

Camera Functionality in
Modern Mobile Terminals

- Software FIR filter for demosaicing with RISC -

Masters Thesis
 in

Information and Communication Technology

Submitted to
Agder University College

Faculty of Engineering and Science

By

Tryggve I. Mikkelsen

Grimstad, May 2001

 Camera Functionality in Modern Mobile Terminals

II

 Camera Functionality in Modern Mobile Terminals

III

Abstract

This thesis discusses implementation and optimizing of the image pre-processing
operation demosaicing on a typical hardware architecture for mobile terminals. Work
has shown that the demosaicing operation is equivalent to the mathematical operation
of interpolation, and that optimizing potential lies within the implementation of the
anti-imaging filter for the interpolator. This filter can be realized as an FIR filter with
the filter coefficients obtained from a suitable interpolation function (kernel).
Through literature review, nearest neighbor replication, bilinear and cubic
convolution kernels were implemented and optimized according to a typical hardware
architecture found in mobile terminals. Typical hardware architecture used consisted
of ARM710T RISC processor with 8 KB on-chip cache and external SDRAM memory.

The work has shown that the cubic convolution interpolation kernel offers the best
image quality requiring only moderate computational effort. Though, dependent the
application area, and taking the whole camera system into consideration, bilinear
interpolation might be better suited as interpolation kernel for the demosaicing
operation in the mobile terminal. The bilinear interpolation offers a good trade-off
between the visual result and computational effort. The nearest neighbor replication
interpolation kernel offers the poorest image quality, but is the most computational
efficient of the kernels.

 Camera Functionality in Modern Mobile Terminals

IV

 Camera Functionality in Modern Mobile Terminals

V

Preface

-“Any good idea is a least ten years old” -

(Anonymous)

This thesis is carried out as a masters thesis leading to the Norwegian master
equivalent degree “Sivilingeniør”. The thesis is a part of the ICT (Information and
Communication Technology) program at Agder University College and was
performed for Ericsson AS. The time schedule for producing the report was the period
from 2001-01-09 to 2001-05-28.

I would like to thank my supervisors, Siv.ing. Morten Christiansen at Ericsson AS and
Høgskolelektor Paul Bjørn Andersen at Agder University College for their valuable
help and inspiration during the work. I would also like to thank Ragnar Johnsen at
Agder University College, Jonny Blom and Stein Bergsmark at Ericsson AS for
valuable help during the work.

Grimstad, May 2001

Tryggve I. Mikkelsen

 Camera Functionality in Modern Mobile Terminals

VI

 Camera Functionality in Modern Mobile Terminals

VII

Table of contents

ABSTRACT .. III

PREFACE ..V

TABLE OF CONTENTS ..VII

LIST OF FIGURES .. IX

LIST OF TABLES .. IX

LIST OF EQUATIONS.. IX

1 INTRODUCTION...1

1.1 GENERAL FIELD OF INTEREST ..1
1.2 THESIS PROPOSAL..2
1.3 LIMITATIONS AND CONCRETIZATION...3
1.4 METHOD ...4
1.5 REPORT STRUCTURE..5

2 WHAT IS DEMOSAICING?...7

2.1 INTRODUCTION..7
2.2 THE DIGITAL IMAGE ..7
2.3 COLOR SPACE MODELS ..8
2.4 WHAT DOES THE DEMOSAICING OPERATION DO?...9

3 A MOBILE TERMINAL HARDWARE ARCHITECTURE13

3.1 INTRODUCTION..13
3.2 THE IMAGE SENSOR ...14
3.3 THE RISC PROCESSOR ..14
3.4 EXTERNAL MEMORY ...17
3.5 TYPICAL HARDWARE ARCHITECTURE..18
3.6 WRITING EFFICIENT CODE FOR THE HW..18

4 OPTIMIZING THE DEMOSAICING OPERATION..21

4.1 INTRODUCTION..21
4.2 ADAPTIVE AND NON-ADAPTIVE ALGORITHMS ...21
4.3 MATHEMATICAL REVIEW OF THE DEMOSAICING OPERATION...............................21
4.4 THE ANTI-IMAGING FILTER - THE INTERPOLATION KERNEL24
4.5 IMPLEMENTING THE DEMOSAICING OPERATION...28

5 MEASURING PERFORMANCE AND COST FOR THE DEMOSAICING ..33
5.1 INTRODUCTION..33
5.2 SUBJECTIVE AND OBJECTIVE IMAGE QUALITY ...33
5.3 COMPUTATIONAL COST ...38

 Camera Functionality in Modern Mobile Terminals

VIII

6 TEST METHOD AND ENVIRONMENT..41

6.1 INTRODUCTION..41
6.2 THE ARMULATOR BUILD..41
6.3 ERICSSON DEVELOPMENT BOARD (EDB) ...43

7 RESULTS ..45

7.1 INTRODUCTION..45
7.2 TEST RESULTS ...45

8 DISCUSSION ..47

8.1 INTRODUCTION..47
8.2 TEST RESULTS ...47
8.3 TEST RESULT VALIDITY ...49
8.4 WHICH INTERPOLATION KERNEL IS BEST SUITED FOR THE MOBILE TERMINAL? ...49
8.5 OTHER APPLICATION AREAS FOR THE RESULTS ...50
8.6 A SUGGESTION TO A SIMPLIFIED IMAGE PRE-PROCESSING CHAIN.........................51
8.7 FREQUENCY DOMAIN VERSUS SPATIAL DOMAIN PROCESSING..............................53

9 CONCLUSION ...55

10 ABBREVIATIONS...57

11 REFERENCES..59

APPENDIX A – TEST RESULTS..…………………………………………………..

APPENDIX B – PRINTER RESOLUTION…………………………………………

APPENDIX C – SOFTWARE LISTING…………………………………………….

 Camera Functionality in Modern Mobile Terminals

IX

List of figures
Figure 1. Ericsson CommuniCamTM..1
Figure 2. The “hourglass model”. ..5
Figure 3. Simple camera system. ...9
Figure 4. Image pre-processing operations. ...9
Figure 5. Illustration of the demosaicing operation and the Bayer pattern..................10
Figure 6. General HW components. ..13
Figure 7. ARM 710T..15
Figure 8. Unified cache..16
Figure 9. Typical hardware architecture. ...18
Figure 10. Interpolator. ..22
Figure 11. Spatial domain illustration of interpolation. ...23
Figure 12. Frequency domain illustration of interpolation. ...23
Figure 13. Cubic convolution kernel. (Keys)...28
Figure 14. Illustration of fast convolution. ..29
Figure 15. Sampled cubic convolution kernel (Keys) and neighboring pixels............31
Figure 16. Linear phase structure for 7-point FIR filter. ...32
Figure 17. Model for measuring image quality. ..34
Figure 18. Circular Zone Plate...36
Figure 19. Circular Zone Plate with imaging artifacts...36
Figure 20. Overview of SW build..41
Figure 21. Interpolation and decimation in the pre-processing chain today................51
Figure 22. Simplified interpolation and decimation in the pre-processing chain.52

List of tables
Table 1. Interpolation kernels. ...24
Table 2. Ericsson Development Card characteristics. ...43
Table 3. Test results. ..45

List of equations
Equation 1. Representation of a digital image. ..7
Equation 2. YUV matrix. ...8
Equation 3. Luminance information in terms of R, G and B...9
Equation 4. General interpolator..22
Equation 5: Nearest neighbor replication. ...25
Equation 6: Linear interpolation. ...25
Equation 7. Cubic convolution kernel, parametric form..26
Equation 8. Keys representation of interpolation. ...26
Equation 9: Cubic convolution kernel. (Keys). ...27
Equation 10: Lanczos interpolation kernel ..28
Equation 11: Transfer function for FIR filter. ...29
Equation 12: Difference equation for transversal structure. ..30
Equation 13: Transfer function for linear phase structure FIR filter.30
Equation 14: Difference equation for linear phase structure FIR filter.30
Equation 15: Expression used for implementation. ...31
Equation 16. Normalized Least Square Error ..37
Equation 17. Signal to Noise Ratio (SNR) ..37

 Camera Functionality in Modern Mobile Terminals

X

 Camera Functionality in Modern Mobile Terminals

1

1 Introduction

1.1 General field of interest
Multimedia functionality as MMS (Multimedia Messaging Service) and real time
video is expected to be functionality when 3G (UMTS – Universal Mobile
Telecommunications System) mobile networks are introduced. Furthermore, the users
are given a taste of multimedia functionality through still images and possibly video
clips in the 2.5G (GPRS – General Packet Radio Service) networks. Already now we
find the first solutions for digital cameras on mobile terminals for the GPRS terminals
(e.g. Ericsson CommuniCamTM, figure 1). From mobile terminal vendors we see the
convergence of the PDA, the mobile phone and the digital camera. The addition of the
camera functionality to the mobile terminal motivates research in the area of the
digital image processing chain in order to ensure power efficient solutions while
having good visual quality.

