it received such a data set, then cloud server
decrypts it with 3DES key, KDES PC and separates the three
components in the received message which are TS, HMAC
and the original message consisting with encrypted user data
and number of users. Firstly, cloud server checks the received
TS is within the defined clock skew to make sure that it is not a

85

replayed frame. Then, if it is verified a HMAC is created with
the original message part and check whether the computed
and received HMACs are matching. If so, the private data of
users are accepted and otherwise a retransmission request will
be sent to the proxy server.

Consider that encrypted private data of users are success-
fully acquired by the cloud server. Then it starts the statistical
computations by first computing the encrypted summation
(ASum, BSum). By using the additive homomorphism of
EEES, it is possible to express (ASum, BSum) as;

ASum = A (2)

BSum = B1 +B2 +B3 + ...+Bn (3)

Then, cloud server generates a new message by including
the values ASum, BSum and the number of users n. We have
to send the encrypted summation with number of users since
EEES does not support homomorphism for division in order
to compute the encrypted mean at the cloud server. After that,
HMAC of the message is created and it is appended to the
tail of the message along with the current TS as shown in
Fig.4. Finally, the complete frame is encrypted with 3DES
key, KDES CA and forwarded to the analyzer.

Fig. 4. Structure of the Summation Data Frame sent from Cloud to Analyzer

After receiving the data frame with encrypted summation
at the analyzer end, it segments the message accordingly
by decrypting with the 3DES key, KDES CA. Then, the
validity of the frame is verified through TS and HMAC as
explained previously. After that, the encrypted summation
(ASum, BSum) is decrypted with the analyzer’s private key
(x) of EEES as given in Eqn.4. Finally, the decrypted result
(M1) is divided by n to obtain the mean value of users’ private
sales data.

M1 = BSum ((ASum)x)−1 mod p (4)

Mean value of user inserted sales data =
M1

n
(5)

In order to compute the rest of the statistical parameters
variance, standard deviation, skewness and kurtosis; it is neces-
sary to obtain the mean value which is encrypted using EEES.
Therefore, after recovering the mean value by the analyzer, it
re-encrypts the mean value using El para which gives us the
encrypted components AMean and BMean. Furthermore, the
analyzer generates a HMAC for the new encrypted mean and
appends it to the encrypted mean. Finally, the current TS is
also attached to the tail of the message and forwards it to

the cloud server after encrypting the complete frame with the
shared 3DES symmetric key, KDES CA as shown in Fig.5.

Fig. 5. Structure of the Message which carries Encrypted Mean Value to
Cloud

At reception of the above message, cloud server will first
decrypt it with KDES CA and acquire AMean and BMean

components after validating TS and HMAC of the received
data frame. In order to compute the statistical parameters vari-
ance, standard deviation, skewness and kurtosis it is necessary
to obtain the deviations of the encrypted user sales data from
the encrypted mean. These values can be calculated through
the subtraction property which is derived from the additive
homomorphism of EEES. If the encrypted mean deviation of
ith user’s sales data is given by Vi;

Vi = (Ai, (Bi −BMean)), (6)

where (Ai, Bi) denotes the EEES encrypted sales data of ith

user. After that we need to obtain 2nd, 3rd and 4th powers of
the values Vi for all i. In order to achieve that, we use the
property of homomorphism on powers of values possess by
EEES [16]. Therefore, we can write the jth power of Vi, (V j

i)
as;

V j
i = (Aj

i , (Bi −BMean)
j) (7)

Thereafter, we can obtain
n∑

i=1

V 2
i ,

n∑
i=1

V 3
i ,

n∑
i=1

V 4
i by using

Eqn.2 and Eqn.3. Finally, all theses values are forwarded to the
analyzer after attaching the HMAC, current TS and encrypting
the complete message with KDES CA.

When the above mentioned data frame is received at the
analyzer, it will first decrypt the data frame with KDES CA

and acquire the encrypted components
n∑

i=1

V 2
i ,

n∑
i=1

V 3
i ,

n∑
i=1

V 4
i

after validating the TS and HMAC which were appended to the
received message. Then, the received encrypted components
are decrypted using the relation given in Eqn.4. Let us consider

that decrypted components of
n∑

i=1

V 2
i ,

n∑
i=1

V 3
i ,

n∑
i=1

V 4
i are

denoted by V1, S1 and K1 respectively. Then we can determine
the variance, standard deviation, skewness and kurtosis of user
inserted data from the equations given below.

V ariance =
V1

n
(8)

Standard deviation (S.D.) =

√
V1

n
(9)

Skewness =
S1

(S.D.)3
(10)

86

Kurtosis =
K1

(S.D.)4
(11)

After the completion of a computing session, analyzer sends
a message to all the users through the proxy server to initiate
the next computing session. Moreover, it is not necessary to
carry out mutual authentication between entities again at the
start of a new session. However, to ensure the freshness, we
flush the existing keys after consecutive 10 sessions. Then,
it is necessary to carry out the mutual authentication process
again before starting a computing session.

V. PERFORMANCE ANALYSIS

An experimental setup has been formulated to analyze the
performance of the proposed framework. Fig.6 illustrates the
setup along with the system configuration information of the
PCs and the server. In order to implement this setup, we have
compiled a program in Java where each entity is executing
as a separate program. Values to be computed are inserted
through interfaces of user programs while analyzer program
will display the results at the conclusion of a computing
session.

Fig. 6. Experimental Setup

A. Definitions of Measured Parameters

• Encryption Time (Te):Time taken to encrypt user inserted
value at a user program using EEES.

• Entity Process Time (TEP):Time duration that encrypted
data are handled at proxy server, cloud server and ana-
lyzer until the conclusion of a computing session.

• Total Process Time (TTP) :Total time duration that user
data is handled at all the entities user, proxy server, cloud
server and analyzer.

• Transmission Delay (TTD): Collective time taken for
transmission of system messages between entities be-
tween initiation and conclusion of a computational ses-
sion.

• Total Time (TT): Time duration between the initiation
and the conclusion of computing session.

Therefore, we can write;

TTP = TEP + Te × n (12)

TT = TTP + TTD (13)

B. Test Results

In order to evaluate the performance of the implemented
framework, we have to understand the variation of Te, TEP ,
TTP and TT as a function of number of users and size of
the user input respectively. Tests carried out for Te suggested
that, it exhibits an exponential variation with the size of the
prime numbers associated with EEES. This fact suggests
that even though increasing the size of the prime values
might strengthen the security, efficiency of the system will be
degraded. Since we are considering sales values of users as
the messages to be encrypted, prime size of 64 bits is quite
adequate for our application. Hence, all the experiments were
carried out with 64 bits as the prime size of the encryption
scheme.

Fig. 7. Variation of Encryption Time as a function of User Input Size

Fig.7 shows the variation of Te with the size of the user
input. Even though the user input is varied from 4 bits to 64
bits, fluctuation of Te is only limited to the range of 17 ms to
21 ms. Therefore, we can conclude that input data size does
not influence to Te when the prime size is fixed. Furthermore,
average Te taken for a single user is approximately 20 ms.
Fig.8 illustrates the variation of TEP and TTP with n. We
can clearly observe that TEP is independent of n. However,
TTP exhibits a linear accumilation with n due to the fact that,
total Te is linearly increasing with n.

Fig. 8. Variation of TEP & TTP as a function of n

Fig.9 depicts that both TEP and TTP are independent of
the size of the user input. However, TTP curve is elevated
approximately by 200 ms than TEP . This shift accounts for
the total Te of 10 users participated for the computing session.

87

Fig. 9. Variation of TEP & TTP as a function of User Input Size

According to Eqn.13, TT is dependent upon TTD. TTD is
affected by number of factors such as bandwidth, distance or
hop count between the entities and system configuration of the
entities. Fig.10 shows the variation of TEP and TT when the
number of users are varied from 5 to 50 at two instances where
the hop count (HC) between proxy server and cloud server is
1 and 17 respectively. As we can observe form Fig.10, TEP

values when HC is 1 and 17 varies in the same way. TT at
HC 1 exhibits a similar behavior since the associated TTD is
approximately 4 ms and does not impose any significant effect
on TT . However, TT when HC = 17 is elevated by 900 ms
from TT at HC = 1. This elevation represents the increment in
TTD since the distance between proxy server and cloud server
is increased. This fact proves that TT is affected by TTD.

Fig. 10. Variation of TEP & TT as a function of n

The results acquired so far suggests that, both TEP and
TTP are independent of the network parameters and only
be depending upon the specifications of the PCs and server
used in the experimental setup. Moreover, average TEP of the
system is approximately 162.53 ms. Hence, we can derive;

Average TTP = Average TEP + (Average Te × n) (14)

Average TTP = (162.53 + 20× n) ms (15)

The maximum TT represented in Fig.10 is slightly higher
than 2s and TTP is approximately 1.2s when HC is 17 and
n = 50. Therefore, these experimental results verify that
the proposed system is capable of operating efficiently under
practical circumstances.

VI. CONCLUSIONS

In this paper we have proposed a secure multi-party based
cloud computing framework based on outsourcing statistical
parameter computations on users’ private data. The inclusion
of proxy server in the framework ensures that cloud server will

not have any idea about the ownership of each encrypted data
component received at the cloud. Hence, user data anonymiza-
tion is achieved. Furthermore, data privacy is also guaranteed
due to the fact that user data are encrypted with EEES while
computations are also carried out on the encrypted data. We
have also used concepts of TS and HMAC to make the secu-
rity framework withstand against replay attacks and possible
integrity violations. The performance evaluation that we have
illustrated in Sec. IV provides evidence for the efficiency of
the proposed framework. Therefore, we can conclude that
cloud environments can be successfully deployed to improve
the efficiency of multi-party computations while enforcing the
security requirements of user parties.

