
This Master’s Thesis is carried out as a part of the education at the University of Agder and is therefore

approved as a part of this education.

University of Agder, 2011

Faculty of Engineering and Science

Department of ICT

Solving the Boolean Satisfiability Problem Using
Multilevel Techniques

Sirar Salih

Yujie Song

Supervisor

Associate Professor Noureddine Bouhmala

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

2

To our beloved family, here and abroad, and to the beauty of science.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

3

Abstract

There are many complex problems in computer science that occur in knowledge-representation (artificial
thinking), artificial learning, Very Large Scale Integration (VLSI) design, security protocols and other areas.
These complex problems may be deduced into satisfiability problems where the Boolean Satisfiability Problem
(SAT) may be applied. This deduction is made in order to simplify complex problems into a specific
propositional logic problem. The SAT problem is the most well-known nondeterministic polynomial time
(NP) complete problem in computer science. It is a Boolean expression which is composed of a specific
amount of variables (literals), clauses that contain disjunctions of the literals and conjunctions of the clauses.
The literals have the logical values TRUE and FALSE, the task is to find a truth assignment that makes the
entire expression TRUE. The main goal of the thesis is to solve the SAT problem using a clustering technique
- Multilevel - combined first with Tabu Search and combined thereafter with finite Learning Automata. Tabu
Search and finite Learning Automata are two very efficient approaches that have been used to solve SAT.
Benchmark experiments are conducted in order to disclose whether combining Multilevel with existing
solutions to solve SAT will provide better results - than the two mentioned approaches alone - mainly in terms
of computational efficiency.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

4

Preface

Imagination is more important than knowledge. - Albert Einstein

This report is the documented result of the master's thesis in the IKT590 (Master's Thesis) course in the
master programme at the Faculty of Engineering and Science, Department of ICT at University of Agder in
Grimstad, Norway.

The main purpose of the IKT590 course is to allow students to write their master's thesis as a final step of
their master programme education at the University of Agder. The work performed by the students in the
thesis must be scientific and elements of the work must be new, contributing knowledge. The work is to be
presented by a theoretical report that describes the problem and results, along with a poster and an oral
presentation at the university.

The project group consists of students Sirar Salih and Yujie Song who attend the Information and
Communication Technology master programme, at the University of Agder. The first student has a bachelor
degree in computer science from the University of Agder and the second student has a bachelor degree in
electrical engineering from the University of Wuhan in Wuhan, China. The work on this thesis and the writing
of this report was done at the University of Agder. The supervisor of the thesis is associate professor
Noureddine Bouhmala.

Publication

The work conducted in this thesis and some of the experimental results have been included in the paper A
Tabu Search Algorithm Combined with Learning Automata for the Satisfiability Problem by N. Bouhmala, O-C. Granmo,
Sirar Salih and Yujie Song, to be submitted for publication as a chapter in book.

Acknowledgements

We would like to thank our supervisor, associate professor Noureddine Bouhmala for his continuous support
and guiding throughout the thesis period. Especially for his patience, it is safe to say that without his ideas and
assistance the thesis would have faced endless difficulties. We would also like to thank our contact at the
University of Agder, associate professor Ole-Christoffer Granmo for providing us the opportunity to start and
complete this thesis.

Grimstad
25 May 2011
Sirar Salih
Yujie Song

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

5

Contents

1 Introduction ... 8

1.1 Background .. 8
1.2 Problem and Hypothesis ... 9
1.3 Importance of Topic .. 9
1.4 Motivation ... 10
1.5 Limitations and Key Assumptions .. 10
1.6 Contributions to Research .. 11
1.7 Literature Review ... 11
1.8 Thesis Report Outline ... 12

2 Significant Prior Research... 13
2.1 Solving SAT Using GSAT .. 13
2.2 Solving SAT Using Simulated Annealing ... 14
2.3 Solving SAT Using Adaptive Genetic Algorithms ... 16
2.4 Solving SAT Using Tabu Search ... 17
2.5 Solving SAT Using Finite Learning Automata .. 18
2.6 Others .. 20

3 Research Approach .. 21
3.1 Multilevel Paradigm ... 21
3.2 Combining Multilevel with Tabu Search .. 22
3.3 Combining Multilevel with Finite Learning Automata .. 22
3.4 Tabu Search Implementations ... 22
3.5 Selecting the Best Tabu Search Implementation .. 26
3.6 Learning Automata with Tabu Search Implementation .. 28
3.7 Multilevel Paradigm Implementation ... 30
3.8 Multilevel Tabu Search Implementation .. 31
3.9 Multilevel Learning Automata with Tabu Search Implementation.. 32

4 Experimental Results ... 35
4.1 Tabu Search vs. Multilevel Tabu Search .. 35
4.2 Learning Automata with Tabu Search vs. Multilevel Learning Automata with Tabu Search 50

5 Discussion ... 65
6 Conclusion and Further Work ... 66
Appendices ... 69

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

6

List of Figures

Figure Short description Page

1 The Boolean Satisfiability Problem. 9

2 Tabu list. 17

3 Learning automaton. 18

4 Literals are assigned learning automata. 19

5 The Multilevel clustering technique. 21

6 Tabu Search vs. Multilevel Tabu Search. SATLIB (Random). 35

7 Tabu Search vs. Multilevel Tabu Search. SATLIB (Random). 36

8 Tabu Search vs. Multilevel Tabu Search. SATLIB (Random). 36

9 Tabu Search vs. Multilevel Tabu Search. SATLIB (Planning). 37

10 Tabu Search vs. Multilevel Tabu Search. SATLIB (Planning). 37

11 Tabu Search vs. Multilevel Tabu Search. SATLIB (Planning). 38

12 Tabu Search vs. Multilevel Tabu Search. SATLIB (Planning). 38

13 Tabu Search vs. Multilevel Tabu Search. SATLIB (Planning). 39

14 Tabu Search vs. Multilevel Tabu Search. SATLIB (Beijing). 40

15 Tabu Search vs. Multilevel Tabu Search. SATLIB (Beijing). 40

16 Tabu Search vs. Multilevel Tabu Search. SATLIB (AIM). 41

17 Tabu Search vs. Multilevel Tabu Search. SATLIB (AIM). 41

18 Tabu Search vs. Multilevel Tabu Search. SATLIB (AIS). 42

19 Tabu Search vs. Multilevel Tabu Search. SATLIB (AIS). 42

20 Tabu Search vs. Multilevel Tabu Search. SATLIB (GCSW). 43

21 Tabu Search vs. Multilevel Tabu Search. SATLIB (GCSW). 43

22 Tabu Search vs. Multilevel Tabu Search. SATLIB (Quasi Groups). 44

23 Tabu Search vs. Multilevel Tabu Search. SATLIB (Quasi Groups). 44

24 Tabu Search vs. Multilevel Tabu Search. Max SAT. 45

25 Tabu Search vs. Multilevel Tabu Search. Max SAT. 45

26 Tabu Search vs. Multilevel Tabu Search. Max SAT. 46

27 Tabu Search vs. Multilevel Tabu Search. Max SAT. 46

28 Tabu Search vs. Multilevel Tabu Search. Max SAT. 47

29 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (Random). 50

30 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (Random). 51

31 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (Random). 51

32 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (Planning). 52

33 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (Planning). 52

34 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (Planning). 53

35 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (Planning). 53

36 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (Planning). 54

37 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (Beijing). 55

38 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (Beijing). 55

39 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (AIM). 56

40 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (AIM). 56

41 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (AIS). 57

42 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (AIS). 57

43 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (GCSW). 58

44 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (GCSW). 58

45 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (Quasi Groups). 59

46 LA with Tabu Search vs. Multilevel LA with Tabu Search. SATLIB (Quasi Groups). 59

47 LA with Tabu Search vs. Multilevel LA with Tabu Search. Max SAT. 60

48 LA with Tabu Search vs. Multilevel LA with Tabu Search. Max SAT. 60

49 LA with Tabu Search vs. Multilevel LA with Tabu Search. Max SAT. 61

50 LA with Tabu Search vs. Multilevel LA with Tabu Search. Max SAT. 61

51 LA with Tabu Search vs. Multilevel LA with Tabu Search. Max SAT. 62

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

7

List of Tables

Table Short description Page

1 Tabu Search implementations results on SATLIB (Random). 26

2 Tabu Search implementations results on SATLIB (Random). 26

3 Tabu Search implementations results on SATLIB (Random). 26

4 Mean solved, variance and standard deviation for Tabu Search implementations results on
SATLIB (Random).

27

5 Mean solved, variance and standard deviation for Tabu Search implementations results on
SATLIB (Random).

27

6 Mean solved, variance and standard deviation for Tabu Search implementations results on
SATLIB (Random).

27

7 Mean solved, variance and standard deviation for Tabu Search. 48

8 Mean solved, variance and standard deviation for Multilevel Tabu Search. 49

9 Mean solved, variance and standard deviation for LA with Tabu Search. 63

10 Mean solved, variance and standard deviation for Multilevel LA with Tabu Search. 64

11 The mean solution quality and convergence of each algorithm solving the set of SAT instances. 65

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

8

1 Introduction

In this chapter the background of the problem is explained in detail. The problem is then stated, the
hypothesis, the motivation and the limitations and key assumptions. Finally a literature review is given followed
by a short outline of the rest of the thesis report.

1.1 Background

There are many complex problems in computer science that occur in knowledge-representation (artificial
thinking), artificial learning, Very Large Scale Integration (VLSI) design, security protocols and other areas.
These complex problems may be deduced into satisfiability problems where the Boolean Satisfiability Problem
(SAT) may be applied. This deduction is made in order to simplify a complex problem into a specific
mathematical problem. Once the deduction is made, one only needs to solve the SAT problem in order to
solve the more complex problem. Therefore, efficient ways to solve the SAT problem draw a growing
attention in the field of computer science.

One example application is the SAT-based analysis of protocol insecurity problems in [1]. In this paper, A.
Armando and L. Compagna from the University of Florence in Italy have managed to represent protocol
insecurity problems as SAT, and have built an automatic model-checker for security protocols based on SAT
solver algorithms. By doing this, they could use the model-checker to help solve the complex protocol
insecurity problems. Similarly, F. Guillaume presented in his paper the SAT representation of MU-calculus
over Petri Nets [2]. The model checking problem for Petri Nets has been known to be undecidable for almost
fifteen years [3]. Guillaume showed that this undecidability can be represented in SAT, making the problem
context much simpler.

The ability to represent a complex problem as a propositional logic problem such as SAT, makes things very
easy in terms of solving complexity - since one only needs to satisfy the set of logical values. As a result of this,
efficient ways to solve SAT are also important. There has been an increase in the development of SAT solver
algorithms. Two notable approaches to solve SAT are Tabu Search and finite Learning Automata, these two
approaches have recently been proved to be very efficient. However, there is no boundary on the efficiency
aspect and it is believed that the efficiency of the two latter approaches could still be increased. Because the
two mentioned approaches use a single level technique, which could be replaced by a multi level that gives a
better sampling of the solution space.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

9

1.2 Problem and Hypothesis

The SAT problem is a well-known nondeterministic polynomial time (NP) complete [1] problem in computer
science. It is composed of an N amount of literals, clauses that contain disjunctions of the literals and
conjunctions of the clauses. The literals can either have the value TRUE or FALSE. To solve the SAT
problem, the total set of clauses must give the value TRUE; it is then said that the problem is satisfied. A SAT
problem with two literals, two clauses and two literals per clause is shown in figure 1.

Figure 1: The Boolean Satisfiability Problem. After solving SAT, all clauses get the logical value TRUE.

The problem is represented as the following propositional formula:

1

j j

m

jj

j k l
k I l I

C

C x x

Where jC is the disjunction of literals, m is the number of clauses, n is the number of literals and ix is a

literal, i Є {1, ... n}. Ij, Īj {1, ... n}, Ij ∩ Īj = Ø and ix denotes the negation of ix . The assignment is satisfied

if the propositional formula evaluates to TRUE. This formula representation can be found in [3].

As the growing need of efficient ways to solve SAT continues, it is in this paper hypothesised that combining
the Multilevel technique with existing approaches will drastically increase efficiency of solving SAT. The reason
to this is that the Multilevel technique simplifies the problem drastically by clustering literals together. Tabu
Search and Finite Learning Automata are two existing approaches (see [13] and [3], respectively) which have
been proved to be very efficient methods to solve SAT, therefore these two approaches have been chosen to
be combined with the Multilevel technique, in order to prove if combining Multilevel will increase the
efficiency to solve SAT or not. This combination will create the Multilevel Tabu Search and Multilevel
Learning Automata algorithms.

1.3 Importance of Topic

Many complex problems in computer science can be simplified by representing them in SAT, therefore SAT is
very important for helping solve complex problems in computer science and has played a major role. One
example application is the SAT-based analysis of protocol insecurity problems in [4]. In this paper, A.
Armando and L. Compagna from the University of Florence in Italy have managed to represent protocol

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

10

insecurity problems as SAT, and have built an automatic model-checker for security protocols based on SAT
solver algorithms. By doing this, they could use the model-checker to help solve the complex protocol
insecurity problems. Similarly, F. Guillaume presented in his paper the SAT representation of MU-calculus
over Petri Nets [5]. The model checking problem for Petri Nets has been known to be undecidable for almost
fifteen years [6]. Guillaume showed that this undecidability can be represented in SAT, making the problem
context much simpler.

The ability to represent a complex problem as a propositional logic problem such as SAT, makes things very
easy in terms of solving complexity - since one only needs to satisfy the set of logical values. As a result of this,
efficient ways to solve SAT are also important. There has been an increase in the development of SAT solver
algorithms. Two notable approaches to solve SAT are Tabu Search and finite Learning Automata, these two
approaches have been proved to be very efficient. However, there is no boundary on the efficiency aspect and
it is believed that the efficiency of the two mentioned approaches could still be increased. Because these two
approaches use a single level technique, which could be replaced by a multi level that gives a better sampling of
the solution space. Therefore, combining Multilevel technique with these two existing methods may increase
the efficiency of using them alone.

If the hypothesis is proved to be true, the research will introduce a new, more efficient way of solving SAT by
introducing the Multilevel technique. For example, combining Multilevel with Tabu Search or combining
Multilevel with finite Learning Automata will become the new, more efficient way to solve SAT.

1.4 Motivation

If the problem is solved, the research will introduce a new, more efficient way of solving SAT by introducing
the Multilevel technique. Adding a new algorithm approach to the collection of solver algorithms is a step
further of solving complex problems that can be represented as SAT, and an advancement in the science of
SAT.

If however not solved, the work will be used further for research. Continuing the research will no doubt
improve the proposed solutions in this thesis.

1.5 Limitations and Key Assumptions

The implementation of our proposed Multilevel Tabu Search and Multilevel Learning Automata algorithms
will be done in the C++ programming language. Although Tabu Search and Learning Automata algorithms
may require much work to be implemented very efficiently in C++, they will still be implemented in this
research, because the efficiencies of these two algorithms have to be used to compare with the efficiencies of
the two new proposed algorithms. However, we cannot state with 100 % certainty that the combination of the
Multilevel technique is the reason to the efficiency increase or decrease. That is because personal programming
experiences might have side effects on the implementation results. The implementation will also prove difficult
due to the nature of the context, thus a clear understanding of the problems prior to implementation is a vital
step.

The Multilevel technique is assumed to increase the efficiency of existing SAT solver algorithms, for example,
Tabu Search and Learning Automata. However, if this hypothesis is disproved, then the implementation will
need to be revised and fixed. Attempts will be made to find out the cause, it is expected that this part will take
a significant amount of time. If the hypothesis is disproved and also no reasonable cause could be found, then
a discussion will be engaged as to why this happened. Ideas for further work will also be provided.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

11

1.6 Contributions to Research

Potential outcomes of the research are summarized in the list below.

 Simplification of SAT instances prior to solving them by using the Multilevel clustering technique,
because literals can be clustered together. This allows metaheuristic algorithms to handle clusters of
literals as a single entity, making the search space guided and restricted to only those literals within the
clusters. This offers a better sampling of the solution space compared to single level computations.

 Increase in SAT solving efficiency. Applying the Multilevel clustering technique will increase the
efficiency of solving SAT instances; this is due to the previous bullet point.

 Introduction of two new, efficient SAT solver algorithms. Given that the hypothesis is proved, the
thesis will introduce two, new SAT solver algorithms; Multilevel Tabu Search and Multilevel Learning
Automata. Based on the properties of Multilevel, these two new algorithms will be more efficient than
their predecessors.

1.7 Literature Review

Many complex problems have been successfully represented as SAT, equally many efficient algorithms have
been implemented to solve the latter and the state-of-the-art is very wide. The focus here is on the literature of
two specific (as an example) complex problems and the most popular solver algorithms for SAT; local search
algorithms. This chapter gives a quick review of all the relevant papers, while chapter 2 provides an in-depth
explanation of each.

In their paper, The SAT-based Analysis of Protocol Insecurity Problems [1], A. Armando and L. Compagna
from the University of Florence in Italy managed to represent protocol insecurity problems as SAT, in an
attempt to build an automatic model-checker for security protocols based on SAT solver algorithms. Similarly,
F. Guillaume presented in his paper the SAT representation of MU-calculus over Petri Nets [2]. The model
checking problem for Petri Nets has been known to be undecidable for almost fifteen years [3]. Guillaume
showed that this undecidability can be represented in SAT, making the problem context simpler.

B. Selman, H. Levesque and D. Mitchell presented in their paper a new method for solving hard SAT
problems; GSAT [7]. GSAT is one of the most popular local search algorithms that has been used to solve
SAT. B. Selman, Henry A. Kautz and B. Cohen made an extension of GSAT; GSAT with Random Walk [8]
with the purpose of escaping local optima, thus preventing stagnation. Another variant of GSAT is Walk SAT
[9], introduced by D. McAllester, B. Selman and H. Kautz.

W. M. Spears presented in his paper the Simulated Annealing (SASAT) [12] algorithm which managed to scale
up better as the number of literals increased and managed to solve many hard SAT instances with little effort.

A.E. Eiben and J.K. van der Hauw from Leiden University in The Netherlands presented in their paper a way
of adapting Genetic Algorithms [13] (GAs) that increases GAs' performance of solving 3-SAT (3 literals pr.
clause) instances. This adaptation called Stepwise Adaptation of Weights (SAW).

B. Mazure, L. Saïs and E. Gregoire presented in their paper the Tabu Search (TSAT) [14] algorithm.

Associate professors O-C. Granmo and N. Bouhmala from the Univeresity of Agder and Vestfold University
College in Norway wrote the first paper on combining finite Learning Automata with traditional Random Walk
algorithm [6] to solve SAT.

B. Cha and K. Iwama presented in their paper [15] a way of assigning weight values to SAT clauses. J. Frank
wrote an extensive study on the same method in his paper [16].

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

12

P. Hansen and B. Jaumand, I. Gent and T. Walsh presented in their papers [25, 26, 27] algorithms using history
based literal selection strategies.

1.8 Thesis Report Outline

The rest of the thesis report is structured as follows:

In chapter 2 the theoretical background of the problem is given. Here the state-of-the-art is discussed in detail
giving an insight of the background and prior work. Significant prior work is discussed in this chapter.

In chapter 3 the proposed solutions are discussed. An in-depth explanation of the solutions is provided here
including the pseudo-code of each proposed solution, and the best solutions are then selected in this chapter.

In chapter 4 the experimental results are presented in the form of running benchmark tests and a comparative
analysis of the algorithms is made.

In chapter 5 the experimental results of the algorithms from chapter 4 are discussed in detail, focusing on
efficiency among other factors.

