
Examining Ant Colony Optimization Performance for
Ship Evacuation

by

Haakon Bakkevig Steinsholt and Daniel Aasen

Supervisor

Morten Goodwin and Ole-Christoffer Granmo

Project Report
This project is carried out as a part of the education at the University of

Agder and is therefore approved as a part of this education

FINAL VERSION

The University of Agder, Faculty of Engineering and Science

Grimstad, June 3, 2013

Abstract

Evacuating passengers during a fire on board ships is a difficult task and any
improvements on current procedures can help save lives. This report describes
how an Ant Colony Optimization (ACO) pathfinding algorithm could possibly be
used to lead passengers out of this dangerous situation. The ships were modeled
from blueprints of real ships and represented as graphs with nodes and vertices.
In the simulation passengers were equipped with a smart phone running an appli-
cation which showed them the way out. The passengers could end up panicking
given close proximity to fire or other stressing factors, in which case they would
stop following directions. Additionally, high density of passengers in rooms and
corridors slowed down the speed of evacuation. The results produced by ACO
were compared to Dijkstra’s pathfinding algorithm and were promising. They
showed that ACO performed well in dynamic environments and could be used in
a crisis situation to guide people out of danger.

Contents

Contents 1

List of Figures 3

List of Tables 4

1 Introduction 5
1.1 Introduction . 5
1.2 Motivation . 6
1.3 Problem Statement . 7
1.4 Limitations and key assumptions 8
1.5 Contributions . 9
1.6 Report outline . 9

2 Background 11
2.1 Human Behavior Models . 11
2.2 ACO . 14
2.3 Ship Evacuation . 17
2.4 Dijkstra’s algorithm . 18

3 Solution 20
3.1 Requirements . 20
3.2 Implementation . 21

1

CONTENTS

3.2.1 Ship Model . 21
3.2.2 Human Behavior . 23
3.2.3 Algorithms . 24

4 Results 26
4.1 Simulation parameters . 26
4.2 Testing . 28

4.2.1 Pheromones in edges . 28
4.2.2 Dijkstra’s algorithm . 29
4.2.3 Higher chance of panic 31
4.2.4 Varying amount of passengers 32
4.2.5 Fire spread . 33
4.2.6 Second ship: Silver Explorer 34

4.3 Summary of results . 35

5 Conclusion and further work 38
5.1 Conclusion . 38
5.2 Further Work . 39

Acknowledgements 41

Bibliography 42

2

List of Figures

2.1 The mathematical formula for edge selection 15
2.2 The mathematical formula for pheromone update 15
2.3 The mathematical formula used to calculate the amount of pheromones

that should be deposited . 16
2.4 The shortest distance to the unvisited node from the source node

via the visited node . 18

3.1 A small section of a ship deck 21
3.2 The graph representing the ship deck 21
3.3 The dining room in the cruise ship MS Reflection 22
3.4 A simple representation of the dining room of the MS Reflection . 23

4.1 Comparing 200 iterations to 1000 iterations. 27
4.2 Dijkstra and ACO running at each time step. 28
4.3 Taking shortest path with pheromones in edges. 29
4.4 Running Dijkstra’s algorithm only at start. 30
4.5 Simulation with a high panic chance. 31
4.6 Simulation run with below half passenger capacity. 32
4.7 Simulation run with over maximum passenger capacity. 33
4.8 The effect of slow moving fire. 34
4.9 The effect of fast moving fire. 35
4.10 ACO and Dijkstra’s performance on Silver Explorer. 36

3

List of Tables

4.1 Survivors of safest path . 37
4.2 Survivors of shortest path . 37

4

Chapter 1

Introduction

1.1 Introduction

A fire on board a ship can have disastrous consequences, and as good as the evac-
uation plans may be now, they will need improvement to ensure that as many
passengers as possible survives. This project will work on modifying existing
algorithms that will attempt to find the optimal path of evacuation during a simu-
lated crisis, and which could one day be used to help save lives during a crisis that
otherwise may have been lost.

Our main focus is the Ant Colony Optimization, a pathfinding algorithm which
finds a path through the environment to the desired destination by mimicking the
behavior of an ant colony. The algorithm sends out virtual ants that search for
a valid path then report back the path they took. These paths are marked with
pheromones and any consecutive ants are more likely to walk on the previously
successful paths.

In this thesis we will compare Dijkstra’s pathfinding algorithm to ACO, as
Dijkstra’s is one of the most commonly used pathfinding algorithms today. We

5

CHAPTER 1. INTRODUCTION

will model the ship as a dynamic graph with nodes and edges where the nodes
can be rooms, hallways or other sections of the ships and the edges indicate that it
is possible to transition from one node to another. The simulated passengers will
receive directions on their smart phones.

Additionally, we will simulate human behavior during a crisis and observe
how this affects the algorithms. Finally we will look into how high occupant
density around exits slow down the evacuation process and explore how to redirect
passengers.

1.2 Motivation

Every year people die in boating accidents, we hope that our work can be used to
save future lives. Jim Hall, the Chairman of the National Transportation Safety
Board testified in front of the Subcommittee on Coast Guard and Maritime Trans-
portation, making several safety recommendations after the Scandinavian Star ac-
cident [9]. One of them were to ”Improve crew language/communication ability
to assist passengers during emergencies.” Our work, which will be part of a sys-
tem that will provide passengers with the quickest route to the exit, could output
any directions in the language of the phone owner. This would not only improve
communication if the employees and passengers do not speak the same language,
it would also ensure that the directives reach all passengers quicker than if the
employees were to guide all passengers. Additionally it increases the probability
that all passengers receive proper guidance. For instance any message played over
a sound system could be difficult to hear during a panic and passengers could be
in rooms or corridors where they would be unreachable for the employees.

6

CHAPTER 1. INTRODUCTION

1.3 Problem Statement

We aim to develop and approach several algorithms and determine which algo-
rithm will provide us with the best evacuation route. Our hypothesis is that Ant
Colony Optimization (ACO) will perform better than the most commonly used
pathfinding algorithms. Performance is measured by how many passengers sur-
vive the crisis situation and how efficient the algorithms are.