REFERENCES

[1] N. Maheshwari, and K. Kiyawat, “Structural Framing of Protocol for
Secure Multiparty Cloud Computation”, in Proceedings of 5th Asia
Modelling Symposium, IEEE, Kuala Lampur, Malaysia, May 2011.

[2] A. C. Yao, “Protocols for Secure Computations”, in Proceedings of
Annual Symposium on Foundations of Computer Science, vol.0 , pp.
160-164, Nov. 1982.

[3] R. Oppliger, “Contemporary Cryptography”, Artech House Computer
Security Library, Norwood, 2005.

[4] F. Shaikh, S. Haider “Security Threats in Cloud Computing,” in Proceed-
ings of International Conference for Internet Technology and Secured
Transactions (ICITST), IEEE, Abu Dhabi, UAE, Dec. 2011.

[5] Q. Ma, L. Xiao, I.-L. Yen, M. Tu, and F. Bastani, “An Adaptive
Multiparty Protocol for Secure Data Protection”, in Proceedings of 11th
International Conference on Parallel and Distributed Systems, IEEE,
Fukuoka, Japan, July 2005.

[6] S. Chakraborty, S. Sehgal, and A. Pal, “Privacy Preserving E-negotiation
Protocols based on Secure Multi-party Computation”, in Proceedings of
SoutheastCon., IEEE, Fort Lauderdale, USA, April 2005.

[7] S. Bleikertz, M. Schunter, C. W. Probst, D. Pendarakis, and K. Eriksson,
“Security Audits of Multi-tier Virtual Infrastructures in Public Infras-
tructure Clouds”, in Proceedings of the Workshop on Cloud Computing
Security Workshop (CCSW), ACM, New York, USA, Oct. 2010.

[8] S. Pearson, Y. Shen, and M. Mowbray, “A Privacy Manager for Cloud
Computing”, in Proceedings of the 1st International Conference on
Cloud Computing, Springer-Verlag, Berlin, Germany, 2009.

[9] M. Mowbray, and S. Pearson, “A Client-based Privacy Manager for
Cloud Computing”, in Proceedings of the 4th International ICST Con-
ference on Communication System Software and Middleware, ACM, New
York, USA, Jun. 2009.

[10] D. Mishra, and M. Chandwani, “Anonymity Enabled Secure Multi-party
Computation for Indian BPO”, in Proceedings of Region 10 Conference
- TENCON, IEEE, Taipei, Republic of China, Nov. 2007.

[11] M. Tebaa, S. El Hajji, and A. El Ghazi, “Homomorphic Encryption
Method applied to Cloud Computing”, in Proceedings of National Days
of Network Security and Systems (JNS2), IEEE, Marrakech, Morocco,
Apr. 2012.

[12] A.-F. Chan, “Symmetric-key Homomorphic Encryption for Encrypted
Data Processing”, in Proceedings of International Conference on Com-
munications (ICC), IEEE, Dresden, Germany, Jun. 2009.

[13] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient Aggregation of
Encrypted Data in Wireless Sensor Networks”, in Proceedings of the 2nd

Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services (MobiQuitous), IEEE, San Diego, USA, Jul.
2005.

[14] J. Wei, S. Guo, and Q. Xu, “Secure Homomorphic Aggregation Algo-
rithm of Mixed Operations in Wireless Sensor Networks”, in Proceedings
of International Conference on E-Business and Information System
Security (EBISS),IEEE, Wuhan, China, May 2009.

[15] W. Luo, and X. Li, “A Study of Secure Multi-party Statistical Analysis”,
in Processdings of International Conference on Computer Networks and
Mobile Computing (ICCNMC), IEEE, Shanghai, China, Oct. 2003.

[16] G. Xiang, B. Yu, and P. Zhu, “Algorithm of Fully Homomorphic
Encryption”, in Proceedings of 9th International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD), IEEE, Sichuan, China, May
2012.

88

Appendix B

JAVA Programs

In order to evaluate the performance of our proposed framework, we have implemented

a prototype using java programming language. Each of the entity in the prototype is

executed as a separate program as mentioned in the Section 4.1 of the report. The

implementation of the entities User, Proxy Server, Cloud Server and Analyzer are

coded as separate java files. Contents of those programs are given below.

B.1 User.java File

/**

* Program Name : User Program

* Version : FINAL

* Authors : P.S.Ranaweera

* : G.P.H.Sandaruwan

* Language : Java

* Date : 01/06/2013

* */

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.PrintWriter;

import java.math.BigInteger;

import java.net.Socket;

import java.security.SecureRandom;

import java.util.Random;

89

B.1. USER.JAVA FILE

import javax.swing.JFrame;

import javax.swing.JOptionPane;

import javax.swing.JPasswordField;

import javax.swing.JScrollPane;

import javax.swing.JTextArea;

import java.sql.Timestamp;

public class User {

/**

* Variable Definitions

*/

//Defining Prime value size for the ElGamal Encryption Scheme

static final int bit_length = 64;

//Defining String values for A, B encrypted components and user input

String A,B,input;

//Defining ElGamal public parameters

BigInteger p,q,K,y,g;

//Generating Random number r for ElGamal Encryption

Random r_ran = new SecureRandom();

BigInteger r = new BigInteger(bit_length,r_ran);

//Definition of Input Buffered Reader and Output Print writer for

sending and Receiving messages through the socket

BufferedReader in;

PrintWriter out;

/*

* User Interface Defining

*/

JFrame frame = new JFrame(" U S E R Program");

JTextArea messageArea = new JTextArea(50, 60);

/*

* Constructor of the User Class

*/

public User () {

// Defining Layout of the GUI

messageArea.setEditable(false);

frame.getContentPane().add(new JScrollPane(messageArea), "Center");

frame.pack();

}

/**

90

B.1. USER.JAVA FILE

* Private Function Defining

*/

//Function for obtaining the Proxy Server Address from User

private String getServerAddress() {

return JOptionPane.showInputDialog(

frame,

"Enter IP Address of the Proxy Server :",

"**** P R O X Y ***** A D D R E S S ****",

JOptionPane.QUESTION_MESSAGE);

}

//Function for obtaining the user name of the User

private String getName() {

return JOptionPane.showInputDialog(

frame,

"Enter the username :",

"**** U S E R ***** N A M E ****",

JOptionPane.PLAIN_MESSAGE);

}

//Function for obtaining the User Input from User

private String getInput() {

return JOptionPane.showInputDialog(

frame,

"Enter the number to be calculated : ",

"**** U S E R ***** I N P U T ****",

JOptionPane.PLAIN_MESSAGE);

}

//Function for obtaining the User Password

private String getPassword(){

int checkPwd = 0;

JPasswordField pwd = new JPasswordField(10);

int action = JOptionPane.showConfirmDialog(frame, pwd,"Enter the

Password : ",JOptionPane.OK_CANCEL_OPTION);

do {

if((action < 0) || (pwd.getPassword().length == 0)){

JOptionPane.showMessageDialog(null,"You must enter a

password to proceed");

}else {

91

B.1. USER.JAVA FILE

checkPwd++;

break;

}

}while(checkPwd == 0);

return new String(pwd.getPassword());

}

/*

* run() Function of the class User

*/

private void run() throws IOException {

messageArea.append("\n\n\t**********************************"

+"******************\n" +

"\t=====================================\n" +

"\t********** U S E R ***** P R O G R A M

***********\n" +

"\t=====================================" +

"\n\t***************************************"

+"*************\n\n\n");

//Getting the server address

String serverAddress = getServerAddress();

//Creating the Socket

Socket socket = new Socket(serverAddress, 9001);

//Initializing Input and Output Streams

in = new BufferedReader(new

InputStreamReader(socket.getInputStream()));

out = new PrintWriter(socket.getOutputStream(), true);

/*

* While loop for processing messages between User program and Proxy

Server

*/

while (true) {

//Reading the Input as a String

String line = in.readLine();

if (line.startsWith("USERNAME")) {

//Sending User name to Proxy

out.println(getName());

} else if(line.startsWith("PASSWORD")){

//Sending Password to Proxy

out.println(getPassword());

92

B.1. USER.JAVA FILE

} else if (line.startsWith("NAMEACCEPTED")) {

//User Authentication completed with Proxy

//Segmenting the message to assign ElGamal public values to

variables

String P[] = line.split(" ");

p = new BigInteger(P[1]);

q = new BigInteger(P[2]);

K = new BigInteger(P[3]);

y = new BigInteger(P[4]);

g = new BigInteger(P[5]);

//Obtaining User Input

input = getInput();

messageArea.append("\n\n@@ Input entered at

"+getCurrentTimestamp()+"\n\n");

messageArea.append("\nUser Input : "+input+"\n\n\n");

//Multiplying the input by 100 and rounding it to two

decimal points

Double Doubleinput = new Double(input);

Doubleinput = Doubleinput * 100;

Long Longinput = Doubleinput.longValue();

String inputHundred = Longinput.toString();

messageArea.append("@@ Encryption initiating at

"+getCurrentTimestamp()+"\n\n");

//Encryption of the User Input

Encryption(inputHundred, messageArea);

messageArea.append("@@ Value encrypted at

"+getCurrentTimestamp()+"\n\n");