In chapter 6 a brief look is made on the problem, the proposed solutions to the latter and the outcome of the
experimental results. The hypothesis and further work are also briefly discussed in this chapter.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

13

2 Significant Prior Research

The focus in this chapter is on significant prior work. Efficient methods that have been used to solve SAT will
be explained in the following sections. Local search algorithms have been widely used to solve SAT. This is
due to their ability to give up completeness. Since SAT is NP-complete, local search algorithms are therefore
appropriate to use in contrast to systematic search algorithms which are guaranteed to return a solution to a
problem, or otherwise prove it unsolvable. In the following chapters, the focus will be on these.

2.1 Solving SAT Using GSAT

GSAT is one of the most famous local search algorithms that have been used to solve SAT. B. Selman, H.
Levesque and D. Mitchell introduced GSAT in their paper as a new method for solving hard satisfiability
problems [7]. GSAT randomly assigns TRUE values to the literals, it then flips the assignment of the literals
that lead to the largest increase in the total number of satisfied clauses. The flips are repeated until either the
problem is solved or a maximum number of flips (MAX-FLIPS) is reached. The process is repeated up to a
maximum number of tries (MAX-TRIES). So basically, GSAT performs greedy local search. The pseudo code
below shows the GSAT procedure.

Procedure GSAT
Begin
for i:= 1 to MAX-TRIES
 T := a randomly generated TRUE assignment
 for j:= 1 to MAX-FLIPS
 if T satisfies set_of_clauses then return T
 p := a propositional value such that a change
 in its TRUE assignment gives the largest
 increase in the total number of clauses
 of set_of_clauses that are satisfied by T
 T := T with TRUE assignment of p reversed
 end-for
end-for
return "no satisfying assignment found"
End

A comparative analysis of GSAT and Davis-Putman (DP) [10] was made in [7]. The latter is a systematic
search algorithm which does a backtracking search on all TRUE assignments, assigning values to each literal. It
returns a solution to the problem if it exists and does not give up completeness. For more on systematic
searching, the reader is referred to [10]. From the results that can be seen in [7], GSAT is clearly better than
DP. The former is faster than the latter in terms of efficiency and since the latter is a systematic search
algorithm, it does not even return a solution to problems it cannot solve.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

14

2.1.1 GSAT with Random Walk

An extension of GSAT is GSAT with Random Walk [8]. The idea of this extension is to escape local optima
and avoid stagnation. When a random walk move is made, a randomly unsatisfied clause is selected, then one
of the literals in the clause is flipped thus satisfying the selected clause. The idea is to decide at each step
whether to perform a GSAT or Random Walk move. As can be seen in [8], GSAT with Random Walk solves
more problems than its predecessor and doing so more efficiently.

2.1.2 Walk SAT

Another variant of GSAT is Walk SAT [9], introduced by D. McAllester, B. Selman and H. Kautz. Walk SAT
maintains a "break count" associated with each literal. The break count is the number of clauses that would be
unsatisfied by flipping the literal associated with that break count. An unsatisfied clause is first randomly
picked, then the literal with the lowest break count is then randomly selected. One of the other literals in the
clause may also be selected with a certain probability. The random picking of unsatisfied clauses and the
random selection of literals inside helps Walk SAT to escape local optima and avoid stagnation. This also adds
to the exploration factor of the search space.

B. Ferris and J. Froehlich from the University of Washington in the US made a comparative analysis of Walk
SAT and a systematic search algorithm called DPLL [11] DPLL enumerates all possible assignment models in
the search space. For more on the latter, the reader is referred to [11]. As can be seen in [9], the ISR of Walk
SAT is relatively low in normally distributed and hard random problems. It can also be observed that DPLL
has a harder time solving SAT instances than Walk SAT. As the clause/literal ratio increases, DPLL is
gradually weakened whilst Walk SAT manages to solve the problems.

2.2 Solving SAT Using Simulated Annealing

Simulated Annealing [12] is an algorithm that outperformed GSAT [7] in the context of neural networks.
Dropping the latter and focusing on SAT, the algorithm is deduced into SASAT. SASAT has a structure which
is similar to GSAT, the pseudo code below shows the SASAT procedure.

Procedure SASAT
Begin
Input: number_of_clauses, MAX_TRIES, MAX_TEMP, MIN_TEMP
Output: T
i = 0 tries=0
while (tries < MAX_TRIES) do
 randomly assign TRUE/FALSE values to the literals
 T = number_of_trues
 while (T < number_of_clauses) do

 temperature =
_MAX _ TEMP j decay ratee

 if (temperature < MIN_TEMP) then break
 for v=1 to number_of_literals
 flip v
 Compute gain
 flip v

 flip v with probability
1

1

gain

temperaturee

 if v was flipped then update T
 end-for
 j++ tries++
 end-while

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

15

 i++
end-while
End

The outer while-loop generates a random solution for every iteration, this provides independent attempts at
solving the problem. The temperature is set to MAX_TEMP for every iteration. The inner while-loop
probabilistically updates the number of TRUE clauses based on the gain provided by the flip. Based on the
function - which is the standard logistic function for simulated annealing - used, if the gain is positive then the
flip is likely to be performed. Likewise, if the gain is negative then the flip is unlikely to be performed. The
temperature measure is used to control the moves of SASAT. If the temperature is high, the moves are almost
random. If the temperature is low, then the moves are similar to those of GSAT. As j increases, the
temperature decreases according to the decay rate. When MIN_TEMP is reached, i is incremented and the
algorithm tries again to solve the problem by randomly assigning TRUE/FALSE values to the literals. The
decay rate is set as follows:

1
_

_ _
decay rate

i number of literals

Each time i is increased, the decay rate is decreased. Reducing the decay rate for every iteration of the outer
while-loop allows the algorithm to perform more flips during each iteration of the inner while-loop.
MAX_TEMP is set to 0.3 and MIN_TEMP to 0.01 [12]. What is desired here is to reduce the number of
independent attempts to be able to search thoroughly during each given attempt. This is possible by increasing
the temperature or decreasing the decay rate. According to Spears, it is not clear whether it is better to make
more independent attempts or to search thoroughly during each attempt.

It was difficult for Spears to make a proper comparison between SASAT and GSAT because of the metrics
used for measurement. However, using a combination of gains and flips, Spears was able to illustrate that
SASAT scaled better on larger problems while GSAT had an advantage on easier problems [12]. SASAT
managed to solve a higher percentage of problems doing fewer flips, while GSAT solved only few problems.

Since a proper comparison between the algorithms was difficult to make, Spears made a slight modification to
SASAT to make it more similar to GSAT by using a zero temperature logistic function [12]. Spears then
compared SASAT, zero temperature SASAT and GSAT. Zero temperature SASAT did indeed behave like
GSAT, and it was observed that SASAT outperformed zero temperature SASAT, consequently outperforming
GSAT.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

16

2.2.1 SASAT with Random Walk

Similar to GSAT, SASAT is enhanced with a Random Walk approach. Recall that the purpose of Random
Walk is to allow the algorithm to escape local optima (by randomly choosing an unsatisfied clause and
randomly flipping a literal inside that clause), the same occurs in SASAT having the following modification to
the algorithm:

 flip v with probability p

 probability p{
 if v is in an unsatisfied clause then return 1.0
 else return 0.0
 }
 else probability 1 - p{

 return
1

1

gain

temperaturee

So with probability p, if the literal is inside an unsatisfied clause, it is flipped. Otherwise, it is not flipped. With
probability 1 - p, the standard logistic function is used. Doing this, the random walk moves are focused on the

clauses that are difficult for the algorithm to handle. p is set to
1

_ _number of literals
 [12].

This modification of SASAT slightly increased the performance of the algorithm, however according to Spears
it is not clear whether the random walk, the annealing schedule or a combination of the two is the reason to
the performance increase. This remains to be investigated in the future.

2.3 Solving SAT Using Adaptive Genetic Algorithms

Genetic Algorithms (GAs) have a challenge solving NP-complete problems such as SAT. Much of the
challenge is due to constraints that make finding solutions to the problems difficult. A. E. Eiben and J. K. van
der Hauw presented in their paper [13] a way of adapting constraints in the form of weights in order to solve
3-SAT problems. They called this method Stepwise Adaptation of Weights (SAW). They proved in their paper
that using this method increased the performance of GAs and it made the latter superior to another heuristic
method - WGSAT. WGSAT is a modification of GSAT which is based on [22] where each clause in a SAT
problem is associated with a weight and the weights of all unsatisfied clauses at the end of a try are updated. In
WGSAT, the weights are updated after each flip instead of after each try [23, 24].

The genetic representation of SAT is a bit representation where each literal is represented by a gene that can
have the value 0 for FALSE and 1 for TRUE. A chromosome then represents a given clause. A fitness
function is the truth value of the chromosome. In the case of SAT, the whole fitness landscape is not known.
In [13], bit representation is used and a fitness function that counts unsatisfied clauses. 2-tournament selection
and worst fitness deletion is applied. The maximum fitness evaluations is set to 300 000 and each problem
instance is run 50 times [13]. The success rate (SR) is the percentage of all cases where a solution was found.
Several tests were performed in order to find the best operators and optimal population sizes. The SAW
procedure is shown on the next page.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

17

Procedure SAW
Begin
initialize weights (and get fitness function f)
while not termination do

 for i=0 to pT _fitness_evaluations

 run GA with f
 end-for
 get new f and recalculate fitness of individuals
end-while
End

SAW provides the ability to not needing to set constraint weights, hence removing the possibility of wrongly

defining constraint weights (which gives bad results). Once the pT fitness evaluations is reached, the best

individual in the population is taken and the weights of the constraints that it violates are increased

(i iw w w). Using the SAW mechanism increased the success rates in GA at the cost of more evaluations

[13]. SAW-ing GA also gave better results than WGSAT in all cases that were tested. In addition, GAs were
compared with traditional SAT solving heuristics (not mentioned which, however) and results showed that
SAW-ing GAs outperformed these heuristics [13].

2.4 Solving SAT Using Tabu Search

Tabu Search (TSAT) [14] has been proved as an efficient method in solving SAT. Many local search algorithms
tend to stagnate while attempting to solve SAT after an amount of time, that is being unable to generate a flip
that will make a difference in the results - thus giving an incorrect (unsatisfied) result (local minima). TSAT
avoids this problem by maintaining a so called tabu list. The tabu list contains information about the literals, it
does this to avoid recurrent flips and thus escape local minima. The tabu list is updated each time a flip is
made. The list is a fixed length, chronologically ordered, First In First Out (FIFO) list of flipped variables [14].
Using the list, TSAT prevents the variables in the list from being flipped again during the computation. Figure
2 illustrates a tabu list.

Figure 2: A tabu list contains chronologically ordered flipped literals in a FIFO fashion.

B. Mazure, L. Saïs and E. Gregoire from the University of d'Artois in France showed in their paper that the
length of the tabu list plays a major role in the performance of the algorithm [14]. To that end, the optimal
length of the tabu list is desired. The curve illustrated by Mazure, Saïs and Gregoire appears to be linear in the
number of literals given. That is:

optimal length of tabu list = 0.01875 2.8125n

where n = number of literals

A slight change of the optimal length of a tabu list, leads to a decrease in the performance of TSAT. Similarly,
a big change leads to a dramatic decrease of performance. As seen, the optimal length depends on the number
of variables.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

18

A comparative analysis was made by Mazure, Saïs and Gregoire of TSAT and Random Walk GSAT (RW-
GSAT) [14]. The former solved more problems than the latter and showed better performance. As can be seen
from the results in [14], TSAT successfully managed to satisfy more clauses than RW-GSAT in each SAT
problem using less time and making fewer flips overall. Based on these results, TSAT is no doubt more
efficient in solving SAT instances than RW-GSAT.

2.5 Solving SAT Using Finite Learning Automata

Another efficient method to solve SAT is to use finite Learning Automata. Associate professors O-C. Granmo
and N. Bouhmala from the Univeresity of Agder and Vestfold University College in Norway wrote the first
paper on combining finite Learning Automata with traditional Random Walk algorithm [6] to solve SAT. They
presented a comparative analysis of the algorithm's efficiency, by solving benchmark sets containing SAT
instances as well as SAT-represented problems from various complex domains.

Learning Automata have been successful in solving many optimization problems including the
Equipartitioning Problem [17, 18], the Graph Partitioning Problem [19] and the List Organization Problem
[20]. Learning Automata excels in solving problems due to their ability to learn the optimal actions when
operating in unknown, stochastic environments. In addition, they combine fast and accurate convergence with
low computational complexity [6].

In their paper, associate professors Granmo and Bouhmala defined a learning SAT automaton as well as an
unknown environment that the automaton would interact with. A finite learning automaton interacts with the
environment by performing actions, the environment then responds to each action with some sort of reward
or penalty based on that action. Based on the responses from the environment, the aim of the automaton is to
find the action that minimizes the number of penalties received. Figure 3 illustrates the interaction between an
automaton and the environment.

Figure 3: A learning automaton sends an action to an environment, which responds with either a reward
or penalty. [6]

Each literal in SAT is assigned a learning automaton, which results in a team of learning automata. The goal of
the Learning Automata is to find the solution of the SAT instance. Figure 4 illustrates each automaton
associated with a literal.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

19

Figure 4: Each literal in SAT is assigned a learning automaton. If the automaton state is positive, action TRUE is chosen
by the automaton. If the state is negative, action FALSE is chosen. [6]

If the state of the learning automaton is positive, then the action TRUE will be performed by the automaton.
If the state is negative, then the action FALSE will be performed. The optimal action is not known initially,
therefore the initial state of each automaton is randomly set to either -1 or 0.

The environment is the SAT instance. Providing a reward response from the environment to the automaton
strengthens the currently chosen action, this makes it less likely that the other action will be chosen in the
future. Similarly, a penalty response weakens the current action by making it more likely that the other action
will be chosen in the future.

Since SAT is NP-complete, local search algorithms have been used to solve SAT because they give up
completeness. Granmo and Bouhmala combined Learning Automata with Random Walk algorithm and below
are the steps of how to use this new algorithm.

 1. Each LA assigns a truth value to its corresponding variable.

 2. Pick an unsatisfied clause randomly.

 3. Randomly select a literal within that clause
 (a) Penalize the LA corresponding to the literal variable.
 (b) Ask the penalized LA to assign a truth value to its variable.

 4. Pick a satisfied clause randomly.

 5. Randomly select a literal within that clause
 (a) If the literal evaluates to TRUE, reward the LA corresponding to the literal
 variable.
 (b) Ask the LA to assign a truth value to its variable.

 6. If all clauses are satisfied, stop. Otherwise, go to 2. [5]

To evaluate the results, Granmo and Bouhmala solved benchmark sets containing SAT instances. The results
were compared with the results obtained by using the Random Walk algorithm. The SAT instances that were
solved in their paper range from a 125-literal random problem with 528 clauses to a 459-literal Blocks World
problem with 4675 clauses. In all cases Granmo and Noureddine proved in their paper that solving SAT using
finite Learning Automata combined with Random Walk algorithm drastically outperformed the latter alone.
The harder the SAT instances were, the better their algorithm performed compared to Random Walk. Based
on this conclusion, the Learning Automata combination with Random Walk has proved much more efficient
in solving SAT than the latter alone.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

20

2.6 Others

Clause weighting algorithms [15, 16] have been introduced to solve SAT problems. The idea is to associate
weight values to the clauses and to increase the weights of all clauses that are unsatisfied as soon as a local
minimum is discovered.

Other algorithms [25, 26, 27] use history based literal selection strategies to solve SAT in order to keep track of
truth value assignments (similar to the method discussed in chapter 2.4).

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

21

3 Research Approach

The proposed solutions of the problem are presented in this chapter. In the following sections, the Multilevel
paradigm is explained in detail as well as the combination of the latter with Tabu Search and finite Learning
Automata. The implementations of the new algorithms are then discussed in detail.

3.1 Multilevel Paradigm

Associate professor N. Bouhmala - our supervisor - from Vestfold University College in Norway along with
other authors have introduced in his 1995 PhD paper a new multilevel technique for solving problems. It is
Bouhmala's idea to use this technique, for the first time, in the SAT context to see if efficiency will be
increased or not.

The Multilevel clustering technique simplifies the computation of SAT instances by dividing the number of
literals in several levels - literals get clustered together. The Multilevel paradigm consists of three phases:
clustering, initial solution and refinement.

As an example, consider a SAT instance with 20 literals. The literals are initialized in the initial level, in the first
level the literals get clustered together (two and two) and this continues. So in the first level there would be 10
literals, in the second 5 literals, in the third 3 literals and so on. The amount of levels created is optional,
however a relatively big amount is recommended. Figure 5 illustrates the clustering process of a SAT instance
with 20 literals.

Figure 5: The Multilevel clustering technique used on a SAT instance with 20 literals.

Once the clustering phase is complete, the clusters in the final level are assigned logical TRUE/FALSE values
and an initial solution is calculated. The solution found is then extended to provide a solution for the level

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

22

above and then refined using a metaheuristic algorithm. This is done on all levels until a solution to SAT is
found. If the initial level is reached and a solution is not found, then the SAT instance could not be solved.

The following steps summarize the Multilevel process:

1. Initialize literals.

2. Randomly cluster two literals together, or cluster two neighbouring literals in each level.

3. Do step 2 until the wished amount of clusters is reached.

4. Randomly assign logical TRUE/FALSE values to the clusters in the final level.

5. Compute initial solution.

6. Start refinement phase using metaheuristic algorithm.

The core strength of the Multilevel technique is that during the refinement phase, the algorithm used will
compute clusters of literals instead of single literals at a time. This allows the algorithm to view clusters of
literals as a single entity, making the search space guided and restricted to only those literals within the clusters.
This offers a better sampling of the solution space compared to single level computation.

3.2 Combining Multilevel with Tabu Search

During the refinement phase of the Multilevel technique, an algorithm such as Tabu Search can be used. As
discussed earlier in chapter 4, Tabu Search maintains a tabu list which contains flipped literals. Instead of
containing flipped literals, it will in this case contain flipped clusters. The tabu list is updated each time a
cluster of literals is flipped. Using the list, the algorithm prevents the clusters in the list from being flipped
again during the computation.

3.3 Combining Multilevel with Finite Learning Automata

Similarly, during the refinement phase of the Multilevel technique, a technique such as finite Learning
Automata can be used. Since this is a technique, it must be combined with an algorithm. For simplicity, it can
be combined with the Tabu Search algorithm. As discussed earlier in chapter 4, finite Learning Automata
assigns each literal a dedicated learning automaton. In this case, it will assign each cluster a learning automaton.
It will then handle the cluster as a single entity, affecting all literals within the cluster. The state of the learning
automaton can either be positive or negative. In the latter case, the action FALSE will be performed by the
learning automaton. In the former, the action TRUE will be performed. The environment is the SAT instance,
which can provide a reward or penalty response to the learning automaton depending on the automaton's
action, as explained earlier in chapter 4.

3.4 Tabu Search Implementations

Several Tabu Search variants (five in total) were implemented in order to find the most efficient of the latter.
In the following sections each variant is thoroughly examined.

3.4.1 Tabu Search Version 1.0

This is the basic version of Tabu Search. Each version (with the exception of the greedy version) is based on
this one. The pseudo code below shows the procedure of Tabu Search version 1.0 (TS v.1.0).

