
Iris: A Solution for Executing Handwritten Code

Brian M. Gonzalez
me@briangonzalez.org

briang10@student.uia.no

Supervisors

Ole Christoffer Granmo

Master’s Thesis, Spring 2012

Faculty of Science and Technology

University of Agder, Grimstad, Norway

June 1, 2012

Key Words: OCR, Tesseract, handwriting recognition, classifiers,

smart phones

Abstract

This paper presents a novel approach to executing handwritten code,

the solution coined Iris. My research falls within the field of mobile

app development, handwriting recognition, optical and intelligent char-

acter recognition (OCR & ICR), machine learning, as well as various

Computer Science-related fields such as domain specific languages, or

DSLs. The solution outlined in this paper details a system where one

can author code using only a writing utensil (such as a pen), scratch

paper (such as a napkin), and a smart phone. Iris leverages the power

of the cloud to process an image of handwritten code and return the

result to the user. Ultimately, my results show that Iris was able to

accurately execute handwritten scripts with various levels of observed

accuracy. Future work includes adding more layers of machine learning

as well as further pre-processing images prior to OCR.

ii

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Problem Statement . 9

1.3 Report Outline . 11

2 Technological Overview 12

2.1 Survey of Handwriting Recognition 12

2.2 Tesseract . 18

3 Solution 28

3.1 Optical Character Recognition 29

3.1.1 Sanity Checking Tesseract 30

3.1.2 Training the Tesseract OCR engine 34

3.1.3 Generating Large Amounts of Handwritten Text

for Training . 42

3.1.4 Bootstrapping a Character Set Using Tesseract . 46

3.2 Programming Language 47

3.3 Client-Side Application 50

4 Results 55

4.0.1 Accuracies for a Given Handwriting Style 62

4.0.2 Commonly Misrecognized Characters 62

iii

5 Discussion 64

6 Conclusion 67

Bibliography 69

List of Figures

2.1 Offline (a) vs. Online (b) handwriting 13

2.2 Line finding is difficult for handwritten text 16

2.3 Examples of segmented characters [1] 17

2.4 Typical components of an OCR engine 18

2.5 Components of Tesseract 20

2.6 An example of line finding (3 distinct lines) 21

2.7 An example of baseline fitting 22

2.8 An example of fixed pitch detection, with pitch = n . . 23

2.9 An example of difficult word spacing 24

2.10 Candidate chop points [5] 25

2.11 Static character classifier: features matched to prototypes 26

3.1 Excerpt from Eileen Robertson’s Ordinary Families . . 31

3.2 eng.brian.exp0a . 35

3.3 Box drawn around ‘T’ 38

3.4 Template used by the Scanahand software to build a font

out of handwriting . 43

3.5 3 various “handwriting” fonts; (a.) neatest, (b.) neat,

and (c.) sloppy . 45

3.6 Summing 2 and 2 . 49

3.7 Iris Flow: Home page 51

3.8 Iris Flow: Selecting a character set 51

3.9 Iris Flow: Upload an image 52

v

3.10 Iris Flow: Result . 53

3.11 Iris Flow: Result . 54

4.1 Adding 2 and 2 . 56

4.2 Subtracting 50 from 100 57

4.3 Summing Algorithm . 58

4.4 mult() function . 59

4.5 Printing 1 through 10 60

4.6 Unnormalized image, multiplying 4 and 4 61

4.7 Tesseract accuracies from three different handwriting vari-

ations . 62

5.1 Pseudo code for summing algorithm 64

List of Tables

4.1 Commonly misrecognized characters 63

Chapter 1

Introduction

The idea that a computer programmer, mathematician, or other type

of programming professional need to be stationed in front of a static

desktop computer with a full-fledged editor or integrated development

environment to get their work done one might argue is slowly becoming

an outdated paradigm 1. With the advent of mobile devices such as

the iPhone, iPad, various Android devices, and other smartphones and

tablets, most of us today are walking around with powerful computing

devices right within our pocket as nearly 87/100 people in the world

own a smartphone 2. Throughout this paper, we’ll refer to these devices

collectively as “smart devices”.

Power-users are finding new ways to leverage the capabilities of these

very devices. For instance, there are over 75 apps in the iOS App Store

which allow one to ssh, or secure shell, into a remote machine and run

various tasks. Furthermore, there are more than 40 apps in the iOS

App Store which allow one to program directly on their iOS devices.

Still, writing “code” on a smart-device is reserved for long-form scripts
1http://smokingapples.com/opinion/web-development-ipad/
2http://mobithinking.com/mobile-marketing-tools/latest-mobile-statssubscribers

1

and programs, and although on a smart device, the task can be quite

involved. The user must boot up their code-editing app and program

directly on the screen of their smart device. Many issues arise when

programming on such screens with little real-estate: first, working with

large amounts of text can be quite cumbersome on small screens with

a touch keyboard and second, the on-screen keyboard on smart devices

can be obtrusive to text viewing; this is such a problem for some de-

velopers that some have devoted hours of research into new methods

of interacting with text on touch devices. 3

Let’s consider the following situation: you’re sitting at the coffee shop

with your smart device, as well as a pen and a napkin in-hand. You’re

looking to buy six items of varying values. You have $25.00, and you

want to know whether you have enough money to purchase the six items

in question. You grab the napkin and write a small script (pseudo-code)

which does the calculation for you:

a = [3,1,4,9,2,7]

sum = a.sum

print sum <= 25

This 3-line script takes the value of the six items in question, puts

them into an array, sums the array, compares the sum to the amount

you have, and prints a boolean value indicating whether or not you

have enough money to purchase the items. In this scenario, the sum

would equal $26.00 and since you only have $25.00, the algorithm would

print false, indicating that you do not in fact have enough money to

purchase all six items.
3http://en.wikipedia.org/wiki/HooperSelection

2

Because the algorithm is written on a napkin, it cannot be easily ex-

ecuted. However, typing the entire algorithm into your smart device

would be inefficient and cumbersome. What if you could take a photo

of your algorithm written on the napkin using your smart device, and

have the result dynamically generated from the photo taken and re-

turned to you.

In this paper, we’ll outline a novel solution, coined Iris, for writing

small scripts which can be interpreted and executed using a similar

method outlined in the scenario above: handwritten code executed via

an app on a smart device.

1.1 Motivation

Many of us grew up in the 70s, 80s, 90s, and into the early 2000s,

an era where the paradigm personal computing was not shifting, but

technology was advancing in terms of speed and software. Companies

like Apple and Microsoft, during this time period, were not competing

over the devices we carry in our pockets, but the devices we set on top of

our desktop, hence the term desktop computer. Looking at Microsoft’s

original mission only furthers this point:

In 1975, Gates and Allen form a partnership called Mi-

crosoft. Like most startups, Microsoft begins small, but has

a huge vision – a computer on every desktop and in every

home. 4

But even as far back as 1996, Apple CEO Steve Jobs (who wasn’t the

CEO of Apple at the time) saw that the paradigm of immobile PCs as
4http://www.codinghorror.com/blog/2012/03/welcome-to-the-post-pc-era.html

3

our only computing device would quickly die:

The desktop computer industry is dead. Innovation has vir-

tually ceased. Microsoft dominates with very little inno-

vation. That’s over. Apple lost. The desktop market has

entered the dark ages, and it’s going to be in the dark ages

for the next 10 years, or certainly for the rest of this decade.