//Combining A and B components of the encrypted user input

String output = A+" "+B;

//Sending encrypted user input to the Proxy Server

out.println("USER"+" "+output);

messageArea.append("Sent message : "+"USER"+"

"+output+"\n\n");

messageArea.append("@@ Sent time :

"+getCurrentTimestamp()+"\n\n\n\n");

}else if(line.startsWith("Proxy_FINISH")){

/*

* Next Session

*/

93

B.1. USER.JAVA FILE

messageArea.append("\t@@@@@@@@@@@@@@@@@@@@@ Welcome to a New

Session @@@@@@@@@@@@@@@@@@@@\n\n\n");

input = getInput();

messageArea.append("\nUser Input : "+input+"\n\n\n");

Double Doubleinput = new Double(input);

Doubleinput = Doubleinput * 100;

Long Longinput = Doubleinput.longValue();

String inputHundred = Longinput.toString();

Encryption(inputHundred, messageArea);

String output = A+" "+B;

out.println("USER"+" "+output);

messageArea.append("Sent message : "+"USER"+" "+output+"\n");

messageArea.append("@@ Sent time :

"+getCurrentTimestamp()+"\n\n\n\n");

}

}

}

/**

* Main Method of the Program

* */

public static void main(String[] args) throws Exception {

//Creating an instance of the user class an runs the constructor

User user = new User();

user.frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

user.frame.setVisible(true);

//Calling the run() function

user.run();

}

/**

* Public Functions

* */

//Function for ElGamal Encryption

public void Encryption(String SalesValue, JTextArea messageArea){

BigInteger N;

messageArea.append("p = "+p+"\n");

messageArea.append("q = "+q+"\n");

// N = p * q

N = p.multiply(q);

messageArea.append("N = "+N+"\n");

94

B.1. USER.JAVA FILE

messageArea.append("y = "+y+"\n");

messageArea.append("r = "+r+"\n");

//Encryption Step

String m = SalesValue;

//Converting String input into a BigInteger

BigInteger M = new BigInteger(m);

// bx = M + (r * p) mod N

BigInteger bx = M.add(r.multiply(p)).mod(N);

// b = (bx * (y ^ K) mod p) mod p

BigInteger b = bx.multiply(y.modPow(K, p)).mod(p);

// a = (g ^ K) mod p

BigInteger a = g.modPow(K, p);

messageArea.append("Encrypted part A = "+a+"\n");

messageArea.append("Encrypted part B = "+b+"\n\n\n");

//Converting BigInteger A and B components into Strings

A = a.toString();

B = b.toString();

}

//Function to get the current Time Stamp

public Timestamp getCurrentTimestamp(){

return new Timestamp(System.currentTimeMillis());

}

}

95

B.2. PROXYSERVER.JAVA FILE

B.2 ProxyServer.java File

/**

* Program Name : Proxy Server Program

* Version : FINAL

* Authors : P.S.Ranaweera

* : G.P.H.Sandaruwan

* Language : Java

* Date : 01/06/2013

* */

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.PrintWriter;

import java.math.BigInteger;

import java.net.ServerSocket;

import java.net.Socket;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

import java.security.spec.KeySpec;

import java.sql.Timestamp;

import java.util.HashSet;

import javax.crypto.Cipher;

import javax.crypto.SecretKey;

import javax.crypto.SecretKeyFactory;

import javax.crypto.spec.DESedeKeySpec;

import javax.swing.JFrame;

import javax.swing.JOptionPane;

import javax.swing.JScrollPane;

import javax.swing.JTextArea;

import org.apache.commons.codec.binary.Base64;

public class ProxyServer {

/**

* Variable Definitions

*/

//Defining hash set for user names

private static HashSet<String> names = new HashSet<String>();

96

B.2. PROXYSERVER.JAVA FILE

//Defining hash set for print writers

private static HashSet<PrintWriter> writers = new

HashSet<PrintWriter>();

//Creating String to store hash values

static String hash;

//String array to store encrypted A component values of users

static String A[] = null;

//String array to store encrypted B component values of users

static String B[] = null;

//String to hold cloud server address, inputs and ElGamal parameters

static String CloudServerAddress;

static String input,input1,input2;

static String ElgammalParameters;

//Defining Port numbers

private static final int PORT1 = 9001, PORT2 = 9002;

//prime value size of the RSA encryption scheme

static final int RSA_bit_length = 512;

//Maximum number of clients associated for a computational session

static int max_clients = 50;

static int check = 0, i = 0;

private static int Client = 0, sessionNum = 0;

static Integer ClientNum;

//Defining RSA public and private parameters for the Proxy

static BigInteger e_proxy, N_proxy, d_proxy;

//Defining RSA public parameters for Cloud

static BigInteger e_cloud, N_cloud;

//Time stamp variables

static Timestamp ts, DesTs;

//Definition of Input Buffered Reader and Output Print writer for

sending and Receiving messages through the socket

public static BufferedReader proxyin;

public static PrintWriter proxyout;

//Defining parameters for Triple DES symmetric key encryption scheme

public static final String UNICODE_FORMAT = "UTF8";

public static final String DESEDE_ENCRYPTION_SCHEME = "DESede";

public static KeySpec ks;

public static SecretKeyFactory skf;

public static Cipher cipher;

static byte[] arrayBytes;

97

B.2. PROXYSERVER.JAVA FILE

public static String myEncryptionKey;

public static String myEncryptionScheme;

static SecretKey key;

/*

* Interface Definition

*/

static JFrame frame = new JFrame("P R O X Y S E R V E R Program");

static JTextArea messageArea = new JTextArea(50, 60);

/**

* Private Function Defining

* */

//Function for obtaining the Cloud Server Address

private static String getServerAddress() {

return JOptionPane.showInputDialog(

frame,

"Enter IP Address of the Cloud Server:",

"Cloud Server Address",

JOptionPane.QUESTION_MESSAGE);

}

//Function for obtaining Number of clients participating in the

computation

private static String getClientNumber() {

return JOptionPane.showInputDialog(

frame,

"Enter the number of users participating in the computation :",

"Number of Participants",

JOptionPane.QUESTION_MESSAGE);

}

/**

* Main Method of the Program

* */

public static void main(String[] args) throws Exception {

//Defining Layout of the GUI

messageArea.setEditable(false);

frame.getContentPane().add(new JScrollPane(messageArea), "Center");

frame.pack();

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setVisible(true);

messageArea.append("\n\n\t**"

98

B.2. PROXYSERVER.JAVA FILE

+"****************************\n" +

"\t===\n"

+

"\t********** P R O X Y ***S E R V E R*** P R O G R A

M ***********\n" +

"\t==="

+

"\n\t**"

+"**************************\n\n\n");

messageArea.append("@@@@@@@@@@@@@@@ The Proxy server is running

@@@@@@@@@@@@@@@@@\n\n\n");

//Initializing A and B String arrays with maximum number of user

A = new String[max_clients];

B = new String[max_clients];

//Function for generating RSA parameters

RSA();

//Triple DES parameter generation

myEncryptionKey = "ThisIsSpartaThisIsSparta";

myEncryptionScheme = DESEDE_ENCRYPTION_SCHEME;

arrayBytes = myEncryptionKey.getBytes(UNICODE_FORMAT);

ks = new DESedeKeySpec(arrayBytes);

skf = SecretKeyFactory.getInstance(myEncryptionScheme);

cipher = Cipher.getInstance(myEncryptionScheme);

key = skf.generateSecret(ks);

//Creating Server socket for users under PORT1

ServerSocket listener1 = new ServerSocket(PORT1);

//Getting Cloud Server address

CloudServerAddress = getServerAddress();

//Getting the number of clients

ClientNum = new Integer(getClientNumber());

//Creating a socket to communicate with the Cloud server

under PORT2

Socket socket = new Socket(CloudServerAddress, PORT2);

//Initializing Input buffered reader and output print writer

proxyin = new BufferedReader(new

InputStreamReader(socket.getInputStream()));

proxyout = new PrintWriter(socket.getOutputStream(), true);

/*

* Authentication with Cloud Server

99

B.2. PROXYSERVER.JAVA FILE

*/

//Sending Authentication request to Server

proxyout.println("Proxy_AUTH_REQ"+" "+e_proxy+" "+N_proxy);

messageArea.append("@@ Authentication request sent to

cloud at "+getCurrentTimestamp()+"\n\n");

//Reading incoming message

String line = proxyin.readLine();

messageArea.append("Cloud Server : "+line+"\n\n");

if (line.startsWith("CONNECT")){

messageArea.append("@@ Authentication response

received from cloud at

"+getCurrentTimestamp()+"\n\n");

String I[] = line.split(" ");

//Assigning RSA public parameters of the cloud from

received message

e_cloud = new BigInteger(I[1]);

N_cloud = new BigInteger(I[2]);

messageArea.append("e : "+e_cloud+"\n"+"N :

"+N_cloud+"\n\n");

}

DesTs = getCurrentTimestamp();

messageArea.append("DesTs : "+DesTs+"\n");

String auth = myEncryptionKey+" "+DesTs.toString();

//RSA double encrypting the Triple DES symmetric key phrase and

Time Stamp

BigInteger Eauth = DoubleEncrypt(new

BigInteger(auth.getBytes()));

//Sending Authentication response to the Cloud server

proxyout.println("Proxy_AUTH_RES"+" "+Eauth.toString());

messageArea.append("@@ DES parameters sent to cloud at

"+getCurrentTimestamp()+" and

waiting......\n\n");

line = proxyin.readLine();

if (line.startsWith("Cloud_AUTH_RES")){

String D[] = line.split(" ");