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

23

Procedure Tabu Search version 1.0
Begin
initialize tabu list
randomly assign TRUE/FALSE values to the literals
current = evaluate initial solution
bestSoFar = current
while current < number_of_clauses do
 bestGain = -999
 gain = 0
 for i = 1 to number_of_clauses - current
 pick an unsatisfied clause i
 randomly pick a literal inside the clause i which is not visited
 mark literal visited
 flip literal
 gain = compute new_gain
 if literal is tabu then
 store the literal and its gain
 else if literal is not tabu then
 if gain == bestGain then
 pick a gain randomly
 bestGain = gain
 store the literal and its gain if not stored already
 else if gain > bestGain then
 bestGain = gain
 store the literal and its gain
 flip literal
 end-for
 pick literal with best gain
 if literal is tabu AND gain + current < bestSoFar then
 do not flip
 else
 flip literal
 update clauses, current, bestSoFar
 tabuBestUnsatisfied = find the tabu literal from tabu list which has the lowest number of unsatisfied clauses
 if literal is not tabu AND number_of_clauses - current < tabuBestUnsatisfied then
 make literal tabu with the value (number_of_clauses - current)
 else if literal is not tabu AND number_of_clauses - current >= tabuBestUnsatisfied then
 make literal tabu with the value tabuBestUnsatisfied
 decrease all other literals in tabu list with value bigger than 0 by 1
end-while
End

The idea of Tabu Search is to use a history based selection strategy where flipped literals along with the
number of unsatisfied clauses are stored in a so called tabu list. The algorithm will run as long as there are
unsatisfied clauses present or a maximum amount of flips is reached (this constraint can be substituted by a
time limit). A loop will go through all unsatisfied clauses, picking an unsatisfied clause each time and randomly
choosing an unhandled/unvisited literal from the clause. The unvisited literal is then flipped and marked
visited and its truth value gain is computed. The literal is then checked if it is tabu or not. If it is tabu, the literal
and its gain is stored. If it is not tabu, its gain is checked with the best gain so far. If they are equal, one of
them is stored randomly. If the gain is bigger, the best gain so far is updated and the new gain is stored. Once
the loop is finished, the literal with the best gain so far is picked. This literal is first checked if it is tabu, and if
its gain has improved the total number of satisfied clauses. If that is not the case, the literal is not flipped.
Otherwise the literal is flipped and the clauses are updated. The next process is to make this literal tabu - if it is
not already tabu - and update the tabu list. In this version of Tabu Search, the tabu literal with the lowest

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

24

number of unsatisfied clauses (that is not zero) is located from the tabu list. This tabu literal's number of
unsatisfied clauses is then checked with the current number of unsatisfied clauses. If the latter is smaller than
the former, then the flipped literal is made tabu with the current number of unsatisfied clauses. If opposite or
if they are equal, then the flipped literal is made tabu with the lowest number of unsatisfied clauses from the
tabu list. If the flipped literal is already tabu, then this process is ignored. Once this is finished, all tabu literals
(with values bigger than zero) are decreased by one. The idea here is to make a literal tabu for a certain length
of time. The algorithm is then terminated if all clauses are satisfied or if a maximum number of flips is reached
(a time limit could also be used).

3.4.2 Tabu Search Version 2.0

This version of Tabu Search (TS v.2.0) is similar to the one in the previous section except that here if a literal is
tabu it is not handled. Simply put, tabu literals are ignored during the loop. This has the consequence of
increasing the number of tabu literals in the tabu list.

3.4.3 Tabu Search with Fixed Tabu List Lengths

This version of Tabu Search is similar to the one in section 3.4.1 except that here static lengths are used for the
tabu list. It has been observed in earlier research [14] that using static lengths has a positive effect on increasing
the number of satisfied clauses. In the following sections, we investigate this by setting various lengths.

3.4.3.1 Static Lengths

Suggested by associate professor Bouhmala, when making a literal tabu we set its value to 1 (in contrast to
setting this value to the number of unsatisfied clauses). The process of making the literal tabu and updating the
tabu list would then look as shown in the pseudo code below.

 if literal is not tabu then
 make literal tabu with the value 1
 decrease all other literals in tabu list with value bigger than 0 by 1

The lengths from ten to thirty-five were also suggested by associate professor Bouhmala, and were tested in
the following sequence; ten, fifteen, twenty, twenty-five, thirty, thirty-five.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

25

3.4.3.2 Static Optimal Lengths

As mentioned earlier in chapter 2.4, B. Mazure, L. Saïs and E. Gregoire showed in their paper a certain optimal
length that can be used when setting the tabu list length. This value seemed to be linear with the amount of
literals present. Using this length, the pseudo code of making a literal tabu and updating the tabu list would
then look as shown below.

 if literal is not tabu then

 make literal tabu with the value (0.01875 _ _ 2.8125)number of literals

 decrease all other literals in tabu list with value bigger than 0 by 1

3.4.4 Greedy Tabu Search

This version of Tabu Search is based on a greedy approach introduced by associate professor Bouhmala. This
version is seen as a possible extension for future work on Tabu Search. The pseudo code below shows the
procedure of Greedy Tabu Search (GTS).

Procedure Greedy Tabu Search
Begin
initialize tabu list
randomly assign TRUE/FALSE values to the literals
current = evaluate initial solution
bestSoFar = current
while current < number_of_clauses do
 gain = 0
 for i = 1 to number_of_clauses - current
 pick an unsatisfied clause i
 randomly pick a literal inside the clause i which is not visited
 mark literal visited
 flip literal
 gain = compute new_gain
 if literal is tabu then
 if gain <= 0 then
 flip literal
 else
 put the literal and its gain in a sequence list
 else if literal is not tabu then
 put the literal and its gain in a sequence list
 end-for
 find the sequence that best increases the gain from the sequence list
 flip back the literals after this sequence because they decrease the gain
 update clauses, current, bestSoFar
 tabuBestUnsatisfied = find the tabu literal from tabu list which has the lowest number of unsatisfied clauses
 for i=1 to literals_in_sequence_list
 if literal i is not tabu AND number_of_clauses - current < tabuBestUnsatisfied then
 make literal i tabu with the value (number_of_clauses - current)
 else if literal i is not tabu AND number_of_clauses - current >= tabuBestUnsatisfied then
 make literal i tabu with the value tabuBestUnsatisfied
 decrease all other literals in tabu list (which are not in the sequence list) with value bigger than 0 by 1
 clear sequence list
end-while End

This greedy approach for Tabu Search maintains a sequence list that contains literals and their gains. The main
idea of this approach is to flip literals during the loop and put them in the sequence list, if a flipped literal is

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

26

tabu and the gain gives no improvement, then this literal is flipped back. Otherwise, literals are flipped
consecutively without being flipped back. Once the loop is finished, the sequence that gives the best gain
increase is chosen from the sequence list. The literals after this sequence are flipped back because they decrease
the gain. The flipped literals are then all made tabu using the same process in Tabu Search version 1.0
(discussed in section 3.4.1) and the tabu list is updated. After this is done, the sequence list is cleared and the
same process is repeated for the next iteration of the while-loop. The algorithm will terminate if all clauses are
satisfied or if a maximum number of flips is reached (a time limit could also be used).

3.5 Selecting the Best Tabu Search Implementation

In order to decide which Tabu Search implementation is the most efficient, the algorithms were tested on the
following random benchmark problems from SATLIB [21]; 600 literals and 2550 clauses (f600), 1000 literals
and 4250 clauses (f1000) and 2000 literals and 8500 clauses (f2000). Each algorithm ran each problem with a
600 seconds timeout, 10 times in order to make a mean estimate. Tables 1, 2 and 3 show the results of solving
each problem.

Algorithm Problem Mean solved (%) Mean time (seconds)

TS v.1.0 f600 99.4 % 605.4 s.

TS v.2.0 f600 99.7 % 606 s.

TS with fixed lengths f600 99.4 % 617.2 s.

GTS f600 97.1 % 604.6 s.
Table 1: Tabu Search implementations solving a 600 literals and 2550 clauses (f600) random SATLIB benchmark
problem. The percentage solved is the number of satisfied clauses. Time limit set to 600 seconds.

Algorithm Problem Mean solved (%) Mean time (seconds)

TS v.1.0 f1000 99 % 607 s.

TS v.2.0 f1000 99.1 % 606.6 s.

TS with fixed lengths f1000 99 % 606.4 s.

GTS f1000 97.3 % 606.4 s.
Table 2: Tabu Search implementations solving a 1000 literals and 4250 clauses (f1000) random SATLIB benchmark
problem. The percentage solved is the number of satisfied clauses. Time limit set to 600 seconds.

Algorithm Problem Mean solved (%) Mean time (seconds)

TS v.1.0 f2000 93.7 % 615.3 s.

TS v.2.0 f2000 93.4 % 617.2 s.

TS with fixed lengths f2000 93.4 % 617.2 s.

GTS f2000 92.7 % 617.5 s.
Table 3: Tabu Search implementations solving a 2000 literals and 8500 clauses (f2000) random SATLIB benchmark
problem. The percentage solved is the number of satisfied clauses. Time limit set to 600 seconds.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

27

Tables 4, 5 and 6 show the mean solved, variance and standard deviation.

Algorithm Problem Mean solved (%) Variance Standard
deviation

TS v.1.0 f600 99.4 % 0.5 0.71

TS v.2.0 f600 99.7 % 0.4 0.63

TS with fixed
lengths

f600 99.4 % 0.4 0.63

GTS f600 97.1 % 8.2 2.86
Table 4: Tabu Search implementations solving a 600 literals and 2550 clauses (f600) random SATLIB benchmark
problem. The mean solved, variance and standard deviation are shown.

Algorithm Problem Mean solved (%) Variance Standard
deviation

TS v.1.0 f1000 99 % 0.5 0.71

TS v.2.0 f1000 99.1 % 0.3 0.55

TS with fixed
lengths

f1000 99 % 0.3 0.55

GTS f1000 97.3 % 80.2 8.96
Table 5: Tabu Search implementations solving a 1000 literals and 4250 clauses (f1000) random SATLIB benchmark
problem. The mean solved, variance and standard deviation are shown.

Algorithm Problem Mean solved (%) Variance Standard
deviation

TS v.1.0 f2000 93.7 % 0.2 0.45

TS v.2.0 f2000 93.4 % 0.1 0.32

TS with fixed
lengths

f2000 93.4 % 0.1 0.32

GTS f2000 92.7 % 8.1 2.85
Table 6: Tabu Search implementations solving a 2000 literals and 8500 clauses (f2000) random SATLIB benchmark
problem. The mean solved, variance and standard deviation are shown.

In addition to these problems that were tested, seven other random problems (specifically f100, f125, f150,
f175, f200, f225 and f250) from SATLIB benchmarks were tested and all algorithms gave high success rates
ranging from 97.8 % to 100 %. Tabu Search version 2.0 was the only version to have solved six of these
problems 100 %, and the seventh 99.3 %. Based on these results and the results shown in tables 1, 2 and 3,
Tabu Search version 2.0 proved to be the best overall algorithm. It was therefore selected to be combined with
the Multilevel paradigm (and later with Learning Automata).

Tables 4, 5 and 6 further illustrate the variance and standard deviation of each algorithm solving f600, f1000
and f2000. As can be seen, the variance and standard deviation are relatively low in almost all cases (with the
exception of the GTS algorithm). This indicates that the algorithms are overall stable and the results are not
widely spread around the mean. GTS seems to be the only algorithm that contradicts this, as it in all cases gave
a rather high variance and standard deviation.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

28

3.6 Learning Automata with Tabu Search Implementation

The implementation of Learning Automata with Tabu Search (LATS) is based on the algorithm discussed in
section 2.5. The idea here is to integrate the Learning Automata implementation for SAT into Tabu Search, the
pseudo code below shows the procedure of this.

Procedure Learning Automata with Tabu Search
Begin
initialize tabu list
for i=1 to number_of_literals
 randomly set the state of literal i to -1 or 1
 if state == -1 then
 set literal i to FALSE
 else
 set literal i to TRUE
end-for
current = evaluate initial solution
bestSoFar = current
while current < number_of_clauses do
 /*Learning Automata start*/
 randomly pick an unsatisfied clause
 randomly pick a literal or its negation from inside the clause
 if literal was picked AND state < (number_of_clauses – current) then
 increase the state of the literal by 1
 if state == 0 then
 flip literal
 update clauses, current, bestSoFar
 else if negated literal was picked AND state > -(number_of_clauses - current) then
 decrease the state of the negated literal by 1
 if state == -1 then
 flip negated literal
 update clauses, current, bestSoFar
 randomly pick a satisfied clause
 randomly pick a literal or its negation from inside the clause
 if literal was picked AND state >= 0 AND state < (number_of_clauses – current) then
 increase the state of the literal by 1
 else if negated literal was picked AND state < 0 AND state > -(number_of_clauses - current) then
 decrease the state of the negated literal by 1
 /*Tabu Search start*/
 bestGain = -999
 gain = 0
 for i = 1 to number_of_clauses - current
 pick an unsatisfied clause i
 randomly pick a literal inside the clause i which is not visited
 mark literal visited
 flip literal
 gain = compute new_gain
 if literal is not tabu then
 if gain == bestGain then
 pick a gain randomly
 bestGain = gain
 store the literal and its gain if not stored already
 else if gain > bestGain then
 bestGain = gain
 store the literal and its gain

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

29

 flip literal
 end-for
 pick literal with best gain
 if literal is tabu AND gain + current < bestSoFar then
 do not flip
 else
 flip literal
 update clauses, current, bestSoFar
 tabuBestUnsatisfied = find the tabu literal from tabu list which has the lowest number of unsatisfied
clauses
 if literal is not tabu AND number_of_clauses - current < tabuBestUnsatisfied then
 make literal tabu with the value (number_of_clauses - current)
 else if literal is not tabu AND number_of_clauses - current >= tabuBestUnsatisfied then
 make literal tabu with the value tabuBestUnsatisfied
 decrease all other literals in tabu list with value bigger than 0 by 1
end-while
End

The idea of Learning Automata with Tabu Search is to use the techniques of the latter and former together. As
discussed in section 2.5, Learning Automata with a Random Walk approach provided good results when
solving SAT instances. Therefore, combining Learning Automata (using a Random Walk approach) with Tabu
Search should in theory provide better results than using the latter alone.

In Learning Automata, each literal has an automaton resulting in a team of automata. Each automaton starts
randomly with a certain state value; -1 or 1. Literals with negative state values are assigned FALSE values, and
literals with positive state values are assigned TRUE values (as illustrated in figure 6). The algorithm randomly
picks an unsatisfied clause and a literal or its negation from inside the clause. The state value of the literal or its
negation is strengthened by either increasing it (if it is positive) or decreasing it (if it is negative). If the state
value of the literal or its negation changes from negative to positive - or vice versa - then it is flipped. The
minimum state value is set to minus the number of unsatisfied clauses and the maximum state value is set to
the number of unsatisfied clauses (we set these limitations in order to have a finite amount of state values). The
algorithm then randomly picks a satisfied clause and a literal or its negation from inside the clause, this literal
or its negation is then strengthened (rewarded) if its truth assignment contributes to the satisfaction of the
clause. Its state value is increased (if it is positive) or decreased (if it is negative). Eventually, literals found in
unsatisfied clauses are penalized and frequently flipped while literals found in satisfied clauses (which with their
truth assignments contribute to the satisfaction of the clauses) are rewarded. Once the Learning Automata
process is complete, Tabu Search - which we have covered in sections 3.4.1 and 3.4.2 - starts its process. The
algorithm is then terminated if all clauses are satisfied or if a maximum number of flips is reached (a time limit
could also be used).

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

30

3.7 Multilevel Paradigm Implementation

As mentioned in section 3.1, the Multilevel paradigm consists of three phases; clustering, initial solution and
refinement. A metaheuristic algorithm is used in the last phase of the paradigm, in our case, Tabu Search and
Learning Automata.

3.7.1 Clustering, Evaluation of Initial Solution and Refinement Phases

Clustering, evaluation of initial solution and refinement are the three phases of the Multilevel paradigm. The
pseudo code below shows how the first two phases work. The third phase will be explained in the next
sections.

The Multilevel paradigm works as explained in section 3.1. A size limit on the number of clusters at the final
level decides how far the clustering process will go. Setting this value to 10 % of the total number of literals is a
good measurement. Once the clustering process is complete, the clusters at the final level are randomly
assigned TRUE/FALSE values. The initial solution is then computed and the refinement phase is ready to
start.

Procedure Multilevel Paradigm
Begin
level = 0
clusterCollection = initialize literals
while clusterCollectionSize != size_limit do
 randomly cluster two literals or clusters together and put them in clusterCollection
 update clusterCollection, clusterCollectionSize
 if reached_end_of_clusterCollection then
 increase level by 1
end-while
randomly assign TRUE/FALSE values to the clusters in clusterCollection (final level)
current = evaluate initial solution
start refinement phase
End

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

31

3.8 Multilevel Tabu Search Implementation

Tabu Search is slightly modified in order to work properly in the refinement phase of the Multilevel paradigm.
The modifications to the algorithm will be explained in the next section.

3.8.1 Refinement Phase Using Tabu Search

The implementation of Tabu Search is slightly modified in order to handle clusters of literals. The pseudo code
below shows the Tabu Search refinement procedure.

Procedure Multilevel Tabu Search (refinement phase)
Begin
bestSoFar = current
while current < number_of_clauses do
 initialize tabu list for level
 bestGain = -999
 gain = 0
 if level != 0 then
 for i = 1 to number_of_clusters_in_level
 randomly pick a cluster i
 mark cluster i visited
 flip cluster i
 gain = compute new_gain
 if cluster i is not tabu then
 if gain == bestGain then
 pick a gain randomly
 bestGain = gain
 else if gain > bestGain then
 bestGain = gain
 store cluster i and its gain
 flip cluster i
 end-for
 decrease level by 1
 pick cluster with best gain
 if cluster is tabu AND gain + current < bestSoFar then
 do not flip
 else
 flip cluster
 update clauses, current, bestSoFar
 tabuBestUnsatisfied = find the tabu cluster from tabu list which has the lowest number of unsatisfied clauses
 if cluster is not tabu AND number_of_clauses - current < tabuBestUnsatisfied then
 make cluster tabu with the value (number_of_clauses - current)
 else if cluster is not tabu AND number_of_clauses - current >= tabuBestUnsatisfied then
 make cluster tabu with the value tabuBestUnsatisfied
 decrease all other clusters in tabu list with value bigger than 0 by 1
 else
 start procedure Tabu Search
end-while
End

The Multilevel variant of Tabu Search (MTS) works as the latter except that here clusters of literals instead of
single literals are handled at a time; a loop runs through all the clusters in a level and handles each cluster.
Once finished with a level, the best cluster is flipped and made tabu (if not already tabu). The tabu list is then

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

32

updated. The algorithm will then proceed to the next level and repeat the process. Once the final level is
reached, the Tabu Search procedure discussed in sections 3.4.1 and 3.4.2 will start running. The algorithm will
terminate if all clauses are satisfied or if a maximum number of flips set for each level is reached (a time limit
could also be used and a number of iterations per level).

3.9 Multilevel Learning Automata with Tabu Search Implementation

Learning Automata with Tabu Search is slightly modified in order to work properly in the refinement phase of
the Multilevel paradigm. In addition, the evaluation of initial solution phase is changed to accommodate the
clusters of literals in the final level. The pseudo code below shows the change.

for i=1 to clusterCollection
 randomly set the state of cluster i to -1 or 1
 if state == -1 then
 set cluster i to FALSE
 else
 set cluster i to TRUE
end-for
current = evaluate initial solution

In the Multilevel variant of Learning Automata with Tabu Search (MLATS), state values are set to clusters of
literals instead of single literals. Once the final level is reached, a loop runs through all clusters in the final level
and randomly sets state values to -1 or 1. The state values set to the clusters are propagated to the literals
inside. If a cluster has state value -1, it is assigned a FALSE value. Similarly if it has a state value 1, it is assigned
a TRUE value.

3.9.1 Refinement Phase Using Learning Automata with Tabu Search

The implementation of Learning Automata with Tabu Search is slightly modified in order to handle clusters of
literals in the refinement phase of the Multilevel paradigm. The pseudo code below shows the Learning
Automata with Tabu Search refinement procedure.

