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Abstract:

Achieving efficient use of available resources is an important problem in the
field of web mining. Monitoring and analyzing the web is extremely resource de-
manding, and therefore, more efficient use of resources often translates directly
into improved web monitoring coverage and accuracy. One important sub prob-
lem is to reduce the memory consumption of the URL cache in a web crawler
system. Utilizing the space efficient data structure Bloom filter as URL cache,
will reduce the memory consumption. However, the Bloom filter introduces false
positives, leading to loss of valuable web content when the filter are utilized as a
URL cache in a web crawler system. Based on the latter problems of false posi-
tives, this thesis propose three novel strategies, namely a temporal, a spatial and a
spatio-temporal strategy, each aiming to reduce the false positive rate introduced
by the Bloom filter. During testing and evaluation of the strategies, we discovered
both the spatial and temporal strategy is able to reduce the false positive in the
Bloom filter. The two former strategies was then combined to test if it is pos-
sible to further decrease the false positive probability. Testing and evaluation of
the combined strategies shows that it does yield a reduction in the false positive
probability.
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Thesis definition

A novel spatio-temporal scheme for reducing the rate of false
positives in Bloom Filter based URL-caching

Group 05: Thomas H. Gøytil and Andreas Lundberg

Achieving efficient use of available resources is an important problem in the
field of web mining. Monitoring and analyzing the web is extremely resource de-
manding, and therefore, more efficient use of resources often translates directly
into improved web monitoring coverage and accuracy. One important sub prob-
lem is to reduce the memory consumption of the URL cache. A URL cache, in
this context, is utilized by a web crawler system to keep track of all visited URLs
to prevent the web crawler from unnecessarily re-visiting web pages. The URL
cache may contain large amount of URLs in a typical web crawling session, mak-
ing it a bottleneck performance wise.

The purpose of this thesis is to propose a novel solution to the latter problem.
The solution involves a space efficient data-structure called the Bloom filter. In
brief, the Bloom filter is used as an URL cache with the purpose of reducing
memory consumption. The Bloom filter is based on hash functions, which means
that it is prone to produce false positives. In this context, this, in turn, means that
the Bloom filter may falsely state that an URL can be found in the URL cache
when it is not actually there. Such mistakes may block the crawler from subsets
of the web. Accordingly, a further purpose of this master thesis is to investigate
methods that reduce the rate of false positives in the Bloom filter when used as an
URL cache in a web crawler system.
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Chapter 1

Introduction

The first section briefly presents web crawler systems and the URL cache of a
web crawler. Further, we present the space efficient data-structure Bloom filter
and look at it in the context of a web crawler environment. In this context, the
Bloom filter is used as an URL cache. We end the first part of the introduction
chapter by studying benefits the Bloom filter introduces, as a motivation.

In the next section we review related work, see section 1.2. The related work
section consists of the most significant published papers related to the topic and
problem of this master thesis, among other, “Space/Time Trade-offs in Hash Cod-
ing with Allowable Errors”[6]. [6] was published by Burton H. Bloom in 1970. In
this publication, Bloom introduces a space efficient data-structure with trade-offs
in both time and space, later to be known as the Bloom filter.

The problem statement is presented in section 1.3. The section also discuss
the problem in depth to clarify the main aspects of the problem.

In section 1.4, the contribution of our different approaches into the field of
data-mining is evaluated. The most important topic discussed in this section is the
importance of reducing the false positive rate for a Bloom filter used in the context
of a web crawler to limit the loss of valuable web page content.

Before we end the introduction chapter by pinpointing the target audience and
presents the report outline, the research questions are presented. The research
questions are explained thoroughly, and a sub-question is also presented.

13



CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

One of the oldest problems in the field of computer science is the lack of hardware
resources. Hardware resources can increase cost and complexity of a system, thus
it is not always feasible to just add more hardware resources. This problem still
applies, although the availability of hardware resources continue to increase at a
high rate.

One of the areas concerning this problem is the capacity of dynamic storage
space. Dynamic storage space need some reserved hardware resources, that does
not exceed the total available hardware resources. An example of such dynamic
storage is a cache storage in a running application, that is used to keep track of a
large amount of data.

1.1.1 Cache systems

A cache is a collection for storing temporary data to enable rapid access. To enable
rapid access to the data, the cache system store the data in memory. The amount
of data are limited to the dynamic storage space available to the application. A
cache system is utilized by applications where data is expensive to retrieve, such
as high computational cost, high access time or slow bandwidth. Applications that
need to keep track of their history also utilizes a cache.

Caching is applied in many fields of the computer world. Some examples
are: Hardware caches like the internal Central Processing Unit (CPU) cache, net-
working caches like the Domain Name System (DNS) server which maps domain
names to Internet Protocol (IP) addresses and memorization caches like an URL
cache in a web crawler system.

As mentioned above, the importance of caching is to provide rapid access to
data, which have a high probability of being requested more than once. Caching
is performed to reduce access time and reduce expensive processing. Since both
access time and processing cost can be reduced by applying caching, caching can
be defined as an optimization technique.

1.1.2 URL cache in a web crawler system

This thesis deals with how elements can be cached in a space efficient manner.
One way to achieve this is to apply a space efficient data structure. An example
of a field of research such a data structure could be applied to, is the field of web

14



CHAPTER 1. INTRODUCTION

Figure 1.1: The different components of a web crawler system and how they
interact.

crawler technology.

Web crawlers is used to download web pages and documents from the Internet
to extract information.

A web crawler system, as shown in figure 1.1, need to keep track of all vis-
ited web pages. Keeping track of visited web pages is necessary to prevent the
web crawler from unnecessarily visiting already visited web pages. As a worst
case scenario, without any technique to keep track of the URLs linking to already
visited web pages, the web crawler can go into a loop between only a few web
pages.

Further, this loop can result in that the web crawler only visiting the same
pages over and over again. Hence, if such a scenario occurs, it will, arguably, re-
sult in the web crawler only covering a small part of the web pages it was supposed
to visit.

Another issue with not keeping track of visited URLs, is that the web crawler
have no indication on when, or even if, all the web pages supposed to be visited
are covered. In most cases, this will lead to that the web crawler never finishes.

15



CHAPTER 1. INTRODUCTION

Figure 1.2: This figure illustrates the behavior of a web crawler system with no
URL cache. The dotted lines illustrate links never visited by the web crawler.

Figure 1.2 illustrates the behavior of a web crawler system with no way of
keeping track of visited web pages. The web crawler is set to visit web page A. A
contains two URLs, linking to web page B and E. The web crawler then visit B,
which only contain one URL linking to C. As the figure 1.2 illustrates, the crawler
will then visit page C, then page D and then B.

The issue first occurs when web page B is visited for the second time. In
most cases, it is not desirable for a web crawler to visit the same web page more
than once in the same web crawling session. Further, web crawler will continue
visiting web page C, D and B all over again in a never ending loop. Hence, web
page E, F and G, also illustrated in figure 1.2, will never be visited.

Therefore, to prevent the web crawler from “looping”, a URL cache could be
applied. The URL cache is thoroughly explained in section 2.6 in the web crawler
chapter. Figure 1.1 shows an example of a web crawler system with such a URL
cache. Each URL that the web crawler visits will be stored in the URL cache.

The URL cache needs to be able to store a large amount of URLs. This is
due to the large amount of URLs the web crawler system needs to handle. From
a memory consumption point of view, to store such a large amount of URLs de-
mands a lot of available memory for the web crawler system. To reduce the mem-
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CHAPTER 1. INTRODUCTION

ory usage of the URL cache we can utilize a space efficient data-structure.

1.1.3 Bloom filter: A space efficient data-structure

The Bloom filter, which is thoroughly investigated in chapter 3, is a space efficient
randomized data-structure that supports membership queries [11]. The fact that
the Bloom filter is a space efficient data-structure, implies, that it consumes less
memory than a regular data-structure. Hence, the purpose of using the Bloom
filter is to reduce the memory consumption.

The main components of a basic Bloom filter is a bit-array, see section 3.2,
and k number of hash functions, see section 3.3. When adding an element to the
Bloom filter, each of the hash functions generates a index from the given element
and sets the bit at the given index position to 1 in the bit-array.

It is important that all of the k number of hash functions utilized the Bloom fil-
ter are different from each other. If two or more of the k number of hash functions
used by the Bloom filter are the same, they will produce the same output. Hence,
they will set the bit of the same index to 1 when adding a given input element to
the Bloom filter. In other words, if two or more of the k number of hash function
are the same, one or more hash functions would be redundant.

The Bloom filter may appear as a near perfect data-structure to utilize as a
cache, but there is a drawback. Hash functions are prone to give collisions. Colli-
sions, which are explained in section 3.3.2, occur when a hash functions generate
the same value for two different input elements. The fact that Bloom filter is based
on hash functions, introduces the issue of false positives.

In the context of Bloom filters, false positives means that the filter may falsely
state that an element can be found in the filter when it is not actually there. When
applied as a URL cache in a web crawler system, a false positive can lead to loss
of valuable content for the web crawler.

To provide a better understanding of the problem, let us consider the following
scenario:

A web crawler system uses a Bloom filter based URL cache to keep track of
the visit history of the crawler. The web crawler asks the URL cache if a given
URL has been visited. A false positive occur and it tells the crawler that the URL
have already been visited.

The false positive will then result in the web crawler system never visiting
the given URL, hence potential valuable content, on the web page the given URL
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CHAPTER 1. INTRODUCTION

links to, is never retrieved. False positives are thoroughly explained in section
3.5.2.

1.1.4 Motivation

Achieving efficient use of available resources is an important problem in the field
of web mining. Monitoring and analyzing the web is extremely resource demand-
ing, and therefore, more efficient use of resources often translates directly into
improved web monitoring coverage and accuracy.

Memory resource optimization is a prevailing part of this problem. One im-
portant sub problem is to reduce the memory consumption of the URL cache. A
URL cache, in this context, is utilized by a web crawler system to keep track of
all visited URLs to prevent the web crawler from unnecessarily re-visiting web
pages. The URL cache may contain a large amount of URLs in a typical web
crawling session, making it a bottleneck performance wise.

Integrasco A/S is a company that keeps track of a vast amount of data pub-
lished on the Internet. The company act as a specialized centralization point that
keeps track of a subset of the resources found on the Internet. Integrasco A/S
is retrieving several millions unique user written entries each month. To keep
all this data consistent, web crawler systems are used to crawl web pages for
new information periodically. This demands a lot of resources regarding network
bandwidth, processing capacity and memory usage.

The Internet Archive web crawler, described in [7], utilizes a Bloom Filter
to check if a URL have been visited before or not. The probability of a false
positive will be very small in the beginning, since the number of visited URLs
is very small. When the number of visited pages increase, the number of URLs
increases, and the false positive probability will also increase. This solution can be
practical for a small set of URLs, but for a larger set the false positive probability
may grow beyond what is feasible. [7].

Finally, memory usage is one of the biggest limitations for a web crawler
system, specially for the URL cache, as mentioned above. In a web crawling
system, which needs to handle a large amount of web pages, the memory available
is the crucial factor that decides if the web crawler is able to visit all web pages it
is supposed to visit.
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1.2 Related work

This section presents the most significant published papers related to the topic and
problem of this master thesis. Each paper is presented with a citation from which
journal or article the paper can be found. General weaknesses of the solutions are
also presented.

• In the paper “Space/Time Trade-offs in Hash Coding with Allowable Er-
rors” [6], Burton H. Bloom introduces a space efficient data structure with
trade-offs in both time and space. The big disadvantage compared to a reg-
ular data structure is that it allow errors, also known as false positives. The
latter space efficient data structure was later given the name Bloom filter.

Since the Bloom filter have a certain probability of returning a false posi-
tives, it does not fit in all context. One example is an URL cache in a web
crawler system, that need to handle a large amount of URLs. As the num-
ber of URLs increase, the false positive probability will also increase. This
will result in that the filter will have a high probability of returning a false
positive, resulting in that some web pages is never visited.

• Another significant paper is “Network applications of bloom filter: A sur-
vey“ [8]. This survey gives an overview of where the Bloom filter have been
used and modified in different network problems. It also provides a unified
mathematical framework for understanding the Bloom filter.

• The paper “Optimizing Data Popularity Conscious Bloom Filters”[25] study
the problem of minimizing the false positive probability of a Bloom filter
by adapting the number of hash functions used on each data object based on
the popularity of the given data object.

As a result, [25] propose a popularity conscious Bloom filter. This Bloom
filter reduces the false-positive probability, or reduces the Bloom filter mem-
ory consumption (if the same false positive probability threshold, as a basic
Bloom filter, is satisfied).

The reduction of the false positive probability, introduce some new major
drawbacks. One drawback is the additional offline computational cost. The
additional computational cost is introduced by a object importance metric
which calculates the popularity of each data object and stored in a generated
hash scheme.

Another drawback the overhead the hash scheme introduces to the popular-
ity conscious Bloom filter.
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The last major drawback is that the object importance metric generates the
hash scheme offline. That it is offline means that it is processed in a sepa-
rated operation. This separated operation needs to be processed before the
popularity conscious Bloom filter can be used, and produces a static hash
scheme.

Due to that Internet pages and domains are highly dynamic when it comes
to popularity, the popularity of a domain can in many cases increase or
decrease rapidly. This gives a static representation of a the popularity a big
disadvantage. Hence, the object importance metric mentioned above, needs
to regenerate the hash scheme fairly often to ensure the hash scheme are up
to date.

Therefore, the strategy of the Bloom filter is based on the object impor-
tance metric hash scheme, meaning that a change in the hash scheme would
changes the behavior of the Bloom filter. The Bloom filter would no longer
be reliable if the hash scheme is regenerated to update the popularity. This
can be explained by, if the popularity for an object increase or decrease
enough, the number of hash functions used to query the Bloom filter would
change. This leads to that the references stored in the Bloom filter become
useless.

Although the popularity conscious Bloom filter reduces the false positive
rate and provide a space efficient solution, the drawbacks described above
are not desirable. Especially the drawback concerning the offline compu-
tation of the hash scheme, that generates a static hash scheme. Hence, to
use the popularity conscious Bloom filter in a web crawler context would
demand a great amount of computational resources or a hash scheme which
is not up to date.

1.3 Problem statement

Elaborated from the issues of false positives and memory consumption described
in section 1.1, the problem is stated as follows:

“Use the space efficient data-structure Bloom filter to minimize the mem-
ory consumption of the URL cache in a web crawler system and propose novel
spatio-temporal strategies to reduce the false positive rate introduced by the
Bloom filter.”
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Based on the problem statement, we will investigate how to utilize a Bloom
filter as an URL cache, in the context of a web crawler system. We will then, based
on the investigation, propose a spatial and a temporal strategy together with an
spatio-temporal strategy for reducing the false positives introduced by the Bloom
filter.

To clarify the major aspects of the problem, two sub problems is derived from
the problem statement and explained below.

1. How to limit the loss of web pages, introduced by the false positive rate
in the Bloom filter, in a web crawler system
The Bloom filter, which is briefly explained in section 1.1.3, is prone to
produce false positives. Each false positive produced by the Bloom filter,
when used as an URL cache in a web crawler system, will result in that
a web page is never visited by the web crawler. Since the web page is
not visited, the content of the given web pages is never retrieved, and are
therefore regarded as lost. Therefore, we will investigate the problem of
reducing false positives with the intention of limiting the loss of web page
content.

Based on the problem of false positives, we will propose novel spatio-
temporal strategies to reduce the loss of content. Our strategies will be
implemented and tested in a simulated web crawler environment.

2. How to minimize the memory consumption for an URL cache, com-
pared to a regular data structure
An URL cache in the context of a web crawler system needs to handle a
large amount of URLs due to the large amount of URLs a given area of the
web can contain. As mentioned in section 1.1.4, memory usage is one of
the biggest limitations for a web crawler system. Therefore, it is of great
importance to find solutions to reduce memory consumptions of the URL
cache, such that web crawlers are able to handle such large amount of URLs.

One solution to the latter problem is to utilize a space efficient data structure
to minimize the memory consumption for the URL cache. The Bloom filter
is such a data structure. Therefore, the space efficient data structure Bloom
filter will be used.
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1.4 Contributions

This section describes the contribution of our different approaches into the field
of data-mining.

In this thesis, we investigate strategies to reduce the false positive rate pro-
duced by the space efficient data structure Bloom filter when utilized as an URL
cache in a web crawler system. Different novel strategies are proposed, each with
the intention of reducing the false positive rate compared to an URL cache utiliz-
ing a single Bloom filter.

1.4.1 A temporal strategy for reducing false positives

We propose a temporal strategy, for web crawler systems, that uses a single Bloom
filter as a URL cache to keep track of URLs of previously visited web pages. The
purpose of the temporal strategy is to minimize the loss of visited content missed
by the web crawler, when utilizing a Bloom filter as URL cache, over a period of
time.

The importance of such a temporal strategy can be justified by the continues
growth of the web [5]. It is important for companies working with web crawling
and search engine technology to obtain scalable solutions to cope with the growth
of the web. Companies, within this field of technology, continuously crawls a set
of web pages where such a strategy applies.

1.4.2 A spatial strategy for reducing false positives

We also propose a spatial strategy, which is a combination of multiple Bloom
filters. The combination of multiple Bloom filters will take advantage of the fact
that a Bloom filter never returns a false negative [11]. The idea is to query all
the Bloom filters and compare the answers, and only give a positive answer if all
filters give a positive feedback.