From the world of digital still cameras and web cameras, the mobile terminal has
adopted the CMOS (Complementary Metal Oxide Semiconductor) image sensor.
These image sensors use a Color Filter Array (CFA) in order to reduce complexity
and cost. The most common CFA is the Bayer pattern that reduces the data size to
only include one color per pixel.

The image operation that sees to that we get full resolution RGB from the Bayer
Pattern RGB is the demosaicing operation – also known as pixel interpolation. This
thesis contributes to the research in improving the camera system chain by finding
efficient solutions for implementing the demosaicing operation to typical mobile
terminal hardware (HW) architecture. In times where the user demands smaller
products, “single-chip” HW solutions requires a HW architecture that can solve a lot
of functionality. The overall goal for the architecture is low power consumption. In
order to increase the performance to the special functionality, dedicated HW can be
designed. Often this is not desirable due to increased physical size. This thesis
therefore has the starting point that the existing HW in the mobile terminal is to be
used. Moreover, this HW is expected to include the use of a RISC processor.

Figure 1. Ericsson CommuniCamTM.

 Camera Functionality in Modern Mobile Terminals

2

1.2 Thesis proposal
1. a) Describe typical hardware architecture in modern mobile terminals using

RISC CPU. The architecture should be used in the further work. Also chose
and describe possible development platform for the work.

 b) Describe a typical modern camera system. A sub part of the camera system
should be chosen and used in the further work.

2. Related to 1a) and 1b); discuss factors involved in SW optimizing to HW

architecture.

3. Related to 1a) and 1b); discuss suitable ways to measure performance/cost for

(a sub-system of) the camera system.

4. Apply the work from 1, 2 and 3 on a sub-system of the camera system to

indicate the performance/cost for this functionality. (This task could enter into
2 and 3.)

5. Suggest improvements for the implementation based on the work from 1, 2, 3
and 4.

Note:

• It is not the main scope for the diploma to develop code.
• It is not the scope for the diploma to compare SW implementations to HW

implementations, but to provide sufficient information and performance/cost
measures to allow designers to make a well-informed choice of HW vs. SW
implementation of the (part of the) camera system.

• The main scope for the work is put to 2 and 3.

Formatted: Bullets and
Numbering

Deleted: Briefly describe

Deleted: work.¶

Deleted: b) Briefly

Deleted: be used

Deleted: Investigate

Deleted: code-
optimising/profiling related to the
chosen hardware architecture.

Deleted: Investigate

Deleted: based on the chosen
hardware platform

Deleted: <#>¶

 Camera Functionality in Modern Mobile Terminals

3

1.3 Limitations and concretization
It was necessary to concretize the original thesis proposal. The original thesis
proposal only required to chose a sub-system of the camera system for investigation.
When concretizing the thesis theme, there are three aspects to discuss or describe:

• The mobile terminal HW architecture.
• The (sub-system) of the camera system.
• Measures for performance and cost.

The most important concretizations and limitations introduced are:

• The scope is narrowed to only include demosaicing operation in the pre-
processing chain, that is, the image operations prior to compression in the
image processing chain. Furthermore, only:

o a subset of interpolation kernels is discussed.
o a subset of these kernels is implemented.

• Development of C-code only for HW architecture constituted of:
o ARM710T RISC processor, with no coprocessors, and using

ARM/THUMB interworking instruction set.
o SDRAM as external memory.

• Little effort is paid to general code optimizing for ARM. The term ‘general
code optimizing’ is related to software optimizing as loops, lookup tables etc.

In understanding with my supervisor, this led to the final work theme for the thesis:

• Describe a typical HW architecture used in mobile terminals today.
• Investigate the demosaicing operation in the pre-processing chain. What is

demosaicing? How can the operation be implemented efficiently on the HW
used in mobile terminals?

• Implement and measure the performance and cost for the demosaicing
operation. The performance and cost measures should be defined.

 Camera Functionality in Modern Mobile Terminals

4

1.4 Method
In order to give the thesis a fundament and validity I chosed the method as follows:

• Review published literature from the area of digital signal processing, digital
image processing and digital still cameras. Furthermore, published literature in
the area of mobile terminal HW architecture using RISC processor.

• Based on this review, discuss and suggest an implementation of a chosen
subpart of the pre-processing chain.

• Implement and run tests for the chosen subpart and measure its performance
and cost on my own software. The measuring method should rely on methods
and measures described in literature in order to give validity. Sufficient
information for easy reproduction of test results put forward should be
included.

• Discuss the results in relation to the literature review

In order to broaden scope and collect second and third party ideas, I’ve had numerous
informal personal conversations, and meetings, with experts on different fields from
Ericsson, Agder University College, Philips and authors of papers.

 Camera Functionality in Modern Mobile Terminals

5

1.5 Report structure
The report structure is chosen in order to preserver three aspects:

• Give the framework to describe the work carried out to perform the work
asked for in the thesis proposal

• Give the framework to reflect the method chosen.
• Give an educational presentation of the work.

Figure 2 illustrates the limitations, concretization and the method chosen for the thesis
as an “hourglass model”. This model is chosen to preserve the three aspects described
above.

Mobile
Communication

Multimedia
MMS, Video,
still images

Camera
Functionality

Pre-
processing

Demosaicing

Mobil
Terminal

Hardware/
software

RISC

ARM710T
SDRAM

Describe

Literature
review

Implementaion
and optmizing Discussion Conclusion

Area of use

Figure 2. The “hourglass model”.

Even though only the demosaicing operation from the camera system is chosen for
study, the reader needs to be brought into the problem and status on the area. From
this reason the report has a first introduction – or the ‘popular explanation’ - of the
digital image and the camera system.

In order to relate the literature review to a HW (hardware) architecture, the HW
architecture needs to be described first since the optimizing is based on the chosen
HW architecture. When these matters have been described I have a literature review
of the actual problem – the implementation of the demosaicing operation on RISC
processor. Also, I include a discussion of suitable ways to measure the quality for the
different implementations of the operation.

The review of the demosaicing operation leads to the part where I test the outcome
from the literature review. I also present the information and means to reproduce the
test results. The report finishes up with a discussion of the results put forward - and
the validity of the results. Further the report discusses which interpolation kernel that
is better or worse suited for mobile terminals.

 Camera Functionality in Modern Mobile Terminals

6

 Camera Functionality in Modern Mobile Terminals

7

2 What is demosaicing?

2.1 Introduction
This chapter gives the reader an introduction to the pre-processing chain in a modern
camera system. The introduction serves to help understanding what demosaicing is
and what it does. The chapter starts with a representation of the digital image and the
two most used color models for representing digital color images. Then a presentation
of a typical modern camera system and elaboration of the pre-processing part to show
where the demosaicing operation fits in.

2.2 The digital image

2.2.1 General

A digital image is the representation of a continuous image f(x,y) by a 2-D array of
digitized values both spatially and in amplitude. Digitization of the spatially
coordinates (x,y) is called image sampling, and amplitude digitization is called gray-
level quantization. For a digital image we can then represent it as a two-dimensional
N x M array of gray values as in equation 1:

Equation 1. Representation of a digital image.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−

=

)1,1(....)1,1()0,1(
................

)0,0(....)1,1()0,1(
)1,0(....)1,0()0,0(

),(

MNfNfNf

fff
Mfff

yxf

By dividing the term resolution into two parts, - the spatial resolution and the
brightness resolution, these two parameters decide how closely the digital image will
match the continuous image.