Procedure Multilevel Learning Automata with Tabu Search (refinement phase)
Begin
bestSoFar = current
while current < number_of_clauses do
 if level != 0 then
 /*Learning Automata start*/
 randomly pick a cluster from current level
 for i=1 to number_of_literals_in_cluster
 randomly pick literal i or its negation
 if literal i was picked then
 pick a clause that has literal i
 else if negated literal i was picked then
 pick a clause that has negated literal i
 if the clause is unsatisfied then
 if literal i was picked AND state < (number_of_clauses – current) then
 increase the state of the literal i by 1
 if state == 0 then
 flip literal i
 update clauses, current, bestSoFar
 else if negated literal i was picked AND state > -(number_of_clauses - current) then

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

33

 decrease the state of the negated literal i by 1
 if state == -1 then
 flip negated literal i
 update clauses, current, bestSoFar
 else if the clause is satisfied then
 if literal i was picked AND state >= 0 AND state < (number_of_clauses – current) then
 increase the state of the literal i by 1
 else if negated literal i was picked AND state < 0 AND state > -(number_of_clauses - current)
then
 decrease the state of the negated literal i by 1
 end-for
 /*Tabu Search start*/
 initialize tabu list for level
 bestGain = -999
 gain = 0
 for i = 1 to number_of_clusters_in_level
 randomly pick a cluster i
 mark cluster i visited
 flip cluster i
 gain = compute new_gain
 if cluster i is not tabu then
 if gain == bestGain then
 pick a gain randomly
 bestGain = gain
 else if gain > bestGain then
 bestGain = gain
 store cluster i and its gain
 flip cluster i
 end-for
 decrease level by 1
 pick cluster with best gain
 if cluster is tabu AND gain + current < bestSoFar then
 do not flip
 else
 flip cluster
 update clauses, current, bestSoFar
 tabuBestUnsatisfied = find the tabu cluster from tabu list which has the lowest number of unsatisfied clauses
 if cluster is not tabu AND number_of_clauses - current < tabuBestUnsatisfied then
 make cluster tabu with the value (number_of_clauses - current)
 else if cluster is not tabu AND number_of_clauses - current >= tabuBestUnsatisfied then
 make cluster tabu with the value tabuBestUnsatisfied
 decrease all other clusters in tabu list with value bigger than 0 by 1
 else
 start procedure Learning Automata with Tabu Search
end-while
End

The Multilevel variant of Learning Automata with Tabu Search (MLATS) works as its predecessor except that
here clusters of literals instead of single literals are handled at a time. A cluster is randomly picked from a level
and a loop runs through all literals inside the cluster, a literal or its negation is picked during this loop and a
clause that has the literal or its negation. The clause is then handled as we previously discussed in section 3.6; if
it is unsatisfied, the state value of the picked literal or its negation is strengthened by either increasing it (if it is
positive) or decreasing it (if it is negative). If the state value of the literal or its negation changes from negative
to positive - or vice versa - then it is flipped. The minimum state value is set to minus the number of
unsatisfied clauses and the maximum state value is set to the number of unsatisfied clauses (we set these
limitations in order to have a finite amount of state values). If the clause is satisfied however, the picked literal

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

34

or its negation is then strengthened (rewarded) if its truth assignment contributes to the satisfaction of the
clause. Its state value is increased (if it is positive) or decreased (if it is negative). As mentioned in section 3.6,
eventually literals found in unsatisfied clauses are penalized and frequently flipped while literals found in
satisfied clauses (which with their truth assignments contribute to the satisfaction of the clauses) are rewarded.
Once the loop iterates through all clusters in the given level and performs this process, Multilevel Tabu Search
- which we have covered in section 3.8.1 - starts its process. Once the final level is reached, the Learning
Automata with Tabu Search procedure discussed in section 3.6 will start running. The algorithm will terminate
if all clauses are satisfied or if a maximum number of flips set for each level is reached (a time limit could also
be used and a number of iterations per level).

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

35

4 Experimental Results

Benchmarks from SATLIB (Random, Planning, SAT Competition Beijing, AIM, All Interval Series, Graph
Colouring SW and Quasi Groups) [21] and Max SAT (Industry) [29] were tested by the algorithms. Each

instance was tested 10 times, each with a maximum flip set to 610 or in the case where time was used, the time
limit set to 900 seconds. The average of flips, time and satisfied clauses were computed. In the end of the
chapter, the mean solved, variance and standard deviation of the tested instances are shown.

4.1 Tabu Search vs. Multilevel Tabu Search

The performances of Tabu Search and Multilevel Tabu Search are compared and the results of the algorithms
are shown in the next sections.

4.1.1 SATLIB Benchmark Problems

4.1.1.1 Random

Figures 6, 7 and 8 illustrate the results of solving the following random problems; 600 literals and 2550 clauses
(f600), 1000 literals and 4250 clauses (f1000) and 2000 literals and 8500 clauses (f2000).

Figure 6: Tabu Search vs. Multilevel Tabu Search solving a 600 literals and 2550 clauses (f600) random
problem. Along the horizontal axis the mean time is given and along the vertical axis the mean number of
satisfied clauses.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

36

Figure 7: Tabu Search vs. Multilevel Tabu Search solving a 1000 literals and 4250 clauses (f1000) random
problem. Along the horizontal axis the mean time is given and along the vertical axis the mean number of satisfied
clauses.

Figure 8: Tabu Search vs. Multilevel Tabu Search solving a 2000 literals and 8500 clauses (f2000) random
problem. Along the horizontal axis the mean time is given and along the vertical axis the mean number of satisfied
clauses.

Figure 6 illustrates that f600 is a small problem, and thus the Multilevel variant is not as effective as assumed.
However, as can be seen from the graph, while Tabu Search starts to stagnate after around 400 seconds the
Multilevel variant continues to converge until around 600 seconds from which it starts to stagnate as well. This
occurs because the problem is small and the search space is restricted. As a result, it seemed that single space
searching seemed most efficient for this problem.

f1000 is also a small problem and thus the Multilevel variant is also not as effective as assumed, looking at
figure 7. As a result, it seemed that single space searching seemed most efficient for this problem.

f2000 is also a small problem. As observed in figure 8, the Multilevel variant's performance is approaching
Tabu Search's as the problems grow bigger. Both algorithms steadily converge and Tabu Search manages to
satisfy more clauses than the Multilevel variant.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

37

4.1.1.2 Planning

Figures 9, 10, 11 and 12 illustrate the results of solving the following Blocks World problems; 116 literals and
953 clauses (medium), 459 literals and 7054 clauses (huge), 3016 literals and 50457 clauses (bw_large.c) and
6325 literals and 131973 clauses (bw_large.d).

Figure 9: Tabu Search vs. Multilevel Tabu Search solving a Blocks World problem with 116 literals and 953
clauses problem (medium). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 10: Tabu Search vs. Multilevel Tabu Search solving a Blocks World problem with 459 literals and 7054
clauses problem (huge). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

38

Figure 11: Tabu Search vs. Multilevel Tabu Search solving a Blocks World problem with 3016 literals and 50457
clauses problem (bw_large.c). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 12: Tabu Search vs. Multilevel Tabu Search solving a Blocks World problem with 6325 literals and 131973
clauses (bw_large.d). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 9 illustrates that Tabu Search converges in a linear manner and manages to solve the problem at close to
10000 flips. The Multilevel variant shows a good convergence at the start, however it crosses with Tabu Search
and manages to solve the problem at 10000 flips.

Figure 10 illustrates that the Multilevel variant managed to solve this problem after around 13000 flips, while

Tabu Search started to stagnate from around 200000 flips and continued up to 610 without managing to solve
the problem. As seen in the graph, the Multilevel variant is clearly superior to Tabu Search in terms of
convergence efficiency.

As illustrated in figure 11, the Multilevel variant is superior to Tabu Search. It managed to solve this problem

after around 600000 flips, while Tabu Search did not solve the problem after reaching 610 flips.

As illustrated in figure 12, the Multilevel variant is once again superior to Tabu Search. Multilevel excels in
solving this problem due to its big size. While reaching the maximum amount of flips, the convergence rate of

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

39

Multilevel is much higher than Tabu Search. It can be clearly observed here that the bigger the SAT problem
is, the more it is in favour of the Multilevel variant.

Figure 13 illustrate the results of solving a Logistics problem with 4713 literals and 21991 clauses (logistics.d).

Figure 13: Tabu Search vs. Multilevel Tabu Search solving a Logistics problem with 4713 literals 21991 clauses
(logistics.d). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 13 illustrates that Multilevel is clearly superior to Tabu Search in terms of convergence efficiency and
quality.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

40

4.1.1.3 SAT Competition Beijing

Figures 14 and 15 illustrate the results of solving the following Beijing problems; 21800 literals and 118607
clauses (ewddr2-10-by-5-1) and 22500 literals and 123329 clauses (ewddr2-10-by-5-8).

Figure 14: Tabu Search vs. Multilevel Tabu Search solving a Beijing problem with 21800 literals and 118607
clauses (ewddr2-10-by-5-1). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 15: Tabu Search vs. Multilevel Tabu Search solving a Beijing problem with 22500 literals and 123329
clauses (ewddr2-10-by-5-8). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figures 14 and 15 illustrate that the Multilevel variant however close to Tabu Search, provides a slightly better
convergence rate overall. Tabu Search provides a linear convergence while the Multilevel variant provides a
more variable convergence here.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

41

4.1.1.4 AIM

Figures 16 and 17 illustrate the results of solving the following AIM problems; 200 literals and 400 clauses
(aim-200-2_0-yes1-4) and 200 literals and 680 clauses (aim-200-3_4-yes1-2).

Figure 16: Tabu Search vs. Multilevel Tabu Search solving an AIM problem with 200 literals and 400
clauses (aim-200-2_0-yes1-4). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 17: Tabu Search vs. Multilevel Tabu Search solving an AIM problem with 200 literals and 680
clauses (aim-200-3_4-yes1-2). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figures 16 and 17 illustrate that Tabu Search clearly outperforms the Multilevel variant in terms of
convergence. However, the former shows an early stagnation which is not observed in the latter. The apparent
convergence favour to Tabu Search in both cases confirms that the Multilevel variant does not work well in
relatively small problems, excelling instead in rather large ones.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

42

4.1.1.5 All Interval Series (AIS)

Figures 18 and 19 illustrate the results of solving the following All Interval Series (AIS) problems; 181 literals
and 3151 clauses (ais10) and 265 literals and 5666 clauses (ais12).

Figure 18: Tabu Search vs. Multilevel Tabu Search solving an AIS problem with 181 literals and 3151
clauses (ais10). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 19: Tabu Search vs. Multilevel Tabu Search solving an AIS problem with 265 literals and 5666
clauses (ais12). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 18 illustrates a slight convergence favour to Multilevel until it starts to stagnate at around 200000 flips
and continues until it manages to solve the problem at around 400000 flips. Tabu Search starts to stagnate at
the same time and continues on without managing to solve the problem.

Figure 19 also illustrates a slight convergence favour, however in this case to Tabu Search. While Multilevel
manages to solve the problem at around 200000 flips, Tabu Search starts to stagnate at this point and
continues on without managing to solve the problem.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

43

4.1.1.6 Graph Colouring SW

Figures 20 and 21 illustrate the results of solving the following Graph Colouring SW problems; 500 literals and
3100 clauses (sw100-98) and 500 literals and 3100 clauses (sw100-99).

Figure 20: Tabu Search vs. Multilevel Tabu Search solving an Graph Colouring SW problem with 500 literals and 3100
clauses (sw100-98). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 21: Tabu Search vs. Multilevel Tabu Search solving an Graph Colouring SW problem with 500 literals and 3100
clauses (sw100-99). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figures 20 and 21 illustrate that Tabu Search clearly beats Multilevel in terms of convergence, solving both
problems in well under 200000 flips. Multilevel manages to solve both problems slightly above 200000 flips.
The results of both algorithms are quite similar due to their respective sizes.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

44

4.1.1.7 Quasi Groups

Figures 22 and 23 illustrate the results of solving the following Quasi Groups problems; 1331 literals and
49204 clauses (qg6-11) and 1728 literals and 69931 clauses (qg6-12).

Figure 22: Tabu Search vs. Multilevel Tabu Search solving a Quasi Groups problem with 1331 literals and 49204 clauses
(qg6-11). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 23: Tabu Search vs. Multilevel Tabu Search solving a Quasi Groups problem with 1728 literals and 69931 clauses
(qg6-12). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figures 22 and 23 illustrate that the Multilevel variant clearly outperforms Tabu Search, both in convergence
rate and quality. In figure 22 it is seen that Tabu Search starts to stagnate at around 600000 and continues on
without managing to solve the problem, while Multilevel manages to solve the problem in well under 400000
flips. Similarly, figure 23 shows that Tabu Search does not manage to solve the problem while Multilevel does
so at around 400000 flips.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

45

4.1.2 Max SAT Problems

4.1.2.1 Industry

Figures 24, 25, 26, 27 and 28 illustrate the results of solving the following Max SAT (Industry) problems; 5484
literals and 13894 clauses (mot_comb2._red-gate-0.dimacs.seq.filtered), 11265 literals and 29520 clauses
(mot_comb3._red-gate-0.dimacs.seq.filtered), 44079 literals and 117720 clauses (c6_DD_s3_f1_e1_v1-bug-
onevec-gate-0.dimacs.seq.filtered), 84525 literals and 236942 clauses (c2_DD_s3_f1_e2_v1-bug-onevec-gate-
0.dimacs.seq.filtered) and 200944 literals and 540984 clauses (c5_DD_s3_f1_e1_v1-bug-gate-
0.dimacs.seq.filtered).

Figure 24: Tabu Search vs. Multilevel Tabu Search solving a Max SAT problem with 5484 literals and 13894 clauses
(mot_comb2._red-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given and along the
vertical axis the mean number of satisfied clauses.

Figure 25: Tabu Search vs. Multilevel Tabu Search solving a Max SAT problem with 11265 literals and 29520 clauses
(mot_comb3._red-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given and along the
vertical axis the mean number of satisfied clauses.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

46

Figure 26: Tabu Search vs. Multilevel Tabu Search solving a Max SAT problem with 44079 literals and 117720 clauses
(c6_DD_s3_f1_e1_v1-bug-onevec-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given
and along the vertical axis the mean number of satisfied clauses.

Figure 27: Tabu Search vs. Multilevel Tabu Search solving a Max SAT problem with 84525 literals and 236942 clauses
(c2_DD_s3_f1_e2_v1-bug-onevec-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given
and along the vertical axis the mean number of satisfied clauses.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

47

Figure 28: Tabu Search vs. Multilevel Tabu Search solving a Max SAT problem with 200944 literals and 540984 clauses
(c5_DD_s3_f1_e1_v1-bug-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given and
along the vertical axis the mean number of satisfied clauses.

Figures 24, 25, 26 and 27 illustrate that the Multilevel variant's convergence rate is slightly higher than Tabu
Search and the latter ends up satisfying less clauses than the former in all cases.

Figure 28 illustrate that the Multilevel variant once again outperforms Tabu Search in terms of convergence.
As can be seen in the graph, the algorithms cross at around 800000 flips. From that point, both algorithms
continue to converge and once reaching the maximum amount of flips the Multilevel variant manages to
satisfy more clauses than Tabu Search.

In all cases, the Multilevel variant has an advantage by having an initial solution which is higher than the initial
solution of Tabu Search. The process of randomly assigning truth values to the literals differs for Multilevel
(random values are assigned to clusters of literals), this could have had an effect on the initial solution. To that
end, we tested a different mechanism; after the clustering process, each literal in a cluster was assigned a
random logical value. The clusters would then contain literals that have different values, instead of having a
single value. This mechanism did not give better results. Therefore, the manner in which literals are randomly
assigned truth values does indeed affect the initial solution of a problem, and - as we have seen - the way this is
done in Multilevel gives better results.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

48

Tables 7 and 8 show the mean solved, variance and standard deviation of each problem solved by Tabu Search
(TS) and Multilevel Tabu Search (MTS).

Algorithm Problem Mean solved (%) Variance Standard
deviation

TS f600 99.9 % 0.4 0.63

TS f1000 99.7 % 0.3 0.55

TS f2000 99.3 % 0.1 0.32

TS medium 100 % 0 0

TS huge 100 % 0 0

TS bw_large.c 92.4 % 0.6 0.77

TS bw_large.d 81.6 % 0.5 0.71

TS logistics.d 88.8 % 0.6 0.77

TS ewddr2-10-by-5-1 88.3 % 0.5 0.71

TS ewddr2-10-by-5-8 88 % 0.7 0.84

TS aim-200-2_0-yes1-4 99.8 % 0.3 0.55

TS aim-200-3_4-yes1-2 99 % 0.4 0.63

TS ais10 99.9 % 0.6 0.77

TS ais12 99.9 % 0.4 0.63

TS sw100-98 100 % 0 0

TS sw100-99 100 % 0 0

TS qg6-11 99.8 % 0.2 0.45

TS qg6-12 99.8 % 0.4 0.63

TS Max SAT #1* 80.7 % 0.3 0.55

TS Max SAT #2* 78.8 % 0.5 0.71

TS Max SAT #3* 78.8 % 0.7 0.84

TS Max SAT #4* 79.8 % 0.3 0.55

TS Max SAT #5* 79.3 % 0.2 0.45

Table 7: Mean solved, variance and standard deviation of the problems solved by the Tabu Search (TS) algorithm. *See
page 49 footnote.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

49

Algorithm Problem Mean solved (%) Variance Standard
deviation

MTS f600 98.3 % 0.3 0.55

MTS f1000 97.8 % 0.4 0.63

MTS f2000 97.5 % 0.2 0.45

MTS medium 100 % 0 0

MTS huge 100 % 0 0

MTS bw_large.c 100 % 0 0

MTS bw_large.d 89.6 % 0.4 0.63

MTS logistics.d 95.3 % 0.5 0.71

MTS ewddr2-10-by-5-1 88.4 % 0.7 0.84

MTS ewddr2-10-by-5-8 87.7 % 0.5 0.71

MTS aim-200-2_0-yes1-4 98.3 % 0.6 0.77

MTS aim-200-3_4-yes1-2 97.5 % 0.5 0.71

MTS ais10 100 % 0 0

MTS ais12 100 % 0 0

MTS sw100-98 100 % 0 0

MTS sw100-99 100 % 0 0

MTS qg6-11 100 % 0 0

MTS qg6-12 100 % 0 0

MTS Max SAT #1* 82 % 0.4 0.63

MTS Max SAT #2* 79.5 % 0.2 0.45

MTS Max SAT #3* 78.9 % 0.3 0.55

MTS Max SAT #4* 79.8 % 0.3 0.55

MTS Max SAT #5* 79.3 % 0.6 0.77
Table 8: Mean solved, variance and standard deviation of the problems solved by the Multilevel Tabu Search (MTS)

algorithm. *See page 49 footnote.

Studying the mean solved in tables 7 and 8, it can be observed that TS provides slightly better results than
MTS while solving relatively small problems. As the problems grow bigger, however, the reverse effect is
observed. This indicates that the Multilevel's strength lies in solving relatively big problems, something which
was initially expected. Multilevel provides better results as problems grow bigger which is a good property
when it comes to solving large, complex problems. As can be seen in the tables, the variance and standard
deviation are quite low in almost all cases. This is quite good as it indicates that the algorithms are overall
stable and the results are not widely spread around the mean, but rather close to it.

