
This Master’s Thesis is carried out as a part of the education at the

University of Agder and is therefore approved as a part of this

education. However, this does not imply that the University answers

for the methods that are used or the conclusions that are drawn.

University of Agder, 2012

Faculty of Engineering and Science

Department of Information and Communication Technology

Parents Controlled Home Internet Cafe

Prototype of Openwrt based parental control system and web user
interface design in home use router

Yunpeng Han

Supervisor
Frank Reichert

Abstract

In this report, we will present our design, implementation and testing of a router based parental

control system named as ’Home Internet cafe’. The prototype is based on the OpenWrt firmware.

We research the state of the art of parental control system to get a solution fit our requirements most.

A design life cycle is provided for user interface design of our system from paper prototype design to

web page interface mock-up prototype design, then interface building during system implementation

using Html. The key functions of our system are programmed in Javascript, C and Shell script.

Our implemented system provide new features include home user identification system, total time

limitation functionality and user friendly interfaces. With the performance evaluation we find that

the booting and processing time is harmed by our more complex algorithm, while our system can

still provide normal Internet speed to our uses.

Preface

This report is my master thesis for the conclusion of my Master project on the ”Parents Controlled

Home Internet Cafe” topic. I obtained a rich and varied experience during this master program.

During the project work, there are successes and failures, passion and depression, ideas and prob-

lems. All these different occurrences made me gain new skills, learn new knowledge and find new

possibilities in myself. And now they have become my best memories. Also I really appreciate the

many people who helped me at the project.

I would firstly thank my supervisor, Frank Reichert. He gave me smart advice and new view-

points based on my thesis work. At the same time, he taught me lots of things related to the research

methods and principles of project work. I got lots of new research and work skills from him which

are helpful to my thesis work and also to my future research works.

I also want to extend my gratitude to people working in RedRock AS company, Christoffer

Jorgenvag, Eirik Vika and other kind men. They gave me many useful suggestions and provided

user testing for my designed interface and implemented system. Also they provided me with a very

friendly, comfortable workplace in their company with nice atmosphere of programming.

Finally I would thank all other people who helped me during my master thesis. Without all your

supports, I won’t finish my implementation work and report as good as this presented one.

Grimstad, May 27, 2012

Yunpeng Han

Contents

Contents

List of Figures

List of Tables

1 Introduction 1
1.1 Background . 1

1.1.1 Concept of home Internet cafe . 1

1.2 Motivation . 2

1.2.1 Parents’ Demand of Functionalities . 2

1.2.2 Limitations of Ordinary Routers . 3

1.2.3 Unfriendly User Interface . 3

1.3 Goal and Approach . 3

1.4 Plan of Development Process . 4

1.5 Method . 5

1.6 Report outline . 6

2 State of the Art 7
2.1 Access control features . 7

2.2 Parental control solutions . 8

2.2.1 Control systems in devices of target users 8

2.2.2 Control systems in device of the handler 8

2.2.3 Control systems in router . 8

2.3 Comparison and Discussion of different Solutions 10

3 Proposed Solution 12
3.1 Proposed solution . 12

3.2 Discussion of design issues . 13

3.3 User interface design . 14

3.3.1 Principle of interface design . 14

3.3.2 Interface design life cycle . 16

CONTENTS

3.4 Usability testing with user feedback . 17

3.5 Implementation plan . 19

4 Implementation 20
4.1 Firmware and devices . 20

4.1.1 OpenWRT firmware and router structure 20

4.2 Basic Implementation with existing features . 21

4.2.1 The development environment . 21

4.2.2 Check out and build from code . 22

4.2.3 Firmware upgrade and router recovery . 22

4.2.4 Key files related to user interface . 26

4.2.5 Implementation result . 28

4.3 Key functionality design . 28

4.3.1 UCI system and UCI related functions . 28

4.3.2 Time restriction system . 32

4.3.3 Code Identify System . 36

4.4 Debug tools . 40

4.4.1 Javascript lint . 40

4.4.2 Firebug . 41

5 Result and Testing 44
5.1 User Interface overview . 44

5.2 Performance evaluate . 48

5.2.1 Router booting time . 48

5.2.2 User settings operation time . 48

5.2.3 Download/Upload speed . 49

6 Conclusion and further work 50
6.1 Conclusion . 50

6.2 Discussion and contributions . 51

6.2.1 System advantages . 51

6.2.2 System disadvantages . 52

6.3 Further work . 52

6.3.1 Advanced useful functions . 52

6.3.2 Continuing interface improvement . 53

6.3.3 Better system performance . 53

Bibliography 54

Appendices 56

CONTENTS

A. Source code 57

B. Abbreviations 58

C. Mock-up interface prototype 59

D. Paper prototype 67

List of Figures

1.1 Home local area network with a router . 2

1.2 The timetable of thesis . 5

2.1 The control panel of Safe eyes [15] . 9

2.2 The control panel of D-Link router [6] . 9

2.3 The control panel of DD-WRT [8] . 10

3.1 Router based system structure . 13

3.2 User interface design life cycle . 16

3.3 A sample page of the interface design paper prototype 17

3.4 Mock-up user interface page . 17

4.1 Implementation scenario . 21

4.2 Building process in Ubuntu . 23

4.3 Firmware upgrade . 23

4.4 Upgrade OpenWrt firmware with Gargoyle interface 24

4.5 Router recovering using telnet . 25

4.6 Firmware update using tftp method . 26

4.7 Relationship of different programming code . 27

4.8 Web user interface after simple test implementing 28

4.9 Packets go through chains of Iptables . 33

4.10 Time restriction chains and rules in FORWARD filter 34

4.11 Time restriction setting interface . 35

4.12 Code identify system authentication process part1 37

4.13 Code identify system authentication process part2 38

4.14 Debug using the error alert of Javascript lint . 41

4.15 Html/css debug of our login page using Firebug 42

4.16 Document object model debug of our login page using Firebug 43

4.17 Javascript debug debug of our login page using Firebug 43

5.1 Welcome page of home Internet cafe . 44

5.2 Home user login page . 45

LIST OF FIGURES

5.3 Notification for wrong home user or get blocked 45

5.4 Home user management interface page . 46

5.5 Home user status table . 46

5.6 Parent interface to edit and create home user . 47

5.7 Parent interface to edit and create home user . 47

5.8 Home user time restriction settings . 47

5.9 Result diagram of the Internet speed test . 49

6.1 Comparison of Openwrt and Home Internet cafe time restriction interface 52

List of Tables

5.1 Booting time of different router firmwares . 48

5.2 User settings operation time of different router firmwares 49

5.3 User settings operation time of different router firmwares 49

Chapter 1

Introduction

1.1 Background

Electronic products have become an important part of people’s daily life since the early 2010s. We

are able to access the Internet whenever our devices can receive the wireless signals, both outside

and at home. In home use cases, family members may have several devices to access the Internet:

smartphones, tablet personal computers, laptops and desktop computers. The most common solu-

tion for family members to share Internet access with the only Internet interface at home is building

up a home local area network with the help of a router. With most of home Internet devices work in

wireless model, wireless routers are widely used to perform functionalities as wireless access points

and network switches. Family members’ devices and the router form a centralized server-based ser-

vice model, as shown in Figure 1.1. It means that the one who control the router as the centralized

server can handle the Internet use of the all Internet devices as clients. And this Internet access

control is considerably in demand of family users like parents.

1.1.1 Concept of home Internet cafe

Internet cafe [23] is a common concept in modern daily life well known as a place which provides

internet access to the public, usually for a fee. As the fee for using a computer is usually charged

as a time-based rate, the management of timing and access control is very important in an Internet

cafe. Computers in Internet cafe serving customers are client machines connected to server in the

cafe and share the Internet access from the server. Local area network model in Internet cafe is

similar to the wireless local area network in a family using router to combine different devices. So

we can build up a home Internet cafe with the access control management consulting the working

model of public Internet cafe, of course without the fee for using Internet.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Home local area network with a router

1.2 Motivation

We have mentioned that family members can easily access Internet with their own devices through

the router. Nowadays many children in the family own electronics products. As children like to surf

Internet at late night and play on-line games, parents often worry about their health getting harmed

by staying up till midnight, watching the screen for too long and staying in the room without exercise

outdoors. Therefore parents require a method to control family members’ Internet usage. All routers

sold have access control functionalities. But it’s hard for most parents to understand how to control

their children’s Internet access via IP or MAC addresses in cases they lack the necessary IT skills.

There are some third party parent control applications friendly to Internet illiterates. But many of

them are charged for fees and need to be implemented in children’s devices. Considering these

limitations, a free and user friendly Internet access control system will be very helpful to parents.

So we decide to build up a system like this. Since the system works similar to a Internet cafe at

home, we name it as ’Home Internet cafe’.

1.2.1 Parents’ Demand of Functionalities

Since our task is to set up home Internet cafe functions that help one to easily manage the family

members’ use of the Internet, mainly considering the demand of parents to control their children’s

use of the Internet, the management should contain:

• Set up the days that an appointed user is allowed to access the Internet

• Set up the time in a day when an appointed user is allowed to access the Internet

2

CHAPTER 1. INTRODUCTION

• Set up the total Internet access limitation time of target user

• Block some services like catch P2P protocols or block access to Xboxlive

• Website blocking by URL Address or Keyword

Let’s suppose a scenario for access control in a family with two children. Children have to go

to school during workdays so parents hope they can go to bed early at night. Therefore to stop the

children from playing online games or surfing the Internet late, their Internet access will be shut

down after 21:00 and activated next afternoon when children arrive home. During weekends and

holidays, another rule will be used which blocks children’s use of Internet between 00:00 am and

6:00 to avoid them stay up late till midnight.

1.2.2 Limitations of Ordinary Routers

As devices in family all connect to router and share the Internet access from the router, it is sim-

ple and efficient to implement our home Internet cafe controller inside the router. Routers sold in

the market usually have their own control panels developed by the companies. But these control

panels only contain basic access restrictions like block/allow Internet access by media access con-

trol (MAC) address without functions we expected. To improve the services and functionalities of

routers to support our implement of home Internet cafe, we can ask for help from third party devel-

oped firmware for home used routers to add features for access control and other more functions.

1.2.3 Unfriendly User Interface

The user interfaces of normal routers are usually provided as web interfaces where users can login

via username and password and configure many different user settings. And many configuration op-

tions are not friendly for users lacking of Internet knowledge. For example, many systems require

users to type target mac address or ip address ranges when set up rules for time restrictions. In our

home Internet cafe system we plan to provide a graphical user interface (GUI) with basic settings

typed and advanced functions operated via simple buttons and checkboxes instead of choosing or

typing different complex settings requiring Internet skills. Then we can make it possible for com-

puter beginners to operate easily by clicking their mouses to handle our home Internet cafe system.