2.2.2 Spatial resolution

The spatial resolution refers to the 2-D (two dimensional) image space, and describes
how many pixels that represent the digital image. In (near) all cases, the spatial
resolution is fixed. Standard spatial resolutions and common for the mobile terminal
world are:
• VGA: 640 x 480 = 307200 pixels
• QVGA: 320 x 240 = 76800 pixels
• VGA/8: 160 x 120 = 19200 pixels
• CIF: 352 x 288 = 101376 pixels
• QCIF: 176 x 144 = 25344 pixels
• 4CIF: 704 x 576 = 405504 pixels
• 16CIF: 1408 x 1152 = 1622016 pixels

 Camera Functionality in Modern Mobile Terminals

8

VGA (Video Graphics Array) is common for PC’s (Personal Computers). CIF
(Common Interchange Format) is the standard for videoconferencing. The others are
derivations of these. For mobile terminal display, VGA/8 and QCIF are common.
However, when sending images as e.g. e-mail attachments, VGA is common.

2.2.3 Brightness resolution

The concept of brightness resolution addresses how accurately the digital pixel's
brightness can represent the intensity of the original image. The term intensity refers
to the magnitude or amount of light energy actually reflected or transmitted from a
physical scene. The term brightness refers to the measured intensity after it is
acquired, sampled, quantized, displayed and observed (by our eyes). The brightness of
a pixel accounts for all the effects induced by the entire imaging system.

The number of brightness levels is given by the number of bits, and are a power of 2.
8-bit brightness scale gives a dynamic range of 256 brightness levels (0 to 255).

2.3 Color space models

2.3.1 The RGB color space model

To obtain a color image, the image needs to be represented by a color model. The
most common model, and the one used in this thesis, is the RGB color space model.
This model uses the primary colors red, green and blue and additive color mixing to
represent all colors. Using the RGB color model with a brightness resolution of 8 bit,
it is possible to represent 2(8x3) = 224 (approximately 16 million) colors, or often just
referred to as ‘millions of colors’. In this thesis only 3 (RGB) x 8-bit brightness scale
is used.

2.3.2 The YUV color space model

The purpose with this color model is to take advantage of the eyes less sensitivity to
chrominance than luminance. By splitting this image information, one can remove or
compress chrominance information more than luminance information to reduce data
size. The luminance information, represented by Y, and the chrominance information,
represented by U and V, is given by the matrix in equation 2.

Equation 2. YUV matrix.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

B
G
R

V
U
Y

311.0523.0212.0
321.0275.0596.0

114.0587.0299.0

 Camera Functionality in Modern Mobile Terminals

9

From equation 2 to we can represent luminance information as in equation 3. We
notice that green is weighted much more than red and blue. This is to reflect that the
eye is more sensitive for green information than for red and blue. Thus green will give
a greater contribution to the luminance.

Equation 3. Luminance information in terms of R, G and B.

2.4 What does the demosaicing operation do?

2.4.1 General

In order to place the demosaicing operation in the camera system I present two
figures. Figure 3 shows a simple camera system. The pre-processing part of the
camera system is elaborated further in figure 4.

SAMPLE/
QUANTIZATION

IMAGE PRE -
PROCESSING

IMAGE
COMPRESSION

DISPLAY

MEMORY

IMAGE POST -
PROCESSING

IMAGE
DECOMPR.

TRANSFER,
ETC

Figure 3. Simple camera system.

Exposure and
white balance Demosaic Gamma

correction
Color space
conversion Down samplingColor correction

Figure 4. Image pre-processing operations.

2.4.2 The Bayer Pattern color filter array

Referring to figure 4, the exposure block decides how much light that is to be let in to
the light sensitive photodiode. This exposure block sets the integration time and gain
for each (or groups of) pixel to meet target average pixel luminance. The white
balance equalizes average pixel luminance among color bands (RGB). If this task is
not carried out, a white motif won’t be white when reproduced!

Prior to the exposure and white balance block is the capture and quantize operation
that captures the real life motif. In order to reduce complexity (and thus cost) and data
rate, the image sensor performing these operations is typically equipped with a Color

BGRY 114.0587.0299.0 ++=

 Camera Functionality in Modern Mobile Terminals

10

Filter Array (CFA) that is placed between the lens and the photo sensors. A CFA
typically has one color filter element for each sensor. Obviously, the color
interpolation algorithms depend on the CFA configuration. There are different CFA
configurations. The most popular and the de facto standard is the Bayer pattern [Bayer
U.S Patent], which uses the three additive primary colors, red, green and blue , for the
filter elements. For limiting scope, this CFA is the only one discussed in this thesis.
The Bayer pattern uses the fact that the eye is less sensitive to chrominance than to
luminance. Moreover, the Bayer pattern approximates green to be luminance
information due to the eyes higher sensibility for green light, and red and blue to
chrominance information. The green color is subsampled at a rate of ½ in horizontal
direction. Red and blue are subsampled in both horizontal and vertical direction at a
rate of ½. Effectively, the green elements fill the pattern with 50%, and red and blue
with 25% each (se figure 5).

Bayer RGB

Green color plane

Red color plane

Blue color plane

demosaicing

RGB

? ?

? ?

??

? ?

?

?

? ? ?

? ?

? ? ? ?

?

? ? ? ?

? ?

? ? ? ?

? ?

Bayer pattern

Figure 5. Illustration of the demosaicing operation and the Bayer pattern

 Camera Functionality in Modern Mobile Terminals

11

2.4.3 The demosaicing operation explained in simple terms

Now that we know that the image sensor does not provide us with RGB values for
each pixel, but only one of the colors, we needs to implement an operation that gives
us the two remaining colors – the demosaicing operation. The demosaicing operation
converts the raw CFA image data into full resolution RGB. The demosaicing
operation is an important operation when considering both image quality and
computational effort. This operation is to reproduce the real world motif by increasing
the spatial resolution for the three color planes in the RGB color space. That is, the
spatial resolution counting pixels is kept (e.g. VGA = 640 x 480), but the resolution
expanded to the same resolution for all three color planes in the color space (see
figure 5). The main goal for the algorithm used to find the RGB values is to get the
same performance from the CFA array and the demosaicing operation as from three
image sensor arrays for red, green and blue.
2.4.4 Other pre-processing operations

Referring to figure 4, I include a short description of the remaining pre-processing
operations for overview.

The color correction is necessary due to compensate for the color filter response of
the image sensor. The photo sensors have a differing spectral sensitivity to the color
red, green and blue than the eyes. This needs to be corrected.

Since the eye has a non-linear perception of luminance gamma correction is
performed to compensate. The gamma correction block therefore has a transfer
function equal to the eye.

A color space conversion is necessary to meet the standards used in compression
techniques in digital imaging systems today. Different compression schemes use
different color spaces as input, but the most popular is JPEG (Joint Photographic
Expert Group) compression. JPEG can be implemented both loss less or lossy, where
the lossy algorithm is the one best suited for mobile terminal since this has a much
better compression factor leading to less data to transfer. In this scheme, a
downsampling is carried out prior to the actual coding to further reduce image data
size. The color space usually used to subsample is YUV, where Y is the luminance
(brightness) component and U and V are chrominance (color) components. The
reason for using this color space is due to the fact that the eye is less sensible to color
differences than luminance differences. Using this fact one can downsample
chrominance components (and thereby reducing image data size) more than the
luminance component without getting a perceived lower quality of the image.

 Camera Functionality in Modern Mobile Terminals

12

 Camera Functionality in Modern Mobile Terminals

13

3 A mobile terminal hardware architecture

3.1 Introduction
The motivation for this part is to describe a typical HW architecture used in mobile
terminals today. There is not a thorough discussion why this architecture is chosen,
since the thesis proposal assumes the use of a RISC processor. It is expected that the
reader has some prior knowledge to RISC architecture since it is out of scope for this
thesis to have an in depth explanation here. Although new functionality probably will
force the HW architecture to change, many designers can use results put forward in
this thesis to compare the cost considering HW vs. SW implementation on the mobile
terminal HW architecture used today. The reader should also bear in mind that the
HW in focus in this thesis is the HW concerned with the camera functionality. This
HW will most likely be the same HW used for features as “calendar” and “organizer”
on the terminal and is most likely embedded in an ASIC (Application Specific
Integrated Circuit). It is therefore a paramount goal to reduce the size of the ASIC by
reducing the number and the size of the IP blocks to include. (IP = Intellectual
Property – that is, HW blocks implementing a functionality/performing a task
embedded within the ASIC).