*Max SAT #1: mot_comb2._red-gate-0.dimacs.seq.filtered
Max SAT #2: mot_comb3._red-gate-0.dimacs.seq.filtered
Max SAT #3: c6_DD_s3_f1_e1_v1-bug-onevec-gate-0.dimacs.seq.filtered
Max SAT #4: c2_DD_s3_f1_e2_v1-bug-onevec-gate-0.dimacs.seq.filtered
Max SAT #5: c5_DD_s3_f1_e1_v1-bug-gate-0.dimacs.seq.filtered

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

50

4.2 Learning Automata with Tabu Search vs. Multilevel Learning Automata with
Tabu Search

The performances of Learning Automata with Tabu Search and Multilevel Learning Automata with Tabu
Search are compared. The same set of SAT instances used in section 4.1 were used here (along with the same

conditions; each instance was tested 10 times, each with a maximum flip set to 610 or in the case of time, 900
seconds limit), in order to perform a comparison between the algorithms. The results of the algorithms are
shown in the next sections.

4.2.1 SATLIB Benchmark Problems

4.2.1.1 Random

Figures 29, 30 and 31 illustrate the results of solving the following random problems; 600 literals and 2550
clauses (f600), 1000 literals and 4250 clauses (f1000) and 2000 literals and 8500 clauses (f2000).

Figure 29: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a 600 literals and 2550 clauses (f600) random
problem. Along the horizontal axis the mean time is given and along the vertical axis the mean number of
satisfied clauses.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

51

Figure 30: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a 1000 literals and 4250 clauses (f1000)
random problem. Along the horizontal axis the mean time is given and along the vertical axis the mean number of
satisfied clauses.

Figure 31: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a 2000 literals and 8500 clauses (f2000)
random problem. Along the horizontal axis the mean time is given and along the vertical axis the mean number of
satisfied clauses.

Figure 29 illustrates that f600 is a small problem, and thus the Multilevel variant is not as effective as assumed.
However, as can be seen from the graph, while Learning Automata with Tabu Search starts to stagnate after
around 400 seconds the Multilevel variant continues to converge until around 800 seconds from which it starts
to stagnate as well. This occurs because the problem is small and the search space is restricted. As a result, it
seemed that single space searching seemed most efficient for this problem.

f1000 is also a small problem and thus the Multilevel variant is also not as effective as assumed, looking at
figure 30. As a result, it seemed that single space searching seemed most efficient for this problem.

f2000 is also a small problem. As observed in figure 31, the Multilevel variant's performance is approaching
Learning Automata with Tabu Search's as the problems grow bigger. Both algorithms steadily converge (with a
slight advantage to the Multilevel variant at the start) and Learning Automata with Tabu Search manages to
satisfy more clauses than the Multilevel variant.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

52

4.2.1.2 Planning

Figures 32, 33, 34 and 35 illustrate the results of solving the following Blocks World problems; 116 literals and
953 clauses (medium), 459 literals and 7054 clauses (huge), 3016 literals and 50457 clauses (bw_large.c) and
6325 literals and 131973 clauses (bw_large.d).

Figure 32: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Blocks World problem with 116 literals
and 953 clauses problem (medium). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 33: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Blocks World problem with 459 literals
and 7054 clauses problem (huge). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

53

Figure 34: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Blocks World problem with 3016 literals
and 50457 clauses problem (bw_large.c). Along the horizontal axis the mean number of flips is given and along the
vertical axis the mean number of satisfied clauses.

Figure 35: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Blocks World problem with 6325 literals
and 131973 clauses (bw_large.d). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 32 illustrates a clear difference between the two algorithms, greatly favouring Learning Automata with
Tabu Search. This algorithm manages to solve the problem at around 6200 flips, while its Multilevel variant
does so at 10000 flips having a relatively poor convergence rate.

Figure 33 illustrates that Learning Automata with Tabu Search managed to solve this problem after around
850000 flips, while the Multilevel variant solved the problem at the maximum amount of flips. In this case, the
combination of Learning Automata with Tabu Search beat its Multilevel variant.

As illustrated in figure 34, the Multilevel variant shows a clear dominance to Learning Automata with Tabu
Search. While both algorithms do not manage to solve the problem, the convergence rate favours the
Multilevel variant.

As illustrated in figure 35, the Multilevel variant is once again superior to Learning Automata with Tabu
Search. Multilevel excels in solving this problem due to its fairly big size. While reaching the maximum amount

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

54

of flips, the convergence rate of Multilevel is much higher than Learning Automata with Tabu Search. It can be
clearly observed here that the bigger the SAT problem is, the more it is in favour of the Multilevel variant.

Figure 36 illustrate the results of solving a Logistics problem with 4713 literals and 21991 clauses (logistics.d).

Figure 36: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Logistics problem with 4713 literals 21991
clauses (logistics.d). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 36 illustrates that the Multilevel variant is clearly superior to Learning Automata with Tabu Search in
terms of convergence efficiency and quality.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

55

4.2.1.3 SAT Competition Beijing

Figures 37 and 38 illustrate the results of solving the following Beijing problems; 21800 literals and 118607
clauses (ewddr2-10-by-5-1) and 22500 literals and 123329 clauses (ewddr2-10-by-5-8).

Figure 37: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Beijing problem with 21800 literals and
118607 clauses (ewddr2-10-by-5-1). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 38: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Beijing problem with 22500 literals and
123329 clauses (ewddr2-10-by-5-8). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figures 37 and 38 illustrate that Learning Automata with Tabu Search beats its Multilevel variant while solving
these fairly big problems. The results here indicate that the combination of Learning Automata and Tabu
Search actually provides better results than using a Multilevel variant of the two while solving these fairly big
problems.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

56

4.2.1.4 AIM

Figures 39 and 40 illustrate the results of solving the following AIM problems; 200 literals and 400 clauses
(aim-200-2_0-yes1-4) and 200 literals and 680 clauses (aim-200-3_4-yes1-2).

Figure 39: LA with Tabu Search vs. Multilevel LA with Tabu Search solving an AIM problem with 200 literals and 400
clauses (aim-200-2_0-yes1-4). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 40: LA with Tabu Search vs. Multilevel LA with Tabu Search solving an AIM problem with 200 literals and 680
clauses (aim-200-3_4-yes1-2). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 39 illustrates that Learning Automata with Tabu Search clearly outperforms the Multilevel variant in
terms of convergence. However, the former shows an early stagnation which is not observed in the latter.
Similarly as in section 4.1.1.4, the convergence favour to Learning Automata with Tabu Search here confirms
that the Multilevel variant does not work well in relatively small problems.

Figure 40 illustrates that Learning Automata with Tabu Search once more clearly outperforms its Multilevel
variant. In this case having a steep convergence without stagnating.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

57

4.2.1.5 All Interval Series (AIS)

Figures 41 and 42 illustrate the results of solving the following All Interval Series (AIS) problems; 181 literals
and 3151 clauses (ais10) and 265 literals and 5666 clauses (ais12).

Figure 41: LA with Tabu Search vs. Multilevel LA with Tabu Search solving an AIS problem with 181 literals and 3151
clauses (ais10). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 42: LA with Tabu Search vs. Multilevel LA with Tabu Search solving an AIS problem with 265 literals and 5666
clauses (ais12). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 41 illustrates a slight convergence favour to Learning Automata with Tabu Search until it starts to
stagnate at around 200000 flips. Similarly, the Multilevel variant starts to stagnate at the same time and
continues on without managing to solve the problem.

Figure 42 also illustrates a slight convergence favour, however in this case to the Multilevel variant. While
Multilevel manages to solve the problem at around 200000 flips, Learning Automata with Tabu Search starts to
stagnate at this point and continues on without managing to solve the problem.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

58

4.2.1.6 Graph Colouring SW

Figures 43 and 44 illustrate the results of solving the following Graph Colouring SW problems; 500 literals and
3100 clauses (sw100-98) and 500 literals and 3100 clauses (sw100-99).

Figure 43: LA with Tabu Search vs. Multilevel LA with Tabu Search solving an Graph Colouring SW problem with 500
literals and 3100 clauses (sw100-98). Along the horizontal axis the mean number of flips is given and along the vertical
axis the mean number of satisfied clauses.

Figure 44: LA with Tabu Search vs. Multilevel LA with Tabu Search solving an Graph Colouring SW problem with 500
literals and 3100 clauses (sw100-99). Along the horizontal axis the mean number of flips is given and along the vertical
axis the mean number of satisfied clauses.

Figures 43 and 44 illustrate that Learning Automata with Tabu Search clearly beats Multilevel in terms of
convergence, solving both problems in well under 200000 flips. Multilevel manages to solve both problems
slightly above 200000 flips. The results of both algorithms are quite similar due to their respective sizes.
Interestingly, these results are quite similar to those earlier shown in section 4.1.1.6.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

59

4.2.1.7 Quasi Groups

Figures 45 and 46 illustrate the results of solving the following Quasi Groups problems; 1331 literals and
49204 clauses (qg6-11) and 1728 literals and 69931 clauses (qg6-12).

Figure 45: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Quasi Groups problem with 1331 literals
and 49204 clauses (qg6-11). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figure 46: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Quasi Groups problem with 1728 literals
and 69931 clauses (qg6-12). Along the horizontal axis the mean number of flips is given and along the vertical axis
the mean number of satisfied clauses.

Figures 45 and 46 illustrate that the Multilevel variant clearly outperforms Learning Automata with Tabu
Search, both in convergence rate and quality. In figure 45 it is seen that Learning Automata with Tabu Search
starts to stagnate at around 600000 and continues on without managing to solve the problem, while Multilevel
manages to solve the problem at around 400000 flips. Similarly, figure 46 shows that Learning Automata with
Tabu Search starts to stagnate at around 800000 flips and does not manage to solve the problem while
Multilevel does in just under 400000 flips.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

60

4.2.2 Max SAT Problems

4.2.2.1 Industry

Figures 47, 48, 49, 50 and 51 illustrate the results of solving the following Max SAT (Industry) problems; 5484
literals and 13894 clauses (mot_comb2._red-gate-0.dimacs.seq.filtered), 11265 literals and 29520 clauses
(mot_comb3._red-gate-0.dimacs.seq.filtered), 44079 literals and 117720 clauses (c6_DD_s3_f1_e1_v1-bug-
onevec-gate-0.dimacs.seq.filtered), 84525 literals and 236942 clauses (c2_DD_s3_f1_e2_v1-bug-onevec-gate-
0.dimacs.seq.filtered) and 200944 literals and 540984 clauses (c5_DD_s3_f1_e1_v1-bug-gate-
0.dimacs.seq.filtered).

Figure 47: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Max SAT problem with 5484 literals and
13894 clauses (mot_comb2._red-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given
and along the vertical axis the mean number of satisfied clauses.

Figure 48: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Max SAT problem with 11265 literals and
29520 clauses (mot_comb3._red-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given
and along the vertical axis the mean number of satisfied clauses.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

61

Figure 49: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Max SAT problem with 44079 literals and
117720 clauses (c6_DD_s3_f1_e1_v1-bug-onevec-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number
of flips is given and along the vertical axis the mean number of satisfied clauses.

Figure 50: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Max SAT problem with 84525 literals and
236942 clauses (c2_DD_s3_f1_e2_v1-bug-onevec-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number
of flips is given and along the vertical axis the mean number of satisfied clauses.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

62

Figure 51: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Max SAT problem with 200944 literals and
540984 clauses (c5_DD_s3_f1_e1_v1-bug-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips
is given and along the vertical axis the mean number of satisfied clauses.

Figures 47 and 48 illustrate that the Multilevel variant's convergence rate is higher than Learning Automata
with Tabu Search and the latter satisfies less clauses than the former in those cases in both cases.

Figures 49, 50 and 51 illustrate rather interesting and surprising results. Learning Automata with Tabu Search
seem to outperform the Multilevel variant while solving these large problems, both in terms of convergence
and quality. This is an indication that Learning Automata with Tabu Search is a solid algorithm that manages to
beat Multilevel while solving these problems.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

63

Tables 9 and 10 show the mean solved, variance and standard deviation of each problem solved by Learning
Automata with Tabu Search (LATS) and Multilevel Learning Automata with Tabu Search (MLATS).

Algorithm Problem Mean solved (%) Variance Standard
deviation

LATS f600 100 % 0 0

LATS f1000 99.8 % 0.3 0.55

LATS f2000 99.5 % 0.4 0.63

LATS medium 100 % 0 0

LATS huge 100 % 0 0

LATS bw_large.c 95.4 % 0.2 0.45

LATS bw_large.d 82.3 % 0.5 0.71

LATS logistics.d 89.3 % 0.6 0.77

LATS ewddr2-10-by-5-1 88.7 % 0.4 0.63

LATS ewddr2-10-by-5-8 88.7 % 0.3 0.55

LATS aim-200-2_0-yes1-4 99.8 % 0.7 0.84

LATS aim-200-3_4-yes1-2 99.3 % 0.5 0.71

LATS ais10 99.9 % 0.8 0.89

LATS ais12 99.9 % 0.3 0.55

LATS sw100-98 100 % 0 0

LATS sw100-99 100 % 0 0

LATS qg6-11 99.8 % 0.4 0.63

LATS qg6-12 99.8 % 0.9 0.95

LATS Max SAT #1* 82.3 % 0.4 0.63

LATS Max SAT #2* 79.5 % 0.7 0.84

LATS Max SAT #3* 80 % 0.7 0.84

LATS Max SAT #4* 79.8 % 0.5 0.71

LATS Max SAT #5* 79.2 % 0.8 0.89
Table 9: Mean solved, variance and standard deviation of the problems solved by the Learning Automata with Tabu

Search (LATS) algorithm. *See page 64 footnote.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

64

Algorithm Problem Mean solved (%) Variance Standard
deviation

MLATS f600 98 % 0.4 0.63

MLATS f1000 97.9 % 0.3 0.55

MLATS f2000 97.4 % 0.6 0.77

MLATS medium 97.6 % 0.5 0.71

MLATS huge 99.4 % 0.3 0.55

MLATS bw_large.c 99.8 % 0.3 0.55

MLATS bw_large.d 89.4 % 0.2 0.45

MLATS logistics.d 94.1 % 0.7 0.84

MLATS ewddr2-10-by-5-1 87.5 % 0.5 0.71

MLATS ewddr2-10-by-5-8 87.7 % 0.3 0.55

MLATS aim-200-2_0-yes1-4 97.5 % 0.6 0.77

MLATS aim-200-3_4-yes1-2 96.8 % 0.4 0.63

MLATS ais10 99.4 % 0.6 0.77

MLATS ais12 100 % 0 0

MLATS sw100-98 100 % 0 0

MLATS sw100-99 100 % 0 0

MLATS qg6-11 100 % 0 0

MLATS qg6-12 100 % 0 0

MLATS Max SAT #1* 82.5 % 0.4 0.63

MLATS Max SAT #2* 79.8 % 0.6 0.77

MLATS Max SAT #3* 78.9 % 0.3 0.55

MLATS Max SAT #4* 77.4 % 0.7 0.84

MLATS Max SAT #5* 79.1 % 0.5 0.71
Table 10: Mean solved, variance and standard deviation of the problems solved by the Multilevel Learning Automata with

Tabu Search (MLATS) algorithm. *See page 64 footnote.

While studying the mean solved in tables 9 and 10, rather interesting results are observed. As expected, LATS
provides slightly better results than MLATS while solving relatively small problems. However, it is also
observed that LATS in some cases beats its Multilevel variant while solving relatively big problems. This
phenomenon is especially observable in the SAT competition Beijing and Max SAT problems, as illustrated in
the tables. Studying the results obtained earlier in tables 7 and 8 in section 4.1 - while analysing TS and MTS -
the results obtained here are rather surprising. While the Multilevel variant was expected to beat its counterpart
in solving all large problems, it did not here. The single combination of Learning Automata and Tabu Search
gave slightly better results than a Multilevel approach while solving relatively big problems. This is not entirely
conclusive however, since in other cases the Multilevel variant gave better results. In any case, this is something
worth investigating in the future. Once again, the variance and standard deviation are quite low in almost all
cases here. As previously mentioned, this is quite good as it indicates that the algorithms are overall stable and
the results are not widely spread around the mean, but rather close to it.

*Max SAT #1: mot_comb2._red-gate-0.dimacs.seq.filtered
Max SAT #2: mot_comb3._red-gate-0.dimacs.seq.filtered
Max SAT #3: c6_DD_s3_f1_e1_v1-bug-onevec-gate-0.dimacs.seq.filtered
Max SAT #4: c2_DD_s3_f1_e2_v1-bug-onevec-gate-0.dimacs.seq.filtered
Max SAT #5: c5_DD_s3_f1_e1_v1-bug-gate-0.dimacs.seq.filtered

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

65

5 Discussion

Having run the implemented algorithms on SAT problems from SATLIB [21] and Max SAT [29], rather
interesting results were obtained. Tabu Search (TS) seemed to be an effective algorithm solving relatively small
problems, while the new Multilevel Tabu Search (MTS) algorithm excelled primarily in solving relatively big
problems. This observation was expected initially due to the Multilevel technique's unique mechanism of
effectively handling big amounts of literals. It was observed that the size of problems was proportional to the
performance of MTS. Meaning that as the problems got bigger, the better MTS performed, and vice versa.

Interestingly, this was not the case with the new Learning Automata with Tabu Search (LATS) and Multilevel
Learning Automta with Tabu Search (MLATS) algorithms. It seemed that the combination of Learning
Automata and Tabu Search gave good results, to the extent of being on level with its Multilevel variant, when
it came to solution quality. LATS managed to slightly beat MLATS in some cases while solving relatively big
problems. This was a surprising observation that shows the advantage of using Learning Automata, and the
indication that this is a good algorithm. When it came to convergence time, the Multilevel technique was a
clear winner in all cases. To obtain a general overview of the results of the algorithms, consider table 11 which
shows the mean solution quality and convergence time of each algorithm solving the entire set of the SAT
instances (23 problems in total).

Algorithm Mean solution
quality (%)

Mean convergence
time (seconds)

Tabu Search (TS) 88.42 % 3136.5 s.

Multilevel Tabu Search (MTS) 93.47 % 1009.29 s.

Learning Automata with Tabu Search (LATS) 93.17 % 2994.72 s.

Multilevel Learning Automata with Tabu Search (MLATS) 93.05 % 1254.03 s.
Table 11: The mean solution quality and convergence time of each algorithm solving the set of SAT instances (23
problems in total).

As can be seen in table 11, the difference in mean solution quality between TS and MTS is quite clear. MTS
has a mean solution quality advantage of just above 5 %. This shows that a Multilevel approach is better (than
a non-Multilevel) overall. This is not the case when it comes to LATS and MLATS, as seen in the table. Both
algorithms have quite similar mean solution quality, with a 0.12 % advantage to LATS. As mentioned earlier,
this observation is rather surprising. Comparing TS to LATS, it is clear that LATS is the better algorithm with
a mean solution quality advantage of 4.75 %. This is an indication that Learning Automata is a technique that
works quite well with Tabu Search, and is definitely worth investigating in the future. The best overall
algorithm is MTS, this is an(other) indication that Multilevel is a technique that works quite well with Tabu
Search - specifically excelling in solving relatively big SAT problems (as previously observed from the results in
section 4.1). Looking at the mean convergence time, it can be seen that MTS is more than three times faster
than TS, reaching a better solution than the latter. Similarly, MLATS is almost three times faster than LATS. It
is quite clear that Multilevel is a technique that greatly increases the efficiency of the algorithms. Based on these
results, using a Multilevel approach to solve SAT is definitely recommendable. In addition, the calculated
variance and standard deviation of the algorithms are relatively low in all cases which indicates that the
algorithms are quite stable and the results are not widely spread around the mean, but close to it.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

66

6 Conclusion and Further Work

In this work, the problem was to solve the Boolean Satisfiability Problem (SAT) by introducing a clustering
technique - Multilevel - and combining the latter with two existing approaches - Tabu Search and Learning
Automata. Thereafter disclosing whether this combination provides better results - than using the two
mentioned approaches alone - while solving SAT. SAT is a nondeterministic polynomial time (NP) complete
problem which is a Boolean expression composed of a specific amount of variables (literals), clauses that
contain disjunctions of the literals and conjunctions of the clauses. The literals have logical values TRUE and
FALSE and the task is to find a truth assignment that makes the entire expression TRUE (satisfied).