1.3 Goal and Approach

Our main goal in this thesis is to design a user friendly Internet access control system for family

users, named as home Internet cafe. We will compare different solutions with existing access control

technologies to figure out which is the best and design our system based on the chosen technology.

3

CHAPTER 1. INTRODUCTION

After that we will design our user Interface via paper prototype and mockup tools and have the

interface tested by different users to improve the usability and make it more user-friendly. Then we

will turn the proposed solution and designed interface into an application system with a web inter-

face. During this task we will write our own code to contribute more access control functionalities

for home users under the opensource firmware. After the system is built, we will have it tested by

different users and try all developed functionalities to prove that the system fit the requirement and

then measure its performance.

1.4 Plan of Development Process

Our main task in this thesis is to develop a home Internet cafe system with a graphical user in-

terface for users to operate the routers and set the parameters for different Internet access control

functionalities. We can separate this task into the following steps:

1. Start our work with viewing the state of the art of different parent control systems to find out

the importance of different parents requirements and choose the solution that fit our design

issues most.

2. Design the system structure based on the solutions we found and figure out the existing fea-

tures and the features to add. Design related functions and algorithm to realize the new

features.

3. Design the user interface in two steps from paper prototype to web interface mockup. In each

step we invite several users to test the interface usability, get the feedback and improve the

interface.

4. Read the code of the opensoure software router firmware and list out the access control func-

tions in the software and the functions required but not realized in the software. Then add

new modules based on the current firmware to implement new access control functions for

home Internet cafe.

5. Add new configurations of new functions developed in the target firmware’s control panel

through web browser. Check how are the commands and data sent and received between de-

vices and routers and verify the interfaces used during the configuration. This is a preparation

for developing a new graphical user interface as an application in new operating system.

6. Start the programming using several programming languages with the different application

development tools to build an application as a GUI with the template user interface designed

to operate the routers. The user interface built should be user-friendly to ordinary people with

less IT knowledge.

4

CHAPTER 1. INTRODUCTION

7. Implement the developed system as a firmware for routers. Have the systems web interface

and the access control functions validated in the real use cases and check their performance.

We combine the system design and implementation work and report writing work to make a

time table for our thesis shows in Figure 1.2.

Figure 1.2: The timetable of thesis

1.5 Method

Different methods are used in each step of our thesis work. In the user interface development part,

we first use paper prototype to design the interface and then turn the improved interface into web

pages for operator to test via mockup tool Pencil Project [22].

Our goal is to implement a new system in home user router to provide different functions for

parent users. The router we choose for implementation is a Linksys Wireless-G broadband router

WRT54GL v1.1 [6]. And we use OpenWrt [19] as the basic opensource firmware to develop func-

tions and add features. The OpenWrt firmware code is checked out and compiled under Ubuntu

11.04 linux operating system. Then we design functions and build user interface using several pro-

gramming languages including C, Javascript, html and shell script. During the development we use

debug tools like online syntax check tool ’Javascript lint’ [25] and web page debug tool ’Firebug’ in

the Firefox browser [17]. We combine these tools to reach our goal of a home Internet cafe system

design and implementation.

5

CHAPTER 1. INTRODUCTION

1.6 Report outline

The rest of the report is organized as follow:

In Chapter 2, we introduce the state of the art in parental control system with different solutions

implemented in different family users’ devices. We make comparison among different solutions to

find advantages and disadvantages of them.

In Chapter 3, we make argument about why we choose the router based system as our solution.

Then we discuss our design issues, especially our user interface design method. Also we give out

the implementation plan.

In Chapter 4, we show our implementation works in details step by step from basic imple-

mentation to key functions design. And the debug tools are also introduced since debugging is an

important part of implementation.

In Chapter 5, we provide the overview of user interface containing most of the key functions.

Some testing data is present in this chapter as performance evaluation results.

In Chapter 6, we make conclusion about our final system. The advantages are discussed to show

our contribution. And the disadvantages are discussed to give prospects for further works.

6

Chapter 2

State of the Art

In this chapter we will introduce different solutions for parent Internet control including normal

routers control panels, related third party router firmwares and some commercial parental control

products. The introduction and comparison will state the advantages and disadvantages to help us

come up with a solution fit the requirement most.

2.1 Access control features

Our task is to set up home Internet cafe system that help one to easily manage the family members’

use of the Internet. Parental controls contain main features like content filters, usage controls and

monitoring. Mainly considering the demand of parents to control their children’s usage of the

Internet, the management in our system should contain:

• Confirm and control users’ Internet access directly

• Set up the time when an appointed user is allowed to access the Internet

• Configure time limits for Internet usage

• Block selected Internet services

• Web sites blocking

These functionalities are realized by different parental control systems in different ways. But

some systems mainly focus on one functionality. Some systems are well built with all functions but

they charge for fee. We will introduce these different systems in the following section.

7

CHAPTER 2. STATE OF THE ART

2.2 Parental control solutions

To realize the web sites blocking and usage management, it is common to use filters for web sites and

services blocking and use timepieces for time limitations. We will introduce different applications

and systems grouped by where their filters and timepieces located.

2.2.1 Control systems in devices of target users

Many parental control systems are implemented in target users’ devices. These systems ranges from

web browsers, programs to operating systems itself.

We know operating systems like Mac OS X, Windows 7 and some Linux versions all have built-

in parental control features. With different authority between administrator account and normal

accounts in OS, it is convenient in cases that parent and children share the same computer.

Also web browsers have parental control plugins, like Glubble[24] for Firefox. And there are

web browsers specially developed for children like Buddy Browser[5], KidZui[16]. Also in mobile

devices like iPhone and iPad, we have special browser like SurfBalance[1]. These browsers can

provide web site filters and time limitation functions during Internet surfing, but only if they are

used as the surf tools.

2.2.2 Control systems in device of the handler

Many third party programs are developed to provide parental control installed at user side, but most

of them have a server side in parents’ devices. Famous applications like Safe Eyes[15], Norton

Online family[27] and Net Nanny[7] all work in server and clients mode in which parents’ devices

act as server side and give out license for client devices with content analyzed and blocked in real

time. And parents can get report of the actions done by client users if usage monitoring functions are

contained. Mobile devices have similar applications like Watchdog[10] and safeeyes mobile. Note

that some parental control systems give out notification for client users telling them the Internet

usage is limited. And some systems do it in stealth mode, mainly when monitoring functions are

active. Figure 2.1 shows the control panel of safeeyes.

2.2.3 Control systems in router

As we mentioned, routers are widely used in homes. With certain IT skills, parents can customize

Internet usage by deploying self-configured routers.

Basic router functions

Most routers selling in the market provide functionality of access restrictions. The figure 2.2

8

CHAPTER 2. STATE OF THE ART

Figure 2.1: The control panel of Safe eyes [15]

shows a router control panel of D-Link DI-614+ Wireless Router. The firewall rules used to allow

or deny traffic passing through the router can be used for usage management for appointed user.

But it only works when every user in the WLAN has static IP address based on MAC address. This

condition need more configuration and some IT skills.

Figure 2.2: The control panel of D-Link router [6]

Advanced third party firmwares

There are several third party firmwares for routers developed by groups other than the manu-

facturer of those products. And these firmwares extend new functionalities for home use routers

9

CHAPTER 2. STATE OF THE ART

and make it easy to use for ordinary people with new friendly control panels. Famous third part

firmwares are OpenWrt [19] , DD-WRT[9], DebWRT and others. We will introduce DD-WRT as it

is well developed and is provided as an open source project.

DD-WRT is a third party developed firmware released under the terms of the GPL for many

ieee802.11a/b/g/h/n wireless routers based on a Broadcom or Atheros chip reference design. The

firmware is maintained by BrainSlayer and is hosted at dd-wrt.com. The first versions of DD-WRT

were based on the Alchemy Firmware from Sveasoft Inc, which is in turn based on the original

GPL’d Linksys firmware and a number of other open source projects [9].

DD-WRT offers many advanced features not found in the OEM firmwares of those routers.

Figure 2.3 shows the control panel of DD-WRT in the access restriction part. Users can directly set

rules for appointed users by operating with Mac addresses and rules are easily added on the panel.

However users still need basic IT skills.

Figure 2.3: The control panel of DD-WRT [8]

2.3 Comparison and Discussion of different Solutions

Different solutions exist aimed at parental control with web sites blocking and usage controls as

we introduced above. They have different principles and appear as different applications located in

different devices. To propose our own solution for home Internet cafe, we compare these different

solutions for later reference.

For the parental control functions implemented in the operating systems, they mostly work in

cases that parent and children share the same computer. Nowadays family members all have their

own devices. Children will revolt against the one who set an administrator account in their devices

to restrict their usage. And it is easy to avoid the control by re-installing the operating system or

using another operating system. The situation is the same for specially designed web browsers. To

10

CHAPTER 2. STATE OF THE ART

bypass these application we just need to use a different browser. So these two solutions only fit

the requirement for parents who have very young kids and want to protect them from unintentional

wrong Internet usage.

Those third-party systems specially designed for parental control have much better perfor-

mances. No matter working in server-client model or implemented in target users’ devices, These

control systems are hard to bypass as some special features are designed against bypassing. The

same way to bypass these systems is choose an alternative operating system without them. Also

proxy servers are used if website block is realized by URL blocking. For these solutions, some peo-

ple may feel it annoying to see the notification of the parental control system like ”you are currently

under the watching of safeeyes!”. While they also will get angry if they find themselves monitored

by stealthy programs.

The systems implemented in target devices are user-friendly for users lack of IT skills to con-

figure and operate. That is because they are specially designed to fit parent users’ requirement in

Internet usage management. While for access control solutions realized by routers, they are always

designed as additional functions which have to give way to the main process of routers as forwarding

data packets. As advanced settings, most router control panels are not so user-friendly to Internet

illiterates in the access restriction configuration part. And most access restrictions in routers provide

less functions which can’t fulfill different Internet usage management requirements.

On the other hand, access restrictions realized in the router side do not effect by target user’s

system environment. It means that people have less ways to bypass the access control in the router

side with limited authority. Also as the routers handle all devices’ Internet access, the configuration

of access restriction is more convenient and there is no need to install and update software in all

home devices.

11

Chapter 3

Proposed Solution

We have presented our requirements and discussed the existing solutions with advantages and dis-

advantages above. In this chapter we will propose our solution and explain the design in details.

3.1 Proposed solution

Our goal is to design a parent controlled home Internet cafe system. As we have compared different

kind of existing parent controlled Internet usage management system, we can find that to propose a

router based system is the best choice. The router based system will have the following advantages:

• As a true router-based solution, nothing is needed to be installed on users’ computers.

• The system can control all computers in home network.

• User can set up time limit of Internet use for different home members with different rules

separately and conveniently.

• The system is OS independent that works on both Windows, Linux and Mac OS.