If I were running Apple, I would milk the Macintosh for all

it’s worth – and get busy on the next great thing. The PC

wars are over. Done. Microsoft won a long time ago.1

Motivating the use of smart devices &

the dawn of the Post-PC era

Because Iris is inspired by various apps on the market today, it is

key to show why they’re important and influential to programmers,

developers, and mathematicians alike. Motivating the importance of

smart devices is easier today than ever due to the shear amount of

users that carry smart devices with them all of the time. In fact, smart

phones are set to overtake older, slower feature phones in Q4 2011 5.

On the same note, Apple’s iOS platform reached 316 millions units

at the end of 2011. The iOS platform overtook the Apple desktop

solution, OSX, in under four years and more iOS devices were sold in

2011 (156 million) than all Mac desktops ever sold (122 million).6

Furthermore, when Steve Jobs said that the “PC wars” were over, he

couldn’t have been more correct. In 2007, Apple released the original
5tinyurl.com/3u7arfn
6http://www.asymco.com/2012/02/16/ios-devices-in-2011-vs-macs-sold-it-in-28-

years/

4

iPhone, which in essence marked the beginning of the end of the PC

era, and thus marked the transition into what we know today as the

Post-PC era.

The Post-PC era is characterized by less of a reliance on desktop and

laptop computers which are stationary and more of a reliance on net-

books, tablets, and smart phones. Secondly, the Post-PC era is char-

acterized by a new way of distributing processing power across smart

devices and remote servers, known as the “cloud”. An example of this

smart device to cloud communication is Apple’s Siri, which is a per-

sonal assistant integrated directly into your smart phone. The user

speaks commands into their iPhone, it sends an audio file over to Ap-

ple’s server (Apple’s own Cloud inftrastructue), and some meaningful

result is returned to the user. For instance, if a user tells Siri, “Set an

alarm for 6PM”, the iPhone, seemingly with a bit of magic, parses the

user’s speech and sets their alarm for 6PM.

Apple’s engineers had to ask themselves architectural design questions

when building Siri: can we detect what the user is saying directly on

the phone, or should we send audio to servers to be further processed?

They chose the latter, which gave them certain benefits over the former:

- greater processing power, as smart devices lag behind desktops

when it comes to processing power by about 5 years

- access to greater amounts of data (the most storage on a smart

device is approximately 64GB)

- shared data across all devices using the cloud (usera, userb store

their data in a central location which can be data-mined, pro-

cessed, etc.)

5

Of course, there are some pitfalls to this solution as well:

- privacy concerns, as data is sent often times unencrypted to the

cloud 7

- apps that rely on the cloud inherently rely on an internet connec-

tion; therefore, no connection equates to a loss of functionality

for the app

- the cloud is susceptible to slow-downs when many users are ac-

cessing it, which can make cloud-reliant apps feel unresponsive

The solution outlined in this paper, Iris, is architected in a very similar

manner, which we’ll outline in Section 3. Many of the pitfalls of a smart

device-to-cloud solution will have no effect, however, on our implemen-

tation. This is due to the fact that only a handful of researchers will

be using Iris, which will not adversely affect the servers. Furthermore,

since Iris is a closed application, privacy concerns can be ignored. It’s

imperative that issues such as these be accounted for in production,

and these issues will be discussed later in the paper.

Do we really need a new way to write code?

Since the conception of modern programming languages like C, C++,

and Fortran, the way in which programmers write code has not evolved.

If a programmer wanted to write some code or a small script, they

opened up their integrated development environment (IDE) or text

editor and authored some code. Upon completion, a result would be

output to the user. If errors were present, the user could debug the

code. The process of writing code was and is still a very formal process.
7http://tinyurl.com/7aepsow

6

Over the past couple of years, new, interactive ways of writing code

have emerged. Ways which not only improve the code authoring expe-

rience, but also improve the way computer science is taught.

Victor outlines one of these new interactive ways of programming, the

basis of which is called “manipulation software”. 8 9 Victor describes

it as follows:

Manipulation software generally displays a representation of

an object—the model—which the user directly manipulates

with pseudo-mechanical affordances. Because manipulation

is the domain of industrial design, manipulation software

emphasizes industrial design aspects.

The Light Table IDE is a conceptual IDE which utilizes Victor’s idea

of manipulation software to assist programmers in becoming more pro-

ficient at authoring code. Light Table is a new project on Kickstarter
10 which has raised over $140,000/$200,000. 11 Most of its investors

are, of course, programmers, who are looking for a new way to write

code – which proves that programmers desire a new method to writing

software.

Esponda et al researched various methods involving handwriting and

teaching. They found that tactile techniques, such as handwriting, re-

inforce in the viewer the illusion of reality of the virtual objects because

they behave like we would expect in reality [2]. Esponda et al expanded

their research to the classroom, where they studied how a teacher or

professor would be able to author code on an E-Chalk board at the
8http://vimeo.com/36579366
9http://worrydream.com/#!/MagicInk

10A funding platform for creative projects.
11http://www.kickstarter.com/projects/ibdknox/light-table

7

front of the class, and execute a small algorithm in front of the entire

class.

Quick, iterative solutions to programming still do not exist and because

of this, the overhead of starting to program is still, I would argue,

too great. J.C.R. Licklider, an American computer science pioneer,

described it as so:

In the spring and summer of 1957. . . I tried to keep track of

what one moderately technical person [myself] actually did

during the hours he regarded as devoted to work. . . About

85 per cent of my “thinking” time was spent getting into a

position to think, to make a decision, to learn something

I needed to know. Much more time went into finding or

obtaining information than into digesting it. Hours went

into the plotting of graphs, and other hours into instruct-

ing an assistant how to plot. When the graphs were fin-

ished, the relations were obvious at once, but the plotting

had to be done in order to make them so. . . Throughout

the period I examined, in short, my “thinking” time was de-

voted mainly to activities that were essentially clerical or

mechanical: searching, calculating, plotting, transforming,

determining the logical or dynamic consequences of a set of

assumptions or hypotheses, preparing the way for a decision

or an insight. [3]

Iris aims to solve a portion of the dilemma Licklider describes. Instead

of spending 85% of their time setting up their computer, integrated

development environment, and everything other task involved in au-

thoring simple algorithms, a programmer could write a simple script in

8

Iris without the setup overhead. They could do all of this using only a

pencil, paper, and a smart device.

Twitter, a 140-character micro posting service, was born out of the

desire for bloggers to post quick, short messages online because tradi-

tional blogging required too much overhead. In a similar light, Iris is

advantageous to traditional programming styles because of how simple

and quick it allows one to write code.

The utility of performing OCR on handwritten text

Though much of our life is becoming digitized, there are still many

areas in which an analog approach is still more practical and desired.

One of those areas is printing.

1.2 Problem Statement

Different approaches to digitizing handwritten text and performing

something useful exist throughout our world today. For example, the

United States Post Office (USPS) was able to save billions of dollars

over the span of several years by radically changing the way it processed

mail–a paradigm shift that was questionable at the time, but ended up

revolutionizing the process of sorting mail. By the mid 1970’s, the

USPS realized that in order to offer a cheap solution to mail delivery

while dealing with the growing volume of mail being sent daily, a solu-

tion that didn’t involve immense amount of manpower for sorting and

relied heavily on automation was needed. Earlier the next decade, the

first computer-driven single-line optical character reader was installed

in Los Angeles. The equipment required that the letter be read once

9

then a bar code was printed on the envelope and read during each

subsequent stage of the mailing process [4].