The intention of the spatial strategy is to investigate if it is possible to limit the
false positive rate compared to a single Boom filter solution by assembling several
Bloom filters together as a multiple Bloom filter solution.
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1.4.3 A spatio-temporal strategy for reducing false positives

The last strategy proposed is the spatio-temporal strategy. The spatio-temporal
strategy is a combination of the spatial and the temporal strategy. The intention of
this strategy is to take advantage of the reduction of the false positive rate, if any,
both the spatial and temporal strategies provide. Hence, if both solutions leads
to a reduction of false positive, we presume that a combination of both strategies
will lead to a further reduction of false positives.

1.4.4 Empirical analysis of the Bloom filter

Through empirical evaluation of the memory usage of a single and multiple Bloom
filter(s), we will measure memory consumption. The memory consumption of the
Bloom filter(s) will be compared to the memory consumption of regular data-
structures. These regular data-structures, will, of course, be suitable to utilize as a
URL cache.

1.4.5 Novel application of Bloom Filter and crawling

Our contribution to the field of data mining will be to apply the different strategies,
proposed in this thesis, to create a Bloom filter solution utilized as an URL cache
in a web crawler system. The latter strategies will, presumably, reduce the false
positive rate introduced by the Bloom filter. Hence, reducing the false positive
rate for a Bloom filter solution utilized as an URL cache in a web crawler system,
will lead to reduction of loss of valuable web content for the web crawler.

1.5 Research questions

To clarify the area of focus in this thesis, we have elaborated the following re-
search questions. These research questions are derived from the proposed strate-
gies in section 1.4.

• Is it possible to reduce the false positive rate by applying a novel tem-
poral strategy which utilize a Bloom filter, containing a different com-
bination of hash functions, upon a re-visit:
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Since an occurrence of a collision in a hash function, utilized in a Bloom
filter, presumably, can lead to a false positive in the Bloom filter, it is im-
portant to consider different hash functions. Therefore, we will investigate
if it is possible to apply a temporal strategy to reduce the false positive rate
of a single Bloom filter.

The temporal strategy, briefly explained in section 1.4.1, uses a re-visiting
strategy approach. The intention of this approach, is to reduce the false pos-
itive rate over time, by changing the combination of hash function utilized
by the Bloom filter upon re-visit.

• Is it possible to reduce the false positive rate by applying a novel spatial
strategy, using multiple Bloom Filters, each with a different combina-
tion of hash functions:
The Bloom filter will never return a false negative when queried. In other
words, a Bloom filter returning false when queried, returns a correct an-
swer. This means that it is certain that the queried element is not present
in the filter. We will therefore, by taking advantage of the previous stated
fact, investigate if it is possible to reduce the false positive rate by applying
the proposed novel spatial strategy. The proposed spatial strategy is briefly
explained in section 1.4.2.

The spatial strategy will utilize a combination of multiple Bloom filters.
When querying if a URL is present in the Bloom filter, all the filters will
be queried. If all the Bloom filters returns true, the queried URL should be
considered as being present in the filter. If the filters returns an ambiguous
answer, meaning that one or more of the filters returns that the queried URL
is present in the filter, and one or more returns that the queried URL is not
present in the filter, an occurrence of false positive is discovered.

Since a Bloom filter never returns a false negative, as explained above, each
of the latter filters that returns true, returns, presumably, a false positive.
Hence, the queried URL are assumed not to be present in the Bloom filter.

To be able to determine if an reduction of the false positive rate is obtained,
we will compare the results against a one filter solution.

• Is it possible to decrease the false positive rate further by combining
the proposed spatial and temporal strategies than each of the strategies
achieve on their own:
Each of the proposed strategies, spatial and temporal will, presumably, re-
duce the false positive rate compared to a single Bloom filter solution.
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Therefore, we will investigate the possibility of decreasing the false pos-
itive rate further by combining the two strategies. This strategy is briefly
explained as a spatio-temporal strategy in section 1.4.3.

As mentioned in section 1.1.3, the Bloom filters contains k number of hash
functions. There is an adage telling that a solution is never better than the weakest
link. With the latter adage in mind, we can assume that, in the first place, is better
to use the best suitable hash function k times, than k different hash functions.

Replacing the k number of hash functions with the best suitable hash function,
alone, would not be a good idea. The obvious reason is that, by using the best
suitable hash function k times in a Bloom filter would give the same result as
using it one time, as it gives the same result each time.

To take advantage of the best suitable hash function, different salts can be
used to seed URLs before they are hashed. A salt can, for instance, be a string or
a numeric value.

To seed the URL with a salt can be performed simply by applying a function
to concatenate the salt and the URL. The purpose of seeding the URL is to get a
different output for each salt, using k number of salts instead of k number of hash
functions. Therefore a sub-research question is presented, concerning all of the
research questions above:

• Will a Bloom filter utilizing the same hash function a given number
of times, seeded with different salts each time, give close to the same
false positive rate as a Bloom filter utilizing the same given number of
different hash functions:
Using different salts to seed the URLs will, arguably, give different output
for each salt. We will therefore investigate if using different salts as seed in
one hash function k times, can be as good as using k different hash func-
tions. The motivation for this question is to be able to use the single most
suitable hash function for the problem, instead of the k most suitable hash
functions.

1.6 Target audience

The target audience of this thesis is anyone that is interested in resource opti-
mization and data structures. Especially anyone who are interested in memory
optimization in the context of data-mining. For the reader to fully understand the
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content of this thesis, a good understanding of common basic elements within the
field of computer science is recommended.

1.7 Report outline

The outline of the rest of this this is elaborated with the intention of providing the
reader with a informative and interesting reading experience.

Chapter 2 provides the reader with the knowledge needed to grasp the concepts
of web crawler systems and web crawling strategies. The chapter provide a brief
introduction to the architectural overview of a web crawler system in section 2.2,
and explains the purpose of each element. The URL cache are explained in detail
in section 2.6, due to its importance to the problem.

Chapter 3 introduces the Bloom filter and gives a thorough explanation of the
components that the Bloom filter consist of. Hash functions is also discussed in
detail in section 3.3.

Chapter 4 describes the two proposed strategies, namely the spatial, the tem-
poral. A combination of these former strategies, a spatio-temporal strategy, is also
proposed. Each strategy is described in detail.

Chapter 5 explains the test configuration and the different types of tests that
was conducted. Also the results for each strategy is presented along with.

Chapter 6 discusses the results and observations of the test results.

Chapter 7 concludes the thesis and summarizes the work. Some suggestions
for further work is also proposed.
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Web Crawler systems

This chapter starts with an introduction to web crawler systems in section 2.1. The
web crawler system is an automated computer program which is used to browse
and monitor the web for information.

There exists numerous architectures for web crawler systems. In the paper [9]
a typical high-level architecture is presented. Figure 1.1, in chapter 1, shows an
example of a typical high-level architecture similar to the one found in [9].

Downloader/parser, scheduler, queue, storage and cache are the main compo-
nents in a web crawler architecture. The latter components are briefly explained
in the architectural overview section, see section 2.2.

Different web crawler systems have different purposes. Some web crawler
systems are used solely for discovering new web pages on the web, while others
are used to collect e-mails for the more dodgy business of spamming. A web
crawler strategy is utilized to fulfill the latter purpose. In section 2.3, different
web crawling strategies are explained.

To enable a user good full-text search functionality on a collection of down-
loaded web documents, based on their content and meta data, some kind of pro-
cessing of the data must be performed. The most common way of processing the
data is by applying a indexing technique. Indexing is an optimization technique
which enables fast search on big collections of data. Indexing is investigated in
section 2.4.

Internet services such as search engines, notification, maintenance and ana-
lytic services, are all services which utilize a vast amount of information located
all over the web. To be able to cope such vast amounts of information, a web
crawler system is used. Section 2.5 takes a closer look on different applications
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of the web crawler system.

Since a web crawler system must handle a large amount of URLs, that is ac-
cessed each time the crawler visits a new web page, it is convenient to store this in
a cache to enable rapid access. The URL cache, which is a essential component of
the web crawler system is such a cache. Therefore, the URL cache is investigated
in dept in section 2.6.

2.1 An introduction to web crawlers

In 2003, the University of Berkley conducted a study of how much new informa-
tion is created each year. In the study they estimated that the surface of the WWW
consists of 167 Terabytes. [5]. In the same study they also claim that the Internet
is the fastest growing medium.

To enable regular users to cope which such a large corpus of information, a
number of search engine companies have emerged. About 85% of the users on
the WWW claims to be using a search engine to find information on the Internet.
[18]. The most vital part of the search engine service is the web crawler system.

The web crawler system is utilized by the search engine service to “crawl”
a given set of web pages. To crawl a web page is to download the given web
page and extract the desired content and URLs linking to new pages. The crawl
is performed with the intention of discovering new content on previously visited
web pages and to discover new web pages to visit. The desired content, extracted
from a given web page, is stored in an external data storage.

It is important for web crawler system to be able to find new content and keep
previously retrieved content, stored in the data storage, updated. This is to ensure
that relatively new information is available for the search engine service.

The web crawler is provided with one or more entry points. A typical entry
point is a main page of a web site or a start page. A start page is normally a
collection of URLs, with the intention of providing the user easy access to other
popular and useful destinations of the web.

For focused crawling, explained in section 2.3.2, it is normal to use the main
page of a web site as the entry point. The main page, in most cases, contain links
to all the main areas of the web site. And, therefore, provides a good entry point
for crawling the entire web site.

As for the broad web crawling strategy, explained in section 2.3.1, a start page
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or similar is used as the entry point. A start page will provide links to many parts
of the web. The start page, therefore, provides a good entry point for the broad
web crawling strategy.

The web crawler will download the entry point web document and extract the
desired content from it. This content is stored for later indexing. The crawler
will also discover web pages that has not been previously visited. These new web
pages is put into a queue, for later processing.

Crawling the web is a continuous and resource demanding task. Due to size
and the continuous growth of the web, web crawler systems needs to evolve and
find new, efficient, ways to keep up with the growth of the web.

2.2 Architectural overview

There exists numerous architectures for web crawler systems. In [9] a typical
high-level architecture is presented, along with a list of published crawler archi-
tectures. The paper also propose a new crawling architecture.

Figure 1.1, in chapter 1, shows an example of a typical high-level architecture
of a web crawler system, similar to the one found in [9]. Each of the components
will briefly be explained in its own subsection below.

2.2.1 Downloader/parser

The downloader/parser component is sometimes referred to as a the web crawler,
web spider, web robot or web agent, and can be viewed as the heart of the web
crawler system. The main objective of the web crawler is to “crawl” the supplied
web page.

To crawl a web page means that the downloader will visit a given URL sup-
plied from the scheduler. The downloaded content will then be cleaned and parsed
by the parser, fixing up potential errors and badly nested markup tags. In turn,
URLs and other relevant content are extracted from the downloaded content. Fi-
nally, the extracted URLs are sent to the queue component, and the content is sent
to the storage component.
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2.2.2 Storage component

The storage component in a web crawler system is responsible to store the data
and meta-information supplied by the crawler.

What is stored in the storage component is dependent on the purpose of the
web crawler system, but one of the most common scenarios is to store textural
information found on web pages. This information is later indexed, explained in
section 2.4, to enable search in the retrieved data.

The storage component can be anything from a large scale database or an in-
memory database to a XML file or a text file. This is implementation specific for
each system, and depends on requirements for the amount of data and transfer rate
the storage component must be able to handle.

2.2.3 Queue

The queue component of the web crawler, contains a collection of URLs to be
crawled. The queue is responsible for arranging the URLs in correct order, as
decided by the scheduler. Figure 1.1, in chapter 1, illustrates the role of the queue
in a web crawler system.

If the so-called URL cache does not contain an extracted URL, the URL will
be regarded as new, and will be placed in the queue. If the URL cache contain the
extracted URL, the URL have already been added to the queue, and the URL will
be discarded.

2.2.4 URL cache

The primary task for the URL cache to ensure that there will not be any duplicated
URLs in the queue. If there exists duplicated URLs, this could result in that
the crawler will go into a infinite loop, wasting resources on already visited web
pages. This will again result in resources spent on already visited web pages and
potentially valuable content from other web pages would never be retrieved.

2.2.5 Scheduler

The schedulers main task is to provide the crawler with a URL to crawl, from the
queue. The scheduler is also responsible to re-arrange the queue based on how
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the different URLs are prioritized. Note that there exists a number of different
policies of how to prioritize URLs.

2.3 Crawling strategies

Different web crawler systems have different purposes. Some web crawler sys-
tems are used solely for discovering new web pages on the web, and some are
used for the dodgy business of collecting e-mails for so called spamming. Other
web crawler systems is used to continuously monitor a limited domain or area of
the web. The purpose of a crawler monitoring the web is, for instance, to check
for updates (e.g. check if content of the web page has changed since the last visit).

A web crawler that monitors an area of the web, utilizes a web crawling strat-
egy. In this section we will investigate different web crawler strategies.

2.3.1 Broad web crawling

Broad web crawling is a web crawling strategy utilized to perform large scale
crawls on the web. This large scale crawls require a large amount of resources, like
bandwidth, memory and storage space. These resources are required to perform
as expected, namely to cover as much of the web as possible within a given period
of time. [13]

Although, to cover as much of the web as possible, within a limited period
of time, are somewhat an extreme approach. However, this approach provides an
efficient method for discovering new parts at the web at a high pace. [13]

The broad web crawling strategy emphasize the importance of collecting new
individual web pages. For this strategy, discovering new web pages are as im-
portant or even more important than a complete coverage of a given web area.
[13]

2.3.2 Focused web crawling

When the web crawler system is set to only crawl a limited area of the web, it is
referred to as focused crawling. Focused web crawling is defined as a crawl of
a small to medium sized collection of web pages, with the criteria of complete
coverage of the whole limited area. [13]
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A web crawler system using a focused crawling strategy are limited to a spe-
cific area of the web. The most common way to limit a given area of the web to
crawl for a web crawler system, using a focused crawling strategy, is to limit the
crawl to a DNS based web domain. This provides an easy way to filter out all
paths from a given web page to areas outside the specified domain.

A practical example of utilizing a focused web crawling strategy on a single
web domain could be as follows: Let us say we are set to crawl the well known
technology blog Gizmodo. Then the limited area of the crawl would be every page
under the domain gizmodo.com. This would include every web document situated
under the gizmodo.com domain, for instance http://gizmodo.com/5511678/apple-
ipad-review, which is an iPad review.

2.3.3 Continuous web crawling

In most cases, when utilizing the focused crawler strategy, it is important for the
web crawler to keep the limited area up to date. Therefore it is usually combined
with continuous crawling.

Continuous crawling is when the web crawler only revisits previously visited
areas. The crawler is looking for changes in previous visited areas, it is therefore
important to use a strategy that most often visit updated web pages. (e.g. visits
those pages that actually are updated since the last visit.)

A practical example of continuous crawling, is to monitor an ongoing discus-
sion on a discussion board. A discussion board allows users to post new comments
in a continuous going discussion. After the first visit, the web crawler revisits the
discussion board and the crawler will now download new comment on a already
discovered discussion.

2.3.4 Revisiting strategies

Since the web grows with a high rate, as stated in section 2.1, it becomes more and
more important for commercial data mining companies to be able to refresh their
previously fetched content in an efficient manner. To refresh previously fetched
content, in the context of web crawlers, means to revisit previously visited areas
of the web and fetch all the changes since last visit.

Utilizing a revisiting strategy, provides the advantage of being able to up-
date the stored content from a given, previously visited, web page. The revisiting
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strategy introduces the term freshness. Freshness indicates how out of date the
previously stored content from a given web page is. [10]

A motivation for commercially utilizing revisiting strategies, is to be able to
provide a near to real time search functionality. Near real time emphasise that the
freshness is very good. In other words, that the given web page gets revisited by
the web crawler shortly after changes are made on the web page. An example of
changes can be a user posting a comment on a blog.

Another essential factor to enable a good search functionality is indexing tech-
niques.

2.4 Indexing

To provide an end user full-text search functionality for already crawled parts of
the web, some kind of processing of the already extracted data must be performed.
The most common way of processing the given data is by applying a indexing
technique along with document ranking. Figure 2.1 illustrates the role of both the
indexer and document ranking in a search engine service. [26]

Indexing is an optimization technique which enables fast search on big col-
lections of data. This data is most often stored in database solutions or as file
hierarchies. Indexing increases the speed of storage look-up, allowing the data in
the data source to be accessed directly. This is accomplished without any sequen-
tial search through the whole data source. [24]

The benefits of utilizing indexing, not surprisingly, comes with a price. The
indexing itself is performed as a pre-processing operation. In other words, the
indexing techniques require processing of all the data that will be made available
by the indexer.

Another significant drawback are the additional overhead of the index data.
The index is shown in figure 2.1. In many cases the extra storage space required
might be of a considerable size. [24]

If the search engine service is slow, the end user will experience the service
as unresponsive and of low quality. This will in worst case result in a great loss
of users. If the search engine service provides fast search functionality, on the
other hand, the customer will experience the service as responsive and resilient.
Therefore both drawbacks, the extra processing and storage space required, can
be defended as necessary to provide end users with a good search engine service,
even though indexing require more storage space and processing resources.
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2.5 Application of web crawler systems

Internet services as search engines, notification, maintenance and analytic ser-
vices, to mention a few, are all services which utilize a vast amount of information
which is located all over the web. To be able to cope such vast amounts of informa-
tion, a web crawler system is used. Hence, for such services as mentioned above,
the web crawler are considered to be the most important component. Without the
web crawler, it would not be possible to download and index such vast collection
of information from the web.