Secondly, we hypothesize that ACO will outperform Dijkstra’s pathfinding
algorithm given a continuously changing graph. In a real crisis situation the envi-
ronment is subject to change. For instance a corridor that previously was safe can
be filled with smoke or a room that was empty can become filled with people and
be undesirable as a path to the exit.

Thirdly, we hypothesize that ACO will achieve a better outcome than Dijk-
stra’s pathfinding algorithm given high occupant density around exits. High occu-
pant density is dangerous not only because it will slow the evacuation speed it also
creates potentially harmful situations. Thus the algorithm should predict possible
future bottlenecks and redirect passengers as needed.

Finally, we hypothesize that ACO will produce better results than Dijkstra’s
pathfinding algorithm by adding human behavior. To produce accurate results the
algorithms needs to be subjected to a model that is as close to reality as possible
and it then becomes necessary to include human behavior to the model. Passen-
gers can ignore directions, misunderstand directions, panic and so forth. Behavior
is different if the passenger is alone, with his or her family, or in a large group;
and thus it becomes important to account for individuals that may not follow the
directions perfectly.

7

CHAPTER 1. INTRODUCTION

1.4 Limitations and key assumptions

To properly define the scope of our master thesis we have outlined some limi-
tations and assumptions. We will limit ourselves to testing and modifying algo-
rithms; we will base ourselves on well known algorithms, not create a fully fleshed
out system that would distribute the safest paths to the passenger nor create the
application that would run on the passenger’s smart phones, guiding them to the
exits. The focus in our master thesis will be on the algorithms themselves and
not the final system as that have a large set of challenges itself. For instance the
complete system would need to find ways to distribute directions to each phone,
discover which phones are within the crisis area, receive information about the
location of the fire onboard the ship etc.

We will assume that the ship crews are trained in evacuation procedures and
can find their own way to the embarkation area without guidance. We will not as-
sume that the crew will guide the passengers and as such the simulated passengers
will have to rely on the directions on their smart phone to guide them. Addition-
ally we assume that all passengers follow the directions given unless they are in a
panicked state.

We will apply current knowledge of human behavior during crisis. The field
of human behavior during a crisis is large and expanding it would be outside of
our field of expertise. And as such we will use existing models and knowledge
to simulate the demeanor of the passengers. Additionally we assume that human
behavior can be realistically modeled and that such a framework can capture the
complexity of passengers in a crisis.

A high occupant density around exists will quickly slow down evacuation
speed and as such there have been conducted several studies towards investigating
the dynamics around evacuations. As these studies have yielded promising results
we will limit ourselves to using these results and not producing our own. We do
not find it necessary to focus on this particular segment of the evacuation process

8

CHAPTER 1. INTRODUCTION

as we wish to have a broader view of the entire evacuation development.

We assume a ship with hazards can be sufficiently modeled as a graph with
nodes and edges. As a ship is a very complex environment it is possible that by
reducing a complex structure into a simpler model some details would be lost in
the translation. For instance a table could be knocked over or a spill could cause
someone to slip. However, as there are a large number of passengers on large
ships we expect that by simply adding some regulatory factors to each area in the
ship and running several iterations the results will be fairly realistic.

1.5 Contributions

We will make improvements to already existing pathfinding algorithms that can
be used to find a path for passengers evacuating a ship. Given that our hypothesis
is proven correct our then modified version of ACO will outperform conventional
pathfinding algorithms in our specific scenario. This in turn could have wider ap-
plications as there are multiple scenarios where finding a path is subject to change.

We will determine how human behavior and occupant density around exits
affects path finding algorithms. It is easy to imagine how a panic around an evac-
uation bottleneck will become dangerous and slow down the rate of egress even
further than it normally would. We will attempt to find ways to redirect evacuees
before the issue occurs. If there are a large amount of people around a bottleneck
at the start of the evacuation we will redistribute the passengers to quickly solve
the problem.

1.6 Report outline

The master thesis contains 4 chapters: Introduction, Methods, Results and Con-
clusion. The introduction starts by broadly describing the thesis in simple terms,

9

CHAPTER 1. INTRODUCTION

then explains the motivation behind the project, the goal of the thesis, the current
state of the art and finally the problem statement.

The Methods describes the methods we have used in our research, why we
used them and what makes our research different from the current state of the art.
It describes the implementation of the human behavior, the calculations regarding
the evacuation speed and egress restricting factors as well as the implementation
of the ship model. Furthermore, the methods chapter contains the hypothesis.

The Results presents the results and the evidence that either supports or oppose
our hypothesis. The statistical data gathered using the methods in the previous
chapter is displayed and any issues we have experienced is explained.

The Conclusion looks at what the data means, whether it matters or not and
how it compares to other research in the field. Additionally it discusses how suc-
cessful the project has been and if ACO is better than conventional algorithms, as
we hypothesized. Finally it contains proposed future steps that can be made to
continue developing the project.

10

Chapter 2

Background

The purpose of this chapter is to describe relevant prior work. It will explain
the basics of the algorithms used as well as recent research that expands upon
them. Dijkstra’s algorithm has been widely used to solve graph search problems,
and as such is a suitable algorithm to compare to the Ant Colony Optimization
algorithms. Human behavior in a crisis is hard to predict because of the complex
nature of humans and the lack of data from crisis situations. Nevertheless, given
a large amount of people, some statistical behavior can be assumed.

2.1 Human Behavior Models

There exists several behavioral models that predict movement. However the most
successfully ones predict animal movement as animals are rather simple compared
to humans. The environment for animals tends to be simpler, for instance ocean
compared to urban, and animals are simpler creatures and will always rely only
on instinct, whether in an emergency or not. There are several different computa-
tional tools used to simulate human movement during emergencies, for instance
fluid and particle systems, matrix-based systems and emergent systems. Never-

11

CHAPTER 2. BACKGROUND

theless they all either have limitations or they are somewhat inaccurate [12] [15].

It has been found that fluid systems and cellular automata do not adequately
describe human movement [13] as humans panic and make choices, both good
and bad, and they all have individual quirks. For instance, in a room with multiple
exits a crowd tend to form a herd mentality and the majority will gather around
a single exit, which will slow down their speed, and other exits will see little
use. However had this been simulated with a fluid system and cellular automata it
would likely predict that all exits would be used equally for maximum effect.