• This is a free user system. We don’t need to pay for it.

Our router based system is shown in Figure 3.1. Data packets sent from Internet or home users

are managed by the filter in the router based on the pre-set rules. If the packet is sent from/to a

user blocked at current time or using a blocked protocol , it will be dropped. Otherwise it will be

forwarded to its target through the router.

What’s the key functionalities for parent controlled home internet cafe? We should always

remember to focus on the Internet user management part. In our design, the system has a parent

account, which takes the role of normal administrator. The parent account can set router features,

12

CHAPTER 3. PROPOSED SOLUTION

Figure 3.1: Router based system structure

change different settings and the most important: handle the Internet usage of all hosts connected to

the router. We introduce new features such as Internet code and family user. Internet code and family

user are introduced to make parent account easier to manage the whole Internet. Family member

use an Internet code given by parent account to access the Internet through the router, which make

their devices attached to the user data stored in the system. By setting rules based on the Internet

code related to home member, parent account can easily manage the Internet use of different home

members regardless of what devices target users are using in case that they have several devices.

3.2 Discussion of design issues

Although we decide to develop a router based system for home Internet use control, it is totally

impossible to build a whole new firmware with drivers, linux kernel and user interfaces all built by

ourselves. Instead, we will work on improving existing firmware, designing a user friendly interface

for it and adding new management features that parents need.

Normal router firmwares provided by company usually have user interface that is easy to use

but with less advanced features. In the other hand, there are many third party firmwares providing

13

CHAPTER 3. PROPOSED SOLUTION

interesting and useful functionalities, but their interfaces are usually complex. In our case for the

implementation, as third party firmwares can provide more features we need and since they are open

source which can be easier to access and modify, we decide to design our solution based on a third

party firmware.

At first we consider DD-WRT [9] as introduced in section 2.2.3. It is a really good firmware

providing many advanced functionalities. However, the source code of the user interface part in

DD-WRT is protected from full edit to avoid people from re-banding the firmware to sell it. As

one of our purpose is to provide user friendly user interface for people lack of IT skills, We need to

design new user interface. It makes DD-WRT not available for implementation.

Later we go to OpenWRT [19], whose web interface is fully editable. As a router firmware

OpenWRT has less features than DD-WRT but those features are enough to implement our solution

for normal family use. OpenWRT is a Linux distribution for router and works with thousands of

features based on different software packages freely chosen by users. The web interface is also

realized via software packages and we have 3 different choice:

• LuCI: written in Lua(programming language)/Shell(for linux)

• X-WRT: written in HTML(programming language)/Shell(for linux)

• Gargoyle: written in Javascript(programming language)/Shell(for linux)

As both the three packages can provide user interface, we pick Gargoyle [11] as the base struc-

ture for our implementation as we are familiar with Javascript.

3.3 User interface design

After decide the basic firmware to use, the next task is the user interface design. As our target is not

only to provide a system with advanced features fit for family use but also user friendly interface

for normal users. It is very important to provide a well designed user interface to satisfy users and

facilitate easy usage.

3.3.1 Principle of interface design

Before we start our work of user interface design, it is very important to understand what features

should a real user-friendly interface provide to users. Steve Krug wrote in his book ”Don’t make me

think: A common sense approach to web usability” [26] that web interface designer should provide

user a interface that users can ”get it” -What it is and how to user it- without expending any effort

thinking about it. It means that our goal is to make each interface page to be self-evident, so that

14

CHAPTER 3. PROPOSED SOLUTION

the average user will know what it is and how to use it by looking at it. Based on this key issue, we

should work on many principles when design a user-friendly interface:

Think as a user when design

We always want to design interface with much details and give out all information user may need

to help them operate the system. We might create lots of buttons with descriptions and different

enable boxes or provide other choose methods and hope they can cover all user needs and make

it easy for the user to browse. But the fact in life is that users always operate the interface in a

different way as we thought. Most users don’t have the patience and know that they don’t have to

read everything in the interface page. It makes descriptions not that helpful. Also users make out

choice directly when they think it will be helpful. The choice may not be the optimal one as users

won’t view all available options and pick out the best one. It makes lots of options cover all user

needs confusing to users in some cases. Also users always muddle through when they can’t figure

out how things work. They don’t care how target function works and may always do things beyond

designers’ intention. All these user behaviors are common during interface usage and should be

considered during interface design to avoid useless or confusing features for users added. When

designing a interface, we should think as a user to fit to his way of operating the interface instead of

as a designer intending the user to do specific operations.

Provide a clear visual hierarchy

When think as a user we know that user always go through interface fast just to find things

they interest in, so we should provide a interface page with all of the visual options and features

displayed clearly with their relationships accurately presented. Users should then be able to pick

out options they need fast and understand which things are related and which things are contained in

other things. That is, we should provide a clear visual hierarchy. Marking more important options

with more prominent fonts and colors, showing logically related features with related visual styles

and combining things as nested to show what’s part of what are all useful principles for this work.

Divide interface into clearly defined areas

We save users’ time by dividing page into clearly defined areas to allow them to decide which

areas to focus on and which areas they can ignore. With prominent area information users can

decide very quickly which parts of the page are likely to have useful information for them and also

avoid confusions.

Make operate options obvious

Users always look for the next thing to click or choose when they find things interested. It’s

very important to make it obvious what is clickable. When provide functions or links to users, it

is better to provide via clearly marked clickable buttons, checkboxes or other symbols than to use

clickable highlight or colorful text or pictures with some notifications inviting users to click.

15

CHAPTER 3. PROPOSED SOLUTION

3.3.2 Interface design life cycle

After we get the basic idea of Home Internet cafe, we need to design our user interface. We only

know that parents need a user friendly interface to operate the system to manage their family mem-

bers’ Internet use. To gain user expectations for understanding the necessary of different function-

alities and to get user experience and user acceptance for the to be built user interface, we need a

more practical design life cycle instead of describing how the interface looks like by language and

then directly going to programming part. The design life cycle is shown in Figure 3.2.

Figure 3.2: User interface design life cycle

To provide a practical interface design life cycle, we introduce the paper prototype to start our

design. To make paper prototype, we give out many pieces of paper, each as a web page with

functions and buttons on it. By virtually ’click’ a button on the paper web page we give out another

related paper page, just like serving a web interface abstractly. One of the paper prototype page

is shown in Figure 3.3. We pick several users and let them go through the paper pages and record

those features that make our user confused or stuck. Since the prototype is written on paper, we

can easily change the prototype based on users’ advices instead of writing lots of code again and

again. By considering not only the usability, which considers whether the system is easy to use, but

also the usefulness, which considers whether the system features are important and necessary for

home users, we manage to get a draft paper prototype as the basic idea of our user interface and

functionality. The paper prototype is shown in the Appendix C.

Then we go to a step named as ”mock-up”. Mock-up is a prototype provides at least part of

the functionality of our system. It is the advanced step to continue acquiring feedback from users

with real software interface pages instead of paper. But although given as web pages, clicking some

buttons won’t really provide the related functions. In this way we can continue to verify the user

experience and fix the interface without big changes in code. The mock-up interface is made by

a mock-up tool named Pencil Project [22] as an add-on of the Firefox browser. One page of the

prototype is shown in Figure 3.4 and all the mock pages are attached in the Appendix D.

16

CHAPTER 3. PROPOSED SOLUTION

Figure 3.3: A sample page of the interface design paper prototype

Figure 3.4: Mock-up user interface page

3.4 Usability testing with user feedback

During both paper prototype design and mock-up interface page design, we improve our designed

interface based on the testing result of target users for many times. This work of usability testing

is very important because experiments are the most effective way to find out problems and get

new ideas. A user friendly interface is not built up via designer’s thought that ’it should be a user

17

CHAPTER 3. PROPOSED SOLUTION

friendly interface if built like this’. We should have users test the interface to verify the usability

with continuous testing and improving based on the feedback. However, to get more useful feedback

and to find more errors and bugs, effective way of user testing is very important. In paper prototype

test, we provide different paper pages to users acting like web pages that allow them to do ’virtual

click’ on the buttons draw in the paper and give our feedback with another paper page. In mock-up

web pages we have our users go through pages like real interface without having functions operating

based on user action. In implemented interface test we are providing our system to users. Users can

do different actions, get the feedback of the system and see the result of the executed functions.

During the design, we get to know our interface very well. It is in another word ’too much’ in

usability testing. We need to find others who know nothing about our development to only view

and operate our system using the interface. The first thing for our tests are the users chosen. They

can be anyone regardless of their Internet skills or whether they have been a parent. It is because

we always can get new information when observing others operating the interface, no matter if they

always face problems or can use it without getting confused. It is better to have a user that lack

computer skills to test our system. As he may give us more ideas in improving interface at the later

part of our design. But at the very beginning with many key features not built up in each step of the

design life cycle, normal user will be more helpful.

Another test issue is the times of testing together with number of test users. We usually spend

less than half a hour to have short test with users. To have four users test twice and to have eight

users test once will cost the same time if we observe their operation separately. More users test may

find more problems in a single test, but in a second test with problems found in the first time test

fixed, users may find other new problems ignored the first time round. It makes the more times of

testing with less test users more effective.

The test task itself will be very simple based on what we are developing. Our system is a parent

control system. So our test scenario is always that users are acting as parents to control Internet

usage of the children. One of the most important thing to keep in mind is that during the test

anything could happen. It is not possible for us to handle what our users will do when operating.

And it is very important to avoid giving out hints or stopping users from doing something unless

it is really needed to continue the test. A successful system should be tolerable to gruff actions

and stupid mistakes. And user need hint because they get confused, then what we should do is

to record it and fix it in later design. Also it is very import to keep patient and calm down when

we find that user are facing problems, some are caused by themselves and some are due to our

system bugs. You never know what your users will do. During paper prototype and mock-up page

test things could be easy. But in the implement interface test, we may face problems like system

crashing or functions not working many times. As a example, our system crashed in a case that our

test user created two home users with the same name and password - since we didn’t state that user

is not allowed to do something and didn’t correct the mistakes, user will make unexpected actions

like this. It is helpful based on this kind of ’stupid’ operations as they bring us problems in the

18

CHAPTER 3. PROPOSED SOLUTION

system and help us to improve the interface. Any errors users caused when their operations are not

forbidden by the system should be interface problems of designer, not the user themselves. During

the test observing , we should always take notes of problems found and suggestions. Our interface

is improved with these problems fixed and user suggestions applied. Testing is very important to

provide a user friendly system, especially in our case to develop a system for normal home users.