2.5.1 Search engine systems

A search engine can be viewed as an interface between the end user and the web.
Figure 2.1 gives an overview of all the back-end elements in the search engine
service, as well as it illustrates the natural order of the elements.

Search engine companies like Yahoo! and Google enables users to search the
web to find relevant information, or discover new sources of information. This
information is discovered and kept updated by automated web crawler systems.

Figure 2.1 illustrates that the search engine service are divided in two pro-
cesses, one off-line and one on-line. For each valid web page downloaded by the
web crawler in the off-line process, the content retrieved are stored in a storage
component, named collection in 2.1. The storage component are briefly explained
in section 2.2.2.

The content stored in the storage is also processed by the indexer. Indexing
is an optimisation technique applied to increase the search speed as explained in
section 2.4.

The on-line process, of the web search engine, contains the actual search func-
tionality. The search functionality, which is most commonly made available for
the end user through a graphical web interface, are triggered on request.

2.5.2 Analytic services

Web crawler systems are also used in web analyzing services, which provides
tools for analyzing end users activity on the web. Social media is considered as
such user activity, and are user generated content in form of conversations and
interactions between users on the web.
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Figure 2.1: This figure illustrates how a search engine service works as an in-
terface connecting the end user to the WWW. [9] The square boxes represents
processes and the rounded boxes represents stored data.

User generated content differs from other media channels on the web. The big
difference is that it is the readers which generates the content, interact and shares
the knowledge, not an author from a corporate news-paper or similar. The users
utilize media channels such as Facebook, Youtube, Twitter, different blogs, user
review sites and forums to share and interact.

When users discuss a product or a service within a social media channel, it
is referred to as word-of-mouth marketing or marketing buzz. This buzz, is a
valuable asset for for companies delivering such products and services. In other
words, it is an efficient and direct channel for the latter companies to learn what
their customers say about their product and services.

Companies like Integrasco and Radian6 utilizes web crawler systems to re-
trieve this user generated discussions and conduct different types of analysis on it.
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Hence, the web crawler is an essential part of analytic services on the web.

2.6 The URL cache

As mentioned in section 1.1.2, this thesis deals with how elements can be cached
in a space efficient manner. The URL cache is therefore an important part of this
thesis, and need to be properly explained.

To explain the purpose of caching, we try to simplify it by drawing a parallel
to the real world. Such a parallel can be drawn between a cache and a woman’s
handbag. For the same reason as a web crawler system use a cache to store fre-
quently requested elements found on the Internet, does a woman use her handbag
to store items that she frequently use. An example of such item can be money. By
storing a given amount of money in her handbag, she does not have to walk the
extra distance to the bank each time she purchase something from a store.

Since a web crawler system must handle a large amount of URLs, that is ac-
cessed each time the crawler visits a new web page, it is convenient to store these
URLs in a cache to enable rapid access. The URL cache will store the URL of
each visited web page, to ensure that the crawler does not visit the same web page
twice in a single crawl. If a crawler is allowed to visit a web page more than once,
it is possible for the crawler to go into an infinite loop. Hence, one of the primary
goals of the URL cache is to help preventing this from ever happening.

2.6.1 Infinite loop example

Figure 2.2 illustrates an a web crawler going in an infinite loop between two web
pages, where the two web pages that is providing a link to each other. Web page
A provides a link to web page B, and web page B provides a link to web page A.

Consider the following scenario: The web crawler is set to crawl web page A.
The web crawler only discover one link on page A, leading to web page B. When
the crawler crawls web page B, a link to A is discovered, and the crawler will then
go back to A and think this is a new page.

If not some sort of mechanism is applied to prevent the crawler to go into
this infinite loop, the crawler will waste resources and never finish the crawling
process. It is therefore important to have some sort of mechanism to prevent this.

As mentioned above, preventing an infinite loop is the main objective of the
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Figure 2.2: This figures shows an example of two web pages linking to each other

URL cache. The URL cache will keep a record of the previously visited URLs.
Since a web page can contain large amounts of URLs linking to other web pages,
it is important that the URL cache provides a fast way fast to query for an exist-
ing URL. In other words, provides a fast way to determine if a URL has been
previously visited.
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Bloom Filter

This chapter will focus the space efficient data-structure Bloom filter, due to the
importance of Bloom filters for this thesis. Bloom filters are briefly explained in
section 1.1.3, while this chapter investigates Bloom filters in dept.

The origin of the Bloom filter, presented in section 3.1, was introduced by
Burton H. Bloom in the early 70’s. We take a look at what Bloom accomplished
and what have happened since then.

The Bloom filter consists of two main elements. One of the elements is a bit
array, presented in section 3.2. The bit array is a collection of bits used to store
positions.

The other element is a finite number of hash functions. Hash functions are an
important part of the Bloom filter, and are therefore thoroughly explained in sec-
tion 3.3. Here we discuss the area of application and nature of the hash function.
The strengths and weaknesses of the hash function, in general, are considered.
We especially draw our focus towards hash function collisions. Different non-
cryptographic and cryptographic hash functions are also discussed.

A Bloom filter combines the space efficiency of the bit array of size m, with
k number of hash functions. This is further explained in section 3.4. This section
also investigate disadvantages of the Bloom filter and take a close look at some of
the applications of the Bloom filter.

The next section, namely section 3.5, investigates the Bloom filter in-depth.
We examine both main parts of the Bloom filter, both the bit array and hash func-
tions, and explain how we add to and query the Bloom filter. The Bloom filter
have one major disadvantage, which is the price for its space efficiency, namely
the occurrence of false positives. False positives are therefore explained in depth.
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In 3.5.2 we explain what a false positive is and why they occur.

3.1 History

In 1970, Burton H. Bloom published the paper “Space/Time Trade-offs in Hash
Coding with Allowable Errors” [6]. In [6], new methods to reduce the amount of
space required to store hash values in a set are introduced. Bloom considers the
trade-offs between the amount of space required and the time to identify a non-
member of the given set with an allowable error frequency. The error frequency is
later named false positives and the introduced data-structure is later named Bloom
filter.

The Bloom filter are commonly used in Databases and Linguistic applications
[17], and have been around since the 1970’s. Despite the fact that the Bloom filter
have been around for four decades, it is only the last decade or so the filter have
received widespread attention. The field of Data Mining is one of the areas the
Bloom filter is applied.

A Bloom filter consists of two main components, namely a bit array and a set
of hash functions. To understand how these components interact, each component
will be thoroughly described in its own section.

3.2 Bit array

In general, an array is defined as a collection of systematically arranged objects.
It is similar to the definition of an array in computer science. The major difference
is that, in computer science, each object position is identified by a stored value.
This value is often referred to as an index or a key.

A bit is the smallest data type in computer science. The bit type can only hold
the value 0 or 1, and is the basic type all information in computing is based on.
Due to the low level of abstraction, bit operations are cheap to perform and bit
values cost almost nothing to store.

Storing a single bit by it self would not accomplish much, but a collection of
bits can be utilized to represent data objects, positions and similar. A bit array is
a systematically arranged representation of such a collection.
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3.2.1 Bit array: Area of application

Bit arrays are are utilized in many areas where space efficiency is important, due
to its compact representation. The most common usage of the bit array is to repre-
sent simple group of boolean flags or ordered collection of Boolean values. This
is often done to create compact or efficient data structures. In the following sub-
sections we present two data structures that utilizes a bit array.

Priority queue

A priority queue is an abstract data type. This data type is characterized by its
ability to locate the item with the highest priority in the queue. In other words, the
priority queue ranks all its elements, highest to lowest, and pops out the first item
in the queue when asking for the item with the highest priority.

Priority queues utilize bit arrays to keep track of which slots in the queue
containing an element. In more technical terms, the bit i in the bit array is set
to 1 if, and only if, there exists an element in the queue at position i. The bit
array utilize a hardware supported operation called “find-first-one”, which provide
extremely fast search. In other words, the computational cost used to query a
priority list for its top priority element is extremely low, due to the utilization of
the bit array.

Bloom filter

Construction of succinct data structures are another area of application for the bit
array, where both the compactness of the bit array and the operations available are
utilized. The most significant operations are position based look-up and bit count,
for instance counting all bits set to 1. The Bloom filter, which is based on the bit
array, is such a succinct data-structure. [8]

3.2.2 Advantages and disadvantages

A bit array provides the advantage of storing boolean values in a compact manner.
This is much due to the simplicity if the data structure. Since the bit array is
essential only an array of bits, the advantage is that it provides fast set and look-
up operations, both which have the cost of O(1) [19].

However, despite the advantages and the simplicity that the bit array provide,
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there are also some disadvantages. The main disadvantage of the bit array is that
storing an element without any form of compression would not lead to any gain
in time or space, compared to a regular data structure. It would rather lead to a
higher cost of resources and be harder to handle. In other words the bit array is
not a wise choice when storing data elements without any form of compression.

3.2.3 Bit array in depth

The bit array is an arranged collection of bit elements. As mentioned above, each
bit element can only hold the value 0 or 1. Figure 3.1 illustrates a bit array of 8
bit elements and two operations. A set operation which sets the bit in position 4
in the bit array to 1, and a get operation performing a look up on bit element 6
and returns the bit value 1. These two operations are the basic operators of the bit
array.

Figure 3.1: The figures illustrates a bit array of 8 bits and a set and a get operation.
The set operation sets the bit in bit position 4 to 1. The get operation fetches the
value 1 from bit position 6.
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3.3 Hash functions

A hash function is a mathematical function which is designed to map a collection
of data into a fixed length value. This value is referred to as a hash sum or hash
value. The hash sum is a value, often represented in hexadecimal or decimal
values, within a fixed size. [4]

3.3.1 Hash functions: Area of application

Hash functions are utilized in a variety of areas in computer science. Examples of
areas where hash functions are widely used are: Data structures, authentication,
authorization and integrity checks for files and messages.

To obtain the integrity of files or messages in a file or message transaction,
a hash function can be utilized. The hash function generates a hash value that
represents the file content, meaning that if the file content change, the hash value
will change. By also transmit the hash value, the transaction recipient are able to
check if the integrity of the file or message is maintained. [4]

The reason for ensuring if the integrity of a file or a message are maintained,
is to make sure that the transaction is completed without errors like package loss
or security issues like so-called man in the middle attack.

3.3.2 Collisions

The big drawback with hash functions are collisions. Collisions occur when 2 or
more input elements are mapped to the same hash value.

To illustrate the problem, consider the scenario where a hash function is used
to check if a file has been modified. First a hash is generated for the content of the
file, then to check if the file has been modified at a later point in time, a new hash
is generated. If the two values is equal, the file has not been modified, if the latter
value is different, the file has been modified. A collision will happen when the file
has changed, but the hash of the content, the hash value, results in the same value.
The file will then wrongly be regarded as not changed. [4].
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3.3.3 Characteristics of a good hash function

That a hash function is as collision resistant as possible is one of the characteristics
of a good hash function. To obtain a good collision resistance, it is important to
achieve distributed hash values. In other words, that the hash values are evenly
distributed over the value area limited by the hash function.

A hash function of 32 bits have an limited area of less than 232 available value
positions. The figures at 3.2 illustrates examples of hash function distribution
with an limited area of 24 available value positions. Figure 3.2-A illustrates an
even distribution of hash values. Figure 3.2-B illustrates an uneven distribution,
as all off the bits set to one are centralized in the red area.

Figure 3.2: The figures illustrates examples even and uneven distribution of hash
values. Figure A shows an even distribution and figure B shows an uneven distri-
bution.

If a new element was to be hashed by the same hash function utilized in figure
3.2-B, compared with figure 3.2-A, the probability of the new element would be
mapped to the same value as a previous hashed value is regarded as high. That
it has high probability of an element being hashed to the same value as another
element, implies that it is a high probability of a collision to occur. Therefore,
more evenly distributed hash sums leads to a lower probability of collisions.
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3.3.4 The hash function: In depth

A hash function is denoted as h = H(Si) where Si, of the set S as illustrated in
equation 3.2, is a bit string of arbitrary size. This bit string is mapped to the string
h witch have a fixed size of n bits. The mapping process of the hash function is
described in equation 3.1. [20] [4]

H : {0, 1}∗ → {0, 1}n (3.1)

3.3.5 Different hash functions

It is important to choose a hash function that suit the type of input elements you
are expecting to obtain even distribution. When choosing a hash function, speed
and collision resistance have to be considered.

There are several hash functions which provide good collision resistance. We
are going to take a closer look at four of them. The non-cryptographic hash func-
tions Jenkins and MurmurHash, and the cryptographic hash functions MD5 and
SHA-1.

The Jenkins hash

The Jenkins hash LOOKUP2 is a non-cryptographic hash function introduced
by Robert John Jenkins Jr., also known as Bob Jenkins, back in in 1997. The
LOOKUP2 hash was designed for hash table look-up. It is regarded as a fast hash
function, due to the relatively low complexity O(5n+ 20). [16]

Since the Jenkins hash LOOKUP2 is regarded as a fast hash functions it is also
a popular choice for implementing hash tables and Bloom filters. [12].

The MurmurHash

MurmurHash is another non-cryptographic hash function. The hash function is
created by Austin Appleby. According to Austin Appleby’s website, his Mu-
murhash2 is able to hash more mb/sec than any other hash functions tested. [3].
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The Message-Digest algorithm 5

Message-Digest algorithm 5 (MD5) is a cryptographic hash function, designed by
Ron Rivest in 1992. It is a strengthened heir of the MD4 hash function, where
one more round is added and each round consists of more operations. [4]. MD4
consists of a fairly simple structure, and it is regarded as a fast hash function. The
MD5 hash is somewhat slower than MD4, due to the extra operations added. Still,
MD5 is regarded as a fast hash function.

MD5 was intended for digital signature applications [21]. However there ex-
ists attacks on MD5 that can be used to generate collisions on MD5. [23]. Even
though there exists weaknesses in MD5 it can still be used for non-security pur-
poses, such as hash tables and Bloom filters.

The SHA-1 hash

SHA-1 is another cryptographic hash functions which is also modeled after the
MD4 algorithm. [22]. The SHA-1 was developed by the National Institute of
Standards and Technology (NIST) and published in 1993 as federal information
processing standard, FIPS 180. SHA-1 is a revised version of the original SHA
algorithm. A weakness was discovered in the original SHA version, and a revised
version was release, this revised version is referred to as SHA-1. [1]

3.4 The purpose of the Bloom filter

A Bloom filter combines the space efficiency of the bit array of size m, with k
number of hash functions. The hash functions in the Bloom filter is used to gen-
erate position values which corresponds with the range of index values available
in the bit array. These position values are utilized to represent a given input ele-
ment, by setting each bit in the bit array to 1 where the given bit index equals the
position value generated.

In other words, when an element is inserted in the Bloom filter, the element is
hashed k number of times, one for each hash function, to generate a hash value.
The hash value is then used to indicate which bit to set in the bit array.

To check if an element is present in the Bloom filter, the element is hashed k
times, one for each hash function, and if, and only if, all the positions in the bit
array is set to 1, the element are assumed to be present the filter.
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3.4.1 Disadvantages of the Bloom filter and proposed solutions

Even though the Bloom filter is very space efficient, the space efficiency comes
with a cost. A Bloom filter may falsely state the an element is present in the set,
even though it is not. This is referred to as a false positive, and is thoroughly
discussed in section 3.5.2.

A second drawback of the original implementation, described by Burton H.
Bloom in [6], is that once an element is inserted in the filter, it is not possible
to delete the element from the filter. This is because the positions set in the bit
array may also be used to represent another different element that is inserted in the
filter. Since the filter uses k number of hash functions there exists a probability
that one bit, that is set, is also set by another hash function for another element.
The probability of the bit being used by another element will also increase by the
number of elements inserted in the filter.

To overcome this drawback Counting Bloom filters have been introduced. A
counting Bloom filter uses not a single bit, but a small counter to keep track of the
inserted elements. When an element is inserted, the counter will then be incre-
mented, and when an element is removed the counter will then be decremented.

When creating a counting Bloom filter the size of the counter most be taken
into consideration. The counter should be sufficiently large to avoid a counter
overflow. The drawback of the counting Bloom filter is that it will use more space
than a regular Bloom filter, since each counter must be represented by more than
1 bit. If a counter of 4 bits per counter is chosen a counting Bloom filter would
use 4 times the space of a regular Bloom filter. [8].

Another drawback of the Bloom filter is that the number of elements that will
be inserted in the filter, must be known before the filter is created, to ensure that
the probability of a false positive stays below a certain threshold. This is due to
the size of the bit array must be known upon creation of the filter.

To be able to dynamically scale a Bloom filter, Scalable Bloom filter was in-
troduced in [2]. A Scalable Bloom filter solves the problem that the number of
elements must be known upon creation of the filter. To be able to keep a constant
false positive probability, a Scalable Bloom filter will create a new Bloom filter
when a certain number of elements has been added to the set. So a Scalable Bloom
filter is in effect a series of filters.
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3.4.2 Different applications of Bloom filter

Bloom filters have been used in a wide area of places, from databases to web
crawler systems and spell checkers.