The proposed Multilevel paradigm consists of three phases; clustering, initial solution and refinement. In the
first phase, the SAT instance is simplified by dividing the number of literals in several levels - literals are
clustered together. The clustering process can either be performed randomly, or deterministically (by clustering
neighbouring literals). Once the clustering process is complete and a final desired level is reached, the clusters
(of literals) are randomly assigned logical TRUE/FALSE values and an initial solution is calculated in the
second phase. In the final phase of the paradigm, any metaheuristic algorithm may be used. In this work, we
have used Tabu Search and Learning Automata. A total of four algorithms were implemented; Tabu Search
(TS), Multilevel Tabu Search (MTS), Learning Automata with Tabu Search (LATS) and Multilevel Learning
Automata with Tabu Search (MLATS) - the last three algorithms being an all-new contribution. Having
implemented each algorithm and a Multilevel variant of itself, we were able to conduct a comparison analysis
to disclose whether the Multilevel clustering technique provided better results in terms of solution quality and
computational efficiency.

The obtained results were interesting. TS seemed to be an effective algorithm solving relatively small problems,
while MTS excelled primarily in solving relatively big problems. It was observed that the size of problems was
proportional to the performance of MTS. Meaning that the bigger the problems became, the better MTS
performed, and vice versa. This phenomenon was due to the Multilevel's unique mechanism of handling big
amounts of literals as clusters. This was however not always the case with LATS and MLATS, as the latter was
sometimes beaten by the former in solving relatively big problems. This was a surprising observation that
showed the great advantage of using Learning Automata. When it came to mean convergence time, using
Multilevel was a definite advantage as results showed the latter being up to three times faster than a single level
approach (see table 11).

Based on the results obtained, using the Multilevel technique definitely increased the efficiency of the Tabu
Search and Learning Automata approaches. By these results, we have proven our hypothesis; combining the
Multilevel technique with existing approaches did indeed increase the efficiency of solving SAT. As steps for
further work, it is worth mentioning that the singular combination of Learning Automata and Tabu Search
showed great promise and is definitely worth investigating.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

67

References

[1] A. Armando and L. Compagna, Abstraction-Driven SAT-based Analysis of Security Protocols, DIST -
Universita degli Studi di Genova, 2003.

[2] F. Guillaume, The SAT Problem of MU-Calculus over Petri Nets, INRIA, France.

[3] J. Esparza. On the decidability of model checking for several mu-calculi and Petri Nets. In S. Tison, editor,
Proceedings of Trees in Algebra and Programming-CAAP '94, 19th International Colloquium 1994, number 787 in
Lecture Notes in Computer Science, pages 115-129, 1994.

[4] http://www.cse.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html, Eitan M. Gurari, Ohio State
University, Department of Computer Science and Engineering, downloaded 19.11.2010.

[5] O-C. Granmo, Selected Learning Problems in Stochastic Optimization Part III: The Boolean Satisfiability
Problem (SAT), University of Agder IKT507 Lecture, 2010.

[6] O-C.Granmo and N. Bouhmala, Solving the Satisfiability Problem Using Finite Learning Automata,
International Journal of Computer Science and Applications, Vol. 4 Issue 3 p. 15-29, 2007.

[7] B. Selman, H. Levesque, and D. Mitchell, A New Method for Solving Hard Satisfiability Problems, Proc. of
AAA’92, MIT Press, 440-446, 1992.

[8] B. Selman, Henry A. Kautz, and B. Cohen, Noise Strategies for Improving Local Search, Proc. of
AAAI’94, MIT Press, 337-343, 1994.

[9] D. McAllester, B. Selman, and H. Kautz, Evidence for Invariants in Local Search, Proc. of AAAI’97, MIT
Press, 321-326, 1997.

[10] M. Davis and H. Putnam, A computing procedure for quantification theory, Journal of the ACM, 7:201-215,
1960.

[11] B. Ferris and J. Froehlich, Walk SAT as an Informed Heuristic to DPLL in SAT Solving, Department of
Computer Science, University of Washington, Seattle.

[12] W. M. Spears, Simulated Annealing for Hard Satisfiability Problems, Technical Report, Naval Research
Laboratory, Washington D.C., 1993.

[13] A. E. Eiben and J. K. van der Hauw, Solving 3-SAT with Adaptive Genetic Algorithms, Proc. of the 4th
IEEE Conference on Evolutionary Computation, IEEE Press, 81-86, 1997.

[14] B. Mazure, L. Saïs and E. Gregoire, Tabu Search for SAT, AAAI-97 Proceedings, p. 281 - 285, 1997.

[15] B. Cha and K. Iwama, Performance Tests of Local Search Algorithms Using New Types of Random CNF
Formula, Proc. of IJCAI’95, Morgan Kaufmann Publishers, 304-309, 1995.

[16] J. Frank, Learning Short-term Clause Weights for GSAT, Proc. of IJCAI’97, Morgan Kaufmann
Publishers, 384-389, 1997.

[17] B. J. Oommen and D. C. Y. Ma, Deterministic Learning Automata Solutions to the Equipartitioning
Problem, IEEE Transactions on Computers, 37(1):2-13, 1988.

[18] W. Gale, S.Das, and C.T. Yu. Improvements to an Algorithm for Equipartitioning. IEEE Transactions on
Computers, 39(5):706-710, 1990.

[19] B. J. Oommen and E.V. St. Croix, Graph partitioning using learning automata, IEEE Transactions on
Computers, 45(2):195-208, 1996.

http://www.cse.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

68

[20] B. J. Oommen and E.R. Hansen, List organizing strategies using stochastic move-to-front and stochastic

move-to-rear operations, SIAM Journal on Computing, 16:705-716, 1987.

[21] http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html, SATLIB Benchmark Problems, The University of
British Columbia, Computer Science, downloaded 11.12.2010.

[22] B. Selman and H. Kautz, Domain-independent extensions t o GSAT: Solving large structured
satisfiability problems. In Proceedings of IJCAI, 1993.

[23] J . Frank. Learning short-term weights for GSAT. Technical report,
http://rainier.cs.ucdavis.edu/frank/decay.ml96.ps, University of California at Davis, October 1996.

[24] J. Frank. Weighting for Godot: Learning heuristics for GSAT. In Proceedings of the AAAI , pages 338 -
343, 1996.

[25] P. Hansen and B. Jaumand, Algorithms for the Maximum Satisfiability Problem, Computing, 44:279-303,
1990.

[26] I. Gent and T. Walsh, Unsatisfied Variables in Local Search. In Hybrid Problems, Hybrid Solutions, IOS Press,
73-85, 1995.

[27] I. Gent and T. Walsh, Towards an Understanding of Hill-Climbing Procedures for SAT, Proc. of AAAI’93,
MIT Press, 28-33, 1993.

[28] http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/benchmarks.htm, Forced Satisfiable CSP and SAT
Benchmarks of Model RB, Beihang University, downloaded 22.02.2011.

[29] http://www.maxsat.udl.cat/09/index.php?disp=submitted-benchmarks, MAX-SAT 2009, The Twelfth
International Conference on Theory and Applications of Satisfiability Testing (SAT-2009), downloaded 22.02.2011.

[30] Holger H. Hoos and Thomas Stützle, SATLIB: An Online Resource for Research on SAT. In: I.P. Gent,
H.v.Maaren, T. Walsh, editors, SAT 2000, pp.283-292, IOS Press, 2000. SATLIB is available online
at www.satlib.org.

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://rainier.cs.ucdavis.edu/frank/decay.ml96.ps
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/benchmarks.htm
http://www.maxsat.udl.cat/09/index.php?disp=submitted-benchmarks

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

69

Appendices

Appendix A Source Code

Multilevel Paradigm - Clustering and Initial Solution Phases

std::cout << "Running Multilevel clustering....." << std::endl << std::endl;

std::cout << "Clustering literals randomly....." << std::endl << std::endl;

const int NUMBER_OF_LITERALS = atoi(numberOfXLiterals.c_str());
const int NUMBER_OF_CLAUSES = atoi(numberOfClauses.c_str());
TimeElapsed te;
double timeElapsedMultilevelClustering = 0;
clock_t end = 0;
std::string satisfaction = "";
int trueClauseCounter = 0;
bool literalValues[2] = {true, false};
int entranceCounter = 0;
int entranceCounter2 = 0;
std::string cluster;
std::vector<int> vectorVariable;
int randomVariableOne = 0;
int oppositeValue = 0;
int levelIndex = 0;
std::vector<std::string> vectorCheckedClauses;

//Iterator vector, to help find elements
std::vector<std::string>::iterator iteratorVector;

//Iterator map, to be able to find stuff
std::map<std::string, bool>::iterator iteratorMap;

//Iterator vector, to help find elements
std::vector<std::string>::iterator iteratorVectorString;

bool firstEntrance = true;

while(firstEntrance || clusterCollection.size() >= atoi(numberOfXLiterals.c_str()) *
0.10)
{
 firstEntrance = false;

 if(entranceCounter == 0)
 {
 entranceCounter++;
 std::cout << "LEVEL " << levelCounter << std::endl << std::endl;

 for(int i = 1; i <= NUMBER_OF_LITERALS; i++)
 {
 vectorVariable.push_back(i);

 //int -> string
 char sizeTemp = (char)i;
 char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10];
 std::string tempLiteral = itoa(i, bufferTemp, 10);

 //int -> string
 char sizeTemp2 = (char)levelCounter;

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

70

 char bufferTemp2[sizeof(sizeTemp2)/sizeof(char) + 10];
 std::string stringLevelCounter = itoa(levelCounter, bufferTemp2, 10);

 //int -> string
 char size3 = (char)levelIndex;
 char buffer3[sizeof(size3)/sizeof(char) + 10];
 std::string stringLevelIndex = itoa(levelIndex, buffer3, 10);

 //Update the map level with literals
 mapLevelClusters[stringLevelCounter + " " + stringLevelIndex] =
tempLiteral;

 //Increment level index
 levelIndex++;
 }

 /**Stop timer**/
 end = clock();

 timeElapsedMultilevelClustering = te.GetTimeElapsed(end, begin)/1000;

 //Level 0 complete
 std::cout << "Time used: " << timeElapsedMultilevelClustering << " seconds"
<< std::endl << std::endl;

 //Reset
 levelIndex = 0;

 levelCounter++;
 std::cout << "LEVEL " << levelCounter << std::endl << std::endl;

 //Cluster and create LEVEL 1 (Initial cluster collection)
 while(vectorVariable.size() != 0)
 {
 if(vectorVariable.size() == 1)
 break;

 //Random shuffle
 std::random_shuffle(vectorVariable.begin(), vectorVariable.end());

 char sizeVariableOne = (char)vectorVariable[0];
 char bufferVariableOne[sizeof(sizeVariableOne)/sizeof(char) + 10];
 cluster += itoa(vectorVariable[0], bufferVariableOne, 10);
 cluster += " ";

 char sizeVariableTwo = (char)vectorVariable[1];
 char bufferVariableTwo[sizeof(sizeVariableTwo)/sizeof(char) + 10];
 cluster += itoa(vectorVariable[1], bufferVariableTwo, 10);
 cluster += " ";

 while(cluster[0] == ' ')
 cluster.erase(cluster.begin());

 while(cluster[cluster.length() - 1] == ' ')
 cluster.erase(cluster.end() - 1);

 initialClusterCollection.push_back(cluster);

 //Erase
 vectorVariable.erase(vectorVariable.begin());
 vectorVariable.erase(vectorVariable.begin());

 //int -> string

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

71

 char sizeTemp2 = (char)levelCounter;
 char bufferTemp2[sizeof(sizeTemp2)/sizeof(char) + 10];
 std::string stringLevelCounter = itoa(levelCounter, bufferTemp2, 10);

 //int -> string
 char size3 = (char)levelIndex;
 char buffer3[sizeof(size3)/sizeof(char) + 10];
 std::string stringLevelIndex = itoa(levelIndex, buffer3, 10);

 //Update the map level with cluster
 mapLevelClusters[stringLevelCounter + " " + stringLevelIndex] =
cluster;

 //Increment level index
 levelIndex++;

 //Reset
 cluster = "";
 }

 //Push the rest into initialClusterCollection
 if(vectorVariable.size() == 1)
 {
 char sizeVariableOne = (char)vectorVariable[0];
 char bufferVariableOne[sizeof(sizeVariableOne)/sizeof(char) + 10];
 cluster = itoa(vectorVariable[0], bufferVariableOne, 10);

 while(cluster[0] == ' ')
 cluster.erase(cluster.begin());

 while(cluster[cluster.length() - 1] == ' ')
 cluster.erase(cluster.end() - 1);

 initialClusterCollection.push_back(cluster);

 //Erase
 vectorVariable.erase(vectorVariable.begin());

 //int -> string
 char sizeTemp2 = (char)levelCounter;
 char bufferTemp2[sizeof(sizeTemp2)/sizeof(char) + 10];
 std::string stringLevelCounter = itoa(levelCounter, bufferTemp2, 10);

 //int -> string
 char size3 = (char)levelIndex;
 char buffer3[sizeof(size3)/sizeof(char) + 10];
 std::string stringLevelIndex = itoa(levelIndex, buffer3, 10);

 //Update the map level with cluster
 mapLevelClusters[stringLevelCounter + " " + stringLevelIndex] =
cluster;

 //Increment level index
 levelIndex++;
 }

 /**Stop timer**/
 end = clock();

 timeElapsedMultilevelClustering = te.GetTimeElapsed(end, begin)/1000;

 //Level 1 complete
 std::cout << "Time used: " << timeElapsedMultilevelClustering << " seconds"

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

72

<< std::endl << std::endl;
 }

 //Clear cluster
 cluster = "";

 std::string trueClusters = "";
 std::string falseClusters = "";
 std::string substring = " ";

 int clusterCounter = 0;

 //Reset level index
 levelIndex = 0;

 //int -> string
 char sizeTemp = (char)levelCounter;
 char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10];
 std::string stringLevelCounter = itoa(levelCounter, bufferTemp, 10);

 if(entranceCounter2 == 0)
 {
 entranceCounter2++;

 levelCounter++;
 std::cout << "LEVEL " << levelCounter << std::endl << std::endl;

 //int -> string
 char sizeTemp = (char)levelCounter;
 char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10];
 std::string stringLevelCounter = itoa(levelCounter, bufferTemp, 10);

 //Cluster and create the next level
 while(initialClusterCollection.size() != 0)
 {
 if(initialClusterCollection.size() == 1)
 break;

 //Random shuffle
 std::random_shuffle(initialClusterCollection.begin(),
initialClusterCollection.end());

 trueClusters += initialClusterCollection[0];
 trueClusters += " ";
 trueClusters += initialClusterCollection[1];
 trueClusters += " ";

 while(trueClusters[0] == ' ')
 trueClusters.erase(trueClusters.begin());

 while(trueClusters[trueClusters.length() - 1] == ' ')
 trueClusters.erase(trueClusters.end() - 1);

 clusterCollection.push_back(trueClusters);

 //Erase
 initialClusterCollection.erase(initialClusterCollection.begin());
 initialClusterCollection.erase(initialClusterCollection.begin());

 //int -> string
 char sizeTemp = (char)levelIndex;
 char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10];
 std::string stringLevelIndex = itoa(levelIndex, bufferTemp, 10);

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

73

 //Update the map level with cluster
 mapLevelClusters[stringLevelCounter + " " + stringLevelIndex] =
trueClusters;

 //Increase level index
 levelIndex++;

 trueClusters = "";
 }

 //Push the rest into cluster collection
 if(initialClusterCollection.size() == 1)
 {
 trueClusters = initialClusterCollection[0];

 while(trueClusters[0] == ' ')
 trueClusters.erase(trueClusters.begin());

 while(trueClusters[trueClusters.length() - 1] == ' ')
 trueClusters.erase(trueClusters.end() - 1);

 clusterCollection.push_back(trueClusters);

 //Erase
 initialClusterCollection.erase(initialClusterCollection.begin());

 //int -> string
 char sizeTemp = (char)levelIndex;
 char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10];
 std::string stringLevelIndex = itoa(levelIndex, bufferTemp, 10);

 //Update the map level with TRUE cluster
 mapLevelClusters[stringLevelCounter + " " + stringLevelIndex] =
trueClusters;

 //Increase level index
 levelIndex++;

 clusterCounter = 0;
 trueClusters = "";
 }

 //Reset cluster counter
 clusterCounter = 0;

 /**Stop timer**/
 end = clock();

 timeElapsedMultilevelClustering = te.GetTimeElapsed(end, begin)/1000;

 //Level 2 complete
 std::cout << "Time used: " << timeElapsedMultilevelClustering << " seconds"
<< std::endl << std::endl;
 }

 levelCounter++;
 std::cout << "LEVEL " << levelCounter << std::endl << std::endl;

 //Reset level index
 levelIndex = 0;

 //int -> string

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

74

 char sizeLevelCounter = (char)levelCounter;
 char bufferLevelCounter[sizeof(sizeLevelCounter)/sizeof(char) + 10];
 std::string stringUpdatedLevelCounter = itoa(levelCounter, bufferTemp, 10);

 //Cluster and create the next level
 while(clusterCollection.size() != 0)
 {
 if(clusterCollection.size() == 1)
 break;

 //Random shuffle
 std::random_shuffle(clusterCollection.begin(), clusterCollection.end());

 trueClusters += clusterCollection[0];
 trueClusters += " ";
 trueClusters += clusterCollection[1];
 trueClusters += " ";

 substring += clusterCollection[0];
 substring += " ";
 substring += clusterCollection[1];
 substring += " ";

 while(trueClusters[0] == ' ')
 trueClusters.erase(trueClusters.begin());

 while(trueClusters[trueClusters.length() - 1] == ' ')
 trueClusters.erase(trueClusters.end() - 1);

 //Erase
 clusterCollection.erase(clusterCollection.begin());
 clusterCollection.erase(clusterCollection.begin());

 //int -> string
 char sizeTemp = (char)levelIndex;
 char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10];
 std::string stringLevelIndex = itoa(levelIndex, bufferTemp, 10);

 //Update the map level with TRUE cluster
 mapLevelClusters[stringUpdatedLevelCounter + " " + stringLevelIndex] =
trueClusters;

 //Increase level index
 levelIndex++;

 substring += "|";
 trueClusters = "";
 }

 if(clusterCollection.size() == 1)
 {
 trueClusters = clusterCollection[0];

 substring += clusterCollection[0];

 while(trueClusters[0] == ' ')
 trueClusters.erase(trueClusters.begin());

 while(trueClusters[trueClusters.length() - 1] == ' ')
 trueClusters.erase(trueClusters.end() - 1);

 //Erase
 clusterCollection.erase(clusterCollection.begin());

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

75

 //int -> string
 char sizeTemp = (char)levelIndex;
 char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10];
 std::string stringLevelIndex = itoa(levelIndex, bufferTemp, 10);

 //Update the map level with TRUE cluster
 mapLevelClusters[stringUpdatedLevelCounter + " " + stringLevelIndex] =
trueClusters;

 //Increase level index
 levelIndex++;

 substring += "|";
 trueClusters = "";
 }

 //Temp cluster
 std::string tempCluster = "";

 //Reset cluster collection
 clusterCollection.clear();

 //Update cluster collection
 for(int i = 0; i < substring.length(); i++)
 {
 if(substring[i] != '|')
 tempCluster += substring[i];

 else if(substring[i] == '|')
 {
 while(tempCluster[0] == ' ')
 tempCluster.erase(tempCluster.begin());

 while(tempCluster[tempCluster.length() - 1] == ' ')
 tempCluster.erase(tempCluster.end() - 1);

 clusterCollection.push_back(tempCluster);
 tempCluster = "";
 }
 }

 //Clear substring
 substring = "";