CPU

MEMORYSENSOR DISPLAY

Pre-processing

Figure 6. General HW components.

It is important for the HW in mobile equipment to use as little power as possible. Low
power consumption means longer battery life and operational time that in turn is the
end user requirements. Adding functionality has no meaning if the operational time is
reduced drastically. Reducing power consumption can be done in several ways:

• Smaller physical size. The smaller size allows a higher level of integration that
in turn will reduce the IC count and hence reduce cost and power
consumption.

• Reducing circuit voltage supply. Lower circuit voltage means lower power
consumption, but it also means reduced performance. [Furber, 1996].

• Reducing circuit activity. (Techniques as clock gating etc).
• Reducing clock frequency, f. Lower f means lower power consumption. But it

also means lower performance. However, if the circuit voltage can be reduced
due to the reduced f, then this will be beneficial to the MIPS/Watt
performance.

 Camera Functionality in Modern Mobile Terminals

14

In this thesis these issues are considered given by the architecture chosen. Instead, the
interest in this thesis is put to the computational effort. Reduced computational effort
leads to reduced power consumption and is therefore of interest for mobile terminals.

3.2 The image sensor

The image sensor is, as already described, for mobile terminals typically a CMOS
(Complementary Metal Oxide Semiconductor) image sensor due to cost, power
consumption and production volume. They also typically come with some HW for
buffering and control built in. The means for control is carried out through a set of
registers, and the control loop could be carried out in HW or SW. The interesting
property of the image sensor is the image format output from the sensor described
earlier – the RGB Bayer pattern.

3.3 The RISC processor

3.3.1 The ARM architecture

Research findings reported in the January 2001 issue of Inside the New Computer
Industry, the industry newsletter published by Andrew Allison [Allison, 2001], reveal
that ARM's share of the 32-bit embedded RISC microprocessor market grew to 76.8
percent in 2000, an increase of 19 percent over the same period in 1999. This makes
ARM the industry's leading provider of 16/32-bit embedded RISC microprocessor
solutions. ARM licenses its high-performance, low-cost, power-efficient RISC
processors to leading international electronics companies. ARM's microprocessor
cores are rapidly becoming the volume RISC standard in such markets as portable
communications, hand-held computing and multimedia digital consumer. A glance
into ARM’s website [www.arm.com] discloses that major mobile terminal vendors as
Ericsson, Nokia and Motorola use ARM cores in their mobile terminals. In other
words, ARM’s processors are typically found in HW architecture for mobile
terminals.

The ARM processors are Reduced Instruction Set Computers (RISC). The RISC
concept originated in processors research programs at Stanford and Berkeley
universities around 1980. The ARM architecture incorporates a number of features
from the Berkeley RISC design, but it also rejects a number of features. From the
Berkeley RISC features like LOAD-STORE architecture, fixed-length instructions
and 3-address instructions formats, were kept. ARM RISC has a simple hardware
organization and implementation and in combination with an instruction set that is
grounded in RISC ideas but retrains a few key CISC (Complex Instruction Set
Computer) features has given ARM its power-efficiencies and its small core size. The
memory organization can be viewed as a linear array of bytes. Data items may be 8-
bit bytes, 16 bit half-words or 32 bit words. From the load-store architecture it follows
that the processor instruction set will only process values that are in registers (or
specified directly by the instruction itself), and will always place the result into a
register. The only operations that apply for memory is load instructions that copy
memory values into register, and store values that copy register values into memory.
All ARM instructions will therefore be one of three categories:

www.arm.com

 Camera Functionality in Modern Mobile Terminals

15

• Data processing instructions - These use and change only register
values.

• Data transfer instructions - Load/store instructions.
• Control flow instructions - Branch instructions.

All ARM instructions are 32 bits wide (except THUMB instructions) and are aligned
on 4-byte boundaries in memory. Features of the ARM instructions are:

• Load-store architecture.
• 3-address data processing instructions (source operand registers and result

registers are independently specified).
• Conditional execution of every instruction.
• Powerful load and store for multiple register instructions.
• Ability to perform a general shift operation and a general ALU operation in a

single instruction that executes in a single clock cycle.
• Open instruction set extensions through the coprocessor instruction set,

including adding new registers and data types to the programmer’s model.
• Dense 16-bit compressed representation of the instruction set in the THUMB

architecture.

3.3.2 ARM 710T

A typical ARM processor for mobile terminals is the ARM710T processor that is
based on the ARM7TDMI core.

MMU 8 KB
Cache ARM7TDMI

Data and
Adress
Buffers

Control and
Clocking

Logic

System
Control

Coprocessor

AMBA
Interface

Virtual Adress Bus

AMBA Bus Interface

Coprocessor
 Interface

Internal Data Bus

JTAG Debug
Interface

ARM710T

Figure 7. ARM 710T.

The ARM 7TDMI is a 32-bit RISC ARM microprocessor core designed for use in
mobile terminals. The core is smaller ins size and consumes less power than typical 8
and 16 bit CISC processors. The ARM7TDMI uses a three stage pipeline, which
allows it to execute an instruction on (nearly) every clock cycle, translating to higher
performance at the same clock speeds than CISC devices. The ARM7TDMI is fully
32-bit including 32-bit ALU, barrel shifter, data and address bus. As the core is
intended to be embedded in an ASIC, a choice can be made on how many of the
address lines and data lines are brought out to pads.

 Camera Functionality in Modern Mobile Terminals

16

3.3.3 The THUMB instruction set

The ARM7TDMI includes the THUMB Instruction decompressor. The THUMB
decompressor allows the ARM7TDMI to support two different instruction sets – the
traditional 32-bit wide ARM instruction set and the reduced 16-bit wide THUMB
instruction set. The purpose with the THUMB instruction set is to reduce code size
and thus reduce memory requirements. For a given piece of C-code the finals
executable machine code will be larger for a 32-bit wide ARM instruction set than
that of 8 and 16-bit CISC. With the ARM and THUMB instruction set available, the
user is free to trade off performance against memory consumption, on a function by
function basis. (For a better reference to THUMB instruction set, refer to [Furber,
1996, p.199]).

3.3.4 Cache.

The use of a cache in mobile terminals will effectively reduce power consumption.
The main reason for this is that external memory accesses to SRAM or SDRAM are
by far more power consuming than the cache accesses. Furthermore, the cache
increases execution speed for the processes. A cache is therefore a “must” in mobile
terminals. We want as few external memory accesses as possible, since this is both
time expensive and a power consuming task. It is therefore of interest to have as much
as possible of both code and data in cache when processing.

The organization of the cache varies. For the ARM710T processor a 8kb mixed cache
for data and instructions is included (figure 8).

instructions

data

registers

processor

memory

copies of
instructions

cache

copies of
data

address

instr. and data

instr. and
data

address FF..FF

00..00

16

16

Figure 8. Unified cache.

Since the cache holds a dynamically varying selection of items from main memory it
must have storage for both the data and addresses that the data is stored at in main
memory.

 Camera Functionality in Modern Mobile Terminals

17

3.3.5 Coprocessors

The ARM processors supports a general extension of its instruction set through the
addition of HW coprocessors, and it also supports the SW emulation of these
coprocessors through an undefined instruction trap. The “undefined instruction trap”
is the way the ARM processors handle instructions that are not in ARM instruction
set. The ARM coprocessor interface is based on “bus watching”. The coprocessor is
attached to a bus where ARM instruction stream flows into the ARM, and the
coprocessor copies the instructions into an internal pipeline that mimics the behavior
of the ARM instruction pipeline. The coprocessors of interest when considering image
operations are DSP-coprocessor and floating-point support. However, there has
traditionally been little or no use for floating-point support in mobile terminals - code
is instead rewritten to integer arithmetic. This way we save die size in the ASIC, or
computational effort (if SW coprocessor emulator were to be used). It is therefore
legitimate to say that the mobile terminals today do not include any specific
coprocessors.