The paper [14] describes that the Internet Archive crawler implements a test
to check if an URL has been visited before. This part of the web crawler uses a
Bloom filter to store already visited URLs. By using a Bloom filter to check if
an URL already is visited, there exists a chance that a false positive will occur.
When a false positive occurs the URL will not be visited, hence the content from
the URL will not be retrieved.

In early UNIX systems memory was a limited resources. In some UNIX spell
checkers, a Bloom filter was utilized to represent a dictionary to overcome the
limitation of little memory. This offered a very compact representation of the
dictionary, which was very advantages due to the memory limitation. The problem
with this solution was that a false positive in the Bloom filter would result in that
a misspelled word being ignored. Hence in some cases a misspelled word would
not be corrected. [8].

Bloom filters have also been used in databases to reduce cost of communica-
tion. A Bloom filter can be used with distributed databases to reduce the cost of
sending data from one database to another, by using a Bloom filter to represent
the data. The advantage of this scheme is that it is very cost efficient, in term of
communication cost, to send a Bloom filter to represent the data, instead of the
data itself. [8].

3.5 Bloom filter: In-depth

A Bloom filter consists of only two main components, namely the bit array of
length m, and a collection CH , of k number of hash functions. In other words
a fairly simple data-structure from a high level point of view. The only complex
part is the collection, CH , of hash functions applied. It is therefore important to
have a insightful understanding of the application of hash functions in the Bloom
filter.

S = {S1, S2, . . . , Sn−1, Sn } (3.2)

The Bloom filter are used to represent a set of data elements S, which con-
sists of n number of elements, as shown in equation 3.2. These n elements are
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described by a bit array of m bits, where all bits m are initially set to 0. [17]

It is important to consider the fill ratio of the Bloom filter. The fill ratio is de-
scribed by m / n, and determines the amount of bit used to represent each element
S1. A higher fill ratio, means more bits to represent a given element. Hence, a
higher fill ratio use more memory, but it also reduces the false positive ratio.

3.5.1 Basic operations of the Bloom filter

This section investigates the two requisite operations the Bloom filter needs to
support, namely to add an element and query an element. Hence, those are the
only two operations needed to serve the purpose as a URL cache.

Adding an element

CH = { H1, H2, . . . , Hk−1, Hk } (3.3)

The number of hash functions in a Bloom filter is denoted k. For each element
n that is inserted in the Bloom filter, k number of bits are set to 1. Hence one bit
is set for each of the hash functions utilized by the Bloom filter. In other words
multiple hash functions, as described in equation 3.3, are utilized by the Bloom
filter to select which bits to set to 1. [17]

Algorithm 1 Adding an element to the Bloom filter
1: for all H in CH do
2: h := H(Si)
3: Bh := 1
4: end for

Algorithm 1 describes the process of adding an element to the Bloom filter.
The algorithm loops through each hash function, denoted by H , in the collection
of hash functions, denoted by CH . The generated hash value h of input element
Si is generated by the hash function H(). The bit at position Bh in the bit array B
is then set to 1.

B = {B1, B2, . . . , Bm−1, Bm} (3.4)

Figure 3.3 illustrates how an element is added to a empty Bloom filter. First the
element is hashed k times with the k different hash functions. Each hash function
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Figure 3.3: The figure illustrates an example of storing element Si in a Bloom
filter. The Bloom filter contains an internal bit array with size m, and uses three
hash functions (h1, h2 and h3) to add the given element Si to the bit array.

will return a valid number in the range 1 to m. This number is used to point to
a position in the Bloom filters bit array, which is presented in the equation 3.4.
Each bit position pointed to by the number outputs of the hash functions is then
set to 1.

If a hash function returns a bit position in the Bloom filter which is already set
to 1, the bit value will remain the same. When this happens, it increase the change
of a false positive to occur.

There are three different incidents that can result in a hash value equal to a bit
position in the bit array that is already set:

1. A collision in the utilized hash function occur, which means that the input
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element is mapped to the same hash value with the same hash function a
previous input element have been mapped to.

2. The hash function produce the same hash value for the given input element
as another hash function have produced for another input element that is
already inserted in the Bloom filter.

3. The given element is already added to the Bloom filter.

False positive are explained in depth in section 3.5.2.

Querying the Bloom filter

A query in this context is really an inquiry. Inquiry means to look up or ask for.
In other words, a query is a question that returns an answer.

The same hash functions utilized to add elements to the Bloom filter are uti-
lized to query the filter. To query the filter means to ask the filter if it contains a
given element. [17]

Figure 3.4 illustrates how to query the Bloom filter to pinpoint if an element,
Si, is present in the filter. The first step is to utilize each of the hash functions to
create an hash value of the element. This is performed by each of the k number of
hash functions.

Algorithm 2 Query for an element Si in the Bloom filter
1: b := true
2: for all H in CH do
3: h := H(Si)
4: if Bh == 0 then
5: b := false
6: break
7: end if
8: end for
9: return b

The next step is to check if each of the hash values, where each represents a
bit position for the internal bit array in the Bloom filter, points to a bit in the bit
array which is set to 1. If all is set to 1, it returns true and false is returned if one
or more bits has value 0.
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Figure 3.4: The figure illustrates an example of querying a Bloom filter for an
element. The bloom filter is asked if element Si is present in the bit array. The
Bloom filter uses three hash functions (h1, h2 and h3), to determine if the element
is present or not.

The element Si is determined not to be present in the Bloom filter if false is
returned from the query. Obviously, if true is returned Si is determined to be
present in the filter. The example, in figure 3.4, returns true since all bits looked
at where set to 1.

Algorithm 2 demonstrates how to query a Bloom filter for an element Si. First
a variable b, is set to true. This variable is used to indicate if the element is present
in the filter. Then all hash functions in the set CH is looped through. A hash value
h is then computed for the element Si. Then we check if the position, which is
the hash value h, is set to 0 in the bit array B. If the position is set to 0, we know
that the element is not present in the filter, and we set the variable b to false and
breaks the loop. If the position in the bit array is not set to 0, we continue to the
next hash function. If all hash functions returns a position, for the element Si, that
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is not set to 0, the variable b will remain true, and true will then be returned after
all the hash functions is looped through.

3.5.2 False positives

When querying a Bloom filter, there is a certain possibility of receiving a false
positive. A false positive can occur based on the two first of the three different
incidents mentioned by the enumerated list in the section 3.5.1 under adding an
element. The last incident, which never happens in practice if the Bloom filter
is implemented correctly, would not have any influence on the false positive rate.
The reason is that all the bits is already set to one.

To explain the concept of false positives, the following example are given:

Two people, John and Jack, are having a conversation about music. They are
discussing how important it is to support the bands they are listening to by paying
for their music. John asks Jack if he have bought the newest Slayer album. Jack
lies and answer yes.

The fact that Jack states that, him owning the new Slayer album is true, when
it is false, makes it a false positive. In other words something stated as true, that
is false, is a false positive.

When querying an element, and the incidents mentioned above occurs for each
of the k hash functions utilized by the Bloom filter, a false positive occur. In other
words, a false positive occur when each of the k hash functions returns positions
in the Bloom filter that is set to one, even though the queried element is not present
in the filter.

For each new element inserted to the Bloom filter, k of the m bits in the filter
are set to one. Logically, the more elements that is inserted in the filter, the higher
the probability of a false positive. In other word, because more positions in the bit
array is set to 1.

3.5.3 Probability of false positive

In [8] a mathematical formula for calculating the probability of a false positive is
given, this formula is shown in equation 3.5. Equation 3.5 assumes that all the
hash functions is perfectly random.
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P = (1− p)k =
(
1− e−kn/m

)k

(3.5)

In equation 3.5 P is the probability of a false positive, n is the number of
inserted elements, k is the number of hash functions used and m is the size of the
bit array.

In [8] the assumption that all hash functions is perfectly random is made. This
is not the case for all hash functions, so in reality the probability will be higher
than the one calculated using equation 3.5.
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Proposed Bloom filter strategies

This chapter will outline the proposed solution strategies in detail.

This thesis propose three novel solution strategies, briefly described in sec-
tion 1.4, each aiming to reduce the false positive rate for a Bloom filter utilized
as a URL cache. These strategies was elaborated from the problem statement,
presented in section 1.3.

We propose two main solution strategies, a spatial and a temporal strategy, and
one combination of the latter two, namely a spatio-temporal strategy. Each of the
proposed solution strategies are thoroughly explained in this chapter, each within
its own section.

In chapter 2 we investigate web crawler systems. One of the biggest issues
concerning web crawlers systems are memory consumption. The URL cache is
one of the subareas the issue of memory consumption apply. The URL cache,
explained in section 2.6, is used to keep track of all unique URLs visited by a web
crawler system.

One way of limiting the memory consumption of the subarea mentioned above,
is to apply the space efficient data-structure Bloom filter as URL cache. By utiliz-
ing the Bloom filter, which is thoroughly explained in chapter 3, as a URL cache
will, presumably, reduce the memory consumption, though, not without a price.

Bloom filters allow a certain error probability, which is referred to as the false
positive rate. A false positive, explained in section 3.5.2, occurs when the Bloom
filter states that an element is present in the filter, when it is not.

When a Bloom filter is utilized as a URL cache in web crawler system, and a
false positive occur, the Bloom filter will state that the URL the filter is queried
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with have already been visited. Hence, the web page the URL is linking to will
never be visited.

That a false positive leads to that a web page never being visited, leads to
that potential valuable content never will be extracted from the given web page.
Hence, false positives leads to loss of valuable content for a web crawling system
utilizing a Bloom filter as URL cache.

Base on the latter assumptions, of false positives leading to loss of, presum-
ably, valuable web content for a web crawler system utilizing a Bloom filter as
URL cache, we propose three novel URL caching strategies based on temporal
and spatial approaches. These strategies, which are briefly explained in section
1.4 in the introduction chapter are as follows:

1. A temporal strategy for reducing false positives.

2. A spatial strategy for reducing false positives.

3. A spatio-temporal strategy for reducing false positives.

Each of the three strategies proposed will be thoroughly explained in the sec-
tions below, but first the additional sub research question introduced in 1.5 is
thoroughly explained.

4.1 Seeded hash functions

As stated in 3.4, the Bloom filter utilize k number of different hash functions to
represent an element in the filter. To use k number of different hash functions
can lead to a practical problem, namely a lack of enough different suitable hash
functions. Also, an assumption were made, that it would be better to utilize the
best suitable hash function k times, than k different hash function. A sub-research
question was therefore added to list of research questions, see section 1.5.

The idea behind the sub-research question, is, presumably, to benefit from
both utilizing the most fit hash function, and to remove the problem with lack of
suitable hash functions. The proposed solution is to use a single hash function
k times, seeding the input URL with a different salt each time. The preferred
result would be that the Bloom filter utilizing the different salts as seed instead
of different hash functions would produce close to the same false positive rate, or
better.
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Hash functions are an important part of the Bloom filter and are thoroughly
explained in section 3.3. To decide which hash function that is most fit for our
solution, 4 different hash functions, all briefly explained in section 3.3.5, will be
evaluated in a Bloom filter setting.

If the preferable result is accomplished, all other test cases presented in chapter
5 will utilize Bloom filters with the best fit hash function with different salts as
seed, instead of different hash functions.

4.2 Temporal strategy

This section will thoroughly explain the novel temporal strategy proposed by this
thesis. Temporal can be defined as follows:

If you describe processes or strategies as temporal, you are referring to how
they change or endure over a period of time.

Temporal in the context of this thesis is related to a web crawler system apply-
ing two web crawling strategies. These strategies, focused and revisiting crawling,
both explained in section 2.3, are utilized to, as mentioned above, monitor a lim-
ited area of the web over time. Hence, the temporal strategy, as the name might
reveal, is based on time.

The focused web crawler strategy is defined as a so-called crawl sequence of a
small to medium sized collection of web pages, as stated in section 2.3.2. A crawl
sequence can be defined as the whole sequence of visits a web crawler performs,
visiting each web page once.

Consider the following example: If we were set to perform a crawl, where
the web crawler utilizing a focused crawling strategy, limited to the domain of
gizmodo.com, a crawl sequence would be defined as the sequence of visits the web
crawler had to perform to cover all available web pages under the gizmodo.com
domain.

The revisiting strategy is based on revisiting a set of previously crawled web
pages. The purpose of the revisiting strategy is to discover new content on the
previously visited web pages upon revisit.

The intention of the temporal strategy, is to reduce the false positive rate for
a web crawler system utilizing a Bloom filter as a URL cache. The strategy will,
presumably, limit the false positive rate by taking advantage of the characteristics
of a web crawler utilizing revisiting and focused crawler strategies. Hence, the
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Figure 4.1: Illustration of adding an element, Si, on visit and revisit utilizing the
temporal strategy, where each Bloom filter have three hash functions.

application of the temporal strategy on the latter web crawling system, are from
here referred to as the temporal solution.

The temporal solution utilize a single bloom filter. The bloom filter contains
k number of hash functions, or k number of salts. When the temporal solution
perform a crawl, false positives may occur. Further, the idea of the temporal strat-
egy is to use a new Bloom filter containing another combination of hash functions
or salts upon a revisit. This will, presumably, provoke false positives on different
URLs upon revisit. Hence, over a time-span of two crawls, the false positive rate,
arguably, will be reduced compared to a single crawl.

In other words, the intention of the temporal solution is to provoke false pos-
itives on other URLs on the the second crawl, compared to the first crawl, as
illustrated in figure 4.1. In other words, the figure 4.1 illustrates a scenario where
element Si is added to a Bloom filter on both visit and revisit. Further, the hash
functions utilized by the filter in both visit and revisit maps Si to a to a bit position
in the filter, which is set to 1.
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From figure 4.1, we can see that the combination of bits set to 1 in the Bloom
filter for each visit and revisit, are different from each other. By obtaining this
difference, which is the main goal of the temporal strategy, will presumably lead
to other coalitions between hash functions on revisit compared to visit. Therefore,
the false positive rate will, arguably, be reduced from an overall perspective, bas-
ing this assumption on that different hash function collisions gives different false
positives.

To consider another scenario, where the temporal strategy is applied in a web
crawler system utilizing a Bloom filter as URL cache, and the element Si rep-
resents an URL linking to a specific web page. A Bloom filter is queried two
different times, asking if the URL Si is present in the filter, one time for each
crawl. At the first crawl the query return that Si is present in the Bloom filter.
This leads to that the web page Si is linked to, will not be visited. At the second
crawl the query return that Si is not present in the set, and the web page Si is
linked to, gets visited. Hence, this indicates that the query from the first crawl
returned a false positive, and even though the web page did not get visited on the
first crawl, it was crawled on the next.

It is worth noticing, that each of the crawls on its own, will not reduce the false
positive rate. Alone, they will rather act as a standard single Bloom filter solution.
Although, over a time-span of several crawls, the false positive rate will, arguably,
be reduced.

The algorithms 1 and 2, describing the operations of adding and querying a
Bloom filter, presented and explained in section 3.5.1, are the same as the Bloom
filter on each visit uses in the temporal strategy. Therefore, the description made
of each of the operations, in the section 3.5.1, apply for the temporal strategy and
will not be described again here.

The temporal solution may introduce a time delay on some content that the
crawler visits, since a false positive in the filter will result in that the URL will be
visited upon a later crawl.

The worst case scenario for the temporal solution is that some URLs will be
hashed to the same values each time, resulting in that every time the filter is
queried for the URL a false positive will be given, and the URL will never be
visited, which leads to the content of that page will never be retrieved.
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4.3 Spatial strategy

This section will thoroughly explain the novel spatial strategy proposed by this
thesis. Spatial can be defined as follows:

Spatial is used to describe things relating to size, space, area, or position; a
formal word.

Spatial, in the context of this thesis related to memory consumption.

The spatial strategy utilizes a combination multiple Bloom filters to, arguably,
reduce the false positive rate. Each of the Bloom filters contains a k number of
hash functions, or a single hash function utilized k number of times, seeded with
different salts each time.

When combining multiple filters, it is important that each filter is different.
For a combination of two Bloom filters, if both filters are equal, a false positive
in the first filter will also be a false positive in the second filter. Hence, the false
positive probability will stay the same, and the memory consumption would be
approximately the double, compared to a single filter. To ensure that the filters
are not equal, different hash functions or a single hash function where the input
elements seeded with different salts will be used to create each filter.

The spatial strategy is based on knowledge of; a Bloom filter will never return
a false negative when queried. In other words, a Bloom filter returning that an
element is not present in the filter, when queried, returns a correct answer. This
means that it is certain that the queried element is not present in the filter.

Further, the idea for the proposed spatial strategy is to take advantage of the
fact that the Bloom filter never return a false negative. Since the Bloom filter does
not return false negatives, we assume that, as long as at least one of the filters in a
multiple Bloom filter solution returns a negative answer, the element queried for is
not present in the filter. Therefore, when querying a multiple Bloom filter solution
for an element, and an ambiguous answer is returned, all filters which returns a
positive answer will be regarded as false positives.