In a very similar fashion, I posit that using optical character recog-

nition, a capable programming language, along with smart

devices, the task of quickly authoring small algorithms writ-

ten by hand can be had. I posit this can be done with consistency

and accuracy. Any amateur or professional desires new, unique, niche

ways of making their hobby and job easier and more efficient—as a

professional developer, I would argue that programming is no different.

Are today’s most capable OCR engines able to recognize handwritten

text accurately enough to be executed by an interpreter? I posit that the

answer to this question is no and that another layer of machine learn-

ing must be added post-OCR to fix the noise introduced by the OCR

engine. Even today’s most capable OCR engines do not achieve 100%

accuracy. Tesseract, an OCR engine developed by Hewlett-Packard

between 1984-1994 [5] and improved since achieves approximately a

98% accuracy on semi-noisy printed text—since handwritten text is

inevitably noisier and more variant than some of the worst printer

text, one would expect an OCR-engine to achieve a lower accuracy

when recognizing handwritten text.

Furthermore, one of the best manners in which to improve OCR ac-

curacy is to define a set of constraints for the user to abide by while

writing their code by hand. The best OCR engines, like Tesseract,

use a two-pass mechanism where the first pass does a dirty recogni-

tion of the characters on the page, and the second pass attempts to

correct mistakes by using context, that is, use machine learning tech-

niques and various other algorithms to deduce what a word might be

and ultimately correct it (e.g. coffea would be corrected to coffee).

10

Requiring the user to author code using a domain specific language

based on simple English, I posit, will have a positive impact on OCR

accuracy–e.g. 4.multiply 2 instead of 4*4.

Will adding multiple layers of machine learning on top of the OCR pro-

cess coupled with a simplified programming language (DSL) be enough

to accurately recognize and ultimately execute handwritten text? I posit

that the answer to this research question is yes, but I feel that still fur-

ther steps must be taken before executing handwritten code becomes

a viable option.

1.3 Report Outline

In this paper, I’ll begin by giving a technological overview, including a

small survey of handwriting recognition techniques as well as detailing

Tesseract, the OCR engine used in my experiments. Next, I’ll present

my solution: the Iris app, training with Tesseract, and the domain

specific language. I’ll then present and discuss my results. Lastly, I’ll

present my conclusion and areas of future research.

11

Chapter 2

Technological Overview

2.1 Survey of Handwriting Recognition

Handwriting is a skill that is unique to each individual, and it is a skill

which has survived throughout the ages. The reason that handwrit-

ing persists in the era of personal computers and smartphones is the

convenience of paper and pen as compared to keyboards for numerous

day-to-day tasks [1].

However, widespread acceptance of PCs and smart devices seemingly

threaten the future of handwriting - but still, in a vast amount of

situations, a pen together with a small notepad or napkin is much

more convenient as compared to a keyboard and screen. For example,

the modern student still prefers handwritten notes to store equations,

algorithms, and diagrams.

Handwriting recognition is the task of transforming a language repre-

sented in its spatial form of graphical marks into its symbolic, digital

representation. For English, this is usually an 8-bit ASCII represen-

tation [1]. Handwriting interpretation is the technique of determining

12

the meaning of a body of handwriting, e.g. a handwritten amount on

a check or a handwritten address. In essence, the main goal of recogni-

tion and interpretation is to filter out the variations in handwriting as

to determine the message. We as humans are ourselves a device which

can perform handwriting recognition and interpretation, and we excel

when the handwriting is written within a domain we have knowledge

about—e.g. a pharmacist whose job it is to read a physician’s notes

can easily decipher the meaning of the notes because he is familiar with

the language within that domain.

Input

Two methods exist for converting handwritten data into digital form.

One form is done by scanning the writing on paper and the other form

is done by writing with a pen or finger on a special electronic surface,

such as a tablet or digitizer. The two form are known as off-line and on-

line handwriting, respectively. The recognition rates are much higher

for the on-line case as compared to the off-line case [1]. Figure 2.1

shows the difference between the two methods.

Figure 2.1: Offline (a) vs. Online (b) handwriting

Although off-line systems are less accurate than on-line systems, they

13

are now accurate enough that they have a grave economic impact on

specialized fields like postal service, bank checks, and executing hand-

written code.

Moreover, the solution in this paper only focuses on the off-line version

of handwriting recognition and interpretation. For this reason, we’ll

only refer to the off-line version from this point on.

Off-line Handwriting Recognition & Interpretation

Recognition

The two most crucial tasks of off-line handwriting are character recog-

nition and word recognition. Character recognition tries to answer the

question of what are the meaningful symbols, or characters on the page?

Word recognition, on the other hand, tries to answer the question what

are the meaningful words on the page? [1] A preliminiary step to both

character and word recognition is document analysis, i.e. locating and

registering the appropriate text in a complex, two-dimensional spatial

layout. This preprocessing is comprised of several sub-steps, some of

the most common being: thresholding, noise removal, line segmenta-

tion, and word and character segmentation. [1]

Thresholding

The task of thresholding is to separate the foreground from the back-

ground, or the ink from the paper. The grayscale histogram extracted

from a scanned image typically consists of two peaks: one high and

one low corresponding to the white background and black foreground

14

respectively. The crucial task of thresholding is to find the “optimal”

threshold gray-scale value between valley between the two peaks. [1]

Noise-Removal

Noise-removal is an area of document analysis that has been dealt

with extensively in for typed or machine-printed documents, but in-

frequently for handwritten documents.

Noise can be introduced onto the medium prior to scanning– an errant

ink splotch or lines on the paper. Noise can also be introduced during

the scanning phase–a dirty lense on a camera or a dusty glass plate on

a scanner often introduce dark spots in the resulting image. Various

algorithms exist to remove noise from the medium before recognition.

[1]

Line Finding

Line finding, sometimes referred to as line segmentation, is the delin-

eation of each line of text in a document or page. For machine-printed

documents, line finding is somewhat trivial, as each line is spaced evenly

throughout the document (typically 12 pt. line spacing). The same,

however, cannot be said for handwritten documents.

Oftentimes when we write, our characters tend to undulate up and

down and ascenders and descenders tend to intersect (Figure 2.2). This

makes line finding a difficult task for handwriting.

15

Figure 2.2: Line finding is difficult for handwritten text

One solution is based on the principal that people tend to follow an

imaginary line when they write a sentence, which forms the core upon

which each of the words within the sentence rests. This imaginary

baseline is then guessed by the local minimum points from each char-

acter.

Word & Character Segmentation

Line finding is often followed by a routine that separates the blobs

found within a line into words. Segmenting characters relies upon

the fact that there exists a uniform physical spacing between char-

acters. For machine-printed text, this is almost always the case, and

for monospaced type, this is always the case. Conversely, exceptions in

spacing are commonplace in handwritten texts because of the plethora

of writing styles that exist with leading and trailing ligatures. Fig-

ure 2.3 shows how an OCR engine segments characters on a page.

16

Figure 2.3: Examples of segmented characters [1]

Optical Character Recognition (OCR) vs. Intelligent Character

Recognition (ICR)

Intelligent Character Recognition is a (in relation to OCR) more ad-

vanced, more focused means of extracting, digitizing, and recognizing

printed text. With any sort of character recognition, the main task

is to assign a digitized character to a symbolic class – that is, is that

B-like character on the paper really a B, or is it a 8 or a poorly scribed

3? With how much certainty can we make a prediction, or, what is the

confidence value?