//RSA double decrypting the received message

BigInteger DD = DoubleDecrypt(new BigInteger(D[1]));

String StrDESts = new String(DD.toByteArray());

messageArea.append("StrDESts : "+StrDESts);

100

B.2. PROXYSERVER.JAVA FILE

String D1[] = StrDESts.split(" ");

//Revealing the time stamp received

String Ts = D1[0]+" "+D1[1];

Timestamp DESts = Timestamp.valueOf(Ts);

messageArea.append("DESts : "+DESts.toString()+"\n"+"DESts :

"+DESts.toString()+"\n\n");

if (DESts.getTime() == (DesTs.getTime() + 1)){

messageArea.append("@@ Authentication completed

with Cloud at "+getCurrentTimestamp()+"\n\n");

ElgammalParameters = D1[2]+" "+D1[3]+" "+D1[4]+"

"+D1[5]+" "+D1[6];

}

}

try {

while (true) {

new Handler1(listener1.accept()).start();

}

} finally {

listener1.close();

}

}

/**

* Handler thread for handling User programs

*/

private static class Handler1 extends Thread {

private String name, password, CheckPassword = "PASSWORD";

private Socket socket;

private BufferedReader in;

private PrintWriter out;

private int checkName = 0;

//Constructor of the Handler

public Handler1(Socket socket) {

this.socket = socket;

}

/*

* run() function of the class Proxy

*/

public void run() {

try {

101

B.2. PROXYSERVER.JAVA FILE

//Initialize input and output streams for the User side

in = new BufferedReader(new

InputStreamReader(socket.getInputStream()));

out = new PrintWriter(socket.getOutputStream(), true);

/*

* While loop for processing messages between Proxy Server

and the User programs

*/

while (true) {

if(checkName == 0){

out.println("USERNAME");

//Getting user name from the User program

name = in.readLine();

messageArea.append("User name : "+name+"\n\n");

//Checking the user name

if (name.isEmpty() == true) {

messageArea.append("Name is empty\n");

}else{

synchronized (names) {

if (!names.contains(name)) {

names.add(name);

checkName++;

}

}

}

}

if(checkName == 1){

out.println("PASSWORD");

//Getting the password

password = in.readLine();

messageArea.append("\tPassword Checking\n");

//Checking the password

if (password.compareTo(CheckPassword) == 0) {

checkName++;

messageArea.append("Password Verified\n\n");

Client++;

messageArea.append("Client "+Client+"

Authenticated\n\n");

break;

102

B.2. PROXYSERVER.JAVA FILE

}

if(checkName == 2) break;

}

}

//Sending verification message with ElGamal public parameters

out.println("NAMEACCEPTED"+" "+ElgammalParameters);

writers.add(out);

/*

* While loop for processing user inputs

*/

while (true){

if (check < ClientNum){

input = in.readLine();

if (input == null) {

return;

}

messageArea.append(input+"\nSize of the received

message : "+input.length()+"\n\n");

if (input.startsWith("USER")){

String in[] = input.split(" ");

//Assigning A and B encrypted components to as

String array elements

A[i] = in[1];

B[i] = in[2];

messageArea.append("Client "+(i+1)+" values

recieved at "+getCurrentTimestamp()+"\n\n");

messageArea.append("Client "+(i+1)+" Values :

"+A[i]+" "+B[i]+"\n\n");

check++;

i++;

}

else{

for (PrintWriter writer: writers){

writer.println("MESSAGE " + name

+ ": " + input);

}

}

}

/*

103

B.2. PROXYSERVER.JAVA FILE

* Sending User values to Cloud Server for Computation

*/

if (check == ClientNum) {

String values = null;

//For loop for combining A and B array

components

for(int j = 0 ; j < i ; j++){

if(j == 0){

values = A[j]+" "+B[j];

}

else {

values = values +" "+A[j]+"

"+B[j];

}

}

messageArea.append("Values : "+values+"\n\n");

try {

//HMAC generation

hash = Hash(i+" "+values);

} catch (NoSuchAlgorithmException e) {

e.printStackTrace();

}

messageArea.append("Hash : "+hash+"\n");

String output = i+" "+values+" "+hash+"

"+getCurrentTimestamp().toString();

messageArea.append("Unencrypted message :

"+output+"\n");

//Symmetric key encryption with Triple DES

String Eoutput =

TripleDESencrypt(output,cipher);

messageArea.append("Encrypted message :

"+Eoutput+"\n\n\n\n");

//Sending user values to Cloud Server

proxyout.println("COMPUTE"+" "+Eoutput);

messageArea.append("@@@@@@@ Values

Sent to cloud at

"+getCurrentTimestamp()+"\n\n");

104

B.2. PROXYSERVER.JAVA FILE

check++;

//Gathering hash response which indicated

whether HMAC is correct or not

String HashRes = proxyin.readLine();

if(HashRes.startsWith("CORRECT_HASH")){

messageArea.append("Hash response is

correct\n\n");

}else if(HashRes.startsWith("INCORRECT_HASH")){

messageArea.append("Hash

Incorrect\nResending Message...\n\n

");

proxyout.println("COMPUTE"+" "+Eoutput);

messageArea.append("Sent time to cloud

: "+getCurrentTimestamp()+"\n\n");

}

/*

* Next Session

*/

while(true){

String Session = proxyin.readLine();

messageArea.append("Waiting for Next Session\n\n");

if(Session.startsWith("Cloud_FINISH")){

sessionNum++;

messageArea.append("Session "+sessionNum+"

Concluded\n\nWaiting for the initiation of

the next session......");

check = 0;

i = 0;

for(PrintWriter writer : writers){

writer.println("Proxy_FINISH");

}

}

if(check == 0) break;

}

}

}

} catch (IOException e) {

System.out.println(e);

} finally {

105

B.2. PROXYSERVER.JAVA FILE

if (name != null) {

names.remove(name);

}

if (out != null) {

writers.remove(out);

}

try {

socket.close();

} catch (IOException e) {

}

}

}

}

/**

* Public Functions

* */

//Function for computing RSA public parameters for Proxy Server

public static void RSA(){

SecureRandom r = new SecureRandom();

BigInteger p = new BigInteger(RSA_bit_length,100,r);

BigInteger q = new BigInteger(RSA_bit_length,100,r);

N_proxy = p.multiply(q);

BigInteger n =

(p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));

e_proxy = new BigInteger("3");

while(n.gcd(e_proxy).intValue()>1){

e_proxy = e_proxy.add(new BigInteger("2"));

}

d_proxy = e_proxy.modInverse(n);

}

//Function for RSA Encrypting

public static BigInteger RSAencrypt (BigInteger message,BigInteger ex,

BigInteger Nx){

return message.modPow(ex, Nx);

}

//Function for RSA Decryption

public static BigInteger RSAdecrypt (BigInteger message){

return message.modPow(d_proxy, N_proxy);

}

106

B.2. PROXYSERVER.JAVA FILE

//Function for RSA Signing

public static BigInteger RSAsign (BigInteger message){

return message.modPow(d_proxy, N_proxy);

}

//Function for RSA Un-signing

public static BigInteger RSAunsign (BigInteger message){

return message.modPow(e_cloud, N_cloud);

}

//Function for RSA Double Encrypting

public static BigInteger DoubleEncrypt (BigInteger message){

return RSAencrypt((RSAsign(message)),e_cloud,N_cloud);

}

//Function for RSA Double Decrypting

public static BigInteger DoubleDecrypt (BigInteger message){

return RSAunsign(RSAdecrypt(message));

}

//Function for generating HMAC

public static String Hash (String message) throws

NoSuchAlgorithmException{

MessageDigest mDigest = MessageDigest.getInstance("SHA1");

byte[] result = mDigest.digest(message.getBytes());

StringBuffer stringbuffer = new StringBuffer();

for (int i = 0; i < result.length; i++) {

stringbuffer.append(Integer.toString((result[i] & 0xff) + 0x100,

16).substring(1));

}

return stringbuffer.toString();

}

//Function for Triple DES Encryption

public static String TripleDESencrypt(String unencryptedString, Cipher

cipher) {

String encryptedString = null;

try {

cipher.init(Cipher.ENCRYPT_MODE, key);

byte[] plainText = unencryptedString.getBytes("UTF8");

byte[] encryptedText = cipher.doFinal(plainText);

encryptedString = new String(Base64.encodeBase64(encryptedText));

} catch (Exception e) {

e.printStackTrace();

107

B.2. PROXYSERVER.JAVA FILE

}

return encryptedString;

}

//Function for getting the current Time stamp

public static Timestamp getCurrentTimestamp(){

return new Timestamp(System.currentTimeMillis());

}

}

108

B.3. CLOUDSERVER.JAVA FILE

B.3 CloudServer.java File

/**

* Program Name : Cloud Server Program

* Version : FINAL

* Authors : P.S.Ranaweera

* : G.P.H.Sandaruwan

* Language : Java

* Date : 01/06/2013

* */

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.PrintWriter;

import java.math.BigInteger;

import java.net.ServerSocket;

import java.net.Socket;

import java.security.InvalidKeyException;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

import java.sql.Timestamp;

import java.util.HashSet;

import java.security.spec.InvalidKeySpecException;

import java.security.spec.KeySpec;

import javax.crypto.Cipher;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.SecretKey;

import javax.crypto.SecretKeyFactory;

import javax.crypto.spec.DESedeKeySpec;

import javax.swing.JFrame;

import javax.swing.JScrollPane;

import javax.swing.JTextArea;

import org.apache.commons.codec.binary.Base64;

public class CloudServer {

/**

* Variable Definitions

*/

109

B.3. CLOUDSERVER.JAVA FILE

//Defining hash set for print writers

private static HashSet<PrintWriter> writers = new HashSet<PrintWriter>();