In a matrix-based system the room(s) are divided into cells. The cells can
represent a table, it can be full of people or it can be empty. People can move
from cell to cell at a rate described in the model and by the rules of the model. It
is important that these cells and rules are properly adjusted to fit each model as to
make it as realistic and precise as possible.

In emergent systems simple parts can interact to simulate complex systems.
The existing emergent systems are often criticized for being too simple [10]. The
system are often given only a few parameters (for example the average speed of
the humans and the location of the exits) and then attempt to model the situation
by assuming all humans move towards the most logical exit.

In general the computational tools rely too much on assumptions and too little
on the sociological and psychological factors [10]. When a human is put into
a crisis-situation that person can either rely on instinct, experience or making
choices based on the alternatives. Relying on instinct typically means that the
person is panicking and make immediate decisions that may or may not be good
ones. People have been trampled to death by crowds that desperately is trying to
get away from danger.

A person will often follow the path it knows the best. If a worker walks up the
same flight of stairs to his office every day for 5 years it is expected that he will
also escape down the same flight of stairs during a crisis. This is why there are

12

CHAPTER 2. BACKGROUND

fire drills, so that during a crisis everyone have walked the quickest paths out.

In a crisis that is time-sensitive, for instance a fire, it is very difficulty for a
person to weigh his options and choose carefully. Some people will not stand
around to observe which path might be the best or whether the door is hot before
opening it. And standing around and choosing carefully might be even worse as
over time there might be fewer safe paths as the fire spread. Therefore most people
will make quick choices and move as fast as they can if danger is imminent.

An individual will likely behave different when he is alone, as opposed to
when he is in a group. For example a family will likely stick together [18] and
follow the leader, which is more often than not the father. Thus putting his or
hers experience and instincts aside and becoming a part of the group. Emotions
also have a tendency to spread quickly in a group, when some people panic it is
likely that more will panic shortly thereafter. If there is widespread panic within
the group the chance of people pushing down and trample others increase signifi-
cantly.

Xiaoshan Pan et al.[12] created a framework to simulate human behavior. This
framework implemented some basic human sociological and psychological fac-
tors. Though in this model the humans were not given a path to safety, they were
merely left to their own devices. We will create a model where we give the people
the safest path to the exit. We aim to have the people act as realistic as possible
and be placed in a dynamic and complex environment.

In Ocean Engineering volume 53, there is an article named ”Cell-based evac-
uation simulation considering human behavior in a passenger ship”[14]. The ship
was modeled by placing cells representing one space enough to fill one passenger,
so each room consists of several cells. Each cell had 3 different states it could be
in: Occupied, Empty or Object. When considering human behavior, the humans
needed some set of rules, so 3 rules was created: separation, cohesion, and align-
ment. Separation or collision avoidance is that passengers tend to avoid to clash
into each other. Cohesion is that the passengers wants to be as close to the center

13

CHAPTER 2. BACKGROUND

of a group of passengers, as this is more comforting. The last rule, alignment
is that the passengers tend to head in the same direction and speed as the other
passengers when evacuating.

2.2 ACO

The Ant Colony Organization(ACO) algorithm is a probabilistic algorithm that
have been used in routing, scheduling, subset and machine learning. It was cre-
ated by Marco Dorigo in 1992 to find an optimal path in a graph, mimicking the
behavior of ant which are searching for food [5]. In nature, when searching for
food, ants walk randomly until they locate a food source. When an ant stumble
upon food it returns to the ant colony, taking the shortest path possible. While
returning to its colony it leaves a trail of pheromones which will attract other ants.
These other ants will, by walking the same path as the initial ant, strengthen the
pheromone trail and further increase the possibility that more ants will take this
path to the food source.

While the pheromone trail increases the probability that an ant chooses to
follow the trail, it does not ensure it. If several ants reaches the same food source
by walking different paths the shortest path will be made the more attractive one
over time. This is a result of pheromone deposits. The shortest path will have the
highest pheromone density as more pheromones can be deposited on the shorter
route, the resulting higher pheromone density will increase the possibility that
other ants will follow the shorter path.

Over time pheromones evaporates, this prevents the system from ending up
with local optimal solutions. If the pheromones did not evaporate the path fol-
lowed by a certain amount of initial ants would quickly become the only path any
ant followed as the pheromone density would increase to the point that no other
paths could ever become more attractive, even if they were the more optimal paths.

14

CHAPTER 2. BACKGROUND

Additionally, pheromone evaporation makes ACO able to adapt to changes. A
path can be the optimal path for a while, until a change occurs that makes the path
unusable. If the pheromones did not evaporate the ants would continue to follow
this path indefinitely, never reaching the food source again. However, when the
ants are not able to reach the food source they will not deposit any pheromones
and as the pheromones deposited by previous ants evaporates the ants will will be
less attracted to the old path and start exploring new ones.

P s
ab =

(Tαab)(Λ
β
ab)∑

(Tαab)(Λ
β
ab)

Figure 2.1: The mathematical formula for edge selection

For the algorithm itself there are two parts, edge selection, as seen in figure
2.1, and pheromone update, as seen in figure 2.3. Edge selection, simply stated,
is the process of choosing which way to go. Every ant s has a probability P s

ab of
moving from location a to location b. The probability is calculated based on the
attractiveness Λab of moving from a to b and the pheromone trail level Tab. The
trail level, as discussed above, signifies how rewarding that path has been in the
past. The attractiveness of a move indicates the cost of the move and will in the
beginning of the simulation have a large impact on the choices made by the ants.
However over time the pheromone trail level will take over as the dominating
factor.