Most often, optical character recognition is a blanket term used to de-

scribe the the process of converting printed text into a digitized form,

and because of its generality, we’ll use the term OCR over ICR through-

out this paper. Note that oftentimes, in the case of handprint, the term

ICR is used.

17

2.2 Tesseract

The Tesseract OCR engine, or simply Tesseract, is an open-source OCR

engine which was developed at Hewlett-Packard between 1984-94 [5].

Tesseract shares many similar components with other OCR engines, so

in this section, I’ll outline its novel aspects: its line finding algorithm,

features/classification methods, and its adaptive classifier. Much of

this section, 2.2, relies on knowledge outlined in [5].

Image Acquisition

Image Manipulation

Layout Analysis

OCR

Parsing & Data Extraction

Application Specific
Logic

Typical
OCR Engine

Figure 2.4: Typical components of an OCR engine

After going untouched for more than 10 years, Tesseract is now chal-

lenging the leading commercial engines in terms of its accuracy. Its key

strength is most certainly its unique choice of features, and according

to Smith, Tesseract current maintainer, its key weakness is probably

its use of polygonal approximation as input to the classifier instead of

raw outlines [5]. Let’s examine what’s going on inside of the Tesseract

OCR engine. Figure 2.4 shows a typical OCR flow diagram, which

18

we can use as a reference to compare and contrast Tesseract’s unique

aspects.

Tesseract – Architecture

Tesseract is, in a sense, a Frankenstein of technologies–built with vari-

ous parts other similar OCR engines have and missing some parts that

other OCR engines have. Since it was originally an integral part of

Hewlett Packard’s commercial image recognition software, Tesseract is

missing some key components that other OCR engines have built in.

For instance, most OCR solutions contain a preprocessing phase, where

the page in question is laid out, de-skewed, etc. Tesseract, on the other

hand, never needed this feature because HP’s proprietary (and subse-

quently, not open source) page layout analysis was bundled together

with Tesseract. For this reason, Tesseract assumes that its input is a

binary image (black and white) with optional polygonal text regions

defined [5].

19

Image Acquisition

Connected component analysis

Line finding

Baseline fitting

Word segmentation

Application Specific
Logic

Tesseract

Character segmentation

Pass #1
Word recognition

Pass #2
Word recognition using knowledge

Recognized words passed to
Adaptive Classifier

Fuzzy space resolution

Figure 2.5: Components of Tesseract

20

Tesseract – Line Finding & Word Finding

Line Finding

Tesseract’s line finding algorithm is designed so that a skewed page

can be recognized without the need to be de-skewed. Unlike Tesseract,

most OCR engines de-skew the page in order to ease the process line

finding. This can, however, lead to a loss of image-quality as text is

stretched and pulled, which introduces a substantial amount of noise.

The key aspects of the line finding algorithm is blob filtering and line

construction. In this step, the engine’s simple percentile height filter

remove drop-caps and vertically touching characters. The mean height

approximates the text size in the area, which makes it safe to filter out

blobs which are too small as compared to the mean height – typically

indicating punctuation, diacritical marks, and noise.

Figure 2.6: An example of line finding (3 distinct lines)

These blobs are likely to fit a model of non-overlapping, parallel, slop-

ing lines. To fit the blobs to a unique text line, the blobs are sorted

and processed by x-coordinate. This greatly reduces the ill-effects of

assigning an incorrect text line when skew is present. Once the blobs

have been assigned to a specific line, a least median of squares fit is

used to approximate the baselines, and the separated-out blobs are

21

fitted back to their appropriate lines [5].

Finally, the line finding process merges blobs that overlap by at least

half horizontally, replacing diacritical marks together with the corre-

sponding base and correctly associating parts of some broken char-

acters. Figure 2.6 shows an example of how Tesseract performs line

finding.

Baseline Fitting

After capturing the text lines in the forms of blobs, Tesseract examines

the blobs on a more granular level. In this step, the baselines are fit

more precisely using a quadratic spline, or essentially 4 parallel lines

that quadrisect the blog: a fitted baseline, descender line, meanline,

and ascender line.

Figure 2.7 shows an example of baseline fitting, where the bottom line

(green) corresponds to the ascender line, the blue line corresponds to

the baseline, the gray line corresponds to the meanline, and the red

line corresponds to the ascender line. This step is novel to Tesseract,

which helps it handle pages with curved baselines, such as those caused

by scanning artifacts and book splines [5].

Figure 2.7: An example of baseline fitting

22

Fixed Pitch Detection and Chopping

Words which contain characters all with equal widths are treated as a

special case in Tesseract. Tesseract tests text lines to figure out whether

or not they are of equal width, or fixed pitch. When it finds fixed pitch

text, Tesseract splices the word equally based on the pitch, and the

word is marked ready for word recognition. In the next section, we’ll

expand as to why this is necessary. Figure 2.8 shows and example of

fixed pitch (pitch of n) text and how Tesseract might chop it.

Figure 2.8: An example of fixed pitch detection, with pitch = n

Proportional Word Finding

Word with non-fixed-pitch or proportional text spacing are difficult to

parse and therefore the task is non-trivial. Figure 2.9 illustrates some

examples of difficult word spacing. Take, for instance, the spacing

between the y in by and the g in google. The bounding boxes around

those two letters offers little vertical spacing, although by and google

are actually separate words. In fact, the spacing between the y and the

g is very similar to the spacing between the b and the y of the actual

word by. Tesseract deals with issues like this by measuring gaps in a

limited vertical range between the baseline and mean line [5], meaning

ascenders and desenders are not accounted for.

23

When Tesseract finds spaces that are too close to the threshold at this

stage, it marks the space as “fuzzy” and passes the it off for a decision

to be made at a later phase.

Figure 2.9: An example of difficult word spacing

Tesseract – Word Recognition

A main task of any optical character recognition engine is to iden-

tify how words should be segmented into their individual characters.

In the previous step, the line finding step, Tesseract segmented only

fixed pitch words. The remaining words are sent down the pipe, where

Tesseract determines how non-fixed-pitch text should be chopped.

Chopping Joined Characters

Because the result from a classifiying a word alone is insufficient, Tesser-

act tries to improve the result by splitting (or chopping) the blob with

the worst confidence from the character classifier. Potential chop points

are found based on the concavity of the outline of the blob, as can be

seen in Figure 2.10. Concave points without a concave opposite or a

opposing line segment are ignored. According to Smith, it may take up

to three pairs of chop points to accurately separate joined characters

[5].

24

Figure 2.10: Candidate chop points [5]

Figure 2.10 shows potential chop points for the word arm. Chops are

performed in ascending order based on priority, and any chop that

doesn’t increase the confidence of the result is undone, and saved for

potential later use.

Associating Broken Charaters

Once all chops have been made, if the word still lacks valuable in-

formation, it is given to what’s called the associator. At this phase,

disconnected blobs are grouped into candidate characters using an A*

search algorithm. Tesseract’s implementation of the A* algorithm in

this step gives it a noticably higher accuracy score compared to other

OCR engines [5].