3.4 External memory
Traditionally SRAM has been the preferred external memory in mobile terminals.
The main reason for this is that the terminals traditionally have had a limited
functionality. Up until recently a mobile terminal was a mobile phone, and the
memory requirements were limited and the small size SRAM was sufficient.
Furthermore, the SRAM has a simple interface and thus only a simple memory
controller is necessary. The memory controller is typically embedded in an ASIC and
a simple memory controller reduces the ASIC complexity and thus cost of the
product. However, introducing new network technology and market trends, other
functionality is to be implemented on the terminals. This functionality needs more
memory space. This is why the SRAM is shifted to SDRAM since the SDRAM
comes in larger sizes (typically 32 – 256 Mbit). Traditionally the PC (Personal
Computer) market has been the major purchaser of SDRAM memory, and
unfortunately the PC manufacturers pay little to power consumption and size. With
the large growth in the number of battery powered handheld devices as PDA’s and
mobile terminals, a new JEDEC standard for Mobile SDRAM has been proposed. The
Mobile SDRAM has lower voltage supply and also includes additional features for
lowering the power consumption. Furthermore the Mobile SDRAM has smaller
physical size. However, Mobile SDRAM is not available yet so I therefore use
SDRAM as external memory due to its large storage capacity.

The mobile terminal also typically has a more permanent storage medium. Flash
memory is commonly used for the file system and storage for user data purposes. The
software can run either from SDRAM or flash memory.

http://www.jedec.org/Home/about_jedec.htm

 Camera Functionality in Modern Mobile Terminals

18

3.5 Typical hardware architecture
Through the description previously and personal conversation with a HW team leader
at Ericsson Mobile AS [RKN, 2001], it is quite legitimate to say that the simple
illustration in figure 9 is a typical HW architecture used in mobile terminals. (Note! I
only consider the HW components involved for image pre-processing).

ARM7TDMI CACHE

SDRAM

ASIC

SENSOR

ARM710T

IP IP

CPU

FLASH

MEMORY

Pre-processing

Figure 9. Typical hardware architecture.

3.6 Writing efficient code for the HW

3.6.1 General

The terminal has scarce resources when considering power, memory size and
computational effort and optimizing the code is therefore a matter of necessity in
order to reduce system cost. Optimizing code is tied up to the CPU vendor, and little
published literature is found other than web references due to rapidly changing cores
and processors. This discussion is therefore based on both published literature and
online documentation from ARM Ltd. [ARM, App. Note 34] in addition to [Furber,
1996]. Optimizing the implementation of a functionality or operation can be done in
various ways:

• Choosing the “right” algorithm.
• Optimizing the code (that is; the implementation of the algorithm) to HW

architecture.
• Choosing the right data structure for the data so that the data is transferred and

stored in the most efficient way in memory.

In this thesis the optimizing concentrates about the choice of algorithm rather than
general code optimizing to the HW architecture. Though, a brief description of
general code optimizing for ARM architecture is included for later improvement of

http://www.arm.com/armwww.ns4/img/12-Apps+Notes-Writing+Efficient+C+for+ARM+PDF/$File/DAI0034vA.pdf?OpenElement

 Camera Functionality in Modern Mobile Terminals

19

system cost for the algorithms. This thesis is nor about optimizing the data structure
of the image data to the HW architecture. Starting to manipulate the way data is stored
is very tied up to the individual implementation of the memory system. It is out of the
scope for this thesis to look into detail of how a specific memory controller and
memory chip arrange and stores data.

Speeding up the operation and reducing power consumption involves attention paid to
how the operation is implemented. When writing source code it is always worthwhile
to use programming techniques that work well with RISC processors and the HW
architecture in general (related to memory access etc). The motivation for the effort
paid to this task is to increase execution speed, lower code density and reduced power
consumption. (There will most likely be a trade off between these). From increased
execution speed follows less overhead per pixel processing, and from better code
density less area occupied in memory. Also, a lower code size results in a bigger
amount of code available in a limited cache size thus increasing execution speed.

3.6.2 Division

ARM/THUMB instruction set does not include (integer) division. Division is
therefore typically implemented by calling a C-library function. Depending on the
numerator and denominator, a 32-bit division takes 20-140 cycles. Since the division
is an expensive operation it is desirable to avoid it where possible. Effort should
therefore be put into how the division could be carried out most efficiently. If possible
the denominator in a division operation should be a power of two since the compiler
then uses shift operations to perform the division. This avoids calling the C library
function implementing the division operation. Also the division should be done
unsigned since this further reduces the number of instruction to perform the division.

3.6.3 Loops

The loop termination condition can cause overhead if written without caution. One
should always write count-down-to-zero loops and use simple termination conditions.
When using a decrementing loop towards zero fewer instructions are needed due to
comparing to zero can be optimized away.

3.6.4 Lookup tables.

In algorithms where mathematical functions as logarithms or trigonometric (or
divisions) functions are necessary using a lookup table is a good solution. Using
lookup tables one should combine as many adjacent operations as possible into one
single lookup table. This increases execution speed and uses less memory space.

 Camera Functionality in Modern Mobile Terminals

20

3.6.5 Use of memory

Various data types supported in C require differing amounts of memory to store their
binary representations. Further, the ARM instruction set, in common with many other
RISC processors, is most efficient at loading and storing data items when they are
properly aligned in memory. A byte access can be made to any byte address with
equal efficiency, but storing a word to a non word-aligned address is very inefficient,
taking up seven ARM instructions and requiring temporary work registers. The ARM
C compiler therefore generally aligns data items on appropriate boundaries:

• Bytes are stored at any byte address.
• Half-words are stored at even byte addresses.
• Words are stored on four-byte boundaries.

Where several data items of different types are declared at the same time, the
compiler will introduce padding where necessary to achieve this alignment.

 Camera Functionality in Modern Mobile Terminals

21

4 Optimizing the demosaicing operation

4.1 Introduction
This chapter is a literature review to find efficient ways to implement the demosaicing
operation on a typical HW architecture for mobile terminals. Doing so requires
knowledge to both the HW architecture and the image operation. The HW
architecture is described earlier, so is the image pre-processing chain. This chapter
aim to investigate the following:

• What is demosaicing beyond the simple explanation given previously?
• How can an implementation be done in the most optimal way considering the

HW architecture available?

4.2 Adaptive and non-adaptive algorithms
Algorithms for color demosaicing can be classified into two groups. These groups are
the non-adaptive algorithms and the adaptive algorithms.

Non-adaptive algorithms denote those algorithms that perform interpolation in a fixed
pattern for every pixel (within a group).

Adaptive algorithms imply that those algorithms can detect local spatial features
present in the pixel neighborhood and then make effective choices as to which
predictor to use for that neighborhood. In other words, adaptive algorithms possess
some intelligence and therefore are more sophisticated in general. It is not the
intention for this thesis to implement every known interpolation algorithm, but to
implement some of them and measure their performance and cost. For this reason, I
leave out the adaptive algorithms, and concentrate on non-adaptive algorithms. Also,
a non-adaptive algorithm will always be the basis in an adaptive algorithm.

4.3 Mathematical review of the demosaicing operation.
For simplicity, the mathematical description of the demosaicing is shown in one
dimension (1-D), but it can easily be adapted to 2-D images by separable extension
[Keys, 1981].

From the previous description of the camera system, demosaicing was described as
the operation that performed RGB Bayer to full resolution RGB color space.
Mathematically the demosaicing operation can be described as a geometrical
transformation for increasing the spatial resolution. This geometrical transformation is
more precisely known by the term interpolation. Figure 10 shows a general
interpolator. Further, figure 11 and figure 12 gives a spatial and frequency domain
illustration of the interpolation process respectively. As seen from figure 10, the
interpolation process is a two-step process:

• Up sampling by a factor L in a sample rate expander (with zero insertion).
• Low pass filtering (LPF) anti-imaging filter (the interpolation kernel).

 Camera Functionality in Modern Mobile Terminals

22

L LPF

Interpolator

x(n)

Fs L * Fs

w(m) y(m)

LFs

Sample rate
expander

Anti-imaging
filter

RGB Bayer RGB

Figure 10. Interpolator.

The sample rate expander inserts L-1 zero valued samples to the input x(n) (the RGB
Bayer) to form w(m) (“zero inserted” RGB). For the interpolation operation*) involved
in demosaicing from RGB Bayer to RGB, there will for every x(n) be output two
w(m) where one sample is equal to x(n) and one sample is the inserted zero, that is,
L=2. This signal is then low pass filtered by an anti-imaging filter (interpolation
kernel) to remove image frequencies created by the rate increase to yield y(m) (full
resolution RGB). Also, the LPF produces the new interpolated values for the zero
valued samples.