3.5 Implementation plan

After the work of design with paper prototype and mock-up, we can start our implementation based

on the designed user interface template. Our target is to implement our prototype designed via paper

and mock-up in a OpenWRT based router as a home Internet cafe system. Different features exist

in the prototype and some are realized by existing OpenWRT software while some features need to

be added by ourselves. For the implementation, we plan to do it step by step as following:

1. Try to add our own page like home Internet cafe welcome page into the existed firmware

2. Add interface features with functionalities existing in OpenWRT firmware:

• Time limitation

• Restriction exception

• web sites and protocol filter

3. Develop the two main new functionalities:

• Home user code identify system

• total use time limitation

4. Combine features to complete the user interface

19

Chapter 4

Implementation

After design we turn our idea and solution into prototype and have it tested by different users to

verify and improve the user interface and functions. The next step is to implement the prototype in

router to build up a real home Internet cafe system. In this chapter we will describe the implemen-

tation of our home Internet cafe prototype in the router.

4.1 Firmware and devices

Our implementation is based on the OpenWRT [19] firmware installed in a Linksys Wireless-G

broadband router WRT54GL v1.1 [6]. To start the implementation, we should get a good under-

standing on target firmware and devices. Figure 4.1 shows the picture of our router devices and

development set up scenario.

4.1.1 OpenWRT firmware and router structure

Normal home routers are edge routers placed between ISP network and home users. They have

limited memory and small CPU for basic use. In the home routers, the OpenWrt firmware act

as a Linux distribution operating system based on the router hardwares that handle users’ Internet

connections and packets. It works with drivers to the hardware and provide different functions

as software applications to home users. The time limitation functions and web user interface are

software applications based on the Linux OpenWrt firmware.

As different routers have different hardware, the OpenWrt as the operating system must be built

with specific drivers for target router. In our case we use the Linksys router WRT54GL v1.1, whose

CPU is broadcom BCM5352@200MHz [4]. The default built firmwares are shown as image file to

be uploaded specially built for broadcom chips.

20

CHAPTER 4. IMPLEMENTATION

Figure 4.1: Implementation scenario

4.2 Basic Implementation with existing features

Our first step is to get the open source code of OpenWrt, compile it and build our own firmware

with small features changed. Then we upload the firmware image we built and check whether the

changes applied or not. We can do lots of improvement and development on the firmware after we

succeed in the first implementation.

4.2.1 The development environment

To build OpenWrt, we use OpenWrt Buildroot. OpenWrt Buildroot is a set of Makefiles and patches

that allows us to easily generate both a cross-compilation toolchain and a root filesystem for Open-

Wrt systems to be installed in our router. Here complilation toolchain is the set of tools for com-

piling code for our system. With OpenWrt written in C language, in our case the toolchain consists

of a compiler(gcc [12]), binary utilities(binutils [14]) and a C standard library (GNU Libc [13]).

The compilation toolchain comes with our system runs and generates code for the processor of our

host system. In our case the processor type is x86. However, the OpenWrt system to be built for

WRT54GL use brcm(broadcom) processor. That’s why we need OpenWrt Buildroot with cross-

compilation toolchain that can run on x86 system but generates code for brcm chips.

As we mentioned in section 3.2 , we plan to use Gargoyle interface [11] for OpenWrt devel-

opment. As gargoyle is developed based on OpenWrt, it have makefiles associated with OpenWrt

Buildroot tools that automatically build target system image from source code for us. Firstly, we

need a Linux/GNU distribution, either a standalone installation or a separate system running in a

virtual environment. In our case, we use Ubuntu 11.04 [28]. The we need to install all packets and

21

CHAPTER 4. IMPLEMENTATION

libraries necessary for compiling and building work. This could be done by running below simple

command for a 64 bit linux system:

sudo apt-get install build-essential asciidoc binutils bzip2 gawk gettext git libncurses5-

dev libz-dev patch unzip zlib1g-dev subversion flex uglifyjs

4.2.2 Check out and build from code

After we set up the environment, it’s time to check out the source and simply build one image. First

we use svn [2] to check out the gargoyle source code:

svn checkout http://svn.github.com/ericpaulbishop/gargoyle.git

Under the gargoyle.git packet we have a makefile with two related shell files as full-build.sh and

rebuild.sh. The first time we run command ’make’ will take full-build actions that include checkout

the stable version of OpenWrt source code and build the firmware based on OpenWrt with gargoyle

web interfaces and functions. However, note that for different Linux kernels for different processor,

each platform require more than 1.6GB of disk space to put the source code when compiling and

building. The basic command ’make’ will lead to a full build of all kinds of platform and require a

really large disk space. Actually, our first building attempt failed with ’not enough disk space’ error.

So we should specify the target platform to save the disk space and reduce building time. In our

case, targer router is using broadcom chips so the platform should be brcm-2.4 or brcm47xx, which

made the build command like this:

make brcm-2.4

Then we can see lots of information flooding cross the screen to state the current progress shown

in Figure 4.2 and after 3,4 hours (that’s because we need to check out several GB of OpenWrt source

code and save it to local memory at the first time) we can get the newly built images.

4.2.3 Firmware upgrade and router recovery

We can find all built images in Gargoyle.git/image. Here we pick out the image fit for different

routers, in our case we pick ’wrt54g-squashfs.bin’ for WRT54GL v1.1 router. If upgrade from

OpenWrt, we can use another image named ’brcm47xx-squashfs.trx’. Most router firmware have

the interface that allow user to upgrade the built firmware, for WRT54GL case, it is shown in Figure

4.3.

22

CHAPTER 4. IMPLEMENTATION

Figure 4.2: Building process in Ubuntu

Figure 4.3: Firmware upgrade

It is very important NOT to cut off the power of the router or disconnect between router and our

client devices during the upgrade. After the router rebooted, we can see the gargoyle web interface

as shown in Figure 4.4.

Sometimes there will be problems caused by configuration error that make it impossible to ac-

23

CHAPTER 4. IMPLEMENTATION

Figure 4.4: Upgrade OpenWrt firmware with Gargoyle interface

cess the router via the web interface. In our case when upgrade the firmware from normal OpenWrt

to Gargoyle, I keep the default settings of OpenWrt, which leave the default password as empty.

But Gargoyle don’t accept an empty password, it keeps warning with ”invalid password” and keeps

me out from the web interface. In the other hand the SSH (Secure Shell) for router is also not

accessable. To recover this or similar problems, we can us OpenWrt’s failsafe recover mode:

1. Install Wireshark on computer

2. Configure our computer with static IP 192.168.1.2

3. Connect computer to a LAN port on the router

4. Start Wireshark and monitor the LAN connection

5. Powerup the router, when wireshark shows the first packet from 192.168.1.1 immediately

press and hold the reset button on the back of the router for three seconds.

6. Router power LED should be flashing quickly. (Failsafe mode)

7. Use a command prompt to telnet the router via ”telnet 192.168.1.1”

8. Use the command prompt of router to type command like ”firstboot” or reset password via

”passwd”

9. Reboot the router to apply the change

24

CHAPTER 4. IMPLEMENTATION

Figure 4.5 shows how the telnet for Openwrt works.

Figure 4.5: Router recovering using telnet

TFTP method A more stable advanced way of firmware updating is the TFTP method. It is base

on the bootloader functionality of the router. When router boots it runs a bootloader, which is used

to perform basic system initialization along with validating and loading the firmware. It is like the

BIOS of the device handling hardware before control is passed over to the operating system loaded

from the firmware. When the firmware fail to pass a cyclic redundancy check (CRC) done by the

bootloader, the bootloader will presume the firmware is corrupt and wait for a new firmware to

be uploaded over the network. And we can enable the task of waiting for a new firmware to be

uploaded every time when router boot by typing command lines in router’s ssh or telnet interface:

nvram set boot wait=on

nvram set boot time=10

nvram commit && reboot

The router will reboot automatically after execute the command. Then every time we boot

the router, it will wait for 10 seconds to allow a new firmware to be uploaded into the memory

and run operating system based on the new firmware. We use TFTP method to upload the new

firmware. TFTP stands for Trivial File Transfer Protocol as a file transfer protocol generally used

for automated transfer of configuration files between machines in a local environment. We set our

computer as a tftp client to upload new firmware to the router. In this way we can avoid lots of

problems caused by firmware errors that may even not provide interface for us to update firmware

normally. The procedure of upload firmware after bootwait time is set is shown as following steps:

1. unplug the power to the router

25

CHAPTER 4. IMPLEMENTATION

2. Configure our computer with static IP 192.168.1.2

3. Connect computer to a LAN port on the router

4. start a tftp client

5. set send mode and file to be sent (in our case the new firmware)

6. Powerup the router, while having the tftp client running and constantly probing for a connec-

tion

7. the tftp client will receive an ack from the bootloader and starts sending the firmware

8. wait for the router booting with newly updated firmware

In step 5 we connect to router via the command ’tftp 192.168.1.1’ and set the send model as

’binary’ and ’trace’ to divide target file into data blocks and trace each packet sent with ack to ensure

the sending task succeed. Figure 4.6 shows the tftp method in ubuntu to update target firmware.

Figure 4.6: Firmware update using tftp method

4.2.4 Key files related to user interface

We now succeed in setting up develop environment, compiling code and building the image. The

next step is to add our simple own page into the system.

The idea of gargoyle interface for OpenWrt is to do computation on the client side to make

operations faster and reduce delay. Majority of gargoyle is implemented as Javascript. Source files

for the javascript are saved at /www/js directory to provide functions. The server-side, which is

the router in our case, will do necessary scripting using haserl [18] , a very lightweight utility that

enables the embedding of linux shell script into html files. Those html/haserl scripts are saved as

*.sh files in the /www directory which manage the display of the interface with actions done by

functions described in related javascript files as *.js. Several large pages that have complex display

26

CHAPTER 4. IMPLEMENTATION

structure have template files written in html and saved as *.css, which can be directly used with the

features defined in it. For the web page structure, as header/footer/menu code is generated from the

config file in directory /etc/config/gargoyle. This file is written in C because shell scripts execute

really slow for page loading. These four kinds of files contain the key code of the gargoyle web user

interface. The relationship of the different files are describe in Figure 4.7.

Figure 4.7: Relationship of different programming code

As shown in the figure. Shell script is the key files in the system since all the linux commands

operating our system are executed here. Usually basic commands like requesting system data are

written in it. And for large amount of system data operating, we build functions written in C lan-

guages and use them in the shell script then. The user interface run shell script from a web page

via Apache CGI [3]. Apache CGI allows our script in cgi-bin directory treated as application and

run by the router server when requested by our user. During the build process shell script is put in

cgi-bin directory. Then user is able to execute them from a web page. When user access the shell

files, to display the user interface, we type html codes in the shell script using the following code as

the header in shell script.

echo ”Content-type: text/html”

echo ””

CSS known as Cascading Style Sheets is the widely used style sheet language used by us to

describing our web pages’ display formatting. Also Javascript is a widely used scripting language.