Static Character Classifier

Features

During the training phase, segments of a polygonal approximation are

used as features, but during recognition, small fixed-length features are

extracted from the outline and matched many-to-one with the clustered

prototype features of the training data. The features extracted from

the unknown character are 3-dimensional: x position, y position, and

25

angle; those from the prototype are 4-dimensional: x position, y posi-

tion, angle, and length.

Figure 2.11: Static character classifier: features matched to prototypes

Training Data

Because Tesseract’s classifier can accurately recognize broken and dis-

joint characters, the classifier was not trained on broken characters;

but on 20 samples of 94 characters from 8 fonts [5]. This is a small

fraction of the training data required by other OCR engines.

Linguistic Analysis

Tesseract’s reliance on linguistics is actually quite minimal as compared

to other OCR engines. Tesseract utilizes linguistics only when consid-

ering a new segmentation. That is, Tesseract will choose one chop over

another in favor of creating an actual word.

Adaptive Classifier

Because Tesseract’s static classifer (discussed earlier) must be good at

generalizing various character sets, it performs poorly at discriminating

between different characters or between characters and non-characters.

26

For more granular classification, a more font-sensitive adaptive clas-

sifier is trained by the output of the static classifier. This results in

higher discrimination within a page, where the amount of font-specific

data is limited.

27

Chapter 3

Solution

As outlined, there are many technologies and moving parts that go

into the making of a full-scale solution for executing and compiling

handwritten code. Iris, the system outlined in this paper, makes use

of many technologies–the two most critical being (1) the server-side

component and (2) the client-side component.

The server-side component is comprised of various other intertwined

technologies:

- a handwriting recognition engine, known as an OCR engine

- a subset of a capable and concise programming language—this

subset is known as a domain specific language, or DSL

In addition, the client-side component is a means of communicating

with the server-side component, which does all of the processing of the

handwritten text, evaluating the recognized text, and returning a result

to the user. The client-side component is a thin but crucial layer that

allows the user to communicate with the backend. The communication

28

between the client-side and the backend should remain transparent to

the user.

The main aspects of the client-side component, often referred to as the

“app”, include:

- a smart device with:

- a camera

- internet connection

- an app which presents a user interface to the user

In the following sections, 3.1, 3.2, and 3.3, I’ll outline how I solved my

research questions as well as the architecture of Iris.

3.1 Optical Character Recognition

Many optical character recognition engines come pre-trained to accu-

rately recognize an array of fonts. This is advantageous because it

makes performing OCR on a new font easy, but it lacks in the sense

that the OCR engine never is able to learn the intricacies of a character

set, or font, prior to recognition.

Tesseract, on the otherhand, provides a rich application programming

interface, or API, to train itself based on new languages and character

sets that it has no knowledge of. Whereas other OCR engines have been

trained prior to the recognition of text and rely heavily upon previous

knowledge extracted from character sets, Tesseract’s initial training

was performed on a very small set of characters. The Tesseract API

exposes these initial training sets to get one started training a new

character set. In fact, Tesseract was trained on a mere 20 samples of

29

94 characters from 8 fonts in a single size. This is a major contrast

from other published OCR engines, such as Calera, which was trained

using over a million samples, and Baird’s classifier, which was trained

using 100 fonts with over 1 million training samples [5].

3.1.1 Sanity Checking Tesseract

After configuring, making, and installing the Tesseract *NIX utility,

the Tesseract (tessdata) data directory is placed on the users system

with a various language traineddata files in the form

tessdata/[language].traineddata. The tessdata directory is where

Tesseract stores files called traineddata files. For instance, if a user

wanted to classify a chunk of English text, Tesseract would utilize the

tessdata/eng.traineddata that was pre-built by Tesseract.

In order to verify that Tesseract was actually working regardless of ac-

curacy, I classified an old page taken from Eileen Robertson’s Ordinary

Families (Figure 3.1). As seen in Figure 3.1, the page shows wear, the

line-spacing of the text is small, the background is a discolored and

faded yellow, and text from the reverse side of the paper is showing

through. This sort of noise is not limited to old printed texts, but

might also occur when taking a picture of handwritten text.

30

Figure 3.1: Excerpt from Eileen Robertson’s Ordinary Families

31

Classifying this images using Tesseract is done by issuing the command

tesseract ocr_sanity.jpg ocr_sanity.txt -l eng. The command

reads as follows: “Use Tesseract to train the file ocr_sanity.jpg us-

ing the English language and output the results to a text file called

ocr_sanity.txt”

Using only the trained data file tessdata/eng.traineddata provided

by Tesseract, the output of the command is:

CHAPTER]

AN OESESSION WITH TIME

MARGARET and I quarrelled because she would not

let me sink ha makeshift boat in the marsh pool,

in whieh a ne steep sea could he worked up by hand

in a few seconds. More exactly, I quarrelled wilh

Mai-gam about il,for my sister always remained passive

in the many disagreements we had when I was getting

on for eleven and she was nine It is hard, as it always

is with vivid childish memories, ta know haw much of

the incident is recolleeted from the Lime ofiu

happening, and how many suitable details the

mind has added aftervmrds in recanstrucon.

The whole lrivialuccurrenceseems clearin retrospect,

hm so objectively seen that it might be

happening Kn any two other damp and dirty shrill-voiced

children, playing en a snip of marsh ground much bigger

than I now know it to be. The Lallic in the pieuire.

who is n-lyscll, is as visihlr: as the Maxgarel, so dim

probably most of my memory of what {allowed hangs on my

32

1-nod-ier’s rc-telling of the story she

heard rrnrn Margaret two days afterwards.

I do denitely remember, though, suelehing my anklu

ccstatically to straining point as I knelt,

ruling back on my heels, so that the spongy ground

shnnhl make long black stripes of dampness, like

those on the beech-bales just behind us, all the way

dawn the from nrrny brown stockings, and not only

patches on the knees and toes. This was luxury:

no other children, we had gathered, were encouraged to

get as wet as we were — who else wnnhi have heen

allowed to play in February on Ll-le marrh hy

Ihe river? rCenainly none of our (riends.

I5

The output text from Tesseract verified the sanity check that Tesseract

is capable of detecting printed text. However, the real research to be

done lies within the question: Can Tesseract, or any OCR engine,

accurately detect handwriting in an offline fashion? This question can

be answered by testing Tesseract’s accuracy on handwritten text, a

type of input Tesseract was not inherently designed to handle.

The remaining subsections of my Solution will outline the process taken

to investigate this research question.

33

3.1.2 Training the Tesseract OCR engine

Training Tesseract follows a process that requires multiple automated

and multiple manual processes. The entire process is outlined here 1,

but since the process to train a handwritten language and character

set is nuanced, I’ll outline the process in this section.

Tesseract reuires that any language a user wants to use for classification

with Tesseract to be included in the tessdata directory. By default

and as noted earlier, Tesseract comes preloaded with a small number of

languages and fonts one can use for classification, and for each language

only a small amount of data was used to train it.

Generating Training Images

The first step to training Tesseract is to find or make an image that

contains the full character set of the language in question. For the

experiments outlined in this paper, I used a handwritten character set

based off of the English language. Multiple experiments, or passes, we

made during the training of the new handwritten character set.

The language was named as so: [language].[person].[experiment].

Tesseract requires a strict naming convention because, during the pro-

cess of training a new character set, various files are combined based

on their file name, excluding the extension.