Tab ← (1− ρ)Tab +
∑
s

∆T s
ab

Figure 2.2: The mathematical formula for pheromone update

When the ants have returned, the pheromone trail is updated. The pheromone
trail level Tab is reduced by a pheromone evaporation coefficient ρ. A higher
coefficient results in higher evaporation and fast adaptation and visa versa. Never-
theless this does not mean that the factor should always be high as ACO is prob-
abilistic and fast adaptation could result in the optimal path being found and then
lost again before other ants had time to travel it. Finally,

∑
s

∆T s
ab is the amount

15

CHAPTER 2. BACKGROUND

of pheromones ant number s will deposit on the trail. The amount deposited is
typically decided by taking a constant I divided by the length of ant s path Js

∆τ sab =

{
I/Js if ant s uses edge ab in its path
0 otherwise

Figure 2.3: The mathematical formula used to calculate the amount of
pheromones that should be deposited

In the article Ant Colony Organization for Best Path Planning[19], they used
ACO to find the optimal path in a network, and update pheromones based on how
long the path is and how heavily the traffic is on that route. By multiplying the
amount of traffic in the node with the amount of pheromones, ACO may adapt to
the traffic inside the network.

In the research paper Ant Colony Optimization for Planning Safe Escape
Routes [7] M. Goodwin et al. describes a general approach to using ACO in crisis
situations. In the paper they write that: ”Computer and mathematical models have
shown to be valuable for escape planning with large complex building with many
people but is mainly assuming a static representation of hazards”. Our simula-
tions work in a similar way to theirs, by receiving information from the crisis area
and using it to estimate the best escape route given the possibility that the fire can
spread. Additionally they described how to avoid excessive crowding, this is done
by giving each edge a maximum capacity. If an edge is at maximum capacity it is
unusable and people would be given different escape routes.

The research paper A Spatio-temporal Probabilistic Model of Hazard and
Crowd Dynamics in Disasters for Evacuation Planning [8] by O.-C. Granmo et al.
proposes a model that ”integrates crowd with hazard dynamics”. In their scenario
they use a fire on board a ship to act as an uncertain and dynamic environment.
ACO is used to find the paths with least risk associated with it and in their simu-
lations ACO ”finds these safes routes with probability close to 1.0 using merely
10 ants”. While their graph only contains 9 nodes it still shows that with few ants

16

CHAPTER 2. BACKGROUND

ACO can find the best routes.

In the research paper An improved ant colony optimization algorithm for solv-
ing a complex combinatorial optimization problem [17] J. Yang et al. writes
that their improved version of an Ant Colony Optimization algorithm has ” much
higher convergence speed than that of genetic algorithm (GA), simulated anneal-
ing (SA), and basic ant colony algorithm, and can jump over the region of the
local minimum, and escape from the trap of a local minimum successfully and
achieve the best solutions”. This is done by a combination of ACO and a genetic
algorithm. In the beginning of the simulations basic ACO can end up sending ants
via a less than optimal path and the pheromones will reinforce this path. By using
a mutation operator ACO can avoid the local minimums as it can introduce paths
that are being ignored.

2.3 Ship Evacuation

During an evacuation speed is off the essence. The International Maritime Organi-
zation (IMO) is an United Nation’s agency responsible for the safety and security
of shipping. They require, under SOLAS Chapter III Regulation 21.1.4 [3], that:

All survival craft required to provide for abandonment by the total

number of persons on board shall be capable of being launched with

their full complement of persons and equipment within a period of 30

min from the time the abandon ship signal is given after all persons

have been assembled, with lifejackets donned.

Additionally, they recommend that the total evacuation time is a maximum of 60
minutes for ships with up to three vertical fire zones and 80 minutes for ships with
more than three vertical fire zones [1]. This leaves either 30 or 50 minutes, de-
pending on ship size, to detect the crisis and get the passengers to the embarkation
stations and equip them with lifejackets.

17

CHAPTER 2. BACKGROUND

The time it takes for each passenger to reach the embarkation stations is cal-
culated by T = (γ + δ)t where γ is a factor that determines how safe the path is,
δ is the counterflow factor and t is the travel time in ideal conditions. Factors that
can hinder the flow of passengers includes: high occupant density, closed doors,
debris, ship motion, etc. Thus the travel time is the amount of time it would take
for each passenger to evacuate given perfect conditions multiplied by all factors
that restricts their movements.

2.4 Dijkstra’s algorithm

Dijkstra’s Algorithm is a graph search algorithm, created by Edsger Dijkstra in
1959 [11], that finds the shortest path through a graph from a source node to a
goal node. The algorithm is commonly used in network routing protocols to find
the least costly path through a network. The algorithm can be used to find the
shortest path from the source node to a single goal node or from the source node
to every other node in the graph.

The first step in the algorithm is to set the initial distance to every node to
infinity, this is done to signify that the node has yet to been visited. During the
first iteration of the algorithm the source node is the current node and the distance
between them is 0, seeing as they are in fact the same node. During the following
iterations the closest unvisited node is selected as the current node.

d(u) = d(v) + d(v, u)

Figure 2.4: The shortest distance to the unvisited node from the source node via
the visited node

From the current node, follow the edges leading out of the node and calculate
the distance to every unvisited node and update the minimum distance in these
nodes. Minimum distance meaning the shortest distance from the source node to
the unvisited node. This is calculated by adding the sum of the distance between

18

CHAPTER 2. BACKGROUND

the source node and the current node with the distance to the unvisited node as
seen in figure 2.4. If a shorter path via another node is discovered in later iterations
the minimum distance is updated. After calculating the distance to all nearby
nodes the current node is marked as visited and the node with the lowest minimum
distance connected to the visited node is selected as the new current node.

The process is complete when the goal node(s) is marked as visited. It is worth
considering that Dijkstra’s algorithm does not attempt to find the goal node, it
simply attempts to find the best next step and simply stops when it reaches its goal.
The most basic implementation of Dijkstra’s algorithm runs at O(|N |2) where N
is the amount of nodes in the graph. In these basic implementations the nodes are
stored in an array or linked list. In 1984 Michael Lawrence Fredman and Robert E.
Tarjan published the paper Fibonacci Heaps And Their Uses In Improved Network
Optimization Algorithms [6], in which it was proven that the Dikjstra’s algorithm
running time could be reduced to O(|E| + |N |log|N |) where E is the number
of edges in the graph. The Fibonacci Heap is used as a priority queue, meaning a
stack data structure where the elements with the highest priority are retrieved first.
However this is only an improvement over the basic implementation if the amount
of edges out of each node is significantly lower than the amount of nodes in total.