As described in section 3.5.1, the Bloom filter only needs two basic operations,
add and query. Figure 4.2 shows an example of how element Si is added into two
filters. The filters is configured with 3 hash functions each. If we compare which
bits that are set in the two arrays, we see that different positions is set in the
arrays. This is the goal of the spatial solution. When the values are different, a
false positive in the first filter may not result in a false positive in the second filter,
assuming no false positive occur in at the same bit position in the second filter.
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Figure 4.2: Illustration of adding an element, Si, to two Bloom filters utilizing the
spatial strategy, where each Bloom filter have three hash functions.

To clarify this even more, consider the following scenario: For a combination
of two Bloom filters, a false positive occurs in filter 1, as a result of the occurrences
of collisions in the hash functions belonging to the latter filter. If another set
of hash functions is utilized by filter 2, the elements will be located in different
positions. Hence a false positive in filter 1 may not be a false positive in filter
2. Therefore, this will, presumably lead to a reduction of the false positive ratio,
compared to a single filter with the same amount of hash functions.

The spatial solution is likely to consume approximately the double amount of
memory as a single Bloom filter, however, the spatial solution will still utilize less
memory than traditional data structures that is used for the same purpose. Hence,
due to the compact representation the Bloom filter provide, it should be possible
to reduce the false positive rate, and still consume only a fraction of the memory
a traditional data structure like for instance a hash set would consume.

The two basic operations of the Bloom filter, explained in section 3.5.1, namely
adding an element and querying for an element need to be supported. Algorithm
3 describes how the implementation of adding an URL will work, and algorithm
4 explains how the implementation of querying for an URL will work.

Algorithm 3 describes how to add an element Si to multiple Bloom filters. For
each Bloom filter F in Sf , Si is hashed by all hash functions H in CH . Each
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Algorithm 3 Add an element Si to multiple Bloom filters
1: for all F in Sf do
2: for all H in CH do
3: h := H(Si)
4: Bh := 1
5: end for
6: end for

hash value h generated by H(Si), Bh is set to 1. In other words, the hash value h
returned by H(Si) represents a bit position in the given Bloom filter, which is set
to 1.

Algorithm 4 Query for an element Si in multiple Bloom filters
1: b := true
2: for all F in Sf do
3: for all H in CH do
4: h := H(Si)
5: if Bh == 0 then
6: b := false
7: break
8: end if
9: end for

10: end for
11: return b

Algorithm 4 demonstrates how to query multiple Bloom filters for a given
element, Si. First the collection of all filters Sf is looped through. Then for each
filter, all the hash functions is looped through at line 3. For each hash function the
element Si is hashed. Then, based on the bit position values, created by each of
the hash functions, a look-up is performed on the filter. The look-up is performed
to check if the bit position values hashed for Si is present in the filter. If bit value
1 is returned, the variable b will still be true, if bit value 0 is returned, the variable
b is set to false and the algorithm will exit, returning false. This is performed
for each hash function on each filter. If the bit value 1 is returned for each hash
function in each Bloom filter, true is returned.
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Figure 4.3: Illustration of adding an element, Si, to two Bloom filters on visit and
revisit, utilizing the spatio-temporal strategy, where each Bloom filter have three
hash functions.

4.4 Spatio-Temporal strategy

This section will thoroughly explain the novel spatio-temporal strategy proposed
by this thesis. Spatio-temporal can be defined as follows:

Spatio-temporal is used to describe the relation to to size, space, area, or
position, referring to how they change or endure over a period of time.

The two latter sections have thoroughly described the novel temporal and spa-
tial strategies proposed by this thesis. The novel spatio-temporal strategy is, as
you may have guessed, a combination of the two latter strategies. The intention of
combining the temporal and spatial strategies are to utilize the reduction of false
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positives these strategies, presumably, provide to further reduce the false positive
rate.

The figure 4.3 illustrates an example of how an element, Si, is added into two
Bloom filters both on visit and revisit when utilizing the spatio-temporal strategy.
Each Bloom filter in both visit and revisit utilize three hash functions each. If
we compare which bits that are set in the two filters in visit and the two filters in
revisit, we observe that all the filters contains different combinations of bits set to
1.

Obtaining different combinations of bits set to 1 in each of the filter, will in-
crease the probability of discovering a false positive and presumably decrease the
false positive rate. This is the intention of the spatio-temporal strategy. When the
values are different, a false positive in the first filter may not result in a false posi-
tive in the second filter, and a false positive in occurring in visit may not result in
a false positive in revisit.

The algorithms 3 and 4, describing the operations of adding and querying
multiple Bloom filters, presented and explained in section 4.3, are the same as the
combination of multiple Bloom filters which each visit uses in the spatio-temporal
strategy. Therefore, the description made of each of the operations, in the section
4.3, apply for the temporal strategy and will not be described again here.
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Chapter 5

Validation and Testing

In this chapter we test the strategies proposed and thoroughly explained in chapter
4. We first describe the test data used, and then explain how the different test
cases is conducted and what the purposes of the different test cases is. Each of the
results for the different strategies is presented in its own section.

5.1 Test data

To provide correct results it is important to have correct test data. Since our focus
is the URL cache in a web crawler system, the test data used will be URLs.

To conduct the different tests we will need 1 000 000 unique URLs to insert
in the filter, and 1 000 000 more unique URLs to query with. Hence, the total
number of URLs will be a minimum of 2 000 000 unique URLs. Therefore, we
will harvest a test set with a minimum of 2 000 000 unique URLs.

To prevent falsely identification of false positives, which can happen if the set
of input URLs contains duplicates, the implementation will discover duplicates,
and discard the duplicated URLs.

To retrieve the needed test data, an web crawler was implemented in the
Python programming language. This crawler was used to retrieve the necessary
number of 2 000 000 unique URLs.
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5.2 Different test approaches

We will test our solution strategies with two approaches, incremental and non-
incremental. This will be performed with the intention of gaining a broader un-
derstanding of the test results.

5.2.1 Incremental approach

The incremental approach will simulate the behavior of a web crawler system.
Since the solution strategies proposed are placed in a web crawler context, we
will mimic the behavior of a web crawler to obtain the most accurate test results.

To simulate the behavior of a web crawler, the incremental approach will start
with an empty Bloom filter. Then the filter will be queried if a URL is contained in
the filter. After the query, the URL will be inserted, and the same procedure will
be repeated for a new URL. This is repeated for 1 000 000 unique URLs. If the
filter claims to contain any of the URLs, this will be regarded as a false positive.

5.2.2 Non-incremental approach

The non-incremental test approach will provide worst case test results. When
initializing a Bloom filter, the size of expected input elements must be defined.
In other words, the filter have a maximum element limit. This limit defines how
many elements which can be represented in the Bloom filter without exceeding
an acceptable false positive rate. Therefore, we will test our solution strategies
with the non-incremental approach to measure the false positive rate for a filled
up Bloom filter.

To conduct the non-incremental test, we will first create a Bloom filter, and
then insert 1 000 000 unique URLs. After the URLs is inserted, we will then
query the Bloom filter with a different set of 1 000 000 unique URLs. If the filter
claims to contain any of the latter URLs, it should be regarded as a false positive.

5.3 Experimental setup

Before presenting the analysis and results, we will describe the experimental
setup. For each test result presented in this chapter, a test is performed 100 times,
and an average is calculated based on the test results from each of the 100 test
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results. This is performed to ensure that a single test run does not influence the
overall results to much.

Due to the fact that the size of the Bloom filter is determined by the number of
bits available in the filter, not considering the small overhead created by the hash
functions and the bit array, the Bloom filter was configured with different number
of hash functions and different bit-size multipliers. To calculate the size of the
filter m, equation 5.1 is utilized.

m = n * k * M (5.1)

In equation 5.1, m is the bit size of the Bloom filter, n is the number of URLs
that will be inserted, k is the number of hash functions and M is the bit-size
multiplier. The bit-size multiplier determines the number of bits available for
each bit inserted in the Bloom filter.

Considering the issue that a hash function is a fairly complex function with
somewhat high computational time in the context of data-structures, a higher
number of hash functions in the Bloom filter would mean a higher overall com-
putational time. Therefore, different bit-size multipliers was used to observe if
a smaller number of hash functions combined with a higher bit-size multiplier
would produce near to the same results as a larger amount of hash functions and a
smaller bit-size multiplier without consuming a lot more memory.

The number of hash functions used, in the different test cases, range from 1
to 10. The bit-size multiplier that will be tested is the following: 1.7, 2.0, 2.5,
3.0, 4.0 and 5.0. This will provide a wide range of test results which should be
sufficient enough to indicate if it is better to increase the bit size multiplier or add
more hash functions.

All the different tests is conducted on the same computer. The computer is
configured with an AMD Athlon II X4 620 processor, with 4 cores and running at
2.6GHz. The computer is also configured with 4 GB of RAM.

5.4 Hash function approaches

The results presented in this section will have two closely connected purposes.
The first purpose is the provide an answer to the sub research question presented
in section 1.5 in the introduction chapter. The research question asks if seeding
URLs with k different salts, only using the best suited hash function will provide
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1 HF FP(%)
Jenkins 21.307%
MurmurHash 21.309%
MD5 21.321%
SHA-1 21.332%

Table 5.1: Average false positive count for 1 hash functions for a incremental run.

close to the same results as using the k best suited hash functions. Seeded hash
functions thoroughly explained in section 4.1.

The other purpose is to determine, which of the selected hash functions is
the best suited one. The hash functions tested is: Jenkins, MurmurHash, MD5
and SHA-1. MD5 and SHA-1 is cryptographic hash functions, that tends to be
slower than normal hash functions, since they are used for cryptographic purposes.
Cryptographic hash functions tends to be slower since it should not be able to
compute the original value from the hashed value, as explained in section 3.3.
Jenkins and MurmurHash is general purpose hash functions and therefore does
not need to have this property. Hence it is faster to compute the hash value of an
element with Jenkins and MurmurHash.

To test the false positive of the different solutions we will use two test scenar-
ios: Incremental and non-incremental, as explained in section 5.2.

5.4.1 Incremental

To test the false positive rate with the incremental test, will start with an empty
Bloom filter. First an URL is fetched and the filter will then be queried if the URL
is present in the filter. If the filter claims that the URL is present, a false positive is
discovered, due to the fact that the URL has not yet been added to the filter. After
querying the filter, the URL is added to the filter, and a new URL is fetched and
the process is repeated. This is done with 1 000 000 unique URLs, and each test
is repeated 100 times and an average is calculated based on the 100 runs.

The incremental test is used to simulate how a web crawler would actually
interact with the URL cache when crawling a set of web pages. This test will
therefore simulate the behaviour of how URLs would be added to the URL cache
in a real web crawler environment. The results from this test will indicate how
well a Bloom filter would perform if used in a URL cache.

Table 5.1 shows the results of four incremental tests that are run with one hash
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2 HF FP(%)
Jenkish And MurmurHash 5.829%
Jenkins (seeded) 5.824%
MurmurHash (seeded) 5.832%
MD5 (seeded) 5.824%
SHA-1 (seeded) 5.823%

Table 5.2: Two hash functions, incremental

function. All results in table 5.1 is tested with a Bloom filter that has the bit array
size set to m = 2 000 000.

The test results for one hash function Bloom filter, presented in table 5.1 in-
dicates that with one Bloom filter utilizing one hash function the false positive
probability(FP) will be close to equal for all four Bloom filters. The filter which
utilizes Jenkins produces the best result, but the deviation between the four are so
small that it would be regarded as equally good.

All Bloom filters produce a false positive rate close to 21.3%, which would
result in that a web crawler would miss 21.3% of the ideal visited web pages.
Hence, due to the large number of false positives, a Bloom filter should not be
used with only one hash function or the bit-size multiplier should be increased.

The test results for two hash function Bloom filter, presented in table 5.2, show
that the test results for the four Bloom filters utilizing the seeded hash functions
produce approximately the same false positive rate. The filter utilizing SHA-1
is slightly better then the others, though, the deviation between the latter filter
and the other seeded bloom filters are again so small that it would be regarded as
equally good.

However, two interesting discoveries are made. The first is that false positive
rate have gone from approximately 21.3% to 5.8%. This implies that by doubling
m from 2 000 000 bits to 4 000 000 bits, the false positive rate is diminished to
almost a fourth of the rate seen in the table 5.1.

The other discovery made, are that the Bloom filters utilizing seeded hash
functions produce just as low false positive rate as the filter utilizing a combina-
tion of two different hash functions. This result seems promising for the seeded
hash function research question, even though, at this point it is to early to draw a
conclusion.

The test results for three hash function Bloom filter, presented in table 5.3,
show that the four Bloom filters, utilizing the seeded hash functions, produce
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3 HF FP(%)
Jenkish, MurmurHash and SHA-1 1.765%
Jenkins (seeded) 1.762%
MurmurHash (seeded) 1.760%
MD5 (seeded) 1.763%
SHA-1 (seeded) 1.760%

Table 5.3: Three hash functions, incremental

1 HF 2 HF 3 HF
Jenkins 21.307% 5.824% 1.762%
MurmurHash 21.309% 5.832% 1.760%
MD5 21.321% 5.824% 1.763%
SHA-1 21.332% 5.823% 1.760%

Table 5.4: Average false positive count for an incremental test run with seeded
hash functions.

approximately the same false positive rate. When we compare the results from
this table with the latter results, presented in table 5.1 and table 5.2, we observe a
repeating trend.

This trend imply that the four different hash function performs almost equally
good when utilized by a Bloom filter using the incremental approach. We notice
that there are some minor differences, SHA-1 and Jenkins seems to perform best.
Although, as already mentioned, the deviation between the results are to small to
conclude with that one are better than the others.

There are also two other tendencies to observe when comparing the latter table
of test results with table 5.2. One tendency is that the false positive rate does not
decrease linearly with the number hash functions, k, or number of bits, m, in the
Bloom filter. It seems rather to converge against a number close to, or even, zero.

The other tendency discovered, when comparing the results from latter table,
5.3, with the results from table 5.2, is that is that the Bloom filters, utilizing seeded
hash functions, produce just as low false positive rate as the filter utilizing a com-
bination of different hash functions. Hence, this confirms the sub research ques-
tion concerning seeded hash functions, presented in section 1.5 of the introduction
chapter, for Bloom filters when tested with a incremental approach.

Table 5.4 provides an overview of all test results from table 5.2 and 5.3, where
the Bloom filter utilizes seeded hash functions. Since the deviation between the
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1 HF FP(%)
Jenkins 39.365%
MurmurHash 39.364%
MD5 39.354%
SHA1 39.330%

Table 5.5: Average false positive count for 1 hash functions (HF) in a non-
incremental run.

different results are so small, they are regarded as equally good when utilized, by
a Bloom filter acting as a URL cache, to reduce the false positive rate, when tested
with a incremental approach.

5.4.2 Non-incremental

To conduct the false positive test with the non-incremental approach will first add
1 000 000 unique URLs to an empty Bloom filter. After inserting the 1 000 000
URLs, another set of 1 000 000 unique URLs is used to query the filter with.
Since the URLs used to query the filter with is not stored in the filter, a claim from
the filter that it contains any of these URLs will be a false positive. Each test is
performed 100 times and an average is calculated based on the results.

Table 5.5 shows the results of a non-incremental test that is run with one hash
function. All results in table 5.5 is tested with a Bloom filter that has the bit array
size set to m = 2 000 000.

The test results for one hash function Bloom filter, presented in table 5.5 in-
dicates that with one Bloom filter utilizing one hash function the false positive
probability (FP) will be close to equal for all four Bloom filters. The filter which
utilizes SHA-1 produces the best result, but the deviation between the four are so
small that it would be regarded as equally good.

All Bloom filters produce a false positive rate just above 39.3%, which would
result in that a web crawler would miss around 39.3% of the visited web pages.
Hence, due to the large number of false positives, a Bloom filter should not be
used with only one hash function or the bit-size multiplier should be increased.

The test results for two hash function Bloom filter, presented in table 5.6, show
that the test results for the four Bloom filters utilizing the seeded hash functions
produce approximately the same false positive rate. The filter utilizing SHA-1
is slightly better once more, the deviation between the latter filter and the other
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2 HF FP(%)
Jenkins And MurmurHash 15.492%
Jenkins (seeded) 15.470%
MurmurHash (seeded) 15.497%
MD5 (seeded) 15.463%
SHA-1 (seeded) 15.456%

Table 5.6: Average false positive count for 2 hash functions in a non-incremental
run.

3 HF FP(%)
MurmurHash, Jenkins & SHA-1 6.093%
Jenkins (seeded) 6.104%
MurmurHash (seeded) 6.092%
MD5 (seeded) 6.098%
SHA-1 (seeded) 6.091%

Table 5.7: Average false positive count for 3 hash functions in a non-incremental
run.

seeded bloom filters are again so small that it would be regarded as equally good.

However, two interesting discoveries are made. The first is that false positive
rate have gone from approximately 39.3% to 15.4%. This implies that by doubling
m from 2 000 000 bits to 4 000 000 bits, the false positive rate is diminished to
less than half of the rate seen in the table 5.5.

The other discovery made, are that the Bloom filters utilizing seeded hash
functions produce just as low false positive rate as the filter utilizing a combina-
tion of two different hash functions. This result seems promising for the seeded
hash function research question, even though, at this point it is to early to draw a
conclusion.

The test results for three hash function Bloom filter, presented in table 5.7,
show that the four Bloom filters, utilizing the seeded hash functions, produce
approximately the same false positive rate. When we compare the results from
this table with the latter results, presented in table 5.5 and table 5.6, we observe a
repeating trend.