The first pass on training, considering the naming convention just dis-

cussed, was named eng.brian.exp0a. The ‘brian’ in the file name

indicates that I, the author of the report, was training Tesseract on my

own handwriting.
1http://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3

34

When generating the training images, the creators of Tesseract recom-

mend using what I’ll refer to as the “quick brown fox” snippet that

contains essentially the entire set of characters within the target lan-

guage. Figure 3.2 shows the initial training image used to train the

eng.brian character set.

Figure 3.2: eng.brian.exp0a

For training, the Tesseract processing tools recommend that the train-

ing image contains a fair amount of each character, that more frequent

characters occur more, that non-letter digits aren’t grouped together,

and that there’s adequate spacing horizontally between the characters

(kerning) and vertically between the lines (line-height).

After the training image is made by hand, it is scanned in to be dig-

itized. Tesseract’s accuracy increases when its input images are pre-

processed, that is, when noise is removed from the image in question

by, for instance, increasing the contrast between text and its back-

ground. Utilities such as Adobe Photoshop or the command-line tool,

ImageMagick, can perform noise removal on images. Fixing effects due

35

to noise, however, is outside the scope of this paper.

Making & Correcting the Box Files

For each training image, Tesseract requires what is called a “box file”,

which is essentially a text file that lists the characters in the training

images in order, one per line, with the coordinates of that character’s

bounding box. Since a training pass can contain multiple training

images, each image will need its own box file.

During the first pass, there is only one image to be trained on eng.brian.exp0a.tiff.

To create a box file for this image, I issued the following UNIX com-

mand:

tesseract eng.brian.exp0a.tiff eng.brian.exp0a \

batch.nochop makebox

At this point, Tesseract returns the box file, eng.brian.exp0a.box.

Inspecting the box file, it is obvious just where Tesseract has trouble

classifying the image during this stage. Below is sample of the Tesser-

act’s generated box file from the “quick brown fox” snippet.

T 979 1487 1039 1541 0

h 1059 1487 1103 1539 0

e 1139 1488 1175 1527 0

(1341 1470 1366 1558 0

t 1377 1453 1424 1521 0

u 1441 1498 1476 1526 0

z 1519 1501 1534 1543 0

o 1552 1501 1585 1531 0

k 1594 1503 1635 1546 0

36

) 1648 1482 1682 1575 0

b 1840 1511 1872 1566 0

r 1896 1515 1922 1543 0

o 1959 1518 1986 1545 0

w 2017 1514 2065 1542 0

n 2083 1509 2128 1542 0

f 2281 1492 2315 1588 0

F 2329 1514 2365 1572 0

o 2367 1522 2398 1550 0

* 2411 1524 2444 1556 0

3 2471 1492 2501 1587 0

Here, Tesseract fails exactly where one might expect: on similar looking

characters. For example, the second-to-last line is interpreted as a

* when it’s an x in actuality. From here, one must manually edit

the box file with the correct values. Figure 3.3 shows how Tesseract

chops the ‘T’ in the word ‘The’. The coordinates (979,1487) denote the

bottom-left corner of the box and the coordinates (1039,1541) denote

the upper-right coordinates of the box.

37

Figure 3.3: Box drawn around ‘T’

If characters on the page are poorly spaced, some may have been placed

into the same box, in which case further corrections to the box file need

to be made. The final number on each line of the box file indicates

which page in the file that the character appeared on

Running Tesseract for Training

Once the box files and training images are had, Tesseract needs to be

run in “Training Mode” by running at the command line:

tesseract eng.brian.exp0a.tiff eng.brian.exp0a \

nobatch box.train

This command outputs a eng.brian.exp0a.tr file, which will be used

later in the training process.

38

Clustering

After the character features of all of the training pages have been ob-

tained, the next step is to cluster them to create the prototypes. The

character shape features need to be clustered using the mftraining

and cntraining commands.

mftraining -F font_properties -U unicharset -O \

eng.unicharset eng.brian.exp0a.tr

At this step, two files are outputted: inttemp which contains the shape

prototypes and pffmtable which contains the number of expected fea-

tures for each character. Finally, we issue the following command to

get the character normalization sensitivity prototypes:

cntraining eng.brian.exp0a.tr

This will output the normproto data file.

Dictionary Data

As explained in Section 2.2, Tesseract uses a dictionary to classify am-

biguous words. During classification, if Tesseract encounters an am-

biguous string of characters that can be made into an actual word,

Tesseract will attempt to switch low confidence characters with those

characters that will complete the word. For instance, (ollege might

be corrected by Tesseract as college, because switching the (to a c

transformed the block of characters into a word found in the dictionary.

During training, Tesseract requires two word lists for the language in

question, formatted as a UTF-8 text file with one word per line. The

first word list, as mentioned, contains all of the words in the language.

39

The second list, called the “frequent words” list, is a subset of the main

word list that contains the words most frequently used in the target

language. Our target language is English, but even more specifically,

our target langauge is a programming language, Ruby. The most oft

used keywords are undoubtedly the keywords of the programming lan-

guage. I constructed a file, frequent_words_list, which contained

the following Ruby keywords:

BEGIN if

END in

ENCODING module

END next

FILE nil

LINE not

alias or

and redo

begin rescue

break retry

case return

class self

def super

defined? then

do true

else undef

elsif unless

end until

ensure when

false while

40

for yield

This file coupled with the entire word list file, words_list, gives Tesser-

act insight into a language, and are critical for Tesseract to be trained

properly.

The following two commands tie these two word lists into the training

process:

wordlist2dawg frequent_words_list eng.freq-dawg eng.unicharset

wordlist2dawg words_list eng.word-dawg eng.unicharset

Combining It All

The last step in the training process is to combine each of the files

output during the previous stages of training into a single tessdata

file which can be used for either classifying or bootstrapping (iterative

training) the same language. This is done via the command:

combine_tessdata eng.brian.exp0a.

which outputs the file eng.brian.exp0a.traineddata. After placing

this file into the Tesseract data directory (tessdata/), the new lan-

guage can now be used to classify a file of that language/character

set:

tesseract some_image.tif some_image_output.txt \

-l eng.brian.exp0a

41

With one traineddata file created, the next step is to reinforce (i.e.

train again) the given language using a new training image or images,

which is called bootstrapping.

3.1.3 Generating Large Amounts of Handwritten Text for

Training

Tesseract classifies with the highest accuracy when it is trained with

a substantial amount of data, that is, the more training images with

more variation lead to a higher classifier accuracy. The “Quick brown

fox” snippet alone is not rich enough in variation of handwriting styles

to give Tesseract enough information about a certain character set.

There is of course a threshold where training Tesseract with too much

data leads to the ‘Law of Diminishing Returns’, where Tesseract simply

can’t extract any more data, but more data was still necessary.

In order to automate the process of creating large amounts of text, I

created 3 fonts out of variations of my own handwriting using a tool

called Scanahand, which allowed me to fill in a template on paper,

digitally scan the template, and input the template into Scanahand. I

was then able to extract a true-type font of my own handwriting which

I was able to use to produce large amounts of text with.

42

Figure 3.4: Template used by the Scanahand software to build a font out of

handwriting

Figure 3.4 shows the template used by Scanhand to create a custom

handwritten font.

I created 3 fonts out of my own handwriting: a sloppy version, a neat

version, and the neatest version. Figure 3.5 shows these 3 examples of

43

the generated handwriting fonts.