In the research paper The Application of Dijkstra’s Algorithm in the Intelligent
Fire Evacuation System [16] written by X. Yuanzhe et al. Dijkstra’s algorithm is
used in an evacuation system. In the paper they write ”A* algorithm aims to solv-
ing the shortest distance between one point to another. Dijkstra’s algorithm aims
to solving the shortest distance between one point to the remaining points. While
Floyd’s algorithm aims to solving the shortest distance between two of all points
in the network. Thus Dijkstra’s algorithm is one of the best methods for solv-
ing the evacuation safely”. Thus, according to the writers, Dijkstra’s algorithm is
the best suited classic shortest path algorithm and should serve as an appropriate
comparison to ACO.

19

Chapter 3

Solution

3.1 Requirements

The requirements in this project were to simulate a dynamic crisis environment
and to discover whether ant colony optimization would perform better than Dijsk-
tra’s pathfinding algorithm in this environment. The dynamic crisis environment,
the ship models, needs to adequately represent reality. However the models does
not need to be detailed to the point where chairs and people are shown within the
rooms. Passengers will spend a fixed amount of time crossing the different types
of rooms thus defeating the purpose of creating a highly detailed model.

The fire, one of the dynamic elements in the simulation, will be modeled fairly
simplistic. It only needs to create changes in the model, thus forcing the pathfind-
ing algorithms to find new paths, or decide it is best to stay on the current one.
The fire starting will be the first step in the simulation. As the fire grows in size it
will spread faster. It will have to spread faster between floors than along them.

In the simulation all passengers needs to be tracked and accounted for. Addi-
tionally all passengers needs to be able to follow directions. The passengers needs

20

CHAPTER 3. SOLUTION

to follow basic human behavior patterns. For instance they may panic in the face
of danger or start searching for family members, both of which would mean that
the passenger is ignoring directions.

3.2 Implementation

3.2.1 Ship Model

Figure 3.1: A small section of a ship deck

Figure 3.2: The graph representing the ship deck

The ships are created from blueprints from two ships currently in operation,
the Celebrity Xpedition and the Silver Explorer. They are modeled as graphs,
nodes represents rooms and lines represents passages between rooms. Small
rooms are represented by a single node as the layout of the room is fairly sim-
plistic and the time it takes to move across the room is fairly predictable as long

21

CHAPTER 3. SOLUTION

as the room is not crowded. Figure 3.1 shows a section of a ship deck with several
rooms leading out into a hallway connected to a set of stairs. Figure 3.2 shows a
graph representing the same section. It is worth noting that while small rooms can
be represented with a single node the hallway is represented by multiple nodes as
a passenger exiting room 419 is far away from a passenger exiting room 401.

Complex or large rooms are represented by multiple interconnected nodes so
each part of the room can be individually configured to better represent the room.
Rooms like the dining room in the MS Reflection, as seen in figure 3.3, would
need several nodes as the time it takes for the people close to the exit to evacuate
are vastly different from the time it takes for the people sitting in the middle of the
room to evacuate. Figure 3.4 shows a representation of the dining room.

Figure 3.3: The dining room in the cruise ship MS Reflection

All rooms have a few characteristics associated with them. First is the room
capacity, meaning the amount of people that can move across the room before
they start to slow each other down. Second is the chance of death, this number
will change over time as the fire spreads throughout the ship. Third is the type of
room, for instance stairs, hallway, gift shop etc. Fourth is the size of the room,
which in turn will determine the time it takes to traverse the room. Additionally
there are a exit nodes where all passengers gather before lifeboat embarkation.
These are the nodes the algorithms attempts to guide the passengers towards.

22

CHAPTER 3. SOLUTION

Figure 3.4: A simple representation of the dining room of the MS Reflection

It became clear to us that using pathfinding algorithms to find the shortest
route of small vessels were unnecessary as there often would be only a single
route to take and all passengers would be confined to one or two large areas where
personnel easily could guide the passengers to safety. The algorithms are only
helpful given multiple routes and rooms.

3.2.2 Human Behavior

At the beginning of the simulation we assume that all passengers have access to
a smart phone, which will show them the way out, and that they are following
directions. Additionally, no passengers will start the simulation in a panicked
state. However at certain time intervals a check is made to determine whether
a passenger panics or not. Close proximity to fire, a high density of passengers
or other panicked passengers increase the chance that they themselves will panic.
When in a panicked state the passengers run out of the ship the same way they
walked into it. Even if that path is significantly more dangerous.

Passengers with family members onboard the ship can enter a search state
where they walk in a random pattern searching for family members until they
find them, at which point they can resume following directions. The passengers

23

CHAPTER 3. SOLUTION

can spot family members within their own node and any adjacent nodes. Family
members that are not in a search state will also group up if they are within spotting
range. In this case the family member that is further along the escape path will
wait for the other family member to catch up.

Furthermore, family members will stick together and the algorithms will make
no attempts to split up a family and send them in multiple directions. Thus when-
ever a passenger is moved the program checks if a family member is close-by, and
if so they are moved in the same direction.

3.2.3 Algorithms

The simulation starts by igniting between one and three fires. There is a time
delay between the time the fire starts and the time the passengers begins to move.
This delay is meant to account for the time it takes to react to the alarm, retrieve
the smart phone and understand the directions given. Fires spreads faster between
floors than along them. The speed of the fire depends on the ship materials and
access to oxygen, thus we run the simulations with varying speeds to observe
how the algorithms perform. The larger the fire is, the faster it spreads to the
neighboring nodes. Additionally deadly smoke will spread further and faster than
the fires.

When the fire starts either the fire system is able to track the position of the
fire or the electric system have been compromised and the ship is in a dead ship
condition where tracking the progress of the fire is impossible. If there are no
information about the location of the fire then the safest possible route is likely
the quickest one.

Thus we decided upon 2 different possible configurations of the algorithms,
to test if different configurations perform better in different scenarios. First they
can prioritize distance and selecting the shortest path. Second prioritize safety and
then check the distance to the exit. For instance if there are two equally safe paths

24

CHAPTER 3. SOLUTION

then the shortest one is chosen.