We use it to handle the functions and operations inside the interface web pages. In some cases

like user logging in, the data handling by javascript from the web interface input need to send to

linux system and get request, we use Ajax method to send the commands with data and run them

in shell script. Ajax stands for Asynchronous JavaScript and XML which allow us to send data

to and retrieve data from our router asynchronously without interfering with current web page’s

27

CHAPTER 4. IMPLEMENTATION

display. With all these different kind of files written in different programming languages we are

able to provide the whole system’s features and interface.

4.2.5 Implementation result

We make small changes in config file to build our new menu with home Internet cafe related fuc-

ntions and change the page theme via the *.css template files to give a different display using pure

color without pictures to make the page load faster and reduce the image size. The result of our

implementation is shown in Figure 4.8.

Figure 4.8: Web user interface after simple test implementing

4.3 Key functionality design

4.3.1 UCI system and UCI related functions

The UCI stands for Unified Configuration Interface and is set up to centralize all the configuration

related to our system based on OpenWrt firmware [20] . With UCI system we do not need to bother

different kinds of config-file lying in different folders. Instead we only change the UCI configuration

files and the system can get the stored settings and work based on them.

Our OpenWrt configuration settings are split into several uci files located in the route /etc/-

config/directory. We can edit the configuration uci files with a text editor or with the command line

28

CHAPTER 4. IMPLEMENTATION

utility program ’uci’ or through various programming APIs like shell script and C language. Among

many different uci files we focus on the two uci configure files related to firewall and system.

To show how uci system works, we give out a small part of uci system file below as an example:

config display display

option management ’Home User management’

option management hosts1 ’Home User overview’

option management homeuser ’Home User control’

config scripts scripts

option management hosts1 ’hosts.sh’

option management homeuser ’Homeusr control.sh’

In our example we pick out a small part of the menu display configuration of our interface.

The uci configuration files usually consist of different config statements named sections with one

or more statements called option defining useful values. Here we create two sections via ’config’:

’display’ and ’scripts’, both with their section names and types the same. The type of the section

can be used by us to decide how to treat the options it contained in the further implementation. Then

we add options of each section via ’option’ to store different values with a label name. Later in the

menu display part, we write functions that get the target label’s value in display section to get the

section name to display in the menu and set related interface scripts via get the target label’s value

in the scripts section to run when target label is chosen by users.

Common way to configure uci files is command line utility works in the ssh interface shown

in our router recovery subsection 4.2.3. In ssh interface we type command lines like ’uci commit

packagename’ to save target package settings, ’uci add’ to create sections, ’uci set’ to manage

options’ value and ’uci get’ to get the value we need. However, when we provide web interface

to our users, it’s not able to ask them typing these commands to operate the system works for user

requests. So we develop a set of uci related functions in our C code and Javascript code to realize

different actions and store user settings.

As we want to provide user identify functions and time limitation functions, different lists of

values need to be set by our user and stored for further use. UCI system is very convenient but

setting up sections and options via command lines will be complex and not so user friendly: it’s not

possible to ask your user to learn a new command syntax and act like a programmer typing code to

manage the system. Then to provide graphical interface for users to add their settings in the system

and store the settings as uci files to be used by the system, we combined uci command lines with

C and Javascript functions. In the C code part we have the uci.h library which contains functions

directly reading the values in uci files. And our user interface functions are written in javascript.

So we call C functions in the shell script to get the data in uci files, then use javascript functions to

29

CHAPTER 4. IMPLEMENTATION

display and operate uci data based on users’ operations with the graphical interface and change the

settings.

The values in uci files read by c functions are stored as a set of array objects with section and

option names as label and type and option values as data stored. Then these array objects can be

used by the javascript functions to display the settings to our users and allow them to change and

add settings. Below are the functions written by us to manage the uci setting data.

UCI related functions: In default the values in the uci files read by c functions are all stored in an

object named uciOriginal. Values are stored in uciOriginal based on the files, sections and options

they belong to. For example, we operate the activehours setting of target users in a rule via access

uciOrignal.firewall.rules1.actvehours. The uci related functions use the ’this’ method of javascript

which allow us to write functions as this.function and apply them to target object via replace the

object name with ’this’. So the below functions we can replace ’uci’ with different uci object names

like ’uciOriginal’ to operate target objects.

uci.clone This function clone all the data in target uci object and return the stored values as a new

uci object. We always use this functions inside the shell scripts directly after we get the default

uciOriginal object with the code

var uci = uciOriginal.clone

to get a new uci object and let users to operate the uci object instead of uciOriginal object. We

will introduce the reason in the uci.getScriptCommands function.

uci.get This function access target sections/options in uci file and return its value for further use. To

make it easier to use this function, we make the variables operated by this function similar to the

route of uci values stored. The functions works like this:

variable = uci.get(target file name, target section name, target option name)

uci.set This is a basic function that stores the values changed or added by users in the graphical

interface. It works the same to uci.get as

uci.set(target file name, target section name, target option name, changed/added value)

to store an option value, and

uci.set(target file name, target section name, changed/added type)

to create a new section with the specific type.

30

CHAPTER 4. IMPLEMENTATION

uci.remove This function is used for removing target sections or options in uci settings. It also

works with target values’ access route:

uci.remove(target file name, target section name, target option name)

uci.getAllSectionsOfType We mentioned before that each section in the uci setting files have a

’type’ value. The type of the section can be used by us to decide how to treat the options it contained.

When we set up a section using uci.set we give out type value. In our system the type usually is

’homeuser’ or ’restriction rules’. We can take the ’homeuser’ type as an example. In our code

indentify system when we get the homeuser name and password typed by our user, we need to

access all the homeuser sections of the uci system file and verify the homeuser name and password

options stored in them to check whether our user typed the right name and password to login and

access the Internet. We use uci.getAllSectionsOfType function as

uci.getAllSectionsOfType(target file name, target section type)

and in this case the code should be ’homeuser = uci.getAllSectionsOfType(system, homeuser)’.

Note that this function returns a set of sections as array object, so the ’homeuser’ should be a

predefined array object via ’var homeuser = []’. Then we can easily verify the user input with all

homeuser sections with the ’for’ loop.

uci.getScriptCommands This is the key function of our uci related functions. As we introduced,

we get a new array object via uciOriginal.clone named ’uci’ as a copy the array object ’uciOriginal’

read by c code from uci files. Then we use different uci related functions to allow user change, delete

or add values in the system setting interface and store the changes in ’uci’ object. All the changes are

only stored in the ’uci’ object belong to javascript functions in this case. User settings are not even

get stored in the uci files, and not applied in the system either. Here we use getScriptCommands to

generate the scripts of uci command lines to be executed in shell script via the comparison of user

changed ’uci’ object and the original ’uciOriginal’ object:

command = uci.getScriptCommands(uciOriginal)

We mentioned that the ’uci’ object has been changed by user via the graphical interface. The

function getScriptCommands generate the scripts based on the differences of changed ’uci’ object

and the ’uciOriginal’. The command ’uci add sectionname’ is generated when new section exists in

’uci’ compare to ’uciOrignial’. The command ’uci set options value’ is generated for new options

added in different sections. The command ’uci delete sectionname’ or ’uci delete sectionname op-

tions’ is generated when sections or options in ’uciOriginal’ are deleted in ’uci’. All these generated

functions are returned by the function as strings stored in the command variable. And to save the uci

31

CHAPTER 4. IMPLEMENTATION

command lines operation result, we always add ’uci commit’ at the end of the command via com-

mand.push() function. Till now the uci command lines generated are stored in a variable belong to

JavaScript functions and still not applied by the system. To run these command lines in the system,

we export them to shell script and execute them there via the Ajax method.

Ajax for uci set We introduced Ajax as Asynchronous JavaScript which is used by javascript to

send request and get data associated with shell scripts in the code relationship Figure 4.7. To apply

user settings, we use Ajax for sending to be executed uci command lines and get respond as below:

var commands = uci.getScriptCommands(uciOriginal);

var param = getParameterDefinition(”commands”, commands);

var stateChangeFunction = function(req)

{
if(req.readyState == 4)

{
uciOriginal = uci.clone();

Getrulesfromuci(onedituser);

alert(”Changes applied. The rule will be active when next time target user log in.”);

}
}
runAjax(”POST”, ”utility/run home commands.sh”, param, stateChangeFunction);

We use a fuction to compile the string variable commands into a set of strings that can be di-

rectly used by shell scripts. Then we write the ’stateChangeFunction’ which describe javascript

actions after we get successful respond from the system. The actions include saving the applied

uci configuration as the default ’uciOriginal’ object to allow further user edit after settings applied,

displaying the changed configuration and informing user that settings are applied. Then we use the

runAjax function to call the shell script run home commands.sh and send commands. When com-

mands successfully executed, we get a respond that change the variable ’req.readySate’ into value 4.

Then we provide user interface changes based on the functions we wrote in ’stateChangeFunction’

to finish applying the user settings.

After Ajax function successfully executed and our functions get the respond to inform users

setting applied, we get the user settings and data stored in the system which can be used when target

functions for user control are called. All the important data in our home Internet cafe system like

home user data, time restriction settings, user login status is all stored and managed under this UCI

system.

4.3.2 Time restriction system

Linux firewall and Iptables

32

CHAPTER 4. IMPLEMENTATION

The key feature of our home cafe system is to handle users’ Internet usage. Most of the routers

using linux kernel realize user restrictions by iptables [21] . Iptables is an application program for

configuring the chains and rules user set for the linux kernel firewall to manage the data packets.

In our scenario of home user system with all devices connected to router to get Internet access, all

users’ data packets go through router’s linux kernel where we can use iptables to add different rules

to accept or drop target packets.

Packets enter router firewall and hit the hardware first. Then before being sent to local appli-

cations or forward to target host, packets should go through a series of steps in the linux kernel.

A set of steps are named chains with different kinds of rule tables like raw, mangle, nat and filter.

Those tables are used for different kind of packets handling while in our system we focus on the

filter table. As its name states, filter table do all the filtering for data packets. We can manage user’s

Internet use by adding rules in the filter table of iptables. Figure 4.9 shows how iptables handle the

packets. Here we have three different chains shown as INPUT, OUTPUT and FORWARD. Packets

with local host as destination go through INPUT chain. Packets with local host address as source

will go through OUTPUT chain. And packets destined for another host on another network will go

through the FORWARD chain. In our use case, handling FORWARD chain is enough to limit users’

access to the Internet.

Figure 4.9: Packets go through chains of Iptables

As we mentioned, the chain as a set of steps with different tables handling our packets and we

33

CHAPTER 4. IMPLEMENTATION

focus on the filter table. Rules are added in the filter table and stored in a fixed order. When a packet

enters a chain such as the INPUT chain in the filter table, it will go down from rule to rule verifying

the packet until the packet match the rule and is operated by the rule command or the main chain

ends. If main chain ends, default policy of the built-in chain will be applied. Figure 4.10 shows how

the rule chains in our system are built.