44

Figure 3.5: 3 various “handwriting” fonts; (a.) neatest, (b.) neat, and (c.)

sloppy

45

3.1.4 Bootstrapping a Character Set Using Tesseract

The term bootstrapping is used to describe a process where a character

set (i.e., a font) is used to train itself. 2 In Tesseract, bootstrapping

is useful during the training process of new fonts because it further

reinforces what the OCR engine already knows about a given font,

using information it extracted from previous passes of training.

On the first pass on training Tesseract on the eng.brian language/char-

acter set, called Experiment 0 (exp0a), Tesseract returned a traineddata

file called eng.brian.expo0a.traineddata. During the second pass

(exp1a, exp1b, exp1c), instead of using the Tesseract-included default

eng.traineddata to obtain the box files, the traineddata file from

the previous training pass was used. This is done via:

tesseract eng.brian.exp1a.tiff \

eng.brian.exp1a -l eng.brian.exp0a \

batch.nochop makebox

This command was also used for eng.brian.exp1b.tiff and eng.brian.exp1c.tiff.

Note that where exp0 only utilized a single tiff image, exp1 utilized 3

various images, increasing the amount of data Tesseract had for train-

ing substantially.

For each subsequent pass on training the handwritten character set,

the traineddata from the previous pass was used in a bootstrapping

manner. The manual for training Tesseract iterates that each phase of

bootstrapping a character set increases Tesseract’s accuracy and knowl-

edge about a character set. In total, my solution ran three passes to

train the eng.brian character set.
2http://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3Bootstrappinganewcharacterset

46

3.2 Programming Language

In order for one to write simple algorithms using Iris, it’s essential for

Iris to be user-friendly and concise, which I’ll exmaine further in the

Results section. If one is expected to author small algorithms quickly

and repeatedly, requiring documentation just to use the language seems

disadvantageous. Because of this, Iris is architected in a manner re-

quiring one to write scripts in the Ruby programming language. Ruby

is described by its creators as:

... a dynamic, open source programming language with a

focus on simplicity and productivity with an elegant syntax

that is natural to read and easy to write. 3

Ruby reads like the English language, which makes it a good candidate

for programmers who don’t have time to fumble through documenta-

tion or the patience to remember a certain syntax. Furthermore, the

closer the written text is to English, the more we can utilize Tesseract’s

knowledge of the English language [5]. In fact, much of Ruby’s syntax

is optional.

For instance, to print Hello, World! in Ruby, one can write:

puts(’Hello, World!’) # ...or

puts ’Hello, World!’ # ...or even

p ’Hello World!’

To define a hash in Ruby, a programmer can write:
3http://www.ruby-lang.org/en/

47

{ name => ’Brian’, age => 28, hair_color => ’red’} # ...or

name => ’Brian’, age => 28, hair_color => ’red’ # ...or even

name : ’Brian’, age : 28, hair_color : ’red’

To do an action 10 times, one can write

10.times do { |i| puts i }

To capitalize or uppercase a string, one could write "hello".capitalize

or "hello".upcase, respectively. Considering these examples, it easy

to see that Ruby is intuitive and easy for one to write code quickly,

which makes Ruby the ideal programming language for writing code

by hand.

Because Ruby is a terse programming language it has two very distinct

advantages. First, the easier the language to write, the more accurate a

programmer writing code by hand will be. Second, and arguably more

important, is the fact that simpler handwritten texts equate to greater

accuracies from an OCR engine. Handwritten text that is difficult

for an OCR engine to recognize will inevitably cause errors when the

text from the OCR engine is later evaluated (or executed). Errors

introduced from the OCR process are known as noise, and the noisy the

text the more manual or machine corrections will need to be applied.

Esponda et al built a proof of concept for a system very similar to

Iris. In their experiments, they utilized E-Chalk technology–an elec-

tronic chalkboard which allows an instructor to perform digital tasks

by drawing on the chalkboard. Part of Esponada et al’s idea was to

allow an instructor to write a script on the E-chalk board and have

the E-Chalk board execute the result as a teaching aide for students.

To accomplish this, they built a domain specific language (DSL) for

48

teachers and professors to use on the E-Chalk board. The DSL they

used, in essence, was their own subset of the BASIC programming lan-

guage which consisted of only two interpreter commands and six types

of instructions. [2]

For executing handwritten code, it makes sense to require the user to

write their code in a specific way using a DSL. Users won’t need access

to low-level functions of a programming language (like file utilities,

threads, etc.) for handwritten code.

Creating a Domain Specific Language

I began creating a domain specific language using Ruby’s alias_method,

which allows one to alias any method or function to something else.

Since Tesseract performs poorly when trying to recognize symbols like

+ or %, we can aide Tesseract by requiring the user to user a more ver-

bose, alphanumeric subset of given programming language that more

closely resembles English.

Figure 3.6: Summing 2 and 2

For instance, allowing one to:

class Fixnum

alias_method ‘plus’, ’+’

end

Which allows us to write the following, and expect 4 as our result.

49

2.plus 2

In the solution presented in this paper, a DSL is a crucial element

which aides Tesseract with Roman symbols in which it has difficulty

recognizing.

3.3 Client-Side Application

In order for one to interface with Iris, a client-side app was built which

provided a thin interface to Iris’s backend, where OCR was performed.

In order to build a prototype of Iris’s client-side, a web application

was built in HTML5/CSS/Javascript. The flow for interacting with

Iris (http://iris.briangonzalez.org) was designed as follows:

1. Click ‘[create] upload’ near the bottom, left corner of the page see

Figure 3.7

2. Click ‘Choose File’ and point Iris to the image to be OCR’d and

evaluated see Figure 3.9

- Click checkbox to evaluate text see Figure 3.8

- Select the character set in the dropdown (either eng for

Tesseract’s preloaded English character set, or eng.brian,

the handwritten character set used built during training) see

Figure 3.8

- Click ‘Create Upload’ see Figure 3.9

3. Examine result from OCR result and Evaluated Result see Fig-

ure 3.10

- If the OCR output from Tesseract is incorrect, go to ’replace

rules’ in the lower navigation

50

- Add rule to replace textreplace_this with textwith_this, which

will perform an in-place swap whenever textreplace_this is found

in the OCR output. Note: this replacement occurs beofre the

‘eval’ stage see Figure 3.11

- Go back to result and click ’Retry’

Figure 3.7: Iris Flow: Home page

Figure 3.8: Iris Flow: Selecting a character set

51

Figure 3.9: Iris Flow: Upload an image

52

Figure 3.10: Iris Flow: Result

53

Figure 3.11: Iris Flow: Result

54

Chapter 4

Results

In this section, results are shown from various scripts designed to test

the capabilities and accuracies of Iris. Much of the accuracy of Iris is

hard to quantify, therefore, the majority of the information presented

in this section holds observational value.

Figure 4.1 shows the image of a script that simply adds 2 and 2. The

handwriting is clear, and the kerning is sufficient, i.e. no adjacent

characters are touching. The OCR and evaluated results are flawless.

55

Figure 4.1: Adding 2 and 2

OCR Result:

puts 2 + 2

Evaluated Result:

4

Figure 4.2 shows an image subtracting 50 from 100. The zeros are

written with strike-throughs and the 1 is serifed to avoid confusion

with an O and l, respectively. Iris, however, has difficulty parsing the

space between the s and the 1, which leads to a syntax error when

executed.