The speed of the passengers is based on two factors, the type of room and
the amount of people in the room. Passengers in a crowded flight of stairs will
move significantly slower than a passenger in an empty corridor. These numbers
are gathered from IMO’s estimation on passenger speed during evacuations [2].
Given a node of 3 meter length and a passenger speed of 1 m/s the passenger will
naturally have traversed the node after 3 seconds. It is worth mentioning that the
passenger will not move within the node itself, up to 3 seconds into the simulation
the passenger is located in the initial node and at 3 seconds the passenger is then
moved to the next node.

25

Chapter 4

Results

4.1 Simulation parameters

In the simulations there are several parameters that can be changed and multiple
variables that can have an extreme impact on the simulation. For instance the
fires can cover all exits and end up killing most if not all passengers. Thus each
simulation runs 200 times and we obtain the average results. We found that there
was no significant difference between 200 iterations and 1000 iterations, that can
see in figure 4.1.

The simulations also ran with a set of standard configurations. When the ef-
fects of changing one parameter was tested the remaining ones were kept at a
standard level. The number of passengers was set to the ship maximum number
of passengers used on the ship Celebrity Xpedition was found on Cruisedeckplans
LLC website[4]. The fire on board the ship was set to increase in size and inten-
sity at every second time step, one time step being 1-2 real life seconds. At the
start of the simulations between one and three fires were started.

At each time step ACO released 200 ants per passenger. Each ant held 100

26

CHAPTER 4. RESULTS

Figure 4.1: Comparing 200 iterations to 1000 iterations.

pheromones that it used to mark the paths to the exits. The passengers would use
these new paths. Similarly Dijkstra’s algorithm recalculated a new path for each
passenger at each time step. In some of our simulation a few passenger would
not reach the exits within 300 time steps. However we have cut the graph at 300
time steps, as this would show more details in the graph and the average number
of survivors past 300 did not change.

27

CHAPTER 4. RESULTS

Figure 4.2: Dijkstra and ACO running at each time step.

4.2 Testing

4.2.1 Pheromones in edges

At the beginning of the testing phase we tested whether ants depositing pheromones
in the edges or in the nodes gave the best results. As seen in figure 4.3 tests showed
depositing pheromones in the nodes performed equal to depositing pheromones in
the edges when searching for the safest path, however when ACO was trying to
search for the quickest path depositing pheromones in the edges provided better
results. Thus we decided to keep depositing pheromones this way for all future
tests.

28

CHAPTER 4. RESULTS

Figure 4.3: Taking shortest path with pheromones in edges.

4.2.2 Dijkstra’s algorithm

In figure 4.4 we see the results of running Dijkstra’s algorithm once per passenger
at the start of the simulation and no more as the simulation progressed. When
searching for the safest path we expected that ACO would outperform Dijkstra’s
algorithm, and it did. When Dijkstra’s algorithm could not account for the fire
spreading its performance suffered. When looking for the shortest path, ACO
started out well but Dijkstra’s algorithm caught up after about 110 time steps.
This shows that people are exiting the dangerous area faster with ACO but the
two algorithms performance regarding survivors is almost identical.

In figure 4.2 Dijkstra’s algorithm was run with the standard configurations. It
is clearly seen that Dijkstra’s algorithm selecting the safest path has the best results
overall, however only with a slight margin. If you look at quickest paths only, it

29

CHAPTER 4. RESULTS

Figure 4.4: Running Dijkstra’s algorithm only at start.

is clearly shown that ACO’s passengers are dying more rapidly then Dijkstra’s
passengers. This means that both algorithms are choosing different paths. As the
shortest path is measured in shortest time needed to reach the exit rather than the
shortest distance to exit, it would seem that Dijkstra’s algorithm is more effective
at spreading the passengers than ACO. Additionally Dijkstra’s algorithm is able
to guide passengers to an exit faster than ACO.

What is clear is that selecting the safest path is the best option regardless of
algorithm. This can be attributed to the speed of the passengers and speed of the
fire. If the fire spread was faster and passengers moved slower then the long and
safe path around the fires could lead to the fire spreading to cover the previously
safe path. Which in turn could cause more lives to be lost compared to if they took
the shorter and slightly more dangerous path at the start.

30

CHAPTER 4. RESULTS

Figure 4.5: Simulation with a high panic chance.

4.2.3 Higher chance of panic

When the chance of panic was increased both algorithms struggled more to guide
the passengers to safety, as seen in figure 4.5. Dijkstra’s algorithm had the largest
drop in performance. In general it would seem that taking the shortest path out was
the best solution as it would give the passenger the least amount of time to panic.
When trying to guide the passengers through the longer, and beforehand believed
to be the safest, path passengers would panic and stop following directions before
reaching the exit. It is not shown in this graph but ACO spent aproximately 2400
time steps to guide the passengers out while Dijkstra’s algorithm spent over 600
000 time steps to finish the simulation. While Dijkstra’s algorithm had the best
results of the different configurations when searching for the shortest path it also
had the worst results when searching for the safest path.

31

CHAPTER 4. RESULTS

Figure 4.6: Simulation run with below half passenger capacity.

4.2.4 Varying amount of passengers

In figure 4.6 all the different algorithms performance are similar and they produce
better results when there are less passengers on board the ship. The order of which
algorithm performs the best still remains the same. This is as expected as fewer
passengers means a reduced chance of congestion and panic.

Now in figure 4.7 one can observe a larger difference in performance between
the algorithms and path selections compared to in figure 4.6. This shows that the
more passengers the ships have, selecting the shortest path become less viable.

32

CHAPTER 4. RESULTS

Figure 4.7: Simulation run with over maximum passenger capacity.

4.2.5 Fire spread

In figure 4.8 the speed of the fire was decreased by 150 percent and when compar-
ing the results to those in to figure 4.2 the algorithms performed better. This was
expected as the hazards moved slower than in all the other simulations. It is also
worth noting that when finding the quickest path ACO had the largest increase in
performance, however it is still the one that is the worst off.