If the image frequencies in figure 12 of the signal are not removed (filtered away) by
an anti-imaging filter they will appear as other frequencies and give a distorted result
in the reconstructed signal. How much imaging the system experiences is dependent
of steepness of the filters cut-off. The observant reader will recognize the anti-
imaging filter as the reconstruction filter following a DAC (Digital to Analog
Converter). The difference here though is that we are not interpolating towards a
continuous (analog) signal, but to another digitized signal (the RGB pixel values). The
interpolation operation is characterized by the input-output relationship in equation 4.
Now, this equation is equivalent to the equation for discrete convolution. The reader
should remember that convolution in spatial domain is equivalent with multiplying in
the frequency domain. The correspondence between figure 11 and figure 12 should
therefore be apparent. That is, the interpolation process can be considered to be a low
pass filtering in the frequency domain (of course, dependent on the h(k)). Again, the
steepness of the filter will decide how much of the high frequency detail in the signal
that will be preserved since we want to preserve the details, but cut out imaging
frequencies.

Equation 4. General interpolator.

*) The input and output for the interpolator are the separated R, G or B image plane.

⎩
⎨
⎧ ++=

=

−= ∑
∞=

−∞=

0
2L,... -/ L,-/ 0,m),/(

)(

)()()(

Lmx
mw

kmwkhmy
k

k

 Camera Functionality in Modern Mobile Terminals

23

0 1 2 3

0 1 2 3

n

m
4 5 6

0 1 2 3
m

4 5 6

x (n)

w (m)

y(m)

Figure 11. Spatial domain illustration of interpolation.

f

f

f

f

|X(f)|

|W(f)|

|H(f)|

|Y(f)|

images

Fs/2

L * Fs/2

Fs/2

Fs/2

L * Fs/2

Fs/2

Figure 12. Frequency domain illustration of interpolation.

 Camera Functionality in Modern Mobile Terminals

24

4.4 The anti-imaging filter - the interpolation kernel

4.4.1 General

Having unveiled the mathematical nature of the demosaicing operation, I now turn to
how to optimize the interpolation process. Optimizing potential lies within the anti-
imaging filter - the interpolation kernel h(k) in equation 3. Since we are to interpolate
from discrete values (RGB Bayer) to discrete values (RGB pixel values), it is not a
continuous interpolation function we shall use, but a sampled and quantized version.
This enables us to use a FIR (Finite Impulse Response) filter. Still, which
interpolation function to choose and the number of coefficients need to be discussed.
From fundamental digital image processing Jain [Jain, 1989] present a table of
interpolation kernels with rising complexity. Table 1 is copy of [Jain 1989, figure 4.13
p 96] included for convenience. The left side of the table 1 shows the spatial domain
characteristics, and the right side shows the frequency domain characteristics for the
different interpolation kernels.

Table 1. Interpolation kernels.

Seen from the frequency domain a we remember from filter theory that a rect function
(far right in the last row of table 1) constitutes the best anti-imaging filter preserving
high frequency detail and cutting out undesired image frequencies. However, from

 Camera Functionality in Modern Mobile Terminals

25

fundamental signal processing we remember that multiplication with a rect function in
the frequency domain is equivalent to convolving with a sinc function in the spatial
domain. Of practical reasons, it is undesirable to perform the convolution with the
sinc function as the interpolation kernel since this (ideally) would we an infinite task.
It is therefore necessary to choose an algorithm that uses an interpolation kernel that
approximates the sinc function sufficiently well, or other interpolation kernels that
give good enough filtering.

4.4.2 Nearest neighbor replication

Referring to table 1, the simplest kernel is rectangle (zero order hold), often referred
to as nearest neighbor replication. The spatial and its frequency domain counterpart
characteristics are also shown in the first row in table 1. With this interpolation kernel
each interpolated pixel is assigned the value of the nearest pixel in the image array.
The nearest neighbor is, as the name suggests, any of the adjacent pixels. Equation 5
gives the interpolation kernel:

Equation 5: Nearest neighbor replication.

The nearest neighbor replication is a simple algorithm where no arithmetic operations
need to be performed. The operations involved are load and store operation. An easy
way to implement this algorithm is to consider blocks of 2 x 2 pixels consisting of the
least repeating pattern. From theory, this kernel is expected to require little
computational effort. Also, from the frequency characteristics found in table 1, theory
suggests that high frequency will be preserved, but with possible image frequencies.
Though, since we are copying the value from the nearest pixel, we expect ‘jaggies’ –
stairway patterns – to occure.

4.4.3 Bilinear interpolation

The next step in complexity is linear interpolation, or first order hold as referred to in
Jain (table 1). Linear interpolation in 2-D is also often referred to as bilinear
interpolation. That is, we perform a bilinear interpolation when we interpolates in 2-
D. Pratt [Pratt ,1991 p. 441-445] has shown that linear interpolation in 2-D is the same
as interpolation with a pyramid function. The mathematical description of the linear
interpolation kernel used is a linear function given in equation 6, and its spatial and
frequency domain characteristics are shown in the second row in table 1:

Equation 6: Linear interpolation.

Care needs to be taken when implementing this algorithm. It is convenient just
summing the adjacent pixels and divide by two. However, division is not a part of the
ARM/THUMB instruction set. Implementing division, however, can be performed in

||5.0 0

5.0||0 1
)(

⎩
⎨
⎧

<
≤≤

=
x

x
xh

⎩
⎨
⎧

<
≤≤−

=
x1 0

 1x0 1
)(

x
xh

 Camera Functionality in Modern Mobile Terminals

26

an elegant way if the denominator is a power of 2. If so, a division is simply a shift
operation (which is taken care of by the ARM compiler).
From the frequency characteristics (far right in the second row in table 1), we observe
a narrower amplitude response than for the nearest neighbor replication. This suggests
a more ‘blurry’ (less sharp) picture than the nearest neighbor replication since high
frequency detail is cut out. However, we will expect less imaging frequencies.
Furthermore, we expect no ‘jaggies’ since we are no longer only replicating pixel
values.

4.4.4 Cubic convolution kernel

The two preceding interpolation kernels were both very simple. If we want better
quality, literature suggests a number of different kernels. Referring to Jain, next order
of complexity is nth order hold functions. Here we find cubic splines that through
literature have shown themselves as the superior interpolation functions regarding
visual quality. The drawback for most of these kernels, including cubic splines, is that
they are computational expensive. To find an alternative to the cubic splines, I turn to
work by Keys [Keys 1981] in the area of digital still cameras. Keys deduce a cubic
convolution kernel composed of piecewise cubic polynomials. The piecewise cubic
polynomials constituting the cubic convolution interpolation kernel are defined by the
subintervals:

Outside these intervals, that is:

the interpolation kernel is zero. In general, the cubic convolution kernel can be given
in parametric form in terms of a as [Keys 1981]:

Equation 7. Cubic convolution kernel, parametric form.

Now, I will not go into detail of how Keys arguments for the value of the parameter a,
rather I present the outcome of his work. The interested reader should refer to [Keys
1981] or [Pratt, 1991, p.115] for the argumentation. Keys represent interpolation as in
equation 8.

Equation 8. Keys representation of interpolation.

><><>−<>−−< 2,1,1,0,0,1,1,2

→><>−<← ,2,2,

⎪
⎩

⎪
⎨

⎧

<
<<−+−

<<++−+

=
|x| 2 0

2 || 1 4||8||5||
1 || 0 1||)3(||)2(

)(23

23

xaxaxxa
xxaxa

xh

∑ −
=

k

k
k n

xx
hcxg)()(

 Camera Functionality in Modern Mobile Terminals

27

Here n represents sampling increment, xk represents the interpolation nodes, h is the
interpolation kernel and g is the interpolated function. The ck is parameters that
depend on the sampled data.

• ck is simply replaced by the sampled data. Keys states that this is a
substantial computational improvement over interpolation schemes such as the
method of cubic splines. The spline interpolation kernel is not zero for
nonzero integers. As a result ck must be determined by solving a matrix
problem.

• Cubic splines slopes of the ends of the interpolation function are not
guaranteed to be zero. This leads to amplitude ripples in a reconstruction
function.