//Defining strings for holding ElGamal Parameters and encrypted output

public static String ElgammalParameters, Eoutput;

//String arrays for storing encrypted A and B components of user values

static String StrA[],StrB[];

//String for storing HMAC

static String hash;

//Defining port number

private static final int PORT = 9002;

//Definition of time limit and RSA prime value size

static final int Time_Limit = 2000, RSA_bit_length = 512;

static int check = 0, max_clients = 50;

static Integer i = 0;

//BI Arrays for storing A, B components of encrypted data and prime p

static BigInteger A[], B[],p;

//RSA public and private values for cloud

static BigInteger e_cloud,N_cloud,d_cloud;

//RSA public values for Analyzer

static BigInteger e_analyzer,N_analyzer;

//RSA public values for Proxy Server

static BigInteger e_proxy,N_proxy;

//Arrays for storing Standard, Cubic and Biquadrate deviations

static BigInteger SDA[],SDB[], CDA[], CDB[], QDA[], QDB[];

//Encrypted statistical parameter BI variables

static BigInteger MeanA,MeanB,VarianceA,VarianceB, SkewnessA, SkewnessB,

KurtosisA, KurtosisB;

//Time stamp Variables

static Timestamp ts, DesTs;

//Triple DES secret keys for analyzer and proxy

static SecretKey key_Analyzer, key_Proxy;

//Triple DES variables

public static final String UNICODE_FORMAT = "UTF8";

public static final String DESEDE_ENCRYPTION_SCHEME = "DESede";

public static KeySpec ks;

public static SecretKeyFactory skf;

public static Cipher cipher;

static byte[] arrayBytes;

public static String myEncryptionKey_Proxy, myEncryptionKey_Analyzer;

110

B.3. CLOUDSERVER.JAVA FILE

public static String myEncryptionScheme;

/* User Interface Defining

*/

static JFrame frame = new JFrame("C L O U D S E R V E R Program");

static JTextArea messageArea = new JTextArea(50, 60);

/**

* Main Method of the Program

* */

public static void main(String[] args) throws Exception {

/*Defining Layout of the GUI

*/

messageArea.setEditable(false);

frame.getContentPane().add(new JScrollPane(messageArea), "Center");

frame.pack();

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setVisible(true);

messageArea.append("\n\n\t************************************"

+"********************************\n" +

"\t===\n"

+

"\t********** C L O U D ***S E R V E R*** P R O G R A

M ***********\n" +

"\t==="

+

"\n\t**"

+"**************************\n\n\n");

//Creating Server socket

ServerSocket listener = new ServerSocket(PORT);

/*Initializing array variables with maximum number of users

*/

StrA = new String[max_clients];

StrB = new String[max_clients];

A = new BigInteger[max_clients];

B = new BigInteger[max_clients];

SDA = new BigInteger[max_clients];

SDB = new BigInteger[max_clients];

CDA = new BigInteger[max_clients];

CDB = new BigInteger[max_clients];

QDA = new BigInteger[max_clients];

111

B.3. CLOUDSERVER.JAVA FILE

QDB = new BigInteger[max_clients];

//Generating RSA parameters

RSA();

messageArea.append("@@@@@@@@@@@@@@@ The Cloud server is running

@@@@@@@@@@@@@@@@@\n\n\n");

try {

while (true) {

new Handler(listener.accept()).start();

}

} finally {

listener.close();

}

}

/**

* Handler thread for handling User programs

*/

private static class Handler extends Thread {

private Socket socket;

private BufferedReader in;

private PrintWriter out;

//Constructor of the Handler

public Handler(Socket socket) {

this.socket = socket;

}

/*

* run() function of the class Proxy

*/

public void run() {

try {

//Initialize input and output streams for the User side

in = new BufferedReader(new

InputStreamReader(socket.getInputStream()));

out = new PrintWriter(socket.getOutputStream(), true);

//Analyzer Triple DES key generation

myEncryptionKey_Analyzer = "ThisIsSpartaThisIsSparta";

myEncryptionScheme = DESEDE_ENCRYPTION_SCHEME;

arrayBytes =

myEncryptionKey_Analyzer.getBytes(UNICODE_FORMAT);

ks = new DESedeKeySpec(arrayBytes);

112

B.3. CLOUDSERVER.JAVA FILE

skf = SecretKeyFactory.getInstance(myEncryptionScheme);

cipher = Cipher.getInstance(myEncryptionScheme);

key_Analyzer = skf.generateSecret(ks);

writers.add(out);

String Add = null;

/*

* While loop for processing messages

*/

while (true) {

String input = in.readLine();

if (input == null) {

return;

}

/*

* Proxy Authentication

*/

else if(input.startsWith("Proxy_AUTH_REQ")){

messageArea.append("Proxy Server is

authenticating.....\n\n");

String I[] = input.split(" ");

//Extracting RSA public parameters for proxy

e_proxy = new BigInteger(I[1]);

N_proxy = new BigInteger(I[2]);

check++;

//Sending RSA public cloud parameters to Proxy

out.println("CONNECT"+" "+e_cloud+" "+N_cloud);

messageArea.append("Authenticating response

sent.....\n\n");

}

else if(input.startsWith("Proxy_AUTH_RES")){

messageArea.append("Authenticating response

received.....\n\n");

ts = getCurrentTimestamp();

String D[] = input.split(" ");

//RSA double decrypting

BigInteger DD = DoubleDecrypt(new

BigInteger(D[1]),e_proxy,N_proxy);

String DDStr = new String(DD.toByteArray());

String des[] = DDStr.split(" ");

113

B.3. CLOUDSERVER.JAVA FILE

//Extracting proxy TripleDES key phrase from the

message

String myEncryptionKey_Proxy = des[0];

//Generating TripleDES symmetric key between proxy

and cloud

myEncryptionScheme = DESEDE_ENCRYPTION_SCHEME;

arrayBytes =

myEncryptionKey_Proxy.getBytes(UNICODE_FORMAT);

ks = new DESedeKeySpec(arrayBytes);

skf =

SecretKeyFactory.getInstance(myEncryptionScheme);

cipher = Cipher.getInstance(myEncryptionScheme);

key_Proxy = skf.generateSecret(ks);

String Ts2 = des[1]+" "+des[2];

//Checking the time stamp for time limit

if((checkTimestamp(Ts2, ts).intValue()) < Time_Limit){

messageArea.append("Timestamp is within the

time limits\n\n");

Timestamp DesTs = setTimestamp(Ts2);

Long tsDes = DesTs.getTime();

tsDes++;

Timestamp TSres = new Timestamp(tsDes);

messageArea.append("TSres :

"+TSres.toString()+"\n");

String authRes = TSres.toString()+"

"+ElgammalParameters;

//RSA double encrypting the message

BigInteger res = DoubleEncrypt(new

BigInteger(authRes.getBytes()),e_proxy,N_proxy);

//Sending the message

out.println("Cloud_AUTH_RES"+"

"+res.toString());

messageArea.append("@@@@@@ DES

parameters sent and Proxy authentication is

verified at

"+getCurrentTimestamp()+"\n\n");

}else{

messageArea.append("Timestamp exceeds the time

limit\nPossibility of a REPLAY attack\n\n");

114

B.3. CLOUDSERVER.JAVA FILE

}

}

/*

* Analyzer Authentication

*/

else if(input.startsWith("Analyzer_AUTH_REQ")){

messageArea.append("Analyzer is

authenticating....\n\n");

messageArea.append(input+"\n\n");

String E[] = input.split(" ");

//Extracting RSA public parameters for analyzer

e_analyzer = new BigInteger(E[1]);

N_analyzer = new BigInteger(E[2]);

//Sending RSA public parameters of the cloud to

analyzer

out.println("Cloud_Encrypt"+" "+e_cloud+" "+N_cloud);

DesTs = getCurrentTimestamp();

messageArea.append("DesTs : "+DesTs+"\n\n");

String auth = myEncryptionKey_Analyzer+"

"+DesTs.toString();

//RSA double encrypting TripleDES symmetric key

BigInteger Eauth = DoubleEncrypt(new

BigInteger(auth.getBytes()),e_analyzer,N_analyzer);

//Sending the authentication response along with

session key

out.println("Cloud_AUTH_RES"+" "+Eauth.toString());

}

else if(input.startsWith("Analyz_AUTH_RES")){

messageArea.append("Analyzer authentication response

received\n\n");

String D[] = input.split(" ");

BigInteger DD = DoubleDecrypt(new

BigInteger(D[1]),e_analyzer,N_analyzer);

String StrDESts = new String(DD.toByteArray());

messageArea.append("StrDESts : "+StrDESts+"\n");

String D1[] = StrDESts.split(" ");

String Ts = D1[0]+" "+D1[1];

Timestamp DESts = Timestamp.valueOf(Ts);

115

B.3. CLOUDSERVER.JAVA FILE

messageArea.append("DESts :

"+DESts.toString()+"\n"+"DesTs :

"+DesTs.toString()+"\n\n");