 //Clear tempCluster
 tempCluster = "";

 //Reset cluster counter
 clusterCounter = 0;

 /**Stop timer**/
 end = clock();

 timeElapsedMultilevelClustering = te.GetTimeElapsed(end, begin)/1000;

 //Level X complete
 std::cout << "Time used: " << timeElapsedMultilevelClustering << " seconds" <<
std::endl << std::endl;

 //We have reached the final level
 if(clusterCollection.size() <= atoi(numberOfXLiterals.c_str()) * 0.10)

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

76

 {
 /**Tabu Search Initialization Phase**/

 std::cout << "Assigning the clusters TRUE/FALSE values randomly....." <<
std::endl << std::endl;

 std::string tempCluster = "";
 std::string tempLiteral = "";
 int randomIndex = 0;
 int levelIndex = 0; //Cluster index
 int lowerLevelIndex = 0; //Literal index

 //Assign the clusters random TRUE/FALSE values as well as the literals
within the clusters
 for(int j = 0; j < clusterCollection.size(); j++)
 {
 randomIndex = rand () % 2;
 tempCluster = clusterCollection[j];

 while(tempCluster[0] == ' ')
 tempCluster.erase(tempCluster.begin());

 while(tempCluster[tempCluster.length() - 1] == ' ')
 tempCluster.erase(tempCluster.end() - 1);

 mapLiteralValues[tempCluster] = literalValues[randomIndex];

 //If FALSE, all literals inside must be FALSE
 if(mapLiteralValues[tempCluster] == false)
 {
 for(int k = 0; k < tempCluster.length(); k++)
 {
 if(tempCluster[k] != ' ')
 tempLiteral += tempCluster[k];

 if(tempCluster[k] == ' ' || k == tempCluster.length() -
1)
 {
 //FALSE literal
 mapLiteralValues[tempLiteral] =
literalValues[randomIndex];

 //Opposite value will be TRUE
 int temp = atoi(tempLiteral.c_str()) * -1;
 char sizeTempOpposite = (char)temp;
 char
bufferTempOpposite[sizeof(sizeTempOpposite)/sizeof(char) + 10];
 std::string oppositeTempLiteral = itoa(temp,
bufferTempOpposite, 10);

 mapLiteralValues[oppositeTempLiteral] =
literalValues[randomIndex - 1];
 tempLiteral = "";
 }
 }
 }

 //If TRUE, all literals inside must be TRUE
 else if(mapLiteralValues[tempCluster] == true)
 {
 for(int k = 0; k < tempCluster.length(); k++)
 {
 if(tempCluster[k] != ' ')

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

77

 tempLiteral += tempCluster[k];

 if(tempCluster[k] == ' ' || k == tempCluster.length() -
1)
 {
 //TRUE literal
 mapLiteralValues[tempLiteral] =
literalValues[randomIndex];

 //Opposite value will be FALSE
 int temp = atoi(tempLiteral.c_str()) * -1;
 char sizeTempOpposite = (char)temp;
 char
bufferTempOpposite[sizeof(sizeTempOpposite)/sizeof(char) + 10];
 std::string oppositeTempLiteral = itoa(temp,
bufferTempOpposite, 10);

 mapLiteralValues[oppositeTempLiteral] =
literalValues[randomIndex + 1];
 tempLiteral = "";
 }
 }
 }
 }

 /**Learning Automata Initialization Phase**

 //Assign the clusters random state values as well as the literals within the
clusters
 for(int j = 0; j < clusterCollection.size(); j++)
 {
 randomIndex = rand () % 2;
 tempCluster = clusterCollection[j];

 while(tempCluster[0] == ' ')
 tempCluster.erase(tempCluster.begin());

 while(tempCluster[tempCluster.length() - 1] == ' ')
 tempCluster.erase(tempCluster.end() - 1);

 mapClustersStates[tempCluster] = states[randomIndex];

 if(states[randomIndex] == -1)
 mapLiteralValues[tempCluster] = false;
 else
 mapLiteralValues[tempCluster] = true;

 //If FALSE, all literals inside must be FALSE
 if(mapLiteralValues[tempCluster] == false)
 {
 for(int k = 0; k < tempCluster.length(); k++)
 {
 if(tempCluster[k] != ' ')
 tempLiteral += tempCluster[k];

 if(tempCluster[k] == ' ' || k == tempCluster.length() - 1)
 {
 //FALSE literal
 mapClustersStates[tempLiteral] = -1;
 mapLiteralValues[tempLiteral] = false;

 //Opposite value will be TRUE
 int temp = atoi(tempLiteral.c_str()) * -1;

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

78

 char sizeTempOpposite = (char)temp;
 char bufferTempOpposite[sizeof(sizeTempOpposite)/sizeof(char)
+ 10];
 std::string oppositeTempLiteral = itoa(temp,
bufferTempOpposite, 10);

 mapClustersStates[oppositeTempLiteral] = 1;
 mapLiteralValues[oppositeTempLiteral] = true;
 tempLiteral = "";
 }
 }
 }

 //If TRUE, all literals inside must be TRUE
 else if(mapLiteralValues[tempCluster] == true)
 {
 for(int k = 0; k < tempCluster.length(); k++)
 {
 if(tempCluster[k] != ' ')
 tempLiteral += tempCluster[k];

 if(tempCluster[k] == ' ' || k == tempCluster.length() - 1)
 {
 //TRUE literal
 mapClustersStates[tempLiteral] = 1;
 mapLiteralValues[tempLiteral] = true;

 //Opposite value will be FALSE
 int temp = atoi(tempLiteral.c_str()) * -1;
 char sizeTempOpposite = (char)temp;
 char bufferTempOpposite[sizeof(sizeTempOpposite)/sizeof(char)
+ 10];
 std::string oppositeTempLiteral = itoa(temp,
bufferTempOpposite, 10);

 mapClustersStates[oppositeTempLiteral] = -1;
 mapLiteralValues[oppositeTempLiteral] = false;
 tempLiteral = "";
 }
 }
 }
 }**/
 //Assign TRUE/FALSE values to the SAT formula
 std::cout << "Assigning TRUE/FALSE values to the clauses of the SAT
formula....." << std::endl << std::endl;

 int trueCounter = 0;
 std::string stringClause = "";

 for(int j = 0; j < vectorStringNumbers.size(); j++)
 {
 if(vectorStringNumbers[j] != "|")
 {
 stringClause += vectorStringNumbers[j];
 stringClause += " ";

 if(mapLiteralValues[vectorStringNumbers[j]] == true)
 trueCounter++;
 }

 else if(vectorStringNumbers[j] == "|")
 {
 //Erase the space at the end of string

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

79

 stringClause.erase(stringClause.end() - 1);

 iteratorVectorString = std::find(vectorCheckedClauses.begin(),
vectorCheckedClauses.end(), stringClause);

 if(iteratorVectorString == vectorCheckedClauses.end())
 {
 vectorCheckedClauses.push_back(stringClause);

 if(trueCounter >= 1)
 {
 //Set the clause to TRUE
 mapClauseValues.insert(std::pair<std::string,
bool>(stringClause, true));
 trueClauseCounter++;
 }

 else if(trueCounter == 0)
 {
 //Set the clause to FALSE
 mapClauseValues.insert(std::pair<std::string,
bool>(stringClause, false));
 }
 }

 //Reset
 stringClause = "";
 trueCounter = 0;
 }
 }
 }
}

bestSoFar = trueClauseCounter;

//Reset
trueClauseCounter = 0;
vectorCheckedClauses.clear();

foutput << "Literals: " << numberOfXLiterals << " Clauses: " << NUMBER_OF_CLAUSES <<
"\n\n";
std::cout << "Number of TRUE clauses (initial solution): " << std::endl << std::endl <<
bestSoFar << std::endl << std::endl;
foutput << "Level Satisfied clauses Time Flips\n\n";
foutput << levelCounter << " " << bestSoFar << "
" << 0 << " " << 0 << "\n";

if(bestSoFar == NUMBER_OF_CLAUSES)
{
 satisfaction = "SATISFIED";
 std::cout << "SAT with " << numberOfXLiterals << " literals and " <<
NUMBER_OF_CLAUSES << " clauses is " << satisfaction << " at LEVEL " << levelCounter <<
"." << std::endl << std::endl;
}
else
{
 satisfaction = "NOT SATISFIED";
 std::cout << "SAT with " << numberOfXLiterals << " literals and " <<
NUMBER_OF_CLAUSES << " clauses is " << satisfaction << " at LEVEL " << levelCounter <<
"." << std::endl << std::endl;
}

//Finished!

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

80

if(satisfaction == "SATISFIED")
{
 system("pause");
 system("exit");
}

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

81

Tabu Search All Versions

The code can be downloaded online at:

https://ikt590-sat-tabu-search.googlecode.com/svn/trunk

Multilevel Tabu Search

The code can be downloaded online at:

https://ikt590-sat-multilevel-tabu-search.googlecode.com/svn/trunk

Learning Automata with Tabu Search

The code can be downloaded online at:

https://ikt590-sat-learning-automata.googlecode.com/svn/trunk/

Multilevel Learning Automata with Tabu Search

The code can be downloaded online at:

https://ikt590-sat-multilevel-learning-automata.googlecode.com/svn/trunk/

You can also refer to Appendix C for the source code on CD attached with the thesis report.

https://ikt590-sat-tabu-search.googlecode.com/svn/trunk
https://ikt590-sat-multilevel-tabu-search.googlecode.com/svn/trunk
https://ikt590-sat-learning-automata.googlecode.com/svn/trunk/
https://ikt590-sat-learning-automata.googlecode.com/svn/trunk/

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

82

Appendix B Experimental Results Data

Tabu Search solving bw_large.d (BlocksWorld)

Problem: bw_large.d
Literals: 6325 Clauses: 131973

Mean solved: 81.6 % Variance: 0.5 Standard deviation: 0.71

Mean satisfied clauses Mean time Mean flips

102984 0 0
102984 0 10
102984 0 100
102984 0 1000
103015 0 5014
103015 11.763 10000
103045 11.763 10032
103075 24.062 15033
103104 37.196 20057
103132 50.413 25045
103160 63.785 30049
103188 76.984 35026
103216 90.147 40033
103243 103.348 45022
103270 116.473 50000
103297 129.837 54968
103324 142.918 59982
103351 156.133 64941
103378 169.185 69912
103405 182.248 74890
103432 195.588 79847
103458 208.613 84824
103484 221.698 89787
103510 234.744 94772
103536 247.845 99744
103536 261.167 100000
103562 261.167 104702
103588 274.213 109661
103614 287.263 114642
103639 300.347 119611
103664 313.382 124577
103689 326.661 129505
103714 339.59 134450
103739 352.571 139357
103764 365.461 144295
103789 378.431 149238
103814 391.713 154186
103839 404.754 159116
103864 417.769 164073
103889 430.793 168996
103914 443.745 173942
103939 456.968 178876
103964 469.931 183815
103989 482.908 188757
104014 495.901 193646

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

83

104039 508.749 198587
104063 521.959 203513
104087 534.904 208455
104111 547.892 213375
104135 561.02 218308
104159 574.112 223250
104183 587.335 228172
104209 600.271 233042
104233 613.065 237956
104257 625.965 242847
104281 638.806 247745
104305 651.831 252651
104329 664.834 257533
104353 677.705 262447
104377 690.645 267341
104401 703.526 272249
104425 716.541 277131
104449 729.528 282036
104473 742.413 286949
104496 755.358 291827
104519 768.178 296775
104542 781.168 301642
104565 794.272 306532
104588 807.153 311425
104611 820.011 316265
104634 832.736 321143
104657 845.576 326028
104680 858.632 330908
104703 871.443 335803
104726 884.293 340671
104749 897.077 345569
104772 909.927 350421
104795 922.89 355275
104818 935.628 360160
104841 948.472 365048
104864 961.31 369927
104887 974.123 374805
104910 987.154 379665
104933 999.913 384546
104956 1012.76 389399
104979 1025.53 394247
105002 1038.27 399132
105025 1051.29 403979
105048 1064.05 408828
105071 1076.78 413699
105094 1089.75 418532
105117 1102.61 423376
105140 1115.48 428191
105163 1128.25 433049
105186 1141 437861
105209 1153.65 442695
105232 1166.36 447526
105255 1179.11 452332
105277 1191.99 457167
105299 1204.95 462004
105321 1218.29 466843

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

84

105343 1232.41 471690
105365 1246.91 476537
105387 1261.43 481373
105409 1275.88 486201
105431 1290.31 491055
105453 1304.81 495876
105475 1319.34 500707
105497 1333.77 505520
105519 1348.17 510345
105541 1362.52 515168
105563 1376.77 519964
105585 1391.24 524783
105607 1405.32 529582
105629 1419.68 534412
105651 1434.14 539229
105673 1448.65 544019
105695 1463.02 548827
105717 1477.4 553641
105739 1491.82 558435
105761 1506.05 563232
105783 1520.87 568033
105805 1535.03 572810
105827 1549.11 577597
105849 1563.14 582389
105871 1577.22 587185
105893 1591.39 591974
105915 1605.12 596785
105937 1618.86 601575
105959 1632.62 606360
105981 1646.69 611123
106003 1660.72 615915
106025 1674.76 620678
106047 1688.89 625430
106069 1701.42 630188
106091 1715.63 634949
106113 1729.1 639699
106135 1741.97 644441
106156 1754.49 649194
106177 1766.97 653953
106198 1779.63 658748
106219 1792.24 663547
106240 1804.75 668288
106261 1817.17 673044
106282 1829.59 677818
106303 1842.04 682528
106324 1854.57 687283
106345 1866.98 692029
106366 1879.38 696794
106387 1891.8 701546
106408 1904.23 706302
106429 1917.04 711040
106450 1929.38 715776
106471 1941.76 720551
106492 1954.25 725293
106513 1966.63 730036
106534 1979.2 734775

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

85

106555 1993.03 739510
106576 2007.04 744262
106597 2021.07 748975
106618 2035.09 753700
106639 2049.17 758443
106660 2063.25 763206
106681 2075.91 767956
106702 2088.38 772706
106723 2100.81 777441
106744 2113.41 782210
106765 2125.85 786927
106786 2138.21 791647
106807 2152.2 796405
106828 2164.82 801143
106849 2177.93 805862
106870 2190.88 810552
106891 2203.21 815247
106912 2215.63 819945
106933 2228.1 824639
106954 2240.62 829374
106975 2253.38 834092
106996 2265.82 838819
107018 2278.32 843537
107039 2290.79 848229
107060 2303.1 852927
107081 2315.61 857629
107102 2328.44 862292
107123 2341.87 866977
107144 2354.74 871693
107165 2371.02 876389
107186 2387.97 881097
107207 2402.03 885776
107228 2414.4 890466
107249 2426.97 895146
107270 2439.54 899828
107291 2452.14 904517
107312 2464.43 909224
107332 2477.2 913906
107352 2489.79 918559
107372 2502.15 923236
107392 2514.67 927927
107412 2527.49 932589
107432 2539.96 937252
107452 2554.46 941916
107472 2569.68 946612
107493 2584.97 951302
107513 2600.07 955964
107533 2615.14 960636
107553 2630.1 965324
107573 2645.3 969998
107593 2660.34 974650
107613 2675.29 979306
107633 2690.23 983991
107653 2705.29 988674
107673 2720.29 993327
107693 2735.23 997977

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

86

107693 2750.16 1e+006
107713 2750.16 1e+006

Total time elapsed: 2832.61 seconds

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

87

Multilevel Tabu Search solving bw_large.d (BlocksWorld)

Problem: bw_large.d
Literals: 6325 Clauses: 131973

Mean solved: 89.6 % Variance: 0.4 Standard deviation: 0.63

Level Mean satisfied clauses Mean time Mean flips

4 102379 0 0
4 102379 0 16
4 102379 0 112
4 102379 0 1000
4 102691 0 6325
4 102691 3.82 10005
4 102998 3.82 12634
4 103301 7.437 18943
4 103596 11.118 25252
4 103890 14.78 31561
4 104181 18.433 37870
4 104467 22.084 44179
4 104750 25.75 50488
4 105031 29.456 56797
4 105311 33.193 63106
4 105590 36.849 69415
4 105864 40.519 75724
4 106137 44.199 82033
4 106405 47.88 88342
4 106671 51.558 94651
4 106671 55.243 100000
4 106935 55.243 100960
4 107198 58.92 107269
4 107457 62.593 113578
4 107713 66.252 119887
4 107969 69.915 126196
4 108223 73.579 132505
4 108476 77.233 138814
4 108729 80.91 145123
4 108977 84.567 151432
4 109225 88.237 157741
4 109471 91.891 164050
4 109716 95.602 170359
4 109959 99.33 176668
4 110203 102.961 182977
4 110443 106.586 189286
4 110682 110.225 195595
4 110682 113.884 200000
4 110918 113.884 200000
3 110918 116.458 16
3 110918 116.458 104
3 110918 116.458 1007
3 111052 116.458 6325
3 111052 121.235 10004
3 111186 121.235 12642
3 111317 125.629 18959
3 111447 130.022 25276

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

88

3 111576 134.446 31593
3 111704 138.905 37910
3 111831 143.146 44228
3 111956 147.384 50545
3 112081 151.64 56862
3 112205 156.071 63179
3 112328 160.55 69496
3 112451 165.04 75813
3 112573 169.458 82130
3 112695 173.862 88447
3 112817 178.261 94764
3 112817 182.651 100002
3 112938 182.651 101081
3 113059 187.036 107398
3 113179 191.42 113715
3 113299 195.818 120032
3 113418 200.201 126349
3 113537 204.582 132666
3 113653 208.972 138983
3 113769 213.365 145300
3 113885 217.756 151617
3 114000 222.157 157934
3 114115 226.554 164251
3 114228 231.051 170568
3 114341 235.471 176885
3 114453 239.865 183202
3 114568 244.303 189519
3 114680 248.702 195836
3 114680 253.16 200003
3 114792 253.16 200003
2 114792 256.141 12
2 114792 256.141 100
2 114792 256.141 1000
2 114859 256.141 6325
2 114859 263.437 10001
2 114925 263.437 12646
2 114989 270.495 18967
2 115053 277.287 25288
2 115116 284.137 31609
2 115178 290.955 37930
2 115241 297.884 44251
2 115303 304.716 50572
2 115364 311.548 56893
2 115424 318.375 63214
2 115484 325.209 69535
2 115544 332.04 75856
2 115604 338.869 82177
2 115664 345.709 88498
2 115724 352.541 94819
2 115724 359.399 100002
2 115783 359.399 101140
2 115841 366.378 107461
2 115899 373.204 113782
2 115957 380.019 120103
2 116015 386.821 126424
2 116073 393.964 132745

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

89

2 116130 400.894 139066
2 116187 407.706 145387
2 116244 414.536 151708
2 116301 421.37 158029
2 116359 428.259 164350
2 116416 435.146 170671
2 116473 441.962 176992
2 116529 448.792 183313
2 116585 455.604 189634
2 116641 462.441 195955
2 116641 469.279 200003
2 116697 469.279 200003
1 116697 473.652 10
1 116697 473.652 100
1 116697 473.652 1000
1 116731 473.652 6325
1 116731 485.744 10000
1 116764 485.744 12648
1 116797 497.994 18971
1 116830 510.092 25294
1 116863 522.197 31617
1 116895 534.295 37940
1 116927 546.395 44263
1 116959 558.488 50586
1 116991 570.752 56909
1 117023 583.08 63232
1 117054 595.355 69555
1 117085 607.549 75878
1 117116 619.701 82201
1 117147 631.934 88524
1 117178 644.029 94847
1 117178 656.112 100000
1 117209 656.112 101170
1 117240 668.199 107493
1 117271 680.293 113816
1 117302 692.416 120139
1 117333 704.62 126462
1 117364 716.703 132785
1 117395 728.79 139108
1 117426 740.87 145431
1 117457 752.965 151754
1 117487 765.21 158077
1 117517 777.296 164400
1 117547 789.414 170723
1 117577 801.577 177046
1 117607 813.734 183369
1 117637 825.935 189692
1 117667 838.156 196015
1 117667 849.2 200000
1 117697 849.2 200000
0 117697 855.865 10
0 117697 855.865 100
0 117697 855.865 1000
0 117697 855.865 3987
0 117697 946.399 7970
0 117697 960.195 10000