In figure 4.9 the speed of the fire was increased by 100 percent and all the
algorithms performed worse. An interesting thing to notice in the graph is that
Dijkstra searching for the shortest path is just as good as ACO searching for the
safest. This shows that when the fire is spreading fast on board the ship it is not a
bad idea to guide the passengers as fast as possible to an exit as most of the escape
routes are likely still viable at the start.

33

CHAPTER 4. RESULTS

Figure 4.8: The effect of slow moving fire.

4.2.6 Second ship: Silver Explorer

The second ship we did simulations on were the Silver Explorer. As we did not
model all the floors for this ship the maximum number of passengers was not
used. We used 60 passengers in this simulation, which was right below half of the
maximum number disclosed on Cruisedeckplans LLC website[4].

The results of this simulation can be seen in figure 4.10 and they were sim-
ilar to the previous simulations, with Dijkstra’s algorithm outperforming ACO
slightly. Differences in performance compared to simulations made on the Celebrity
Xpedition can be attributed to Silver Explorer having a different layout thus war-
ranting a different graph that has a new set of paths.

34

CHAPTER 4. RESULTS

Figure 4.9: The effect of fast moving fire.

4.3 Summary of results

Table 4.1 and table 4.2 shows a summary of the algorithms performance using
different configurations. All the algorithms performed best in the slow moving
fire simulation and they performed the worst in high panic simulation. Selecting
the shortest path resulted in poor performance in almost all situations. This is
natural as several passengers would be lead through dangerous areas regardless
of there being a safer albeit longer path. In situations where the fire, and even
more importantly, the smoke is spreading even faster than in our simulation a
case can be made for selecting the quickest path through a dangerous area that
is not necessarily 100 percent lethal. If the passengers would have to walk large
distances to reach an alternate route fire and smoke could have completely covered
part of the alternate route before the passengers were able to escape.

35

CHAPTER 4. RESULTS

Figure 4.10: ACO and Dijkstra’s performance on Silver Explorer.

ACO always performed well but Dijkstra’s algorithm saved more simulated
passengers in general. This is somewhat expected. Considering performance as a
combination of computational time and results there is a case to be made for ACO
as a superior algorithm in this case. While we have only looked at the survivors in
our simulations it is well known that ACO, correctly configured regarding amount
of ants, is the faster algorithm. And there is no denying that getting the directions
to the passengers quickly is of the utmost importance in an evacuation.

36

CHAPTER 4. RESULTS

Table 4.1: Survivors of safest path
Case ACO Dijkstra

Standard configuration 122,19 - (87%) 126,53 - (90%)
Slow fire 129,63 - (92%) 132,37 - (94%)
Fast fire 98,85 - (71%) 106,12 - (76%)

High panic 57,34 - (41%) 65,88 - (47%)
Dijkstra only at start 120,42 - (86%) 116,44 - (83%)

Pheromones stored in edges 122,31 - (87%) 125,25 - (89%)
50 Passengers 42,47 - (85%) 43,00 - (86%)

200 Passengers 166,68 - (83%) 173,30 - (87%)
Silver Explorer 52,96 - (88%) 56,70 - (94%)

Table 4.2: Survivors of shortest path
Case ACO Dijkstra

Standard configuration 103,54 - (74%) 117,14 - (84%)
Slow fire 119,30 - (85%) 124,31 - (89%)
Fast fire 74,19 - (53%) 99,39 - (71%)

High panic 70,58 - (50%) 90,24 - (64%)
Dijkstra only at start 109,52 - (78%) 110,84 - (79%)

Pheromones stored in edges 106,58 - (76%) 117,80 - (84%)
50 Passengers 39,57 - (79%) 41,91 - (83%)

200 Passengers 143,19 - (71%) 152,45 - (76%)
Silver Explorer 45,26 - (75%) 47,87 - (80%)

37

Chapter 5

Conclusion and further work

5.1 Conclusion

The goal of the project was to both simulate a crisis on board a ship and find safe
passage of the ship for the passengers. Our focus was on an Ant Colony Op-
timization pathfinding algorithm which performance was measured against Di-
jkstra’s pathfinding algorithm. The algorithms were tested in a dynamic crisis
environment where passengers could panic, fire could spread and high occupant
density could hamper movements. We worked on a solution where the ships were
modeled as graphs with nodes representing rooms and edges representing transi-
tions between rooms. At the start of the simulation fire would break out and it
would spread at an increased rate as time passed. Basic human behavior was im-
plemented by giving each passenger an increased chance to panic when in close
proximity to danger or other panicking passengers. Additionally family members
would stick together and the system would make no attempts to send them in
different directions.

The simulations showed that in small graphs Dijkstra’s algorithm would per-
formed better. The time it takes for ACO to calculate a safe passage is tied to

38

CHAPTER 5. CONCLUSION AND FURTHER WORK

the amount of ants the algorithm runs, and a certain amount of ants is necessary
to ensure a good result. Thus Dijkstra’s algorithm is both faster and saves more
lives in a simulation using a small graph. In larger graphs ACO is expected to
perform faster than Dijkstra’s algorithm as the increasing number of edges and
nodes should impact Dijkstra’s algorithm more than ACO.

As the project is over we can state that the it met the requirements. The al-
gorithms were tested under the conditions that were planned and produced good
results. The system is not ready for deployment but it does show that there are
benefits to such a system if it were completed. ACO performed well under certain
conditions and could be used as the pathfinding algorithm in a future system.

5.2 Further Work

As stated in the introduction, the goal of our work was not to create a fully func-
tional system, one that could be deployed in a real crisis. To do so one would need
to expand upon our solution. First the system would need to be able to identify
all phones in the crisis area. This is necessary to both be able to identify which
phone to send directions to and to track the movements of all passengers. The
movements of the passengers would be tracked using the GPS in the phone. Sec-
ond the system needs to be able to send directions to the phones. One can not
expect every passenger to install an app, thus the system would need a way to take
over the phone and show the image of the escape route.

Third the system would need a way to alert all passengers that evacuation
routes will be sent to their phones. For instance by displaying messages on TV
screens and announcing it over the ships audio systems. In case of electric failure
the TV screens and audio system would need to have backup batteries. Fourth,
not all passengers carry smart phones thus the system should send the directions
to one phone and have the owner guide the surrounding passengers. In the case
where there are passengers that are not carrying a smart phone the system would

39

CHAPTER 5. CONCLUSION AND FURTHER WORK

need an alternate way of tracking passengers, possibly by using on board cameras.