Figure 4.10: Time restriction chains and rules in FORWARD filter

When user packets go through the FORWARD chains of Iptables in our system, it first go

through some normal router setting rules and reach the restriction rule, which points to a new chain

that contains different rules. As our figure shown, packets will then go inside the restriction chain.

The first rule in restriction chain is the whitelist rule which also is a new chain containing other

rules. Then packets will go inside the whitelist chain and be verified by different rules. We mention

that packets will stop at the rule it matches and be operated by target rules. So if no rules matches,

it will return to the the formal chain after current whitelist chain ends and go through the left rules

in restriction chain. Then if it is still not operated it will return to the FORWARD chain and go

through the left rules and then get managed by the system.

Home Internet cafe Iptables In our system, the rule in restriction chain is set as:

iptables -A FORWARD -p tcp ! -s 192.168.1.1 -j REJECT

This code describe a rule that all the tcp packets will be rejected if their destination addresses

are not our router host address: 192.168.1.1. With this rule exists, we manage to allow every user

in our system only to access the web interface when connected to the router. Then to allow home

users to access the Internet. We add rules in the whitelist chain as exceptions to allow user packets

forward by the system instead of get rejected. Those rules in whitelist are set based on home user

management settings and the code is set up via functions combined in different program languages.

Now we will introduce how those rules are made and how user restrictions with total usage time

limitation are realized. Figure 4.11 shows the interface of home user restriction settings.

The restriction settings are given as time period blocks of every day with green as accepted

and red as blocked to make user configure the restriction rules straight forward. We manage the

background color of checkboxes via the mouse events functions of Javascript include onMouseOver,

34

CHAPTER 4. IMPLEMENTATION

Figure 4.11: Time restriction setting interface

onMouseOut and onClick. These functions will create events in cases that mouse is passed over,

taken off or clicked on an active checkbox. In our system these events are background color changes

and checkbox checked or unchecked. We also have function that allow user set the total usage

limitation per day counted by hours from 1 to 24. The interface of this function is shown as a input

box with numbers that user can edit the number with the add and minus buttons or type a number by

themselves. To avoid the wrong input like words instead of numbers in the settings, we add a small

function within the input box using regular expression tester to verify and change the user input:

function testFieldnumber(field)

{
var regExpr = new RegExp(”\̂d*\.?\d*$”);

if (!regExpr.test(field.value))

{
field.value = ”24”;

}
}

As we have mentioned, the UCI system in OpenWRT allows users to store their system settings

and let functions to pick up those values and apply them into system settings. In our restriction

35

CHAPTER 4. IMPLEMENTATION

set up page, when user clicks ’save changes’ button, we will use the uci set method as we used in

the code Identification system to store the user restriction rules and total limitation time settings for

target home user. While all users in default settings are blocked from the Internet, we set up Iptable

rules that allow user to access the Internet in specific time period based on the settings stored in the

uci system. In the next subsection, we will introduce it in details how our time restriction system

are applied during the home user login action in our code identify system.

4.3.3 Code Identify System

Another key feature of our home Internet cafe system is the code identify system. We would like to

build a system that works like the Internet cafe where user type their user ID and password to get the

access to the Internet. And the administrator, in our case it’s parent account, can manage different

users’ Internet usage in the code identify system based on the logged in users’ id instead of manage

via ip or mac addresses. The overall code identify system authentication process is shown in Figure

4.12 and Figure 4.13.

As we mentioned, in default all users’ data packets with a destination address different from the

router ip 192.168.1.1 will be rejected. So user have to log in as home user to get the Internet access.

The code identify home user authentication starts when users type their user ID and user password

and click home user login button. The first task is verify user ID and password. Via the uci related

functions, we get the home user ID options stored in the system uci file created by parent account.

We first compare user ID. If a matched user ID is found in the uci file section options, we continue

to compare target password with the password user typed. We will go to next step if both user ID

and password match the same home user ID created and stored in our system. Else we will alert the

user with error message and stop process.

After we pick out target home user ID that our user want to login as, we verify a set of status

about target home user ID. The status is accessed via uci functions with home user ID as the section

name to get options containing status value. First we verify the option with a boolean value states

the user status as enabled or blocked. If target home user ID is blocked, we give out notification

and stop the process. Else we will continue to verify other status. But before that we need current

system time and date and the mac address of the user who is currently trying to login.

To get the current system time and date, we execute below commands in shell scripts:

current day=$(date ”+%a”)

current time=$(date ”+%s”)

echo ”var currentDay = \”$current day\”;”

echo ”var currentTime = \”$current time\”;”

36

CHAPTER 4. IMPLEMENTATION

Figure 4.12: Code identify system authentication process part1

Here we use two different linux date command with different suffix. The ’%a’ suffix ask the

system to return locales abbreviated weekday name like ’Sun’. And the ’%s’ suffix ask the system

to return the total number of seconds since 1970-01-01 00:00:00 UTC, known as the unix epoch

time. In either C or javascript we have specific functions that can transfer the epoch time into a

human readable time form.

User’s mac address is generated in javascript functions from the Address Resolution Proto-

col(ARP) data with the help of target user’s ip address. First, we execute below commands in shell

scripts:

echo ”var connectedIp = \”$REMOTE ADDR\”;”

echo ”arpLines = new Array();”

cat /proc/net/arp — awk ’{print ”arpLines.push(\””$0”\”);”}’

37

CHAPTER 4. IMPLEMENTATION

After the command is executed we get the array object ’arpLines’ that stores all connected

users’ data include ip address, mac address, host name, etc. At the same we get current user’s LAN

ip address via linux command and stored it in the variable ’connectedIP’. Then we write a function

to pick out current user’s mac address in the ’arpLines’ array using current user’s ip address, that is

to find out the only list of user data containing target ip address and export the mac address in the

list. The exported address is current user’s mac address we need for further use.

Figure 4.13: Code identify system authentication process part2

Then we verify another status of target home user ID, which describes whether the home user

38

CHAPTER 4. IMPLEMENTATION

ID has logged in the system today or not. The result of the verification will lead to two different

main tasks in the further process steps based on the value. Every day a home user ID first login,

it will store current day as the value of the uci option ’lastlogin’. Then we can distinguish target

home user ID has logged in or not by comparing ’currentDay’ variable and the value of uci option

’lastlogin’ in target home user section. If they are the same, the process will go through the logged

in steps, else we do first login steps of a day.

First let’s go through the first login process in case that it’s the first target home user ID login

today. Since in default all users’ tcp packets sent outside are blocked by the iptables rule, we provide

user Internet access via generate exception rules based on the settings of time restriction system

operated by parent account and apply them in the whitelist chain in iptables before the restriction

chain to forward target users’ packets before they get rejected. As shown in Figure 4.13, at first we

will remove all the formal rules related to target home user ID regardless of whether there is related

rule or not to avoid conflict and redundancy. Then we start to set up new exception rules based on

settings from time restriction system via reading the uci configuration file.

In time restriction system subsection we introduced that in our interface user’s access time is

divided into time period blocks. Each block contain 1 hour. When storing the restriction time

period of a weekday, we pick out the time period when user is allowed to access Internet and push

the number into the active time array of target weekday. For example, when a user are allowed

to access Internet during 18:00-19:00 at Monday, we add number ’18’ into Monday’s active time

array. While in the rules generation step, we first generate the hour of current time by transfering the

unix epoch time with javascript functions. Then we compare current hour with each hour number

in current day’s active time array from uci files and start to generate exception rules when we

find a number in the array equal to or large than current hour. Another important value is the total

limitation time of current day. If the value is 0, no rules will be generated and user is totally blocked.

When the total limitation time is not 0, we keep generating iptables rules in below form:

iptables -A FORWARD -p tcp –mac-source USER MAC ADDRESS –timestart xx:00:00

–timestop (xx+1):00:00 -j ACCEPT

The timestart and timestop value are the time period of 1 hour between active hour xx o’clock

and xx+1 o’clock. This generating work stops either all active time applied in the rules or the number

of rules is equal to target day’s total limitation number. Note that if rule generations stop because

of the total limitation and the timestop value of the last rule hour isn’t 24, we need to add current

minutes into the timestop value of the last rule as xx:current minutes:00 instead of (xx+1):00:00 to

ensure user only get limited Internet surfing hours without extra minutes.

If uci option ’lastlogin’ in target home user section shows it is not the first time user login, we

take different actions. We have an option in home user section that stores related mac addresses with

iptables exception rules applied at current day. So we verify whether the mac address of target user

39

CHAPTER 4. IMPLEMENTATION

exists in the mac addresses list. If it exists, it means user has already logged in today. We will then

inform the user that home user ID he have logged in and the time left for user to surf the Internet.

If the mac addresses list doesn’t contain target mac addresss, we re generating iptables rules based

on existing rules via adding the new mac address in the ’–mac-source’ option to allow the new user

device access the Internet with the formal time restriction settings.

As the login process shows, our code identify system handles user mac/ip automatically which

only ask users to type user ID and password. Also the parent account as rule maker easily manage

Internet usage via set up restrictions based on home user ID. There is no need for them to type

mac address or ip address by themselves which can be very confusing work for parents with less IT

knowledge.

4.4 Debug tools

During our implement, debug tools are necessary in each small step to verify the code syntax and

functions. Shell script and html code errors will lead to web page display errors which can be easy

to notice and fixed. But bugs of javascript functions are not so easy to find as web page display

normally but values may not be calculated, which lead to the result that user operations can’t get

feedback. But the javascript syntax error will lead to no feedback error also. Then we use special

debug tools to fix these bugs.

4.4.1 Javascript lint

Many JavaScript implementations do not warn against questionable coding practices. The way to

verify the code is to run it as part of a page in web browser. But in our case things are different. Our

javascript code is related to shell script which need to be run in the router linux system. However,

to get the system shown, we must build target firmware via compiling all our code and update the

built firmware to our router. After that we have to wait for a period of time when router is rebooting.

All the whole complex work will be useless if a small syntax error exists in the javascript code.

So we need a debug tool that can allow us to check all our JavaScript source code for common

mistakes without actually running the script or opening the web page. The Javascript syntax check

tool ’Javascript lint’ fits our requirement [25]. And it holds an advantage as it is based on the

JavaScript engine for the Firefox browser which can provide a robust framework that can not only

check JavaScript syntax but also examine the coding techniques used in the script and warn against

questionable practices. Figure 4.14 shows how Javascript lint works with error alert.

40

CHAPTER 4. IMPLEMENTATION

Figure 4.14: Debug using the error alert of Javascript lint

4.4.2 Firebug

With syntax errors fixed. We will build up our firmware and update it into our router. Then we have

our implemented web interface. Newly developed web interface pages may contain lots of bugs.