//Checking the time stamp with the received one

if (DESts.getTime() == (DesTs.getTime() + 1)){

messageArea.append("@@@@@@ Analyzer

authentication completed at

"+getCurrentTimestamp()+"\n\n");

p =new BigInteger(D1[2]);

ElgammalParameters = D1[2]+" "+D1[3]+"

"+D1[4]+" "+D1[5]+" "+D1[6];

}

}

/*

* Mean Computation

*/

else if(input.startsWith("COMPUTE")){

messageArea.append("\n\n@@@@@@ Encrypted values

received from proxy server at

"+getCurrentTimestamp()+"\n\n");

String in0[] = input.split(" ");

//TripleDES decrypting

String Dinput = TripleDESdecrypt(in0[1]);

String in1[] = Dinput.split(" ");

i = new Integer(in1[0]);

String in2 = null;

//Rearranging the string values

for(int j = 1 ; j < ((2*i)+1) ; j++){

if(j == 1){

in2 = in1[j];

}else {

in2 = in2 +" "+in1[j];

}

}

try {

//Generating HMAC for the message

hash = Hash(in1[0]+" "+in2);

} catch

(NoSuchAlgorithmException e)

116

B.3. CLOUDSERVER.JAVA FILE

{

e.printStackTrace();

}

//Checking the HMAC

if ((hash.compareTo(in1[((2*i)+1)])) == 0){

messageArea.append("Hash is correct\n");

//Assigning values to StrA[] StrB[] array

elements

for(int j = 1, l = 0 ; j < 2*i ; j = j+2 ,

l++){

StrA[l] = in1[j];

StrB[l] = in1[j+1];

messageArea.append("StrA"+l+" :

"+StrA[l]+"\n"+"StrB"+l+" :

"+StrB[l]+"\n");

}

//Sending the acknowledgement for correct hash

out.println("CORRECT_HASH");

ts = getCurrentTimestamp();

messageArea.append("Input received time :

"+ts+"\n");

messageArea.append("Timestamp decrypted :

"+in1[((2*i)+2)]+" "+in1[((2*i)+3)]+"\n\n");

//Checking the time stamp for time limit

if ((checkTimestamp(in1[((2*i)+2)]+"

"+in1[((2*i)+3)],ts)).intValue() < Time_Limit){

messageArea.append("Timestamp is within

the time limits\n\n");

//Converting String A and B components

to BI

for(int j = 0; j < i ; j++){

A[j] = new

BigInteger(StrA[j]);

B[j] = new

BigInteger(StrB[j]);

}

//Computing Addition

Add = Addition(A,B,i);

117

B.3. CLOUDSERVER.JAVA FILE

messageArea.append("@@ Addition

Calculated at

"+getCurrentTimestamp()+"\n\n");

String answer1 = i.toString()+" "+Add;

try {

hash = Hash(answer1);

} catch

(NoSuchAlgorithmException e)

{

e.printStackTrace();

}

messageArea.append("Hash : "+hash+"\n");

String output1 = answer1+" "+hash+"

"+getCurrentTimestamp().toString();

messageArea.append("Unencrypted message

: "+output1+"\n");

//Triple DES encrypting the message

Eoutput =

TripleDESencrypt(output1,cipher);

messageArea.append("Encrypted message :

"+Eoutput+"\n\n\n");

for(PrintWriter writer : writers){

writer.println("Summation"+" "+Eoutput);

}

messageArea.append("@@@@@@ Summation

sent at

"+getCurrentTimestamp()+"\n\n");

}else {

messageArea.append("Timestamp exceeds

the time limit\nPossibility of a

REPLAY attack\n\n");

}

} else {

messageArea.append("Hash is

incorrect\nWaiting for correct

message....");

out.println("INCORRECT_HASH");

}

}

118

B.3. CLOUDSERVER.JAVA FILE

/*

* Statistical Parameter Computation

*/

else if(input.startsWith("MEAN")){

messageArea.append("\n\n@@@@ Encryped Mean

received from Analyzer at

"+getCurrentTimestamp()+"\n\n");

String in0[] = input.split(" ");

String Dinput = TripleDESdecrypt(in0[1]);

String in1[] = Dinput.split(" ");

try {

hash = Hash(in1[0]+" "+in1[1]);

} catch

(NoSuchAlgorithmException e)

{

e.printStackTrace();

}

//HMAC checking

if ((hash.compareTo(in1[2])) == 0){

messageArea.append("Hash is correct\n");

ts = getCurrentTimestamp();

messageArea.append("Mean received time :

"+ts+"\n");

messageArea.append("Timestamp decrypted :

"+in1[3]+" "+in1[4]+"\n\n");

//Checking the time stamp for time limit

if ((checkTimestamp(in1[3]+"

"+in1[4],ts)).intValue() < Time_Limit){

messageArea.append("Timestamp is within

the time limits\n\n");

MeanA = new BigInteger(in1[0]);

MeanB = new BigInteger(in1[1]);

//Calculating Deviations

for(int j = 0 ; j < i ; j++){

String Deviation =

Subtraction(A[j],B[j],MeanA,MeanB);

String Z[] = Deviation.split("

");

119

B.3. CLOUDSERVER.JAVA FILE

BigInteger DA = new

BigInteger(Z[1]);

BigInteger DB = new

BigInteger(Z[2]);

String SquareDeviation =

Square(DA,DB);

String O[] =

SquareDeviation.split(" ");

SDA[j] = new BigInteger(O[1]);

SDB[j] = new BigInteger(O[2]);

String CubicDeviation =

Cube(DA,DB);

String O1[] =

CubicDeviation.split(" ");

CDA[j] = new BigInteger(O1[1]);

CDB[j] = new BigInteger(O1[2]);

String BiquadrateDeviation =

Biquadrate(DA,DB);

String O2[] =

BiquadrateDeviation.split("

");

QDA[j] = new BigInteger(O2[1]);

QDB[j] = new BigInteger(O2[2]);

}

//Calculating Variance

String Var = Addition(SDA,SDB,i);

String V[] = Var.split(" ");

VarianceA = new BigInteger(V[0]);

VarianceB = new BigInteger(V[1]);

String Variance = VarianceA+"

"+VarianceB;

messageArea.append("@@ Variance

Calculated at

"+getCurrentTimestamp()+"\n");

//Calculating Skewness

String Skew = Addition(CDA,CDB,i);

String S[] = Skew.split(" ");

SkewnessA = new BigInteger(S[0]);

120

B.3. CLOUDSERVER.JAVA FILE

SkewnessB = new BigInteger(S[1]);

String Skewness = SkewnessA+"

"+SkewnessB;

messageArea.append("@@ Skewness

Calculated at

"+getCurrentTimestamp()+"\n");

//Calculating Kurtosis

String Kurt = Addition(QDA,QDB,i);

String K[] = Kurt.split(" ");

KurtosisA = new BigInteger(K[0]);

KurtosisB = new BigInteger(K[1]);

String Kurtosis = KurtosisA+"

"+KurtosisB;

messageArea.append("@@ Kurtosis

Calculated at

"+getCurrentTimestamp()+"\n\n");

/*

* Sending answers to the analyzer

*/

String answer2 = Variance+"

"+Skewness+" "+Kurtosis;

try {

hash = Hash(answer2);

} catch

(NoSuchAlgorithmException e)

{

e.printStackTrace();

}

messageArea.append("Hash : "+hash+"\n");

String output = answer2+" "+hash+"

"+getCurrentTimestamp().toString();

messageArea.append("Unencrypted message :

"+output+"\n");

//TripleDES encrypting the message

Eoutput = TripleDESencrypt(output,cipher);

messageArea.append("Encrypted message :

"+Eoutput+"\n\n\n");

for(PrintWriter writer : writers){

121

B.3. CLOUDSERVER.JAVA FILE

//Sending answers

writer.println("STAT_Para"+" "+Eoutput);

messageArea.append("@@@@@@@@

Answers sent at

"+getCurrentTimestamp()+"\n\n\n");

}

}else {

messageArea.append("Timestamp exceeds

the time limit\nPossibility of a

REPLAY attack\n\n");

}

}else {

messageArea.append("Hash is incorrect\nWaiting

for correct message....");

}

}else if(input.startsWith("CORRECT_HASH")){

messageArea.append("Hash response is correct \n\n");

}else if(input.startsWith("INCORRECT_HASH")){

messageArea.append("Hash Incorrect\nResending

Message...\n\n ");

if(input.contains("MEAN")){

out.println("Summation"+" "+Eoutput);

}else {

out.println("STAT_Para"+" "+Eoutput);

}

messageArea.append("@@ Sent time to

Analyzer :

"+getCurrentTimestamp()+"\n\n");

}

/*

* Session conclusion

*/

else if(input.startsWith("FINISH")){

messageArea.append("Session terminated\n\n");

for(PrintWriter writer: writers){

writer.println("Cloud_FINISH");

}

}

System.out.println("end\n"+input);

122

B.3. CLOUDSERVER.JAVA FILE

}

} catch (IOException e) {

System.out.println(e);

} catch (InvalidKeyException e) {

e.printStackTrace();

} catch (NoSuchAlgorithmException e) {

e.printStackTrace();

} catch (NoSuchPaddingException e) {

e.printStackTrace();

} catch (InvalidKeySpecException e) {

e.printStackTrace();

} finally {

if (out != null) {

writers.remove(out);

}

try {

socket.close();

} catch (IOException e) {

}

}

}

}

/**

* Public Functions

* */

//Function for computing RSA public parameters for Cloud Server

public static void RSA(){

SecureRandom r = new SecureRandom();