Fifth the system needs would need a database of all ship models. This could
be done by creating a parser that transforms ship blueprints into graphs. Any com-
pany that wished to have this evacuation system installed would have to submit
blueprints of their ships. Sixth the system would need to calculate the routes as
fast as possible and as safe as possible. This could be solved by a combination
of using massive computer power, optimizing the algorithm and spending a finite
amount of time calculating each route.

40

Acknowledgements

We would like to thank our supervisors Morten Goodwin and Ole-Christoffer
Granmo. They have provided us with motivation, smart suggestions and con-
structive feedback whenever we have needed it. Without them this project would
not have been completed.

41

Bibliography

[1] “Interim guidelines for evacuation analyses for new and existing passenger
ships,” June 2002, pp. 4–5. [Online]. Available: http://www.imo.org/blast/
blastDataHelper.asp?data id=5333&filename=1033.pdf

[2] “Interim guidelines for evacuation analyses for new and existing passenger
ships,” June 2002, pp. 6–7. [Online]. Available: http://www.imo.org/blast/
blastDataHelper.asp?data id=5333&filename=1033.pdf

[3] (2006, Feb.) Sub-committee on ship design and equipment (de).
The International Maritime Organisation. [Online]. Available: http:
//www.imo.org/blast/mainframe.asp?topic id=107&doc id=6173

[4] (2013, May) Cruisedeckplans LLC. [Online]. Available: http://www.
cruisedeckplans.com

[5] M. Dorigo. (1992) Distributed optimization by ant colonies. Politecnico di
Milano. [Online]. Available: ftp://iridia.ulb.ac.be/pub/mdorigo/conferences/
IC.06-ECAL92.pdf

[6] M. L. Fredman and R. Tarjan, “Fibonacci heaps and their uses in improved
network optimization algorithms,” in Foundations of Computer Science,
1984. 25th Annual Symposium on, 1984, pp. 338–346.

[7] M. Goodwin, O.-C. Granmo, J. Radianti, P. Sarshar, and S. Glimsdal, “Ant
colony optimisation for planning safe escape routes,” in Recent Trends in
Applied Artificial Intelligence, ser. Lecture Notes in Computer Science,
M. Ali, T. Bosse, K. Hindriks, M. Hoogendoorn, C. Jonker, and J. Treur,
Eds. Springer Berlin Heidelberg, 2013, vol. 7906, pp. 53–62. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-38577-3 6

42

BIBLIOGRAPHY

[8] O.-C. Granmo, J. Radianti, M. Goodwin, J. Dugdale, P. Sarshar, S. Glimsdal,
and J. Gonzalez, “A spatio-temporal probabilistic model of hazard and
crowd dynamics in disasters for evacuation planning,” in Recent Trends
in Applied Artificial Intelligence, ser. Lecture Notes in Computer Science,
M. Ali, T. Bosse, K. Hindriks, M. Hoogendoorn, C. Jonker, and J. Treur,
Eds. Springer Berlin Heidelberg, 2013, vol. 7906, pp. 63–72. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-38577-3 7

[9] J. Hall. (1999, Oct.) Testimony of jim hall. National Transportation
Safety Board. [Online]. Available: http://www.ntsb.gov/news/speeches/hall/
jhc991007.htm

[10] E. Kuligowski, “Predicting human behavior during fires,” Fire Technology,
vol. 49, no. 1, pp. 101–120, 2013. [Online]. Available: http://dx.doi.org/10.
1007/s10694-011-0245-6

[11] T. J. Misa and P. L. Frana, “An interview with edsger w. dijkstra,”
Commun. ACM, vol. 53, no. 8, pp. 41–47, Aug. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1787234.1787249

[12] X. Pan, C. S. Han, K. Dauber, and K. H. Law, “A multi-agent based
framework for the simulation of human and social behaviors during
emergency evacuations,” AI Soc., vol. 22, no. 2, pp. 113–132, Oct. 2007.
[Online]. Available: http://dx.doi.org/10.1007/s00146-007-0126-1

[13] N. Pelechano and A. Malkawi, “Evacuation simulation models: Challenges
in modeling high rise building evacuation with cellular automata
approaches,” Automation in Construction, vol. 17, no. 4, pp. 377 – 385,
2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0926580507000908

[14] M.-I. R. Sol Ha, Nam-Kug Ku and K.-Y. Lee, “Cell-based evacuation
simulation considering human behavior in a passenger ship,” Ocean
Engineering., vol. 53, pp. 138–152, Oct. 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0029801812001801#

[15] C. Wang, C. Li, Y. Liu, J. Cui, and T. Zhang, “Behavior-based simulation
of real-time crowd evacuation,” in Computer-Aided Design and Computer
Graphics (CAD/Graphics), 2011 12th International Conference on, 2011,
pp. 456–461.

43

BIBLIOGRAPHY

[16] Y. Xu, Z. Wang, Q. Zheng, and Z. Han, “The application of dijkstra’s al-
gorithm in the intelligent fire evacuation system,” in Intelligent Human-
Machine Systems and Cybernetics (IHMSC), 2012 4th International Con-
ference on, vol. 1, 2012, pp. 3–6.

[17] J. Yang and Y. Zhuang, “An improved ant colony optimization algorithm
for solving a complex combinatorial optimization problem,” Applied Soft
Computing, vol. 10, no. 2, pp. 653 – 660, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1568494609001586

[18] L. Yang, D. Zhao, J. Li, and T. Fang, “Simulation of the kin behavior in
building occupant evacuation based on cellular automaton,” Building and
Environment, vol. 40, no. 3, pp. 411 – 415, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0360132304002082

[19] C.-L. C. Ying-Tung Hsiao and C.-C. Chien, “Ant colony optimization
for best path planning,” ISCIT., vol. 26, no. 29, pp. 109–113, Oct.
2004. [Online]. Available: http://gdauto.gdut.edu.cn/lab1/lwfy files/Ant%
20colony%20optimization%20for%20best%20path%20planning.pdf

44