This trend imply that the four different hash function performs almost equally
good when utilized by a Bloom filter using the non-incremental approach. We
notice that are some minor differences, mainly that SHA-1 performs best each
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2 HF 3 HF
Jenkins 15.470% 6.104%
MurmurHash 15.496% 6.092%
MD5 15.463% 6.098%
SHA-1 15.456% 6.091%

Table 5.8: Average false positive count for a non-incremental test run with seeded
hash functions.

time. Although, as already mentioned, the deviation between the results are to
small to conclude with that one are better than the others.

There are also two other tendencies to observe when comparing the latter table
of test results with table 5.6. One tendency is that the false positive rate does not
decrease linearly with the number hash functions, k, or number of bits, m, in the
Bloom filter. It seems rather to converge against a number close to, or even, zero.

The other tendency discovered, when comparing the results from latter table,
5.7, with the results from table 5.6, is that is that the Bloom filters utilizing seeded
hash functions produce just as low false positive rate as the filter utilizing a combi-
nation of different hash functions. Hence, this confirms the sub research question
concerning seeded hash functions, presented in section 1.5 of the introduction
chapter, for Bloom filters when tested with a non-incremental approach.

Table 5.8 provides an overview of all test results from table 5.6 and 5.7, where
the Bloom filter utilizes seeded hash functions. Since the deviation between the
different results are so small, they are regarded as equally good when utilized, by
a Bloom filter acting as a URL cache, to reduce the false positive rate, when tested
with a non-incremental approach.

Table 5.9 shows the test for 1 Bloom filter which only uses seeded hash func-
tions. The hash functions used is the Jenkins hash, and all the URL is seeded
with an unique value before the hash value is computed. The left column denotes
the number of seeds, or hash functions (HF), and the top row denotes the bit-size
multiplier (M).

5.4.3 Hash function selection

The main purpose of this section was to provide an answer to the sub research
question, concerning seeded hash functions, presented in 1.5. Another, closely
related part of this section was to select a hash function to utilize the seeding on.
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1 Bloom filter
1.7 M 2.0 M 2.5 M 3.0 M 4.0 M 5.0 M

3 HF 8.7927% 6.1041% 3.5882% 2.2770% 1.0788% 0.5964%
4 HF 3.9137% 2.3985% 1.1832% 0.6458% 0.2395% 0.1098%
5 HF 1.7396% 0.9418% 0.3910% 0.1824% 0.0534% 0.0194%
6 HF 0.7730% 0.3716% 0.1281% 0.0519% 0.0118% 0.0035%
7 HF 0.3455% 0.1468% 0.0419% 0.0147% 0.0027% 0.0006%
8 HF 0.1528% 0.0573% 0.0142% 0.0043% 0.0006% 0.0001%
9 HF 0.0679% 0.0225% 0.0046% 0.0012% 0.0001% 0.000025%

10 HF 0.0301% 0.0090% 0.0015% 0.0004% 0.00004% 0.000004%

Table 5.9: Non-incremental Bloom filter query for 1 Bloom filter with seeded
hash.

We have tested seeding of hash functions with four different hash functions,
for a Bloom filters utilizing both two and three hash functions. These tests have
been performed both with an incremental and non-incremental test approaches.
For each time test of the four seeded hash functions have been tested with two or
three hash function Bloom filters, both by incremental and non-incremental ap-
proach, the same test have been performed on a Bloom filter utilizing the same
number of different hash function. This is performed with the intention of com-
paring the seeded hash Bloom filters with the Bloom filter utilizing different hash
functions.

The results for each test, both in incremental and non-incremental, provide us
with the same result, namely that the seeded hash function Bloom filters provide
just as low false positive rate as a Bloom filter utilizing different hash functions.
Therefore, seeded hash function based Bloom filters will be utilized in for all the
following tests in this chapter.

To be able to utilize this seeded hash function approach, we also need a hash
function to apply the approach on. The different hash functions tested was Jenk-
ins, MurmurHash, MD5 and SHA-1.

We were not able to draw a conclusion on way or another, based on the false
positive rate presented by the test results in this section, due to that the test re-
sults show that each of the hash functions nearly the same false positive rates.
Therefore, we have to base our decision on other factors.

Another factor to take in to consideration is processing time. Since the MD5
and SHA-1 is cryptographically hash functions, as explained in 3.3, due to secu-
rity reasons, they requires more processing time than Jenkins and MurmurHash.
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Hence, we discard MD5 and SHA-1, and need to choose between Jenkins and
MurmurHash.

We consider Jenkins and MurmurHash to be as good as equal, but Jenkins have
provided, somewhat, slightly lower false positive rate for the temporal strategy
tests. Since the thesis is closely related to web crawler systems, we choose the
hash function that performed best in the incremental test results. Therefore, the
Jenkins hash will be utilized as a seeded hash function, by the Bloom filters in the
rest of this chapter.

5.5 Memory consumption

To measure the memory consumption we will compare the different configura-
tions of our Bloom filter implementation, against the ArrayList data structure
found in java.util.Arraylist, and HashSet found in java.util.HashSet. The two data
structures was chosen, due to their suitable characteristics, where both have the
needed functionality to function as a URL cache in a web crawler system, namely
add and contains.

To measure the memory consumption of the Bloom filter, HashSet and Ar-
rayList, in turn, 1 000 000 unique URLs was added to each and the memory con-
sumption of each data structure was measured. The memory consumption was
measured utilizing an resource profiling agent.

This agent is based on Java Instrumentation Application Programming Interface
(API) [15]. The Instrumentation API have methods to measure memory used by
an object, in a running application. Direct usage of Java Instrumentation only
measures the memory usage of a single object, and therefore an agent which also
measure the object references is utilized.

The memory measured is the memory that is consumed by the instance of the
data structure. To give an accurate indication of how much memory the different
data structures will consume, we will measure deep memory consumption. Deep
memory consumption is how much memory an object and the references found
in that object uses. So all the references from the given instance will also be
measured, to given an indication of how much memory would actually be used.

Table 5.10, shows the memory consumption in kilobytes for a single Bloom
filter with different number of hash functions and bit-size multiplier. HF is number
of hash functions and M is the bit-size multiplier.

From the table, we observe that the more hash functions that is used, the more
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1 Bloom filter
1.7 M 2.0 M 2.5 M 3.0 M 4.0 M 5.0 M

3 HF 660 770 953 1136 1503 1869
4 HF 868 1014 1258 1503 1991 2479
5 HF 1075 1259 1564 1869 2479 3090
6 HF 1283 1503 1869 2235 2968 3700
7 HF 1491 1747 2174 2602 3456 4311
8 HF 1698 1991 2048 2968 3944 4921
9 HF 1906 2235 2785 3334 4433 5531
10 HF 2114 2480 3090 3700 4921 6142

Table 5.10: Memory consumption in kilobytes for one Bloom filter

2 Bloom filters
1.7M 2.0M 2.5M 3.0M 4.0M 5.0M

3 HF 1286 1506 1872 2239 2971 3703
4 HF 1702 1994 2483 2971 3948 4924
5 HF 2117 2483 3093 3703 4924 6145
6 HF 2532 2971 3703 4436 5901 7366
7 HF 2947 3459 4314 5168 6877 8586
8 HF 3362 3948 4924 5901 7854 9807
9 HF 3777 4436 5535 6633 8830 11028

10 HF 4192 4924 6145 7366 9807 12248

Table 5.11: Memory consumption in kilobytes for 2 Bloom filters with different
configuration.

memory will be consumed. The memory consumption will also increase by in-
creasing the size of the bit-size multiplier, since this directly affects the size of the
bit array, which is essentially the only part of the filter consuming any space.

Table 5.11 and 5.12 summaries the memory consumption for two Bloom fil-
ters and three Bloom filters. Both tables shows if the bit-size multiplier and/or
number of hash functions is increased, the amount of memory consumed will also
increase.

The reason that the memory consumption increases when adding a hash func-
tions or increasing the bit-size multiplier, is that these parameters directly affects
the size of the bit array. The size of the bit array is calculated using equation 5.1.

Comparing table 5.10, 5.11 and 5.12 shows that the memory will increase
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3 Bloom filters
1.7M 2.0M 2.5M 3.0M 4.0M 5.0M

3 HF 1909 2239 2788 3338 4436 5535
4 HF 2532 2971 3704 4436 5901 7366
5 HF 3154 3704 4619 5535 7366 9197
6 HF 3777 4436 5535 6633 8831 11028
7 HF 4400 5169 6450 7732 10296 12859
8 HF 5022 5901 7366 8831 11760 14690
9 HF 5645 6633 8281 9929 13225 16521

10 HF 6267 7366 9197 11028 14690 18352

Table 5.12: Memory consumption in kilobytes for 3 Bloom filters with different
configuration.

Collection Memory consumed
ArrayList 194560
HashSet 250880

Table 5.13: Total amount of memory consumed by an ArrayList and a HashSet

approximately linear, based on the number of filters that is added. E.g. If one
filter is used and you increase to two filters, the amount of memory consumed will
increase by a factor of 2.

Table 5.13 summaries how much memory is used by an ArrayList and a Hash-
Set. The ArrayList uses 194560 kilobytes or 190 MB of memory, while the Hash-
Set uses 250880 kilobytes or 245 Mb of memory. The ArrayList and HashSet will
increase in size based on the amount of elements that is stored in the structure.

The Bloom filter consumes significantly less memory than the ArrayList and
HashSet. The reason that the Bloom filter uses so less memory than the ArrayList
and HashSet, is that the only reference the Bloom filter have, is a reference to a bit
array. This means that the only thing that consumes memory in the Bloom filter,
is the bit array of size m.

The ArrayList and the HashSet must keep references to all inserted elements.
Since the URLs is represented as a String, the ArrayList and HashSet must keep
references to all the inserted Strings. This explains the much larger memory con-
sumption by the ArrayList and HashSet.

Since our focus is on the URL cache it is not important to have the ability to
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Collection Time in milliseconds
ArrayList 58
HashSet 428

Table 5.14: Time to add 1 000 000 URLs to collection

fetch a URL from a position in the list, which is possible with both the ArrayList
and HashSet. The URL cache only needs the ability to query if the URL is visited,
hence the ability to fetch an element from a position is considered not necessary.

The Bloom filter is able to query if an element is present, and add new ele-
ments. This is the only properties that is needed in the context of an URL cache,
therefore an ArrayList and HashSet that stores each URL as a String object will
contribute to the overhead, hence explaining the significantly more memory con-
sumed by these collections.

5.6 Performance test

The performance tests is designed to test how well the different data structures
does against each other. The goal is to asses that the Bloom filter will not be a
bottleneck in the URL cache of a web crawler system.

5.6.1 Add test

The add test is performed to see how much time it takes to add elements to the
data structure. The add test uses 1 000 000 unique URLs, and the test is done 100
times, and an average is calculated.

From table 5.14 we see that the ArrayList is the fastest data structure tested, it
uses approximately 58 milliseconds to add 1 000 000 URLs. The ArrayList is a
very simple data structure and does only insert the next element after the previous
inserted element.

The HashSet is a bit slower than the ArrayList and uses approximately 428
milliseconds to insert 1 000 000 URLs. The reason that the HashSet is slower, is
due to that it first must hash the value that will be inserted, to generate an unique
key.

In the Appendix A.1.3 the results of the insertion time for the different con-
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Collection Time in milliseconds
ArrayList 22000000
HashSet 176

Table 5.15: Time to query for 1 000 000 URLs in collection

figurations of the Bloom filter is shown. A Bloom filter utilizing a combination
of three seeded hash functions, uses about 3213 milliseconds to add 1 000 000
URLs. This is approximately 7.5 times the time of a HashSet. The obvious reason
that the Bloom filter is slower than the HashSet, is to the number of hash func-
tions utilized. The HashSet only utilized one hash function, while in this case the
Bloom filter will use three. By increasing the number of hash functions to four,
the time to add 1 000 000 URLs to the filter will increase to 4578. This indicates
that the time will increase linearly with the number of hash functions.

Since the Bloom filter uses more time to insert an element it may be more
feasible to increase the bit-size multiplier than by adding more hash functions.

5.6.2 Query test

To test the time to query the different data structures, 1 000 000 URL will be
inserted, and then we will query for 1 000 000 URLs that is not contained in the
data structure. So the time reflected in this test is a worst-case scenario.

Table 5.15 shows the result for querying for 1 000 000 URLs on an ArrayList
and a HashSet. It is worth noticing that the time for the ArrayList is calculated.
To calculate the time for the ArrayList, 1 000 000 URLs was inserted and it was
then queried with an URL that was not contained in the ArrayList. This was done
100 times, and an average was calculated.

From the table we see that the ArrayList is very slow to query. Since we
query with an element that is not in the list, all elements must be checked. To
conduct the test with the ArrayList with 1 000 000 URLs and then query with
another 1 000 000 URLs is not feasible within the time frame of this thesis. The
test of the ArrayList is therefore conducted with inserting 1 000 000 URLs, and
then doing 100 independent queries and calculating the average. The average for
the ArrayList is 22 milliseconds, so the time to query for 1 000 000, not inserted
elements in an ArrayList, would be 22 * 1 000 000 = 22 000 000 milliseconds.
The query time is due to that there is no look-up mechanism in the ArrayList, each
element have to be checked to ensure that the queried element is not inserted.
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Since the ArrayList is so slow it is not feasible to use it in an URL cache. If an
ArrayList is used as a URL cache and the majority of the URLs that was queried
for was not in the set, the ArrayList would become a bottleneck in the URL cache.

From table 5.15, we see that the HashSet is relative fast and uses approxi-
mately 176 milliseconds. The HashSet does only need to hash the element once
to check if the element is contained. This is the strength of the HashSet since you
only have to do one hash to check if an element is present or not.

In Appendix A.1.2, we see the average time to query the different configu-
rations of Bloom filters. The filter performs better than the ArrayList, since the
Bloom filter will have a constant look-up time. However the amount of hash func-
tions influence the look-up time. The test indicates that if it is possible, the bit-size
multiplier (M) should be increased, instead of adding more hash functions. This is
due to that adding more hash functions will increase the insertion time and query
time. Still the Bloom filter will use less time than the ArrayList, but not faster
than the HashSet. This is because the HashSet only have to do one hash, while the
Bloom filter will have to hash the element multiple times.

However, the Bloom filter may use more time to query for elements than the
HashSet, but the Bloom filter uses significant much less memory than the HashSet.
This shows that if memory is a concern, a Bloom filter is very suitable replacement
for the HashSet as an URL cache.

5.7 Temporal strategy

The novel temporal strategy is thoroughly explained in section 4.2. The inten-
tion of the temporal strategy is to reduce the false positive rate introduced by the
Bloom filter, when utilized as an URL cache in a web crawler system. The tem-
poral strategy will, presumably, reduce the false positive rate compared to a single
Bloom filter, by applying a revisiting strategy explained in 2.3.4, adopted from the
filed of web crawlers.

5.7.1 Incremental

To be able to test the temporal strategy with an incremental approach, we first
inserted 1 000 000 URLs in one Bloom filter, utilizing a set of seeded hash func-
tions, and then record which URL yields a false positive. Further, a new filter was
created, and the same URLs is inserted in the new filter, but this time, we applied
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Figure 5.1: Incremental revisit results

different seeds to the hash function. Again which URL yields a false positive will
be recorded.

The false positive rate was measured by comparing the false positives from
both recorded sessions, and counted all URLs that yielded a false positive in both
both sessions.

This test simulates how a web crawler would behave. The crawler would first
visits a web page and download the content, and then at a later point in time,
revisits the page to check for updates.

The incremental revisit is tested with filters that have 3, 4, 5 and 6 different
seeds. This means that each element will be hashed 3, 4, 5 and 6 different times
for the different tests. The bit-size multiplier is set to 2.0.

Figure 5.1 shows the results for the incremental revisiting strategy with 3, 4,
5 and 6 hash functions. With three hash functions the overall false positive rate is
around 0.064%. This would mean that with a filter that 1 000 000 URL will be
stored in, would miss around 640 web pages.

By adding a fourth hash function, the false positive rate is reduced and ends up
on around 0.0077% false positives, which is slightly better. Although, a relative
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high number considering that in a web crawler system, this would result in 77 web
pages not being downloaded. Increasing the number of hash functions to 5, results
in that the number of false positives is reduced to about 0.001% false positives,
and by increasing the number of hash functions to 6, the false positive rate are
reduced to respectable 0.00012%.

A we can see from the graph, 5.1, the temporal strategy with an incremental
approach is able to reduce the false positive rate significantly, compared to a single
Bloom filter, utilizing an incremental approach, shown in the graph A.2.

5.7.2 Non-incremental

To conduct the non-incremental test on the temporal strategy, we first add 1 000
000 unique URLs to an empty Bloom filter. After the URLs is added, we query the
filter with another set of 1 000 000 unique URLs, and record which URLs yields
a false positive. We then create a new filter, using different seeds, and insert 1 000
000 URLs. We then query with the same set of URLs that was used to query the
first filter, and record which URL yields a false positive. We then compare the
false positives from both runs, and a URL which yields a false positive in both
runs, will be a false positive in the temporal strategy.

Table 5.16 shows the test result non-incremental revisit strategy. Since this test
is non-incremental it will show a worst case scenario, meaning that this represents
how the revisits strategy would work on a full filter.