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

90

0 117697 960.195 11961
0 117697 973.952 15917
0 117697 987.516 19871
0 117697 1001.16 23824
0 117697 1014.79 27783
0 117697 1028.78 31716
0 117697 1042.59 35650
0 117697 1056.4 39576
0 117697 1070.18 43460
0 117697 1083.79 47366
0 117697 1097.59 51287
0 117697 1111.26 55176
0 117697 1124.8 59058
0 117697 1138.3 62876
0 117697 1151.71 66746
0 117697 1165.55 70599
0 117711 1179.19 74446
0 117728 1193.23 78230
0 117744 1206.8 82041
0 117760 1220.53 85815
0 117776 1234.33 89569
0 117792 1248.06 93357
0 117808 1261.74 97140
0 117808 1275.22 100000
0 117824 1275.22 100932
0 117840 1288.83 104693
0 117856 1302.52 108457
0 117872 1316.09 112190
0 117888 1329.55 115934
0 117904 1343.03 119658
0 117920 1356.48 123364
0 117936 1369.91 127059
0 117952 1383.23 130728
0 117968 1396.43 134413
0 117984 1409.67 138082
0 118000 1422.9 141722
0 118016 1436.1 145373
0 118032 1449.22 149007
0 118048 1462.27 152635
0 118064 1475.36 156267
0 118080 1488.56 159867
0 118096 1501.63 163465
0 118112 1514.65 167023
0 118128 1527.52 170576
0 118144 1540.38 174131
0 118160 1553.25 177700
0 118176 1566.31 181240
0 118192 1579.11 184766
0 118208 1591.86 188311
0 118224 1604.76 191856
0 118240 1617.61 195331
0 118256 1630.33 198846
0 118256 1643.03 200000
0 118272 1643.03 200000

Total time elapsed: 1727.69 seconds

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

91

Learning Automata with Tabu Search solving mot_comb3._red-gate-0.dimacs.seq.filtered
(MaxSAT Industry)

Problem: mot_comb3._red-gate-0.dimacs.seq.filtered
Literals: 11265 Clauses: 29520

Mean solved: 79.5 % Variance: 0.7 Standard deviation: 0.84

Mean satisfied clauses Mean time Mean flips

22600 0 0
22603 0 1
22603 0 10
22603 0 100
22603 0 1000
22614 0 5381
22614 17.331 10000
22622 17.331 10792
22629 35.92 16214
22636 55.26 21622
22643 74.457 27007
22643 93.322 27008
22650 93.322 32413
22657 112.543 37856
22659 131.454 37857
22666 131.454 43246
22668 150.648 43247
22675 150.648 48620
22681 169.706 53996
22682 188.464 53997
22688 188.464 59374
22694 207.231 64783
22700 226.098 70157
22700 244.839 70158
22706 244.839 75568
22706 263.736 75569
22711 263.736 80931
22716 282.462 86299
22721 301.264 91672
22723 320.065 91673
22728 320.065 97040
22728 338.896 100000
22733 338.896 102400
22738 357.676 107785
22743 376.673 113153
22743 396.15 113154
22748 396.15 118520
22753 415.145 123861
22753 434.033 123862
22758 434.033 129224
22763 453.047 134554
22768 471.976 139929
22773 491.074 145315
22778 510.226 150634
22780 528.93 150635
22785 528.93 155970

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

92

22790 549.136 161293
22795 568.245 166663
22796 587.872 166664
22800 587.872 172013
22804 606.927 177350
22808 625.855 182689
22808 644.995 182690
22812 644.995 188013
22816 664.046 193364
22820 682.602 198713
22824 701.858 204039
22828 720.703 209429
22832 739.464 214764
22836 758.507 220035
22837 777.251 220036
22841 777.251 225366
22845 796.27 230657
22849 814.944 235996
22852 833.77 235997
22856 833.77 241339
22860 852.593 246606
22864 871.174 251942
22865 889.973 251943
22869 889.973 257247
22873 908.641 262549
22875 927.261 262550
22879 927.261 267818
22881 945.892 267819
22885 945.892 273111
22889 964.807 278422
22893 983.769 283735
22893 1002.69 283736
22897 1002.69 289050
22897 1021.43 289051
22901 1021.43 294396
22905 1040.27 294397
22909 1040.27 299647
22913 1058.77 304964
22917 1077.54 310258
22921 1096.21 315606
22923 1115.02 315607
22927 1115.02 320889
22927 1133.61 320890
22930 1133.61 326188
22934 1152.24 326189
22938 1152.24 331446
22942 1170.73 336706
22942 1189.23 336707
22947 1189.23 341987
22949 1207.87 341988
22953 1207.87 347249
22957 1226.39 352535
22961 1245.09 357802
22965 1263.68 363065
22968 1282.38 363066
22972 1282.38 368306

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

93

22976 1300.9 368307
22980 1300.9 373570
22982 1319.48 373571
22986 1319.48 378792
22990 1338.01 384065
22990 1356.6 384066
22994 1356.6 389268
22997 1375.65 389269
23001 1375.65 394501
23004 1393.07 394502
23008 1393.07 399729
23012 1408.98 404978
23012 1425.13 404979
23016 1425.13 410205
23018 1439.04 410206
23022 1439.04 415459
23025 1452.47 415460
23029 1452.47 420663
23029 1465.6 420664
23033 1465.6 425872
23037 1478.5 431088
23041 1491.72 436260
23043 1504.56 436261
23047 1504.56 441477
23047 1517.41 441478
23051 1517.41 446702
23053 1530.28 446703
23057 1530.28 451911
23061 1543.08 457125
23064 1555.89 457126
23068 1555.89 462342
23072 1568.71 467507
23076 1581.41 472716
23080 1594.22 477911
23082 1605.94 477912
23086 1605.94 483104
23090 1613.21 488291
23090 1620.38 488292
23094 1620.38 493456
23098 1627.58 498609
23102 1634.76 503846
23106 1642.07 509008
23106 1649.27 509009
23110 1649.27 514223
23114 1656.56 519444
23114 1663.84 519445
23118 1663.84 524572
23122 1673.4 529712
23126 1686.53 534845
23130 1700.07 540042
23132 1713.45 540043
23136 1713.45 545218
23140 1726.24 550384
23143 1739.92 550385
23147 1739.92 555535
23151 1753.08 560664

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

94

23151 1765.85 560665
23155 1765.85 565808
23155 1778.37 565809
23159 1778.37 570976
23159 1791.15 570977
23163 1791.15 576126
23165 1803.84 576127
23169 1803.84 581287
23173 1816.62 586404
23174 1829.41 586405
23178 1829.41 591569
23182 1842.17 596722
23185 1854.75 596723
23189 1854.75 601879
23193 1867.29 607046
23193 1879.84 607047
23197 1879.84 612177
23198 1892.3 612178
23202 1892.3 617327
23202 1904.81 617328
23205 1904.81 622438
23208 1917.23 622439
23212 1917.23 627589
23216 1929.75 632691
23219 1942.15 632692
23223 1942.15 637803
23227 1954.56 642911
23231 1966.97 648042
23235 1979.42 653184
23235 1991.93 653185
23238 1991.93 658280
23242 2004.31 663403
23246 2016.76 668481
23249 2029.11 668482
23253 2029.11 673593
23257 2041.53 678713
23257 2053.97 678714
23261 2053.97 683805
23264 2066.34 683806
23268 2066.34 688882
23272 2078.67 693981
23276 2091.05 699079
23278 2103.43 699080
23281 2103.43 704203
23284 2115.88 704204
23287 2115.88 709284
23290 2128.23 714354
23291 2140.56 714355
23294 2140.56 719410
23297 2152.85 724493
23297 2165.22 724494
23300 2165.22 729577
23303 2177.57 734680
23303 2189.99 734681
23306 2189.99 739764
23309 2202.35 744806

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

95

23311 2214.62 744807
23314 2214.62 749913
23314 2227.05 749914
23315 2227.05 754989
23318 2239.38 760055
23321 2251.7 765118
23324 2264 770178
23327 2276.28 775235
23330 2288.57 780300
23330 2300.86 780301
23333 2300.86 785364
23336 2313.16 790406
23339 2325.42 795443
23339 2337.67 795444
23342 2337.67 800519
23345 2350.02 805529
23346 2362.19 805530
23349 2362.19 810588
23352 2374.48 810589
23355 2374.48 815627
23357 2386.73 815628
23360 2386.73 820681
23363 2399.02 825708
23363 2411.24 825709
23366 2411.24 830743
23369 2423.49 835805
23372 2435.79 840825
23373 2448.04 840826
23377 2448.04 845893
23377 2460.37 845894
23378 2460.37 850926
23381 2472.6 855960
23384 2484.82 861018
23387 2497.1 866028
23388 2509.27 866029
23392 2509.27 871040
23394 2521.44 871041
23397 2521.44 876057
23397 2533.64 876058
23399 2533.64 881066
23402 2545.82 886081
23405 2558 891090
23405 2570.17 891091
23408 2570.17 896097
23411 2582.35 901073
23412 2594.44 901074
23415 2594.44 906109
23415 2606.69 906110
23418 2606.69 911136
23419 2618.89 911137
23422 2618.89 916162
23424 2631.1 916163
23427 2631.1 921190
23427 2643.33 921191
23430 2643.33 926170
23433 2655.45 931172

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

96

23433 2667.6 931173
23436 2667.6 936194
23437 2679.8 936195
23441 2679.8 941226
23444 2692.01 946223
23446 2704.18 946224
23449 2704.18 951199
23449 2716.26 951200
23452 2716.26 956183
23455 2728.37 961151
23455 2740.45 961152
23458 2740.45 966118
23458 2752.51 966119
23460 2752.51 971100
23463 2764.61 976084
23463 2776.72 976085
23466 2776.72 981090
23468 2788.87 981091
23471 2788.87 986103
23474 2801.3 991070
23477 2814.28 996042
23477 2826.81 1e+006
23480 2826.81 1e+006

Total time elapsed: 2844.21 seconds

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

97

Multilevel Learning Automata with Tabu Search solving mot_comb3._red-gate-
0.dimacs.seq.filtered (MaxSAT Industry)

Problem: mot_comb3._red-gate-0.dimacs.seq.filtered
Literals: 11265 Clauses: 29520

Mean solved: 79.8 % Variance: 0.6 Standard deviation: 0.77

Level Mean satisfied clauses Mean time Mean flips

4 22418 0 0
4 22418 0 1
4 22421 0 2
4 22421 0 3
4 22421 0 19
4 22421 0 115
4 22421 0 1011
4 22421 0 10004
4 22451 0 11268
4 22477 3.153 22533
4 22479 6.039 22534
4 22479 6.039 22535
4 22503 6.039 33800
4 22503 8.966 33801
4 22503 8.966 33802
4 22504 8.966 33803
4 22508 8.966 33804
4 22508 8.966 33805
4 22531 8.966 45070
4 22531 12.088 45071
4 22531 12.088 45072
4 22531 12.088 45073
4 22532 12.088 45074
4 22533 12.088 45075
4 22533 12.088 45076
4 22535 12.088 45077
4 22557 12.088 56342
4 22560 15.188 56343
4 22560 15.188 56344
4 22560 15.188 56345
4 22560 15.188 56346
4 22561 15.188 56347
4 22566 15.188 56348
4 22588 15.188 67613
4 22588 18.264 67614
4 22588 18.264 67615
4 22588 18.264 67616
4 22590 18.264 67617
4 22590 18.264 67618
4 22611 18.264 78883
4 22612 21.29 78884
4 22614 21.29 78885
4 22616 21.29 78886
4 22616 21.29 78887
4 22619 21.29 78888
4 22622 21.29 78889

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

98

4 22622 21.29 78890
4 22623 21.29 78891
4 22626 21.29 78892
4 22629 21.29 78893
4 22629 21.29 78894
4 22629 21.29 78895
4 22646 21.29 90160
4 22646 24.422 90161
4 22649 24.422 90162
4 22649 24.422 90163
4 22651 24.422 90164
4 22654 24.422 90165
4 22654 24.422 100011
4 22674 24.422 101430
4 22676 27.41 101431
4 22677 27.41 101432
4 22679 27.41 101433
4 22680 27.41 101434
4 22682 27.41 101435
4 22684 27.41 101436
4 22686 27.41 101437
4 22689 27.41 101438
4 22709 27.41 112703
4 22710 30.397 112704
4 22713 30.397 112705
4 22715 30.397 112706
4 22715 30.397 112707
4 22734 30.397 123972
4 22737 33.346 123973
4 22756 33.346 135238
4 22757 36.37 135239
4 22759 36.37 135240
4 22760 36.37 135241
4 22760 36.37 135242
4 22776 36.37 146507
4 22780 39.414 146508
4 22780 39.414 146509
4 22782 39.414 146510
4 22800 39.414 157775
4 22803 42.445 157776
4 22821 42.445 169041
4 22839 45.424 180306
4 22839 48.379 180307
4 22839 48.379 180308
4 22839 48.379 180309
4 22839 48.379 180310
4 22839 48.379 180311
4 22839 48.379 180312
4 22844 48.379 191577
4 22844 51.34 191578
4 22844 51.34 191579
4 22844 51.34 200012
4 22860 51.34 200012
3 22860 53.546 16
3 22860 53.546 104
3 22860 53.546 1000

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

99

3 22860 53.546 10005
3 22874 53.546 11265
3 22888 58.838 22530
3 22891 64.258 22531
3 22905 64.258 33796
3 22907 69.636 33797
3 22907 69.636 33798
3 22910 69.636 33799
3 22910 69.636 33800
3 22910 69.636 33801
3 22911 69.636 33802
3 22925 69.636 45067
3 22938 75.207 56332
3 22938 80.608 56333
3 22940 80.608 56334
3 22953 80.608 67599
3 22953 86.009 67600
3 22953 86.009 67601
3 22953 86.009 67602
3 22954 86.009 67603
3 22955 86.009 67604
3 22968 86.009 78869
3 22970 91.351 78870
3 22971 91.351 78871
3 22971 91.351 78872
3 22972 91.351 78873
3 22984 91.351 90138
3 22986 96.69 90139
3 22986 96.69 100004
3 22998 96.69 101404
3 23000 101.991 101405
3 23003 101.991 101406
3 23015 101.991 112671
3 23015 107.313 112672
3 23027 107.313 123937
3 23038 112.632 135202
3 23049 118.077 146467
3 23060 123.598 157732
3 23071 128.996 168997
3 23073 134.466 168998
3 23073 134.466 168999
3 23084 134.466 180264
3 23086 139.973 180265
3 23087 139.973 180266
3 23098 139.973 191531
3 23098 145.302 200003
3 23108 145.302 200003
2 23109 149.298 1
2 23109 149.298 2
2 23111 149.298 3
2 23111 149.298 11
2 23111 149.298 103
2 23111 149.298 1003
2 23111 149.298 10000
2 23120 149.298 11268
2 23129 159.515 22533

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

100

2 23138 169.687 33798
2 23146 179.867 45063
2 23146 190.045 45064
2 23154 190.045 56329
2 23162 200.243 67594
2 23170 210.417 78859
2 23170 220.595 78860
2 23176 220.595 90125
2 23176 230.808 90126
2 23176 230.808 100000
2 23184 230.808 101391
2 23192 241 112656
2 23192 251.167 112657
2 23199 251.167 123922
2 23201 261.383 123923
2 23209 261.383 135188
2 23217 271.624 146453
2 23217 281.852 146454
2 23222 281.852 157719
2 23222 292.047 157720
2 23222 292.047 157721
2 23229 292.047 168986
2 23237 302.26 180251
2 23245 312.511 191516
2 23247 322.743 191517
2 23247 322.743 200002
2 23255 322.743 200002
1 23255 330.459 1
1 23255 330.459 11
1 23255 330.459 101
1 23255 330.459 1001
1 23255 330.459 10000
1 23263 330.459 11266
1 23270 350.653 22531
1 23270 371.469 22532
1 23277 371.469 33797
1 23279 391.792 33798
1 23286 391.792 45063
1 23286 412.036 45064
1 23292 412.036 56329
1 23298 432.356 67594
1 23298 452.901 67595
1 23301 452.901 78860
1 23307 473.083 90125
1 23307 493.396 100000
1 23313 493.396 101390
1 23319 514.549 112655
1 23325 535.461 123920
1 23331 556.472 135185
1 23337 577.053 146450
1 23340 597.367 146451
1 23346 597.367 157716
1 23352 617.872 168981
1 23358 638.425 180246
1 23364 658.319 191511
1 23364 679.015 191512

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

101

1 23364 679.015 200001
1 23370 679.015 200001
0 23373 694.405 10
0 23373 694.405 100
0 23373 694.405 1000
0 23379 694.405 4976
0 23385 717.815 9953
0 23385 735.523 10000
0 23390 735.523 14957
0 23390 753.474 14958
0 23395 753.474 19958
0 23400 771.218 24990
0 23405 788.978 30016
0 23410 806.7 34990
0 23415 824.212 39972
0 23417 841.782 39973
0 23422 841.782 44978
0 23422 859.431 44979
0 23425 859.431 49941
0 23430 876.915 54916
0 23435 894.391 59911
0 23437 911.956 59912
0 23442 911.956 64883
0 23447 929.634 69862
0 23452 947.551 74814
0 23454 965.091 74815
0 23459 965.091 79822
0 23464 982.873 84759
0 23465 1000.28 84760
0 23469 1000.28 89706
0 23473 1017.69 94674
0 23474 1035.2 94675
0 23478 1035.2 99643
0 23478 1052.74 100000
0 23482 1052.74 104606
0 23483 1070.24 104607
0 23487 1070.24 109523
0 23491 1087.54 114471
0 23495 1104.95 119399
0 23497 1122.27 119400
0 23501 1122.27 124323
0 23501 1139.59 124324
0 23505 1139.59 129237
0 23509 1156.87 134184
0 23510 1174.3 134185
0 23514 1174.3 139075
0 23514 1191.53 139076
0 23518 1191.53 143988
0 23522 1208.89 148894
0 23526 1226.24 153817
0 23530 1243.6 158690
0 23534 1260.94 163586
0 23538 1278.23 168475
0 23538 1295.48 168476
0 23541 1295.48 173369
0 23545 1312.85 178278

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

102

0 23549 1330.16 183172
0 23553 1348.08 188074
0 23553 1364.88 188075
0 23556 1364.88 192962
0 23558 1379.79 192963
0 23562 1379.79 197847
0 23562 1394.73 200000
0 23566 1394.73 200000

Total time elapsed: 1411.15 seconds

You can also refer to Appendix C for the entire experimental results on CD attached with the thesis report.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

103

Appendix C Source Code, Documentation and Experimental Results CD

Refer to the CD attached with the thesis report.

Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques

104

Appendix D Paper Publication

The work conducted in this thesis and some of the experimental results have been included in the following
paper:

N. Bouhmala, O-C. Granmo, Sirar Salih, Yujie Song: A Tabu Search Algorithm Combined with Learning Automata
for the Satisfiability Problem.

As of June 15, 2011, the paper is to be submitted as a chapter in book.