These bugs are related to shell scripts, html code, css files and javascript code. It is too complex to

check each feature separately when meet errors. We use a famous debug tool Firebug [17]. Firebug

is a web development tool based on the Firefox browser. It provides the functions include html and

modify style editor, JavaScript debugger and network usage analysis. It is able for us to check all

variables related to different programming language in the system together in this one tool.

Html/Css debug in Firebug

To access our web interface using Firefox browser, we access the shell script via connect

to http://192.168.1.1/ from the firmware we built. In default setting system will redirect us to

http://192.168.1.1/login.sh and lead us to different pages written as shell script with html code based

on our operation then. When each interface web page is successfully loaded, we can enable Firebug

via clicking the button in the panel or pressing F12 on our keyboard. When Firebug is enabled, it

provide instant HTML and CSS views. Figure 4.15 shows the debug interface of Firebug when we

loaded login page in home Internet cafe system. We can check the html and css code errors and

directly change the code via Firebug. Note that the changes made only gives us the view of fixed

result in the Firefox browser. The code inside router firmware is not changed. To fix html/css bugs

we still need to go back to source code, have the bugs fixed, rebuild the firmware image and update

41

CHAPTER 4. IMPLEMENTATION

image into the router. But we can find more bugs once via fixing some bugs directly when view the

page to make new bugs appear.

Figure 4.15: Html/css debug of our login page using Firebug

C/shell debug with Document object model

When we enable Firebug, another important feature is activated immediately named as Docu-

ment Object Model(DOM). It is a great big hierarchy of objects and functions waiting to be tickled

by Javascript. We mentioned in Subsection 4.2.4 talking about the code relationship that shell

scripts get data from the system and have it operated by functions written in C code before being

used by Javascript functions called by user actions. So the values and variables shown in document

object model are those gained by shell scripts and C code. Then we can verify those values to find

bugs contained in C code, although it is not displayed in Firebug interface. Figure 4.16 shows the

document object model containing values and functions of login page in our system.

Javascript debug in Firebug

We should enable the Javascript debugger by ourselves after loading the page and open Fire-

bug. Then we can choose different Javascript scripts based on user actions and related functions.

We can add breakpoints easily by click target lines of the code. Also we can set target breakpoint

pausing under specific conditions to avoid breaking too often. When a error occur, we can directly

set a breakpoint at the line of the code where error occurred. We always have variables and func-

tions watcher and can go step by step to check how target function works. Figure 4.17 shows the

Javascript debugger working on the login page in our system.

42

CHAPTER 4. IMPLEMENTATION

Figure 4.16: Document object model debug of our login page using Firebug

Figure 4.17: Javascript debug debug of our login page using Firebug

43

Chapter 5

Result and Testing

As we are developing a system server for home user and focus on providing functions required by

user and interface friendly to user. Test work and user feedback is very important to us before, during

and after system design and implementation. The important test work starts when we use paper

prototype to design the interface and will continue even after we finish the system development -

as we always need to improve developed system with user feedback and update it with fixing bugs

found. In this chapter, we will first show the key web interface pages of our system to show the

implementation result. Then we will introduce our user test works and system evaluate.

5.1 User Interface overview

After the router boot. Via access the address 192.168.1.1, our user will get into our home Internet

cafe system interface and see the welcome page as shown in Figure 5.1.

Figure 5.1: Welcome page of home Internet cafe

44

CHAPTER 5. RESULT AND TESTING

Home user Login

Parent account login by typing their password in the parent login area of the welcome page.

Home users who want Internet access should click home user login button and move to home user

login page. When they type right home user code, they can login as home user and start using

Internet based on their home user restriction settings and get the login information shown in Figure

5.2.

Figure 5.2: Home user login page

When users type wrong username or password or the target user they want to login as is blocked,

we have notification for them as shown in Figure5.3.

Figure 5.3: Notification for wrong home user or get blocked

Home user management

Parent account have the ability to handle settings of home users and manage their Internet.

When user logged in as parent account they will be redirected to home user management page as

shown in Figure 5.4.

45

CHAPTER 5. RESULT AND TESTING

Figure 5.4: Home user management interface page

In default the redirected page shows the status of router and home users. We have a table for

home users showing their status, as shown with details in Figure ??

Figure 5.5: Home user status table

In the table we can find different user status. It shows home users are logged in, offline or

get blocked. And parent account can see the expire time of target logged in user based on the

time restriction settings, which can tell us how much Internet usage time left for target user when

comparing the expire time with current time. When click ’block user’ or ’enable’ we can set user

status between blocked or enabled to directly reject target user in special cases.

It is necessary to provide functions to edit and create user, User can access user edit page from

the left menu to choose the Home user control option and get to the home user control panel. The

interface of home user creator is shown in details in Figure 5.6.

In the interface we can see the home user list table. By click the edit button we can access the

panel of home user editor to reset the home user’s ID and password as shown in Figure 5.7.

Time restriction

We have introduced the time restriction settigns in Section 4.3.2. By click the edit button in the

home user list table we can access the time restriction settings below the home user edit panel. Part

of the detailed restriction settings is shown in Figure 5.8.

46

CHAPTER 5. RESULT AND TESTING

Figure 5.6: Parent interface to edit and create home user

Figure 5.7: Parent interface to edit and create home user

Figure 5.8: Home user time restriction settings

Everyday is divided into 24 time period in our settings displayed as 24 checkboxes. For example,

the checkbox with the name ’00:00’ means the time period from 00:00-01:00 at current day. Green

checkbox means user is allowed to access the Internet at target time period, red checkbox means

user will get blocked during the time period. And we have a total usage time limitation of each

day. Where user can increase or decrease number of hours for total Internet use by the ’-’ and ’+’

buttons. They can also type the number by themselves, but the final number is forced as a integer

between 0 and 24. By click ’Alldayblock’ parent can deny target user’s Internet access for the whole

day. Whenever a time period is activated into green, ’Alldayblock’ checkbox will turn to unchecked

status and shown as green then.

47

CHAPTER 5. RESULT AND TESTING

5.2 Performance evaluate

The usability of our system is provided and improved based on users’ feedback from the user testing

principles talked in Section 3.3. Another important factor of our system is the efficiency. We did

some performance evaluations to verify the efficiency of our system. All these evaluations are done

with different router firmwares in the Linksys Wireless-G broadband router WRT54GL v1.1 as we

used for implementation. To compare the efficiency of different router firmwares, we choose the

official firmware provided by Linksystem, the default OpenWrt firmware and our home Internet

cafe system developed based on OpenWrt.

5.2.1 Router booting time

It always take more time for router to boot when using third party firmware. It is because third

party firmware is designed for a set of different routers instead of the specific router. Third party

firmware have some more processes when booting to fit target router’s hardware with compatible

drivers. This will cost more calculation and lead to longer delay. Also we have some pre-settings

which will be applied to system during the booting task. This pre-settings applying task will also

slow down the booting process. User always don’t want to wait for too long time when they need

Internet immediately. So the booting time can be very important in user experience. The booting

time comparison is shown in table 5.1.

Linksystem OpenWrt Home Internet cafe
booting time 8 s 40 s 83 s

Table 5.1: Booting time of different router firmwares

5.2.2 User settings operation time

As most of our designed functions are related to firewall operations, it will increase the operation

time when system execute commands which will restart the firewall. And the work of activating the

wireless access will both restart the firewall and apply different settings. This makes the process

longer. Our system is very weak in saving time of firewall related functions because we have more

settings applied and commands executed during the operation. The default firmware can finish

the task really fast because it is specially designed for target hardware. While third party firmwares

always need to do some mapping between high layer command and low layer command with related

functions. The user settings operation time comparison is shown in table 5.3.

48

CHAPTER 5. RESULT AND TESTING

Linksystem OpenWrt Home Internet cafe
Firewall restart operation 4 s 22 s 37 s
Activate wireless access 1 s 5 s 108 s

Table 5.2: User settings operation time of different router firmwares

5.2.3 Download/Upload speed

One of the most important user experience features is the Internet speed. Since our system is using

iptables with a long list of restriction rules, whether it will decrease the Internet speed or not will

be very important. To test the Internet speed, we use the online Internet speed testing web site

’http://www.speedtest.net/’. It will provide ping time and both download and upload speed of our

current network in use and give out diagram as shown in Figure 5.9.

Figure 5.9: Result diagram of the Internet speed test

With the help of speed test web site, we got the Internet speed test of three router firmwares and

shown the results in table 5.3.

Linksystem OpenWrt Home Internet cafe
Ping time 20 ms 20 ms 18 ms
Download speed 9.40 Mb/s 9.91 Mb/s 9.70 Mb/s
Upload speed 6.19 Mb/s 8.13 Mb/s 7.85 Mb/s

Table 5.3: User settings operation time of different router firmwares

Some random features exist so the 2ms less ping time can’t stand for anything that show our

system has better performance. As third party firmwares have better packets handling method and

improved functions, they for sure will improve the router’s performance as shown in download

and upload speed. But our system have some decreasing data comparing with normal OpenWrt

firmware. That’s the fault of long iptables rule lists, which are used for providing new time restric-

tion features.

49

Chapter 6

Conclusion and further work

6.1 Conclusion

Our goal is to design a home Internet cafe as a user friendly Internet access control system for family

users. To achieve this goal, we focus on both the user friendly interface design work and the router

Internet usage control functions development work. In the interface design work part, we introduce

a design life cycle from paper prototype design to mock-up web interface sample and finally reach

the real implementation for the system. During these different steps, we test our interface with

different users and improve it based on user feedback. 6 users are involved during paper prototype

testing. They provide in total 12 user tests as some of them test our interface more than twice.

We involve 5 users to test and give feedback on the mock-up prototype for 8 times. And for the

implemented final system, we involve 10 users in the testing work to get their feedback. During

the test, the parents that we interviewed all think the concept of home Internet cafe is an excellent

concept. They are very worried about their children who have played on the Internet too much. And

they mentioned they have no efficient way to control the Internet usage of their children. So our

system is welcome to them.

In the functions design part, we go step by step with lots of tasks to make our development of

the firmware go deeper and deeper. Start from doing research on the state of the art of different

parents control systems using different solutions, we pick out the best one fits our demand. After

that we choose a suitable firmware to build our system based on it. We get a deep understanding

of the firmware via checking out and compiling the source code, reading the related code written

in different programming language and developing some additional features based on the existing

code structures and functions. Then we manage to develop separated functions and attach them

into the router firmware to turn it into the home Internet cafe system with advanced functions for

family users. We extend the packet filter rule set with own rules to provide better parental control

functionalities. And during the development we implement our own interface designed and tested

50

CHAPTER 6. CONCLUSION AND FURTHER WORK

by users to operate the newly developed system. Our two focused tasks are combined together into

the final Internet access control system then to achieve our goal as providing user friendly home

Internet access control system with advanced functionalities.