What is interesting with table 5.16 is the result for the configuration with 7
hash functions and 4.0 bit Multiplier. Both the preceding test cases yields a false
positive probability of 0.0%, while in this case it is 0.0000001%. This is because
no matter how many hash functions or how large bit-size multiplier, there is al-
ways a chance that a URL will yield a false positive both times it is added to
the filter. The probability will decrease when adding more hash functions and
increasing bit-size multiplier.

By using 8 hash functions and a bit-size on 2.0 it is possible to achieve a false-
positive rate at 0.3%. Or by increasing the bit-size to 4.0 with 5 hash functions,
we will achieve approximately the same false positive probability. By increasing
the bit-size to 3.0 with 8 hash functions we will reduce the false positive to 0%.

If we compare the results in table 5.16 with the results in table 5.9 we see that
for a single Bloom filter using 3 hash functions without the revisit strategy would
yield a false positive probability of 8.7927%. On the other hand if we apply the
revisit strategy the probability of a false positive drops to 0.7687% which is a sig-
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1.7 M 2.0 M 2.5 M 3.0 M 4.0 M 5.0 M
3 HF 0.7687% 0.3723% 0.1285% 0.0520% 0.0115% 0.0036%
4 HF 0.1519% 0.0574% 0.0139% 0.0043% 0.0006% 0.0001%
5 HF 0.0302% 0.0090% 0.0016% 0.0003% 0.00003% 0.0%
6 HF 0.0060% 0.0014% 0.0002% 0.00002% 0.0% 0.0%
7 HF 0.00113% 0.00022% 0.00002% 0.0% 0.000001% 0.0%
8 HF 0.0002% 0.00003% 0.000005% 0.0% 0.0% 0.0%
9 HF 0.00004% 0.000008% 0.0% 0.0% 0.0% 0.0%

10 HF 0.00001% 0.000001% 0.0% 0.0% 0.0% 0.0%

Table 5.16: Non-incremental revisit filter query for 1 Bloom filter.

nificant improvement. The other configurations also shows a similar improvement
in the false positive probability when applying the revisiting strategy.

5.8 Spatial strategy

The spatial strategy test will combine multiple Bloom filters and exploit the fact
that Bloom filters does not return false negatives. The novel spatial strategy is
thoroughly explained in section 4.3.

To test the spatial strategy we split the tests into two types: incremental and
non-incremental.

To be able to test the spatial strategy with an incremental approach, we first
start with a combination of multiple Bloom filters with no elements inserted. We
then query all the filters to check if an URL is present in the filters. After the
query, the URL will be added, and the same will be performed with another URL.
This is done for with 1 000 000 unique URLs, 100 times on each test.

To test the spatial strategy we will also conduct a non-incremental test. The
non-incremental test will first fill up all the filters with 1 000 000 URLs, and then
query all the filters with another 1 000 000 unique URLs. Since all the 2 000 000
URLs are unique, if the filters claim to have any of the URLs used to query with,
this is regarded as a false positive.
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1 Bloom filter 2 Bloom filters 3 Bloom filters
1.7 M 2.0 M 1.7 M 2.0 M 1.7 M 2.0 M

3 HF 2.6071% 1.7686% 0.1368% 0.0641% 0.0086% 0.0028%
4 HF 0.9492% 0.5656% 0.0214% 0.0076% 0.0006% 0.0001%
5 HF 0.3565% 0.1875% 0.0036% 0.0010% 0.00004% 0.00001%
6 HF 0.1374% 0.0641% 0.0007% 0.0001% 0.000003% 0.0%

Table 5.17: Incremental multiple Bloom filter query.

5.8.1 Incremental

The incremental Bloom filter test will first query each filter if the URL is con-
tained, if all filters claim to have the URL stored in it, the results will be regarded
as a false positive. After querying all the filters, the URL is then added to all
filters, and then the sequence is repeated.

In appendix A.1.1 we see the graphs for the different tested configurations.
The graphs indicates how the false positive probability develops over time. The
Bloom filter was tested with 1, 2 and 3 filters with 1.7 and 2.0 bit-size multiplier.
All the graphs indicates that using three hash functions will give a relatively high
false positive probability after approximately 600 000 URLs is inserted.

Table 5.17 shows the results for the incremental tests. In this table we have
also included the false positive probability for 1 Bloom filter, for comparison.

By comparing the results for 1 and 2 Bloom filters in the latter table, for 3
hash functions and 2 bit-size multiplier, we can observe an significant reduction
of false positives. The only drawback, except for that the false positive rate is
not zero, is that the 2 Bloom filter solution consumes double amount of memory
compared to the solution with one filter.

Another discovery is made in table 5.17. If we compare the latter multiple
Bloom filter test results utilizing 3 hash functions and a bit-size multiplier of 2
against the single Bloom filter test results with 6 hash functions and 2 in bit-size
multiplier, we discover something quite interesting. Both test results have 6 hash
functions, and does also get the same false positive rate, namely, 0.0641%.

Further, to try to confirm our suspicion, we compare the test results for; the
combination of 2 Bloom filters utilizing 6 hash functions each and have a bit-size
multiplier of 2.0 and the combination of 3 filters, 4 hash functions each and a
bit-size multiplier of 2.0. Where both have the same false positive rate, 0.0001%
and both utilize 12 hash functions. Hence, this imply that it does not matter if
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two Bloom filters with 6 hash functions and a bit-size multiplier of 2.0 are used or
three Bloom filters with 4 hash functions and 2.0 in bit-size multiplier used.

These tests imply that, by comparing a single filter with a multiple filter solu-
tion, where both have the same number of hash functions and bit-size multipliers,
a reduction of the false positive rate will be achieved. Although, to achieve this,
a certain increase of memory consumption must be allowed, namely, the single
Bloom filter size multiplied by the number of filters in the multiple filter utilized.
Hence, to obtain a reduction of false positives in a spatial Bloom filter solution
applying the incremental test approach, a increase of the memory consumption
must be allowed.

Even though a reduction of false positives was obtained, a single filter utilizing
the same amount of hash functions, and uses the same bit-size multiplier will
obtain the same result.

5.8.2 Non-Incremental

To test the spatial strategy with a non-incremental test approach, first insert 1 000
000 URLs in each filter. Further, the URL is inserted all the filters is queried with
another 1 000 000 unique URLs. If all the filters claim that any of the URLs used
to query with is contained, a false positive will occur.

Table 5.18 show the results for two Bloom filters. By comparing the results
for one filter in table 5.9 with the results 5.18 we observe the same as in the
incremental test, the false positive probability is reduced.

However if we compare one filter with 6 hash functions with two filter and 3
hash functions. There is actually a slight increase in the false positive probability
from 0.7730% to 0.7736%. With the non-incremental test there is still a indication
that using multiple filters have minimal effect on the probability of a false positive,
when the filters is compared to a single filter with the same total amount of hash
functions.

Table 5.19 shows the same test result only with three Bloom filters. If we
compare 1 Bloom filter with 9 hash functions, this is the same amount of hash
function as: 3 filter * 3 hash function = 9 hash functions total. By comparing 1
filter with 9 hash functions with 3 filters with 3 hash functions we see that there is
still no significant reduction in the probability of a false positive.

The other configurations shows similar results for the non-incremental test.
Hence non-incremental test does, as well as the incremental test, indicates that
there is no significant gain in adding extra filters, instead of hash functions.
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2 Bloom filters
1.7 M 2.0 M 2.5 M 3.0 M 4.0 M 5.0 M

3 HF 0.7736% 0.3727% 0.1283% 0.0522% 0.0116% 0.0035%
4 HF 0.1535% 0.0576% 0.0139% 0.0042% 0.0006% 0.0001%
5 HF 0.0302% 0.0089% 0.0015% 0.0003% 0.000022% 0.000008%
6 HF 0.0060% 0.0014% 0.0002% 0.00003% 0.000001 0.0%
7 HF 0.0012% 0.0002% 0.00002% 0.000001% 0.0% 0.0%
8 HF 0.0003% 0.00002% 0.000004% 0.0% 0.0% 0.0%
9 HF 0.00002% 0.000001% 0.0% 0.0% 0.0% 0.0%

10 HF 0.000004% 0.000001% 0.0% 0.0% 0.0% 0.0%

Table 5.18: None-incremental multiple Bloom filter query for 2 Bloom filters.

3 Bloom filters
1.7 M 2.0 M 2.5 M 3.0 M 4.0 M 5.0 M

3 HF 0.0680% 0.0230% 0.0047% 0.0011% 0.0001% 0.000022%
4 HF 0.0059% 0.0014% 0.0002% 0.000023% 0.0% 0.0%
5 HF 0.0005% 0.00008% 0.000005% 0.000001% 0.0% 0.0%
6 HF 0.00004% 0.00001% 0.0% 0.0% 0.0% 0.0%
7 HF 0.000008% 0.000001% 0.0% 0.0% 0.0% 0.0%
8 HF 0.000002% 0.0% 0.0% 0.0% 0.0% 0.0%
9 HF 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 HF 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 5.19: None-incremental multiple Bloom filter query for 3 Bloom filters.
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2 Bloom filters
1.7 M 2.0 M 2.5 M 3.0 M

2HF 0.1534% 0.0577% 0.0142% 0.0042%
3HF 0.0059% 0.0014% 0.00017.% 0.00003%
4HF 0.0002% 0.00004% 0.000002% 0.0%

Table 5.20: Two Bloom filters spatio-temporal solution

5.9 Spatio-temporal solution

These test combine the spatial solution and the temporal solution. The numbers
represented in the tables is the probability of a URLs that would not be visited by
combining the spatial and temporal solution. Each test is run 100 times and an
average is calculated for all the runs.

Table 5.20 shows the results for two filters that uses the spatio-temporal solu-
tion. From the table we see that the false positive probability is reduced.

However by comparing the results we can see that a spatio-temporal solution
using two filter with bit-size multiplier of 1.7 and 2 hash functions can be com-
pared to one Bloom filter that uses 4 hash functions. (Since 2 filter * 2 hash
functions = 4 hash functions total). By comparing the results in table 5.20 with
the revisit results in table 5.16 we see that the spatio-temporal solution doest not
decrease the probability of a false positive anymore than the temporal solution
does.

Comparing the results in table 5.21 with the results in the revisit table 5.16
also shows that there is no significant difference between these tests.

The spatio-temporal tests shows that it is possible to reduce the false positive
probability. However if the solution is compared to Bloom filter with the same
total amount of hash functions, there is little or no gain by combining multiple
filters, with the spatial strategy.

However the the temporal strategy will reduce the false positive probability.
The results in table 5.20 and 5.21 indicates that it is only the temporal strategy
that is reducing the false positive probability.
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3 Bloom filters
1.7 M 2.0 M 2.5 M 3.0 M

2HF 0.0060% 0.0013% 0.00017% 0.00003%
3HF 0.00005% 0.000002% 0.0% 0.0%
4HF 0.0% 0.0% 0.0% 0.0%

Table 5.21: Three Bloom filters spatio-temporal solution
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Chapter 6

Discussion

In the previous chapter we tested both the spatial and temporal strategies, and
combined the two strategies in a simulated web crawler environment. The tests
conducted with the spatial strategy indicates that there is no significant reduction
in the false positive probability, by combining multiple Bloom filters. However,
the temporal strategy shows that is it possible to reduce the probability of a false
positive by swapping the values used to seed the URLs upon a revisit. During this
chapter we will elaborate our finding.

6.1 Bloom filter performance

Since the Bloom filter is a space efficient data structure, it is very suitable to be
used in a web crawler environment, which must be able to handle a large amount
of URLs. Section 5.5 in the previous chapter indicates that there is significant
reduction in the memory consumption by utilizing a Bloom filter, compared to
other relevant data structures.

The Bloom filter supports two basic operations, add and contains, which is the
only operations that is required when the filter is used as a URL cache in a web
crawler environment. Since the crawler is only interested if the URL is visited
before or not. The data structure used as an URL cache does not need to support
the ability to retrieve the specific URL.

The Bloom filter was compared to a ArrayList and a HashSet. The drawback
with these two data structures is that they use much more memory than a Bloom
filter. The reason for the memory usage is that it is possible to retrieve the inserted
element, which is not possible in the Bloom filter. Since it is possible to retrieve
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the inserted element, the data structures must also store the inserted element in its
full representation. This is the reason that both the ArrayList and HashSet uses so
much more memory than the Bloom filter.

Since the URL cache does not require to retrieve the full representation of the
inserted element, only check if the element is inserted, the Bloom filter is quite
suitable to be used in web crawler environment, and offer significant reduction in
memory usage.

The query test in section 5.6.2 shows that the ArrayList is very slow to query
for an element that is not inserted in the structure, hence the ArrayList should
not be used in a URL cache. If the majority of the URLs that the URL cache is
queried for is not inserted in the URL cache, the ArrayList may become a major
bottleneck for a web crawler system.

The HashSet however is a very efficient data structure to use as an URL cache
when querying for elements. This is because the HashSet only operates with one
hash functions, that is relative fast. However the HashSet consumes a lot more
memory, compared to a Bloom filter. This could become a bottleneck in a web
crawler system that must handle a large amount of URLs.

The Bloom filter is slower to query and add elements to, however the Bloom
filter uses significant less memory than the other structures tested. So if the small
increase in query and insertion time is acceptable, the Bloom filter will yield a
significant reduction in memory consumption.

By adding hash functions to the Bloom filter it will become slower, since there
more hash values must be computed, both when adding and querying for elements.
The test in section 5.6.1 and 5.6.2 indicates that it is more feasible to add a larger
bit-size multiplier than to add more hash functions. The false positive probabil-
ity is decreased when adding more hash functions or by increasing the bit-size
multiplier.

However adding more hash functions causes the filter to be slower, since more
hash values must be computed, both when adding and querying. Increasing the
bit-size multiplier however does not affect performance that much. Hence us-
ing a higher bit-size multiplier will decrease the false positive probability, while
keeping the filter relative fast when adding and querying for elements.
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6.2 Seeded hash functions

One of the research questions, stated in chapter 1, was if it is possible to use a
single hash function k times, seeding the input URL with a different salt each
time, instead of using k different hash functions.

The test results in chapter 5 shows that there is no significant differences in us-
ing a seeded hash function k, instead of k hash functions. The results achieved for
the false positive tests indicated that it is very feasible using a seeded hash func-
tions instead of different hash functions, hence the temporal and spatial strategy
tests was conducted using Jenkins hash with seeded values, instead of k different
hash functions.

The advantage of using a seeded single hash function is that only one hash
function is required. Since one hash function is required the best suitable hash
function can be selected. This also makes the Bloom filter more predictable in
insertion and query time, since it is only one hash functions that is calculating
hash values.

The data tested in this thesis was URLs, hence this may not apply to all types
of data. E.g. seeding names or dates may yield other results.

6.3 Temporal strategy

The goal of the temporal strategy was to provoke false positives on other elements
upon a revisit, in a web crawler system. This is a very suitable strategy for web
crawler that continuously revisit a web page to check for updates or changes.

The test in section 5.7 indicates that it is possible to use a temporal strategy to
reduce the probability of a false positive. With a configuration of 1 Bloom filter
with 3 hash functions and a bit-size multiplier of 1.7, the probability goes from
8.7927% and is reduced to 0.7687%. This is a significant improvement in the
false positive probability. The other configurations for the filter shows that similar
results is obtain, when using the temporal strategy.

In table 5.16 the configuration with 7 hash functions and 4.0 bit-size multiplier
achieved a false positive probability of 0.000001% while the preceding configu-
rations yields a false positive probability of 0%. This is because no matter how
many hash functions is added, or how much the bit-size multiplier is increased,
there is always a probability of false positive. This is because hash functions is
used to determine the position to set in the bit array, and there will always be a
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probability that the hash functions collide, or that two different hash functions, or
different seeds, hashes an element to the same value.

The temporal strategy have the advantages that is not a major modification
of the Bloom filter, the only required change is that the hash functions, or seed
values, is swapped when the crawler do a revisit of the web page. Since the
temporal strategy is no major modification, existing systems may have the benefit
of the strategy without any significant modification.

The results in the previous chapter also indicates that the temporal strategy is
a feasible strategy to use in a web crawler system, or other similar system, where
such a revisit happens.

6.4 Spatial strategy

We tested out our spatial strategy to see if it is possible to combined multiple
Bloom filters to reduce the number of false positives. The goal of the spatial
strategy was that a false positive in one filter, would not be a false positive in
another filter. And thus discard false positives from one filter.

If we compare the result of one filter with 3 hash functions with two filter with
3 hash functions, in section 5.8, we see that the probability of a false positive drops
significantly. This indicates that the spatial strategy is reducing the false positive
probability.

However 2 Bloom filters with 3 hash functions yields a total of 6 hash func-
tions. If we compare 2 Bloom filters with 3 hash functions with a single Bloom
filter with 6 hash functions we see that this configurations yields similar results.
From this we can deduce that the spatial solution is reducing the false positive
probability, but a single filter with the same total amount of hash functions will
provide approximately equal false positive probability.

If the filters in some way would be distributed, e.g. running on two different
machines, the spatial strategy could be utilized to consume less resources on each
machine. By dividing a single filter with 6 hash functions to two Bloom filter with
3 hash functions each, the Bloom filters could be distributed to multiple comput-
ers. The advantage of such a scheme is that it would require less memory on each
computer. If such a strategy is introduced there must be some decision mecha-
nism to conduct the queries on both filters and do a decision on if the element is
contained or not.