Furthermore, we remember from previous conclusions in this thesis, it is the sampled
and quantized interpolation kernels we are going to use in an implementation of a FIR
filter. Sampling and quantization of cubic splines do not give coefficients with nice
fractions, and not at all fractions with denominators at a power of two. From the
discussion of typical hardware architecture, we remember that this implies that the
function would work well on architecture with floating-point support, but for mobile
terminals with typically only C-library floating support or SW floating-point emulator
it would imply intensive computations. The nice feature of the method of cubic
convolution is that by upsampling by a power of two always will produce coefficients
as fractions with denominators as a power of two. This gives an additional
computational advantage over the cubic splines.

Keys work yields the cubic interpolation kernel in equation 9. Keys work proposes
setting a = -0.5, which provides an interpolation function that approximates the
original unsampled image to as a high degree as possible in the sense of a power
series expansion. Figure 13 shows the interpolation kernel h (x) (which is symmetrical
about the vertical axis).

Equation 9: Cubic convolution kernel. (Keys).

Keys work has found the order of accuracy of the cubic convolution method to be
between that of linear interpolation and cubic splines. I therefore expect the method of
cubic convolution to better preserve high frequency detail whilst cutting out undesired
imaging frequencies. The spatial domain similarity to the sinc function also suggests
less ‘jaggies’ than for nearest neighbor replication and bilinear interpolation.

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<

<<+−+−

<<+−

=

|x| 2 0

2 || 1 2||4||
2
5||

2
1

1 || 0 1||
2
5||

2
3

)(23

23

xxxx

xxx

xh

 Camera Functionality in Modern Mobile Terminals

28

0 0.5 1 1.5 2

0

0.5

1
1.1

0.125

h x()

h1 x()

h2 x()

2.10 x
Figure 13. Cubic convolution kernel. (Keys).

4.4.5 Windowed sinc functions

From fundamental signal processing a common approach to the infinite number of
coefficients required realizing a sinc function, is to use windowed sinc functions.
Common window functions as Bartlett, cosine and Hanning are not included based on
the work done by Turkowski [Turkowski 1990]. Turkowski concluded that the
Lanczos-windowed sinc function offered the best compromise in terms of reduction
of imaging and sharpness in the digital image.

Equation 10: Lanczos interpolation kernel

[Turkowski 1990]

From the same reason as for the method of cubic splines (unsuitable coefficients), the
implementation of the Lanczos kernel is left out, and so are other windowed sinc
functions as Bartlett, cosine and Hanning since these kernels are found to give poorer
results than the Lanczos kernel. Though, cubic convolution is spared since spatial
domain characteristics for the Lanczos function is similar to the characteristics of the
method of cubic convolution, only giving less suitable coefficients when sampled and
quantized.

4.5 Implementing the demosaicing operation

4.5.1 General

Now that we have found the interpolation kernels to use, and we have seen that it will
give suitable coefficients for the FIR filter, we turn to look at how we should
implement the FIR filter. The FIR filter is characterized by the transfer function, H(z)
given by equation 11.

)
3

(sin)(sin)(xcxcxh ×=

 Camera Functionality in Modern Mobile Terminals

29

Equation 11: Transfer function for FIR filter.

We need to choose a realization structure for the implementation, which essentially is
a block (or flow) diagram representation of one of the different theoretically
equivalent ways in which the transfer function can be arranged. Examples of
realization structures suitable for this thesis are:

• Fast convolution.
• Transversal structure.
• Linear phase structure.

4.5.2 Fast convolution

The interpolation functions are to be sampled at the rate corresponding to the pixel
sample data rate. That is, if we want to include more pixels the number of samples,
between the intervals defined for the function, need to increase. Notice that not only
do we include more information by taking more pixels into consideration, but we also
increase the number of FIR coefficients. Increasing the number of coefficients
obviously gives a filter with a steeper slope and thus a better result. For large size
kernels, in many cases, it may be more computationally efficient to perform the
interpolation indirectly by Fourier transform filtering in the form of fast linear
convolution (figure 14) rather than direct convolution. Ifeachor and Jervis [Ifeachor
and Jervis, 1993] conclude that the direct method requires N2 real multiplications
while the method of fast convolution requires 12Nlog22N + 8N multiplications.

DFT

DFT

IDFT

x(n) X(k)

H(k)

H(k)X(k) y(n)

Figure 14. Illustration of fast convolution.

[Ifeachor and Jervis 1993, Table 4.1 p. 224] demonstrate the number of multiplication
necessary for the convolution of two N-point sequences. Here it is shown that fast
convolving is faster than the direct method for sequences containing in excess of 128
data points. However, it would be impractical for the typical HW found in mobile
terminals to use to long sequences. We have to remember that one of the sequences is
the actual pixel values, occupying place in cache. If the number of pixels causes a
situation where the hit rate for the cache drops, this will have a severe negative impact
on the performance of the algorithm. How many pixels that are reasonable to include
in order to increase image quality must be compared to the computational effort. Also
remember that fast convolution requires an FFT adding complexity to the image
operation (the interpolation). Furthermore, it would be a highly time consuming, and
computational intensive task to perform if we were to use 128 data points or more.

∑
−

=

−=
1

0

)()(
N

n

nznhzH

 Camera Functionality in Modern Mobile Terminals

30

4.5.3 Transversal and linear phase realization structure

From the above discussion, fast convolution was found inefficient when only a few
pixels were involved in the convolution sequences. This leaves us with transversal
and linear phase structure. Initially we consider the transversal structure since this
realization structure has a difference equation (equation 12 [Ifeachor and Jervis, 1993
p 344 equ. 6.33]) similar to the general interpolation equation.

Equation 12: Difference equation for transversal structure.

This structure is used in most DSP processors. Though, in typical HW for mobile
terminal we cannot rely on a DSP processor available since this is fully occupied with
other tasks. Futher we remember from previous discussion that we did not want to
include DSP coprocessor due to increased size of the ASIC embedding the ARM
processor. For the typical HW in mobile terminals discussed and presented in this
thesis, a more suitable and efficient realization structure is the linear phase filter
structure. For the filter of the kind shown in figure 15, the transfer function can be
written as equation 13 [Ifeachor and Jervis, 1993 p 345, equ. 6.34b], and the
corresponding difference equation is given by equation 14 [Ifeachor and Jervis, 1993
p 345, equ. 6.35b].

Equation 13: Transfer function for linear phase structure FIR filter.

Equation 14: Difference equation for linear phase structure FIR filter.

A comparison of equation 12 and equation 14 shows that the linear phase structure is
computational more efficient, requiring approximately half the number of
multiplications and additions.

[]∑
−−

=

−−−−−− −
−+=

12/)1(

0

2/)1()1()
2

1()()(
N

n

NnNn zNhzznhzH

[]∑
−−

=
⎥⎦
⎤

⎢⎣
⎡ −
−⎥⎦

⎤
⎢⎣
⎡ −

+−−−+−=
12/)1(

0 2
)1(

2
)1(})1()(){()(

N

k

NnxNhkNnxknxkhny

∑
−

=

−=
1

0

)()()(
N

m

mnxmhny

 Camera Functionality in Modern Mobile Terminals

31

4.5.4 The FIR filter coefficients

Using the cubic convolution kernel as example, I find the coefficients for the FIR
filter.

Figure 15. Sampled cubic convolution kernel (Keys) and neighboring pixels.

The upper part of figure 15 shows the cubic convolution interpolation kernel and the
sampling points using Keys coefficients, and the lower part shows the neighboring
pixels (with zero inserted samples). An illustration of the realization of a 7-point FIR
is shown in figure 16. Using equation 14 yields equation 15 for implementation of the
FIR filter with coefficients corresponding to the samples from Keys cubic convolution
kernel in figure 15.

Equation 15: Expression used for implementation.

This expression leaves us with two multiplications and two additions. This has to be
done for every pixel we want to interpolate the value for. As seen from figure 15 and
figure 16, the coefficients to the FIR filter are implementing cubic convolution (based
on Keys results) are: hcub {-/16, 0, 9/16, 1, 9/16, 0, -1/16}

Similarly, we can deduce the FIR filter coefficients for the bilinear interpolation
kernel: hlin {1/2, 1, 1/2}.