BigInteger p = new BigInteger(RSA_bit_length,100,r);

BigInteger q = new BigInteger(RSA_bit_length,100,r);

N_cloud = p.multiply(q);

BigInteger n =

(p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));

e_cloud = new BigInteger("3");

while(n.gcd(e_cloud).intValue()>1){

e_cloud = e_cloud.add(new BigInteger("2"));

}

d_cloud = e_cloud.modInverse(n);

}

123

B.3. CLOUDSERVER.JAVA FILE

//Function RSA Decryption

public static BigInteger RSAdecrypt (BigInteger message){

return message.modPow(d_cloud, N_cloud);

}

//Function for RSA Signing

public static BigInteger RSAsign (BigInteger message){

return message.modPow(d_cloud, N_cloud);

}

//Function for RSA Un-signing

public static BigInteger RSAunsign (BigInteger message, BigInteger ex,

BigInteger Nx){

return message.modPow(ex, Nx);

}

//Function for RSA encryption

public static BigInteger RSAencrypt (BigInteger message,BigInteger ex,

BigInteger Nx){

return message.modPow(ex, Nx);

}

//Function for RSA double encrypt

public static BigInteger DoubleEncrypt (BigInteger message,BigInteger ex,

BigInteger Nx){

return RSAencrypt((RSAsign(message)),ex,Nx);

}

//Function for RSA Double decryption

public static BigInteger DoubleDecrypt (BigInteger message,BigInteger ex,

BigInteger Nx){

return RSAunsign((RSAdecrypt(message)),ex,Nx);

}

//Function for calculating addition on encrypted data

public static String Addition(BigInteger AA[], BigInteger AB[], Integer i){

BigInteger BI1 = AA[0];

BigInteger BI2 = new BigInteger("0");

for(int j = 0 ; j < i ; j++){

BI2 = BI2.add(AB[j]);

}

return (BI1.toString()+" "+BI2.toString());

}

//Function for calculating subtraction on encrypted data

124

B.3. CLOUDSERVER.JAVA FILE

public static String Subtraction(BigInteger DA1, BigInteger DB1,BigInteger

DA2, BigInteger DB2){

BigInteger BI1 = DA1;

BigInteger BI2 = DB1.subtract(DB2);

return "Subtraction"+" "+BI1.toString()+" "+BI2.toString();

}

//Function for calculating square value of encrypted data

public static String Square(BigInteger SA, BigInteger SB){

BigInteger BI1 = SA.pow(2);

BigInteger BI2 = SB.pow(2);

return "Square"+" "+BI1.toString()+" "+BI2.toString();

}

//Function of calculating cubic value of encrypted data

public static String Cube(BigInteger CA, BigInteger CB){

BigInteger BI1 = CA.modPow(new BigInteger("3"), p);

BigInteger BI2 = CB.modPow(new BigInteger("3"), p);

return "Cube"+" "+BI1.toString()+" "+BI2.toString();

}

//Function of calculating biquadrate value of encrypted data

public static String Biquadrate(BigInteger BQA, BigInteger BQB){

BigInteger BI1 = BQA.modPow(new BigInteger("4"), p);

BigInteger BI2 = BQB.modPow(new BigInteger("4"), p);

return "Biquadrate"+" "+BI1.toString()+" "+BI2.toString();

}

//Function for generating HMAC

public static String Hash (String message) throws NoSuchAlgorithmException{

MessageDigest mDigest = MessageDigest.getInstance("SHA1");

byte[] result = mDigest.digest(message.getBytes());

StringBuffer stringbuffer = new StringBuffer();

for (int i = 0; i < result.length; i++) {

stringbuffer.append(Integer.toString((result[i] & 0xff) + 0x100,

16).substring(1));

}

return stringbuffer.toString();

}

//Function for getting current time stamp

public static Timestamp getCurrentTimestamp(){

return new Timestamp(System.currentTimeMillis());

}

125

B.3. CLOUDSERVER.JAVA FILE

//Function for setting a time stamp

public static Timestamp setTimestamp(String ts){

return Timestamp.valueOf(ts);

}

//Function for check time stamps

public static Long checkTimestamp(String ts0, Timestamp ts2){

Timestamp ts1 = setTimestamp(ts0);

Long difference = ts2.getTime()-ts1.getTime();

messageArea.append("Timestamp Difference : "+difference+"\n\n");

return difference;

}

//Function for TripleDES Encryption

public static String TripleDESencrypt(String unencryptedString, Cipher

cipher) {

String encryptedString = null;

try {

cipher.init(Cipher.ENCRYPT_MODE, key_Analyzer);

byte[] plainText = unencryptedString.getBytes("UTF8");

byte[] encryptedText = cipher.doFinal(plainText);

encryptedString = new String(Base64.encodeBase64(encryptedText));

} catch (Exception e) {

e.printStackTrace();

}

return encryptedString;

}

//Function for TripleDES decryption

public static String TripleDESdecrypt(String encryptedString) {

String decryptedText=null;

try {

cipher.init(Cipher.DECRYPT_MODE, key_Proxy);

byte[] encryptedText = Base64.decodeBase64(encryptedString);

byte[] plainText = cipher.doFinal(encryptedText);

decryptedText= new String(plainText);

} catch (Exception e) {

e.printStackTrace();

}

return decryptedText;

}

}

126

B.4. ANALYZER.JAVA FILE

B.4 Analyzer.java File

/**

* Program Name : Analyzer Program

* Version : FINAL

* Authors : P.S.Ranaweera

* : G.P.H.Sandaruwan

* Language : Java

* Date : 01/06/2013

* */

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.PrintWriter;

import java.math.BigInteger;

import java.net.Socket;

import java.security.SecureRandom;

import java.util.Random;

import javax.swing.JFrame;

import javax.swing.JOptionPane;

import javax.swing.JScrollPane;

import javax.swing.JTextArea;

import java.security.InvalidKeyException;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.sql.Timestamp;

import java.security.spec.InvalidKeySpecException;

import java.security.spec.KeySpec;

import javax.crypto.Cipher;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.SecretKey;

import javax.crypto.SecretKeyFactory;

import javax.crypto.spec.DESedeKeySpec;

import org.apache.commons.codec.binary.Base64;

public class Analyzer {

/**

* Variable Definitions

*/

127

B.4. ANALYZER.JAVA FILE

//String values to hold A, B components of the encrypted Mean and

encrypted output

static String MeanA, MeanB, Eoutput;

String A1,B1,input,MeanA1,MeanB1,hash, hashMean;

//ElGamal prime value size, Time limit of Time stamps and RSA prime

value size defining

static final int bit_length = 64, Time_Limit = 2000, RSA_bit_length =

512;

//Double variables

static Double denomenator, Addition, Mean;

//ElGamal public parameters

static BigInteger p,q,K,g,y;

//ElGamal private parameter x

static BigInteger x = new BigInteger("152543");

//RSA public and private parameters for Analyzer

static BigInteger e_analyzer,N_analyzer, d_analyzer;

//RSA public parameters for Cloud Server

static BigInteger e_cloud,N_cloud;

//Time stamp variables

static Timestamp ts,ts_mul, ts_add, ts_mean, ts_variance;

//Input and output stream definition

BufferedReader in;

PrintWriter out;

/*

* User Interface Defining

*/

JFrame frame = new JFrame("A N A L Y Z E R Program");

JTextArea messageArea = new JTextArea(50, 60);

//Triple DES parameters for symmetric key encryption

private static final String UNICODE_FORMAT = "UTF8";

public static final String DESEDE_ENCRYPTION_SCHEME = "DESede";

private KeySpec ks;

private SecretKeyFactory skf;

private static Cipher cipher;

byte[] arrayBytes;

private String myEncryptionKey;

private String myEncryptionScheme;

static SecretKey key;

/*

128

B.4. ANALYZER.JAVA FILE

* Constructor of the Analyzer Program

*/

public Analyzer() {

// Defining Layout of the Analyzer GUI

messageArea.setEditable(false);

frame.getContentPane().add(new JScrollPane(messageArea), "Center");

frame.pack();

}

/**

* Private Function Defining

* */

//Function for obtaining the Cloud Server Address

private String getServerAddress() {

return JOptionPane.showInputDialog(

frame,

"Enter IP Address of the Server:",

"Cloud Server Address",

JOptionPane.QUESTION_MESSAGE);

}

/*

* run() function of the class Analyzer

*/

private void run() throws IOException, InvalidKeyException,

NoSuchAlgorithmException, NoSuchPaddingException,

InvalidKeySpecException {

int sessionNum = 0;

messageArea.append("\n\n\t******************"

+"**\n" +

"\t===\n" +

"\t********** A N A L Y Z E R ***** P R O G R A M

***********\n" +

"\t===" +

"\n\t************************"

+"************************************\n\n\n");

//Generating RSA parameters

RSA();

//Generating ElGamal parameters

ElGamalParameter(bit_length);

// Getting the cloud server address

129

B.4. ANALYZER.JAVA FILE

String serverAddress = getServerAddress();

//Initializing the socket under Port number 9002

Socket socket = new Socket(serverAddress, 9002);

//Initializing input and Output streams

in = new BufferedReader(new

InputStreamReader(socket.getInputStream()));

out = new PrintWriter(socket.getOutputStream(), true);

/*

*Authentication with Cloud Server

*/

//Sending analyzer authentication request to cloud server

out.println("Analyzer_AUTH_REQ"+" "+e_analyzer+" "+N_analyzer);

messageArea.append("@@ Authentication Request Sent at

"+getCurrentTimestamp()+"\n\n");