6.2 Discussion and contributions

We have shown the principles of our system functions and how its interface looks like in chapter

4 and chapter 5, and provided some performance evaluation results comparing with normal router

firmware. With the basic hardware functions the same, our final system designed looks and works

very differently from the Openwrt firmware we chosen in the functions for user control. We change

current functions and build new functions to realize new functionalities. During these works, new

features are provided but the router has to execute more complex commands and do more calcula-

tions. We sacrifice some level of the system performance to exchange for advanced functionalities

in this way. We will introduce our system advantages as our contribution and have some discussion

about the lost system performance as the disadvantages below.

6.2.1 System advantages

New features

We provide two key new features in our system based on the requirement of parents: code

identify system and total Internet usage time limitation. With the name of ’home Internet cafe’,

we want to provide our users a convenient management method similar to the Internet cafe. So we

designed our system to provide Internet access to home users based on home user ID, so called code

identify system. This control method not only makes users’ management works more convenient

and clear but also provides better usability for users, which we will talk later.

It is a strange thing that we can never find access restriction control panels of different router

firmwares that have the function providing total Internet usage time limitation. From the developer’s

view point, this function may be useless as we have another way to realize similar limitation by

setting up exact restriction time period with limited hours. But total limitation hours can be very

useful to parents in different cases when they don’t want to set up exact time for each weekday and

change the settings every week. Our functionalities providing total Internet usage time limitation

combined with blocked time period restriction system can be very helpful to parent users then.

Better usability

The most important feature in our system is home Internet usage management. The functions

and interface we designed all serve for this task. As we want to provide user friendly interface to

our users, we keep testing and improving the interface to gain better usability. Normal third party

51

CHAPTER 6. CONCLUSION AND FURTHER WORK

firmwares are really well designed with many advanced settings and improved performance. But at

most time the features are too complex for normal home users with less Internet skills to understand.

Figure 6.1 compares Openwrt time restriction settings panel and our interface for time limitation.

Figure 6.1: Comparison of Openwrt and Home Internet cafe time restriction interface

Many low level users won’t understand what are the zones, redirections talking about and may

not know the protocol or even source/destination IP addresses in the Openwrt interface. But in our

system with the code identify system, users can easily manage users’ usage and set up rules based

on different user ID. They don’t even need to understand IP address and MAC address as these

features will be handled automatically by our system. Also the block view of time restriction can be

very convenient to operate with green and red colors stand for active/block status since it provides

a graphical view for our users.

6.2.2 System disadvantages

Some evaluation results our system are shown in section 5.2. Although the Internet speeds don’t

get limited too much. We can find that our system reacts really slowly to user operations related to

firewall. Users always hate long waiting time in modern high speed daily life. However, to realize

advanced features with less obstructions for user operation, we have lots of functions and command

executed during background processing. The booting time and enabling time of wireless access

take extremely long time because of this. A tolerable thing is that users won’t reboot their routers

or switch on/off wireless access too frequently. But our system does operations related to firewall

slowly also. For example, our users need to wait for 30+ seconds when setting up time limitations

for a home user. This long waiting time will lower our system’s user experience a lot.

6.3 Further work

6.3.1 Advanced useful functions

As we finished the basic features to provide home Internet cafe system for parent users, there are

several features which we don’t have time to make them realized. One feature is the idea of provid-

52

CHAPTER 6. CONCLUSION AND FURTHER WORK

ing a timer for target user telling them left Internet usage time and allowing them to pause the timer

and get offline status to save their usage time. Currently we only inform users when will their Inter-

net usage time get expired. It will be more humanistic to provide this timer stop function. But we

should keep the functions from abused. Users may stop the timer every time they have successfully

loaded a page. It’s a cheat which will make the total time limitation useless. A limitation of total

times of stop actions will help to avoid this cheat.

Another feature is the web page redirection. In our system user need to log in via access

the router interface from 192.168.1.1. And they will get connection error notification from their

browsers when try to visit other web sites without information telling them to login as home user. It

will be very nice if our users can be redirect to the home user login page when they try to visit other

web sites, just like what we usually meet in the airport wireless services or wifi hot spot.

6.3.2 Continuing interface improvement

With our design and improvement, our user interface is more friendly and convenient comparing

with normal third party firmwares developed for advanced users with more Internet skills. But there

still may be some features missing and detailed guidelines needed for our users since we will never

know what our users will do to the system and how they can understand the options with the right

meanings. It is really necessary to continue the interface improvement works with more user testing

and feedback.

6.3.3 Better system performance

We discussed our system and find the biggest disadvantage is the long reaction time. To have

better user experience we need to improve our system with better performance in the speed of task

processing. We should go deep into the system structure and separated steps of system operation to

find out the cause of the long processing time. By fixing problems or improving algorithms we may

be able to reduce the reaction times to provide better system performance.

53

Bibliography

[1] P. Anne. ”surfbalanc kid-safe browser app now available for android users”. PR Works, Inc.
[Online]. Available: http://www.surfbalance.com/SurfBalanceAndroid v1 0.pdf

[2] ”apache subversion features”. Apache Software Foundation. [Online]. Available: http:
//subversion.apache.org/features.html

[3] ”apache tutorial: Dynamic content with cgi”. Apache Software Foundation. [Online].
Available: http://httpd.apache.org/docs/2.0/howto/cgi.html

[4] ”optimized 802.11g router with broadrange”. Broadcom corporation. [Online]. Available:
http://www.broadcom.com/collateral/pb/5352EL-PB00-R.pdf

[5] ”about buddy browser”. Buddy Browser. [Online]. Available: http://www.buddybrowser.com/
about-us.html

[6] ”wireless-g broadband router(wrt54gl)”. CISCO, Inc. [Online]. Available: http://homesupport.
cisco.com/en-eu/support/routers/WRT54GL

[7] ”net nanny parental controls overview”. ContentWatch, Inc. [Online]. Available: http:
//www.netnanny.com/features

[8] ”a setup simulation of v24beta-dd-wrt interface”. DDWRT project. [Online]. Available:
http://www.informatione.gmxhome.de/DDWRT/Standard/V24BetaVPN/Filters.html

[9] ”what is dd-wrt?”. DDWRT project. [Online]. Available: http://www.dd-wrt.com/wiki/index.
php/What is DD-WRT%3F

[10] ”my mobile watchdog is loaded with new features and is easier to use”. eAgency, Inc.
[Online]. Available: http://www.mymobilewatchdog.com/productinfo.shtml

[11] B. Eric. ”developer documentation”. gargoyle project. [Online]. Available: http://www.
gargoyle-router.com/wiki/doku.php?id=developer documentation

[12] ”gcc, the gnu compiler collection”. Free Software Foundation, Inc. [Online]. Available:
http://gcc.gnu.org/

[13] ”glibc, the gnu c library”. Free Software Foundation, Inc. [Online]. Available:
http://www.gnu.org/software/libc/

[14] ”gnu binutils”. Free Software Foundation, Inc. [Online]. Available: http://www.gnu.org/
software/binutils/

54

BIBLIOGRAPHY

[15] ”what is safe eyes and how can it help my family?”. InternetSafety.coms, Inc. [Online].
Available: http://www.internetsafety.com/safe-eyes-parental-control-software.php

[16] ”kids have fun and parents rest easy”. KidZui.com. [Online]. Available: http://www.kidzui.
com/learn more

[17] ”what is firebug”. Mozilla Corporation. [Online]. Available: http://getfirebug.com/
whatisfirebug

[18] ”haserl on sourceforge”. N. Angelacos. [Online]. Available: http://subversion.apache.org/
features.html

[19] ”openwrt manual”. openwrt project. [Online]. Available: http://downloads.openwrt.org/
kamikaze/docs/openwrt.html

[20] ”the uci system”. openwrt project. [Online]. Available: http://wiki.openwrt.org/doc/uci

[21] A. Oskar. ”iptables tutorial 1.2.2”. Netfilter Core Team. [Online]. Available: http:
//www.frozentux.net/iptables-tutorial/iptables-tutorial.html#ABOUTTHEAUTHOR

[22] B. Saikat. ”pencil project turn firefox into a diagramming and prototyp-
ing tool”. Makeuserof, Website. [Online]. Available: http://www.makeuseof.com/tag/
pencil-project-turn-firefox-diagramming-prototyping-tool/

[23] L. Sarah, “Private uses in public spaces : A study of an internet cafe,” New Media Society, vol.
1(3), pp. 331–350, 1999.

[24] ”protect children from unsuitable web content”. SOFTONIC INTERNATIONAL S.L.
[Online]. Available: http://glubble for families.en.softonic.com/

[25] ”javascript lint”. SourceForge Project. [Online]. Available: http://www.javascriptlint.com/
index.htm

[26] K. Steve, Don’t Make Me Think: Common Sense Approach to Web Usability. New Riders
Publishing, 2000.

[27] ”a smarter way to keep kids safe online”. Symantec Corporation. [Online]. Available:
https://onlinefamily.norton.com/familysafety/loginStart.fs?ULang=eng

[28] ”about ubuntu:the ubuntu story”. Ubuntu community. [Online]. Available: http://www.ubuntu.
com/project/about-ubuntu

55

Appendices

56

Appendix A.

Source code

The source code of the interface and function part is updated in Google code. To get the source

code, checkout it using svn via http:

svn checkout http://home-internet-cafe.googlecode.com/svn/trunk/

57

Appendix B.

Abbreviations

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSS Cascading Style Sheets

DOM Document Object Model

GUI Graphical User Interface

HTML HyperText Markup Language

ISP Internet Service Provider

MAC Media Access Control

OEM Original Equipment Manufacturer

OS Operating System

P2P Peer to Peer

TFTP Trivial File Transfer Protocol

UCI Unified Configuration Interface

URL Uniform Resource Locator

WLAN Wireless Local Area Network

58

Appendix C.

Mock-up interface prototype

59

APPENDIX C.. MOCK-UP INTERFACE PROTOTYPE

60

APPENDIX C.. MOCK-UP INTERFACE PROTOTYPE

61

APPENDIX C.. MOCK-UP INTERFACE PROTOTYPE

62

APPENDIX C.. MOCK-UP INTERFACE PROTOTYPE

63

APPENDIX C.. MOCK-UP INTERFACE PROTOTYPE

64

APPENDIX C.. MOCK-UP INTERFACE PROTOTYPE

65

APPENDIX C.. MOCK-UP INTERFACE PROTOTYPE

66

Appendix D.

Paper prototype

67

	cover
	project_report.pdf
	SCAN20120521004944
	SCAN20120521005113
	SCAN20120521005152
	SCAN20120521005239
	SCAN20120521005317
	SCAN20120521005350
	SCAN20120521005425
	SCAN20120521005459
	SCAN20120521005535
	SCAN20120521005608
	SCAN20120521005647
	SCAN20120521010337