91



CHAPTER 6. DISCUSSION

6.5 Spatio-temporal strategy

On of the research questions, stated in chapter 1, was if it was possible to combine
the two strategies to further reduce the false positive probability.

The test results in chapter 5 shows that it is possible to combine the two strate-
gies to reduce the false positive probability. If we compare the results in table
5.20 with the results in table 5.16, if we use the spatio-temporal strategy and con-
figure two filters with a bit-size multiplier of 1.7 and 3 hash functions, the spatio-
temporal strategy yields a false positive probability of 0.0059%. If we compare
this results to the temporal results, in table 5.16, we see that the false positive has
dropped from 0.7687%.

It is worth to notice that 2 Bloom filters with 3 hash functions each, is in effect
6 hash functions total, hence if we compare it with a single filter we must compare
it with a single filter that has 6 hash functions. If the previous result is compared
to a single Bloom filter using the temporal strategy with a bit-size multiplier of
1.7 and 6 hash functions we get 0.0060%. If we do this comparison there is no
significant reduction in the false positive probability. The other test results in table
5.20 and 5.16 shows similar results.

92



Chapter 7

Conclusion and further work

In this chapter we conclude this thesis, and propose further work and modifica-
tions.

7.1 Conclusion

In this thesis we have investigated methods to reduce the probability of a false
positive in a Bloom filter, when the Bloom filter is used as a URL cache in a web
crawler environment. We have tested two different strategies and combined them
to a third strategy, which we also tested. The goal of this thesis was to propose
novel spatio-temporal strategies to reduce the false positive rate introduced by the
Bloom filter, in a URL cache.

In this thesis we have investigated three strategies, a spatial strategy which
utilized multiple Bloom filter, and a temporal strategy which reduces the false
positive probability over time, in a web crawler system and a combination of the
latter two strategies. The intention of combination of the spatial and the temporal
strategies, was to further reduce the false positive probability in the Bloom filter.

The test results for the spatial strategy shows that it is able to reduce the false
positive probability. However, if the spatial strategy is compared to a single Bloom
filter with the same total amount of hash functions, there is little or no gain in the
false positive probability.

The temporal strategy yields very positive results. By swapping the hash func-
tions upon a revisit the strategy is able to reduced the false positive probability
significant. This strategy is also a very applicable strategy considering the small
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modification it requires to existing systems.

The two strategies were combined to see if this would further reduce the false
positive probability. The test results indicates that it is able to reduce the false
positive probability. However the same restriction applies with this strategy as
the spatial strategy. If the strategy is compared to the same total amount of hash
functions, there is little or no reduction in the false positive probability, and the
results is only influenced by the temporal strategy.

The temporal strategy will be useful for URL caches in web crawler systems
that continuously revisits web pages. The strategy is also feasible to use in other
systems that has the same behaviour and needs to reduce memory consumption.

The temporal strategy is also very simple, hence it yields not large modifica-
tion on a current system. This is an advantage for existing systems that utilizes
Bloom filters and have similar behaviour.

7.2 Further work

7.2.1 Unknown number of URLs

A web crawler environment can be very unpredictable. The problem that affects
each scheme, using a standard Bloom filter, is that the number of URLs that will be
stored in the filter must be known before creating the filter, to ensure that the false
positive probability does not grow beyond what is acceptable. In an unpredictable
environment such as the web, this is a limitation, since the page must, in a worst
case, be crawled to count the number of URLs before the page is actually crawler.

To overcome this limitation our temporal scheme should be tested with a Scal-
able Bloom filter, explained in [2], to see if the same reduction in false positive
probability applies. The Scalable Bloom filter is then able to scale according to
the number of URLs discovered on the crawled page.

Another approach to the problem would be to oversize the Bit array the first
visit, and then count the number of URLs in the URL cache when the crawler is
done on the page, and then store this meta-data in the storage. Upon a revisit the
web crawler will know the number of URLs that the web page had on the last
crawl, and can then set the size of the Bit array accordingly.

The drawback of this approach is that if the filter is to large the first visit it will
use a lot of memory that is not utilized. If the Bit array is to small, the probability
of a false positive will grow.

94



CHAPTER 7. CONCLUSION AND FURTHER WORK

7.2.2 Finding the best fit hash function

False positives occur in a Bloom filter due to the fact that the Bloom filter utilize
hash functions which are prone to get collisions, as described in section 3.4.

An approach to minimize the collisions would be to apply genetic program-
ming, or similar, to generate close to so-called perfect hash functions. A perfect
hash function is a hash function which is generated based on a known set of input
data, and specialized for that data set. The perfect hash function does not yield
any collisions, something that is almost impossible to accomplish in a practical
setting like a web crawler system.

The idea is based on a combination of focused and continuous web crawling,
as explained in section 2.3, where a web crawler at first crawls limited area of the
web, and collects all URLs for that given area.

Then utilize genetic programming to generate a perfect hash function based on
all the collected URLs. Since vast amount of new web content is generated daily,
the generated hash function will not be able to function as a perfect hash function,
after new content is added to the limited area to crawl. But the URLs will most
likely utilize the same structure and be quite similar to the to the set of URLs
the genetic programming algorithm generated the hash function from. Hence, the
hash function would, presumably, only yield a number of collisions close to zero.
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Appendix

A.1 Test results

A.1.1 Incremental spatial results

Figure A.1: 1 Bloom filter, incremental 1.7 bit-size
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Figure A.2: 1 Bloom filter, incremental 2.0 bit-size
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Figure A.3: 2 Bloom filter, incremental 1.7 bit-size
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Figure A.4: 2 Bloom filter, incremental 2.0 bit-size
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Figure A.5: 3 Bloom filter, incremental 1.7 bit-size
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Figure A.6: 3 Bloom filter, incremental 2.0 bit-size
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A.1.2 Query test

1 Bloom filter
1.7 M 2.0 M 2.5 M 3.0 M 4.0 M 5.0 M

3 HF 3296 3213 3297 3326 3347 3298
4 HF 4246 4266 4332 4386 4278 4201
5 HF 5287 5342 5403 5179 5311 5304
6 HF 6186 6275 6267 6309 6348 6282
7 HF 7270 7356 7487 7250 7270 7185
8 HF 8245 8301 8181 8101 8266 8214
9 HF 9215 9286 8966 9143 9064 9230
10 HF 10073 10064 10284 10046 9959 10135

Table A.1: Average query time for 1 filter in milliseconds

2 Bloom filters
1.7 M 2.0 M 2.5 M 3.0 M 4.0 M 5.0 M

3 HF 6324 6176 6355 6383 6422 6407
4 HF 8181 8318 8276 8301 8449 8466
5 HF 10096 10124 10151 10415 10174 10314
6 HF 12181 12039 11949 12315 11938 12279
7 HF 13883 14091 13792 13962 14007 14262
8 HF 15844 16184 15658 15865 16079 16109
9 HF 18096 17671 17616 17692 17709 17971

10 HF 19826 19442 19789 19629 20536 20146

Table A.2: Average query time for 2 filters in milliseconds
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3 Bloom filters
1.7 M 2.0 M 2.5 M 3.0 M 4.0 M 5.0 M

3 HF 9342 9277 9634 9486 9430 9279
4 HF 12231 12186 12408 12272 11935 12285
5 HF 14971 15230 15015 15494 15151 15007
6 HF 17882 17962 17784 18264 17642 18220
7 HF 20503 20520 20500 20556 20639 21031
8 HF 23168 23754 23829 23412 23923 23626
9 HF 26625 26855 25930 26593 26839 27067

10 HF 29219 29783 29374 29996 28917 28801

Table A.3: Average query time for 3 filters in milliseconds

A.1.3 Add test

1 Bloom filter
1.7 M 2.0 M 2.5 M 3.0 M 4.0 M 5.0 M

3 HF 3354 3130 3390 3253 3279 3415
4 HF 4578 4297 4276 4403 4089 4352
5 HF 5263 5760 5541 4957 5856 6292
6 HF 6109 6872 6379 6384 6623 6332
7 HF 7000 7176 7413 7227 7209 7113
8 HF 8448 8872 8420 8650 8189 8323
9 HF 9395 9976 9258 9115 9102 9390

10 HF 10049 10485 10161 10544 10058 11018

Table A.4: Average add time for 1 filter in milliseconds
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2 Bloom filters
1.7 M 2.0 M 2.5 M 3.0 M 4.0 M 5.0 M

3 HF 6565 6547 6297 6473 6259 6739
4 HF 8646 8866 8415 8446 8017 8412
5 HF 10868 10083 10014 9740 10750 10239
6 HF 12439 11778 13671 12124 12318 12099
7 HF 14473 14230 15173 14076 14570 15384
8 HF 16003 16311 16886 15589 17409 15990
9 HF 18456 18046 18465 19267 19209 17553

10 HF 19786 21259 20010 20183 21069 21298

Table A.5: Average add time for 2 filters in milliseconds

3 Bloom filters
1.7 M 2.0 M 2.5 M 3.0 M 4.0 M 5.0 M

3 HF 9183 9908 9115 9514 9356 10139
4 HF 13326 12996 12812 12766 12418 12324
5 HF 16528 14823 15240 15934 15729 15288
6 HF 17593 17536 18044 18348 18365 18396
7 HF 21100 22748 20804 21824 23231 21261
8 HF 24032 23537 23976 26113 25796 26044
9 HF 28128 27329 28259 26458 26594 28458

10 HF 30273 29268 29585 29237 30443 31560

Table A.6: Average add time for 3 filters in milliseconds
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A.2 Acronyms

ACM Association for Computing Machinery

API Application Programming Interface

CPU Central Processing Unit

CFHF Collision Free Hash Function

DNS Domain Name System

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

MD5 Message-Digest algorithm 5

NIST National Institute of Standards and Technology

OWHF One-Way Hash Function

PRNG Pseudo Random Number Generator

UiA University of Agder

UML Unified Modeling Language

URL Uniform Resource Locator

WWW World Wide Web

105



Bibliography

[1] Computer Security, Principles and Practice. Pearson Prentice Hall, 2008.

[2] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison, “Scalable bloom
filters,” Inf. Process. Lett., vol. 101, no. 6, pp. 255–261, 2007.

[3] A. Appleby. Murmurhash. [Online]. Available: http://sites.google.com/site/
murmurhash/

[4] S. Bakhtiari, R. Safavi-naini, J. Pieprzyk, and C. Computer, “Cryptographic
hash functions: A survey,” Tech. Rep., 1995.

[5] (2003, Nov) How much information 2003? - internet. Berke-
ley. [Online]. Available: http://www2.sims.berkeley.edu/research/projects/
how-much-info-2003/internet.htm

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, pp. 422–426, 1970.

[7] D. Boswell, “Distributed high-performance web crawlers: A survey of the
state of the art,” 2003.

[8] A. Broder, M. Mitzenmacher, and A. B. I. M. Mitzenmacher, “Network ap-
plications of bloom filters: A survey,” in Internet Mathematics, 2002, pp.
636–646.

[9] C. Castillo, D. A. Moffat, and D. G. Navarro, “Effective web crawling,”
Tech. Rep., 2004.

[10] J. Cho and H. Garcia-Molina, “Effective page refresh policies for web
crawlers,” Stanford InfoLab, Technical Report 2003-44, December 2003.
[Online]. Available: http://ilpubs.stanford.edu:8090/604/

106

http://sites.google.com/site/murmurhash/
http://sites.google.com/site/murmurhash/
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/internet.htm
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/internet.htm
http://ilpubs.stanford.edu:8090/604/


BIBLIOGRAPHY

[11] S. Cohen and Y. Matias, “Spectral bloom filters,” in SIGMOD ’03: Proceed-
ings of the 2003 ACM SIGMOD international conference on Management of
data. New York, NY, USA: ACM, 2003, pp. 241–252.

[12] P. C. Dillinger and P. Manolios, “Fast and accurate bitstate verification for
spin,” in In Proceedings of the 11th International SPIN Workshop on Model
Checking of Software (SPIN. Springer-Verlag, 2004, pp. 57–75.

[13] I. R. D. A. Gordon Mohr, Michael Stack and M. Kimpton, “An introduction
to heritrix an open source archival quality web crawler.”

[14] A. Heydon and M. Najork, “Mercator: A scalable, extensible web crawler,”
World Wide Web Conference, vol. 2, no. 4, pp. 219–229, April 1999.
[Online]. Available: citeseer.nj.nec.com/heydon99mercator.html

[15] Interface instrumentation. [Online]. Available: http://java.sun.com/javase/6/
docs/api/java/lang/instrument/Instrumentation.html

[16] B. Jenkins, “Algorithm alley: Hash functions,” Dr. Dobb’s Journal, 1997.

[17] C. Jing, “Application and research on weighted bloom filter and bloom filter
in web cache,” Web Mining and Web-based Application, Pacific-Asia Con-
ference on, vol. 0, pp. 187–191, 2009.

[18] M. Kobayashi and K. Takeda, “Information retrieval on the web,” ACM Com-
put. Surv., vol. 32, no. 2, pp. 144–173, 2000.

[19] D. P. Mehta and S. Sahni, Handbook Of Data Structures And Applications
(Chapman & Hall/Crc Computer and Information Science Series.). Chap-
man & Hall/CRC, 2004.

[20] B. Mozafari and M. Savoji, “A new collision resistant hash function based on
optimum dimensionality reduction using walsh-hadamard transform,” dec.
2006, pp. 149 –154.

[21] “The md5 message-digest algorithm.” [Online]. Available: http://tools.ietf.
org/html/rfc1321

[22] “Us secure hash algorithm 1 (sha1).” [Online]. Available: http:
//tools.ietf.org/html/rfc3174

[23] X. Wang and H. Yu, “How to break md5 and other hash functions,” in In
EUROCRYPT. Springer-Verlag, 2005.

107

citeseer.nj.nec.com/heydon99mercator.html
http://java.sun.com/javase/6/docs/api/java/lang/instrument/Instrumentation.html
http://java.sun.com/javase/6/docs/api/java/lang/instrument/Instrumentation.html
http://tools.ietf.org/html/rfc1321
http://tools.ietf.org/html/rfc1321
http://tools.ietf.org/html/rfc3174
http://tools.ietf.org/html/rfc3174


BIBLIOGRAPHY

[24] F. Weigel, “A survey of indexing techniques for semistructured documents,”
Project thesis, Institute of Computer Science, LMU, Munich, 2002. [Online].
Available: http://www.pms.ifi.lmu.de/publikationen/#PA Felix.Weigel

[25] M. Zhong, P. Lu, K. Shen, and J. Seiferas, “Optimizing data popularity con-
scious bloom filters,” in PODC ’08: Proceedings of the twenty-seventh ACM
symposium on Principles of distributed computing. New York, NY, USA:
ACM, 2008, pp. 355–364.

[26] J. Zobel, A. Moffat, and R. Sacks-davis, “An efficient indexing technique for
full-text database systems,” in In Proceedings of 18th International Confer-
ence on Very Large Databases, 1992, pp. 352–362.

108

http://www.pms.ifi.lmu.de/publikationen/#PA_Felix.Weigel

	Introduction
	Background and Motivation
	Cache systems
	URL cache in a web crawler system
	Bloom filter: A space efficient data-structure
	Motivation

	Related work
	Problem statement
	Contributions
	A temporal strategy for reducing false positives
	A spatial strategy for reducing false positives
	A spatio-temporal strategy for reducing false positives
	Empirical analysis of the Bloom filter
	Novel application of Bloom Filter and crawling

	Research questions
	Target audience
	Report outline

	Web Crawler systems
	An introduction to web crawlers
	Architectural overview
	Downloader/parser
	Storage component
	Queue
	URL cache
	Scheduler

	Crawling strategies
	Broad web crawling
	Focused web crawling
	Continuous web crawling
	Revisiting strategies

	Indexing
	Application of web crawler systems
	Search engine systems
	Analytic services

	The URL cache
	Infinite loop example


	Bloom Filter
	History
	Bit array
	Bit array: Area of application
	Advantages and disadvantages
	Bit array in depth

	Hash functions
	Hash functions: Area of application
	Collisions
	Characteristics of a good hash function
	The hash function: In depth
	Different hash functions

	The purpose of the Bloom filter
	Disadvantages of the Bloom filter and proposed solutions
	Different applications of Bloom filter

	Bloom filter: In-depth
	Basic operations of the Bloom filter
	False positives
	Probability of false positive


	Proposed Bloom filter strategies
	Seeded hash functions
	Temporal strategy
	Spatial strategy
	Spatio-Temporal strategy

	Validation and Testing
	Test data
	Different test approaches
	Incremental approach
	Non-incremental approach

	Experimental setup
	Hash function approaches
	Incremental
	Non-incremental
	Hash function selection

	Memory consumption
	Performance test
	Add test
	Query test

	Temporal strategy
	Incremental
	Non-incremental

	Spatial strategy
	Incremental
	Non-Incremental

	Spatio-temporal solution

	Discussion
	Bloom filter performance
	Seeded hash functions
	Temporal strategy
	Spatial strategy
	Spatio-temporal strategy

	Conclusion and further work
	Conclusion
	Further work
	Unknown number of URLs
	Finding the best fit hash function


	Appendix
	Test results
	Incremental spatial results
	Query test
	Add test

	Acronyms