56

Figure 4.2: Subtracting 50 from 100

OCR Result:

putsz00-50

Evaluated Result:

undefined local variable or method ‘putsz00’ for <Up-

loadsController:0x0000000aea3d50>

Figure 4.3 shows the algorithm outlined in the introduction (coffee

shop with napkin, pen, smart phone). Iris handles the handwritten

algorithm quite well, and outputs the expected result.

57

Figure 4.3: Summing Algorithm

OCR Result:

a=[3,1,4,9,2,7]

sum = a.inject{ |sum,x|sum + x }

puts sum <= 25

Evaluated Result:

false

Figure 4.4 shows a handwritten algorithm with a defined function,

mult(), which is passed two arguments. Again, Iris does well pars-

ing the text, and outputs the correct result.

58

Figure 4.4: mult() function

OCR Result:

def mult(x,y)

x*y

end

puts mult(2,2)

Evaluated Result:

4

Figure 4.5 shows a script that loops 10 times and print the current

index of the loop. Again, the outcome is flawless.

59

Figure 4.5: Printing 1 through 10

OCR Result:

10.times { |num |puts num }

Evaluated Result:

0

1

2

3

4

5

6

7

8

9

60

Figure 4.6 shows a handwritten script, however, the background is

not normalized as in the previous examples. This is more akin to what

might be found in a real-world scenario. Tesseract, however, was unable

to find any text in the image, most likely due to the lack of contrast

between the dark text and the light background.

Figure 4.6: Unnormalized image, multiplying 4 and 4

OCR Result:

n/a

Evaluated Result:

n/a

61

4.0.1 Accuracies for a Given Handwriting Style

As described in my solution, three various handwriting styles were used

during the training of Tesseract. After the final traineddata file was

built, I reclassified the training images (using Tesseract) containing the

three various handwriting styles. Figure 4.7 shows that the two neatest

handwriting styles are correctly classified by Tesseract about 93-95%

of the time, while the sloppy handwriting style drops off dramatically

down to around 77%.

40 Style #1 Style #2 Style #3

100

0

10

20

30

40

50

60

70

80

90

Handwriting Style

Ac
cu

ra
cy

 (%
)

Sloppy

NeatNeatest

Figure 4.7: Tesseract accuracies from three different handwriting variations

4.0.2 Commonly Misrecognized Characters

Since the process of correcting the box files during training is man-

ual, I catalogued the characters most frequently misrecognized as an-

62

other character. Table 4.1 shows small subset of some of the characters

Tesseract has the most difficulty recognizing, prior to training.

Table 4.1: Commonly misrecognized characters

Written as OCR Output

l \

g j

d j

C c

k K

3

8 B

P D

% x

63

Chapter 5

Discussion

The handwritten form of the small script discussed in Section 1 (Intro-

duction) might look something like Figure 5.1.

Figure 5.1: Pseudo code for summing algorithm

Figure 5.1 sheds some light on the process of converting analog text

written on, for instance, a napkin, to a digital form to be executed.

We can see that an algorithm to parse the analog text may produce

poor results due to the fact that some characters are very similar. On

the first line, the 1 and the] have inherently similar features. The

1 is constructed with an “ear” at the top which continues downward

and to the left which resembles a serif and it also has an actual serif

64

at its base; conversely, the] contains two horizontal lines at the top

and base. The ear and the bottom serif of the 1 closely resembles the

horizontal top and bottom lines of the]. This, therefore, begs the

question: can we extract enough useful features from handwritten text

in order to correctly and accurately classify it?

For reasons outlined in Section 4 (Results), the answer to this question

is either no or it remains to be seen.

This process of automatically deducing what a character is (e.g., is

that 1 on the napkin actually a 1 or is that] actually a]?), is known

as Optical Character Recognition, or OCR. Because my research con-

siders handwritten text in the context of computer programming, a

mistake from the OCR engine is far from trivial. One of the most, if

not the most common use of OCR engines is to convert old documents

into digital form for digital acrhival. In this case, it is not a problem if

George Washington was the first president of the USA.

is recognized by an OCR engine as

Ge0rge Washmgton was the {irst presiden+ of the U5A

because the output is still readable by humans, although perhaps the

output would be rather useless for an information retrieval (IR) system.

On the other hand, programmers and mathematicians rely on the fact

that the code they write is interpreted with 100% accuracy. Accuracy

is one of the underpinnings of computer science. 3*3 has a completely

different meaning than }"3 when executed by an interpreter. Errors in

the output from an OCR engine, introduced as noise, are intolerable

when one expects to execute that output as if it were valid code.

65

All of this considered, many questions arise about the process of and

ability to executing handwritten code. The territory of executing hand-

written code, I’ve found, is largely uncharted territory in terms of aca-

demic research. Can handwritten code be accurately parsed by an OCR

engine and executed? What modifications, if any, would need to be

made to the modern programming language paradigm to allow for such

a system? Since handwriting varies from person to person, can we

devise a de facto OCR system capable of recognizing all types of hand-

writing?

My results show that a system can be built to solve the problem of

executing handwritten text with varying levels of accuracy. What my

results don’t show, though, is just how much a programmer using Iris

would tolerate when using a system of this nature. Is 95% accuracy

enough to make coding by hand a feasible option. I would argue that

the basis for a complete working solution, however, is outlined in this

paper.

66

Chapter 6

Conclusion

The problem I set out to solve in this paper was this: by using opti-

cal character recognition, a capable programming language, along with

smart devices, can the task of quickly authoring small algo-

rithms written by hand can be had?

Through my results, I found the answer to this question to be incon-

clusive. Iris achieved varying levels of consistency and accuracy, but

enough to make Iris a viable solution to my problem statement? That

remains to be seen.

Are today’s most capable OCR engines able to recognize handwritten

text accurately enough to be executed by an interpreter? Most of today’s

offline OCR engines, like Tesseract, are designed to achieve approxi-

mately 80-95% accuracy. To execute code, 80-95% accurate maybe be

too low and even today’s most capable OCR engines do not achieve

100% accuracy.

Will adding multiple layers of machine learning on top of the OCR pro-

cess coupled with a simplified programming language (DSL) be enough

to accurately recognize and ultimately execute handwritten text? An-

67

swering this research question fell outside of the scope of this paper,

however, I feel as if adding another layer of machine learning would

bolster the accuracy of Iris.

For future work, I would focus on adding an extra layer of machine

learning. I would also explore other OCR engines, both commerical and

open-source. Furthermore, I would look in to supplementing an extra

layer of machine learning to correct the OCR output with a layer of

crowd-sourcing, such as integrating Iris with a service such as Amazon’s

Mechanical Turks crowd-sourcing API.

68

Bibliography

[1] R. Plamondon and S. Srihari, “Online and off-line handwriting

recognition: a comprehensive survey,” Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, vol. 22, pp. 63 –84, jan

2000.

[2] M. E. Argüero and R. Rojas, “Learning algorithms with an elec-

tronic chalkboard over the web.”

[3] J. C. R. Licklider, “Man-computer symbiosis,” IEEE Ann. Hist.

Comput., vol. 14, pp. 24–, Jan. 1992.

[4] P. Reebel, United States Post Office: Current Issues and Historical

Background. Nova Science Publications, 2003.

[5] R. Smith, “An overview of the tesseract ocr engine,” in Proceedings

of the Ninth International Conference on Document Analysis and

Recognition - Volume 02, ICDAR ’07, (Washington, DC, USA),

pp. 629–633, IEEE Computer Society, 2007.

69