/*

* While loop for processing messages between Analyzer program and

Cloud Server

*/

while (true) {

//Reading the input

String line = in.readLine();

if (line.startsWith("Cloud_Encrypt")) {

String P[] = line.split(" ");

//Assigning RSA public parameters of cloud

e_cloud = new BigInteger(P[1]);

N_cloud = new BigInteger(P[2]);

}

else if(line.startsWith("Cloud_AUTH_RES")){

messageArea.append("Authentication Initiated\n\n");

ts = getCurrentTimestamp();

String D[] = line.split(" ");

BigInteger DD = DoubleDecrypt(new BigInteger(D[1]));

String DDStr = new String(DD.toByteArray());

String des[] = DDStr.split(" ");

//Extracting the Triple DES key phrase from the received

message

myEncryptionKey = des[0];

//Generating Triple DES symmetric key from key phrase

myEncryptionScheme = DESEDE_ENCRYPTION_SCHEME;

130

B.4. ANALYZER.JAVA FILE

arrayBytes = myEncryptionKey.getBytes(UNICODE_FORMAT);

ks = new DESedeKeySpec(arrayBytes);

skf = SecretKeyFactory.getInstance(myEncryptionScheme);

cipher = Cipher.getInstance(myEncryptionScheme);

key = skf.generateSecret(ks);

//Extracting the Time stamp

String Ts1 = des[1]+" "+des[2];

//Checking the time stamps

if((checkTimestamp(Ts1, ts, messageArea)).intValue() <

Time_Limit){

Timestamp DesTs = setTimestamp(Ts1);

Long tsDes = DesTs.getTime();

tsDes++;

Timestamp TSres = new Timestamp(tsDes);

String AuthRes = TSres.toString()+" "+p+" "+q+" "+K+"

"+y+" "+g;

//RSA double encrypting the message

BigInteger res = DoubleEncrypt(new

BigInteger(AuthRes.getBytes()));

//Sending Analyzer authentication request

out.println("Analyz_AUTH_RES"+" "+res.toString());

messageArea.append("@@ Authenticaition response

sent at "+getCurrentTimestamp()+"\n\n");

}else {

messageArea.append("Timestamp exceeds the time

limit\nPossibility of a REPLAY attack\n\n");

}

}

else if(line.startsWith("Summation")){

sessionNum++;

messageArea.append("Session "+sessionNum+" Answers\n\n");

ts = getCurrentTimestamp();

messageArea.append("@@ Summation received at :

"+ts+"\n");

String M[] = line.split(" ");

String Answers1 = TripleDESdecrypt(M[1]);

String Ans1[] = Answers1.split(" ");

try {

//Generating HMAC for the message

131

B.4. ANALYZER.JAVA FILE

hash = Hash(Ans1[0]+" "+Ans1[1]+" "+Ans1[2]);

} catch (NoSuchAlgorithmException e) {

e.printStackTrace();

}

//Checking the HMAC

if ((hash.compareTo(Ans1[3])) == 0){

messageArea.append("Answer Hash is correct\n\n");

//Sending the response mentioning correct HMAC

out.println("CORRECT_HASH");

//checking of timestamp for time limit

if((checkTimestamp(Ans1[4]+" "+Ans1[5], ts,

messageArea)).intValue() < Time_Limit){

messageArea.append("Timestamp is within the time

limit\n\n");

denomenator = new Double(Ans1[0]);

//Summation

BigInteger AdditionA = new BigInteger(Ans1[1]);

BigInteger AdditionB = new BigInteger(Ans1[2]);

Addition =

Decryption(AdditionA,AdditionB,p,x).doubleValue();

messageArea.append("** Addition

= "+(Addition/100)+"\n\n");

messageArea.append("@@ Addition time :

" +getCurrentTimestamp()+"\n\n");

//Mean Calculation

Mean = (Addition/denomenator);

Long LongMean = Mean.longValue();

String StrMean = LongMean.toString();

messageArea.append("** Mean

= "+(Mean/100)+"\n\n");

messageArea.append("@@ Mean time : "

+getCurrentTimestamp()+"\n\n");

//Encrypting the Mean

Encryption(StrMean,messageArea);

String EMean = MeanA+" "+MeanB;

/*

*Sending Mean to Cloud

*/

try {

132

B.4. ANALYZER.JAVA FILE

hash = Hash(EMean);

} catch (NoSuchAlgorithmException e) {

e.printStackTrace();

}

messageArea.append("Hash : "+hash+"\n");

String output = EMean+" "+hash+"

"+getCurrentTimestamp().toString();

messageArea.append("Unencrypted message :

"+output+"\n");

//Encrypting the Encrypted Mean with TripleDES key

Eoutput = TripleDESencrypt(output,cipher);

messageArea.append("Encrypted message :

"+Eoutput+"\n\n");

//Sending encrypted Mean to Cloud

out.println("MEAN"+" "+Eoutput);

messageArea.append("@@ Computed MEAN

sent at "+

getCurrentTimestamp()+"\n\n");

}else{

messageArea.append("Timestamp exceeds the time

limit\nPossibility of a REPLAY attack\n\n");

}

}else{

messageArea.append("Hash is incorrect\nWaiting

for Resending....");

out.println("INCORRECT_HASH_MEAN");

}

}else if(line.startsWith("STAT_Para")){

/*

* Computing Variance, Skewness and Kurtosis

*/

messageArea.append("@@ Answers received at

"+getCurrentTimestamp()+"\n\n");

ts = getCurrentTimestamp();

String EAns[] = line.split(" ");

String Ans = TripleDESdecrypt(EAns[1]);

String Ans1[] = Ans.split(" ");

try {

133

B.4. ANALYZER.JAVA FILE

hash = Hash(Ans1[0]+" "+Ans1[1]+" "+Ans1[2]+"

"+Ans1[3]+" "+Ans1[4]+" "+Ans1[5]);

} catch (NoSuchAlgorithmException e) {

e.printStackTrace();

}

//Checking for HMAC

if ((hash.compareTo(Ans1[6])) == 0){

messageArea.append("STAT Para Hash is

correct\n\n");

out.println("CORRECT_HASH");

//checking for time stamp time

if((checkTimestamp(Ans1[7]+" "+Ans1[8], ts,

messageArea)).intValue() < Time_Limit){

messageArea.append("Timestamp is within

the time limit\n\n");

BigInteger VarianceA = new

BigInteger(Ans1[0]);

BigInteger VarianceB = new BigInteger(Ans1[1]);

BigInteger SkewnessA = new BigInteger(Ans1[2]);

BigInteger SkewnessB = new BigInteger(Ans1[3]);

BigInteger KurtosisA = new BigInteger(Ans1[4]);

BigInteger KurtosisB = new BigInteger(Ans1[5]);

//Computing Variance

Double Variance =

Decryption(VarianceA,VarianceB,p,x).doubleValue()/10000;

Variance = (Variance / denomenator);

/*

* Displaying Answers

*/

messageArea.append("**********************************

A N S W E R S

**********************************\n\n");

messageArea.append("** Addition

= "+(Addition/100)+"\n");

messageArea.append("** Mean =

"+(Mean/100)+"\n");

System.out.println("Variance Answer = "+Variance);

messageArea.append("** Variance

= "+Variance+"\n");

134

B.4. ANALYZER.JAVA FILE

Timestamp ts_var = getCurrentTimestamp();

//Computing Standard Deviation

Double StandardDeviation =

Math.sqrt(Variance.doubleValue());

messageArea.append("** Standard Deviation

= "+StandardDeviation+"\n");

Timestamp ts_sd = getCurrentTimestamp();

//Computing Skewness

Double Skewness = Decryption(SkewnessA, SkewnessB, p,

x).doubleValue()/1000000;

Skewness = (Skewness /

Math.pow(StandardDeviation,3));

messageArea.append("** Skewness

= "+Skewness+"\n");

Timestamp ts_skew = getCurrentTimestamp();

//Computing Kurtosis

Double Kurtosis = Decryption(KurtosisA, KurtosisB, p,

x).doubleValue()/100000000;

Kurtosis = (Kurtosis / Math.pow(StandardDeviation,

4));

messageArea.append("** Kurtosis

= "+Kurtosis+"\n\n");

Timestamp ts_kur = getCurrentTimestamp();

messageArea.append("*********************************"

+"***\n\n");

//Displaying timing values

messageArea.append("@@@ Variance time :

"+ts_var+"\n");

messageArea.append("@@@ StandardDeviation time

: "+ts_sd+"\n");

messageArea.append("@@@ Skewness time :

"+ts_skew+"\n");

messageArea.append("@@@ Kurtosis time :

"+ts_kur+"\n");

messageArea.append("@@ Session "+sessionNum+"

Concluding time :

"+getCurrentTimestamp()+"\n\n\n\n");

//Sending the concluding signal to

cloud server

135

B.4. ANALYZER.JAVA FILE

out.println("FINISH");

}else{

messageArea.append("Timestamp exceeds

the time limit\nPossibility of a

REPLAY attack\n\n");

}

} else {

messageArea.append("Hash is incorrect\nWaiting

for Resending....");

out.println("INCORRECT_HASH_VARIENCE");

}

}

else{

System.out.println(input);

}

}

}

/**

* Main Method of the Program

* */

public static void main(String[] args) throws Exception {

Analyzer analyzer = new Analyzer();

analyzer.frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

analyzer.frame.setVisible(true);

analyzer.run();

}

136