[] [])4()2()2()6()0()0()0(−+−+−+= xxhxxhy

[] [])4()2(
16
9)6()0(

16
1)0(−+−+−+

−
= xxxxy

 Camera Functionality in Modern Mobile Terminals

32

+ + +

1−z 1−z 1−z

1−z 1−z 1−z

∑

x(n) x(n-1) x(n-2) x(n-1)

x(n-1)x(n-1)x(n-1)

y(n)

h(0) h(1) h(2)

Figure 16. Linear phase structure for 7-point FIR filter.

When finding interpolating values, the image is divided into smaller sub blocks so the
number of pixels values to include in the convolution task is limited to a few. For the
nearest neighbor replication algorithm only the nearest pixel in is included. For the
linear interpolation algorithm, the two neighboring pixels (in each direction) are used
for interpolation. Corresponding to this number of pixels are a FIR filter with 3-
coefficients for both dimensions. Moving on to the cubic convolution kernel the
minimum number of pixels to include are the two nearest neighbors on each side in
each direction. This corresponds to a 7-point (since the pixels have interleaved zeros)
FIR filter for both directions.

When considering computational effort, we will expect the nearest neighbor
replication to least computational expensive since only load and store operations are
involved. The bilinear is expected to be more computational expensive due to
multiplications and additions. The cubic convolution is expected to be the most
computational expensive interpolation kernel since it minimum has to be realized as a
7-point FIR filter while it for the bilinear is sufficient with three coefficients.
Furthermore, the cubic convolution filter requires arithmetic to prevent that over- and
under-flow to appear due to the coefficient values 9/16 and –1/16. However, if more
coefficients were included, the difference in computational effort between the bilinear
and cubic convolution will decrease.

 Camera Functionality in Modern Mobile Terminals

33

5 Measuring performance and cost for the demosaicing

5.1 Introduction
The motivation for the following discussion is to define a way to measure
performance and cost of the implementation of the image operation. This part should
preserve validity for test results put forward in this thesis. With this motivation, it is
the scope to find a simple way of measuring the quality and cost for the different
implementations of the image operation.

It is often not expedient to measure images quality per operation. E.g. if an advanced
algorithm is used to output excellent RGB image from a Bayer pattern, and a poor
RGB->YUV transformation is performed, the effect of the advanced algorithm may
not be visible. In this thesis the operation is measured individually and isolated from
the rest of the camera system in order to reduce scope of the work, and a possible
system designer would then again need to choose which algorithm to implement when
considering the overall system performance.

5.2 Subjective and objective image quality

5.2.1 General

Subjective quality means the visual result. But what is good visual quality? Standard
images and test patterns have been introduced in order to establish some common
evaluation criteria. Though, subjective testing will always depend on the individual
persons perception of the test image.

An objective quality measure will not be influenced by personal perception, and is a
better way of reporting image quality. The images might be viewed on different
media as printed paper in various formats, various resolution monitors often as
compressed images etc. With this in mind, I’ll concentrate on finding an objective
quality measure to adopt.

The purpose for introducing an objective quality measure is to replace or supplement
the subjective quality measure. Also, objective quality measures makes it simpler to
re-examine the results put forward. The important thing is to use an objective quality
measure that preserves the special feature(s) in the image that we want to measure.
Applying a ‘general’ objective quality measure is of little or no use compared to
subjective tests otherwise.

5.2.2 Image quality

Generally, when measuring image quality, we need to define what the ‘quality’ is. In
this thesis image ‘quality’ is defined as [Gerdfelder and Muller, 1999]:

“The quality of a presentation intended for human perception is defined by the degree
in which the communicative goal of the presentation is reached. The goal is to find an

 Camera Functionality in Modern Mobile Terminals

34

optimal ratio between the information provided for the human observer, and the
amount of information that is perceived by the human observer”.

From this Gerdfelder and Muller state the following factors that determine the quality
of every presentation (image, audio, video, etc.) [Gerdfelder and Muller, 1999]:

• The human observer (their perception faculty, experience, etc.)
• The information to be coded
• The communicative goal
• The application area (the common metaphor, etc.)
• The presentation and interaction devices and tools

In this thesis the human observer is the consumer with various level of experience.
The information to be coded is still images of various real world motifs. The
communicative goal is to reproduce and preserve the image information with good
quality. The application area is still images stored in an appropriate way for e-mail
attachments. The presentation and interaction devices are e.g. mobile terminals and
PC’s.

5.2.3 A model for measuring objective image quality

In objective measurements, image quality and quality losses in a digital image system
is determined be evaluations based on a given general mathematical, physical or
psycho physiological model. In subjective tests, the quality of a visual presentation
image is determined form the performance of test persons in subjective physiological
test. Most quality measurement methods are based on a comparison of the original
and the processed image.

Processing
System

Original
Picture

Disturbed
Picture

Feature
Extraction

Feature
ExtractionComparison

Measure

Figure 17. Model for measuring image quality.

In order to make a comparison, one needs to have a ‘reference’ image to compare to.
This is ideally the real life motif, but in practice this is (for objective quality
measuring) a high-resolution digital representation of the real life motif.

Gerdfelder and Muller introduce the model in figure 17 for measuring objective
quality. The important issue from the discussion of quality measures is that the quality
measure adopted must extract and reflect the feature(s) we want to measure. From the

 Camera Functionality in Modern Mobile Terminals

35

previous discussions we have found that the demosaicing operation is an
interpolation. This again is in the frequency domain the equivalent the same as low
pass filtering the image pixel samples using a FIR filter. Using a filter we want to
retain all spatial resolution, but exclude imaging frequencies. The algorithms used to
find the missing information at each pixel will introduce ‘distortion’ compared to the
‘reference’ image. It is this distortion we want to measure in order to say how good
the quality is. For overview I have a brief introduction to the features we want extract
for quality measures for the demosaicing operation, namely imaging, ‘jaggies’ and the
sharpness of the image.

5.2.4 Jaggies

The algorithms implemented in this thesis uses information from the neighboring
pixels to decide the value for the missing colors. This approach will introduce a
‘zipper’ effect – or ‘jaggies’. That is, lines and curves in the image will appear as a
‘stairway’ pattern. For the demosaicing operation, lines and curves are the features we
want to extract and compare. This is what’s referred to as feature extraction in figure
17. The reference image used in this thesis should therefore be chosen especially to
emphasize this feature for simply extraction. That is, the image should include clearly
defined curves.

5.2.5 Sharpness

Interpolation with the kernels discussed in this thesis constitutes a low pass filtering.
Low pass filtering reduces the spatial bandwidth meaning that higher frequencies can
be cut out. It should be apparent that removing high frequency contents would case
the reproduced image to appear more “blurry” than the original. The reference image
used in this thesis should therefore be chosen especially to emphasize this feature for
simply extraction. That is, the image should contain high frequency information.

5.2.6 Imaging (post-aliasing)

From the mathematical discussion of the demosaicing operation I illustrated the
spatial and frequency characteristics of imaging. But what does imaging look like in a
picture? Figure 19 shows how imaging can occur in a picture with poor anti-imaging
filter. The imaging is seen (especially down right) as rings within the picture. (Figure
18 shows the image without imaging artifacts).

5.2.7 Circular Zone Plate

In order to better extract the undesired features imaging, ‘jaggies’ and sharpness, I
adopt the method of using a circular zone plate (CZP) as a reference image (figure
18). By using the CZP we can evaluate the difference in color restoration (for each
color if desirable). The CZP implemented will have increasing frequencies moving
away from the lower left corner in the image (0,0 for windows bmp). Making the
image include circular curves will emphasis extracting the jaggies feature. Further,
since the frequency is increasing, we can investigate the ‘sharpness’ and imaging
features. (For information about implementation refer to the function zone in
Appendix C – Software Listing under the file measure.c).

 Camera Functionality in Modern Mobile Terminals

36

Figure 18. Circular Zone Plate

Figure 19. Circular Zone Plate with imaging artifacts.

 Camera Functionality in Modern Mobile Terminals

37

5.2.8 Error images

An effective way for visually inspection of the image quality is to use error images.
By looking at the difference between the original and the reproduced image, one can
identify the quality of the reproduced image compared to the original. If there is a
perfect match at the pixel, the pixel will be black. If the red, green and red values are
completely wrong, the pixel will be white. The error image pixel values are simply the
difference value between the original and the reproduced image.

5.2.9 Signal to noise ratio

A basic measure for objective evaluation is the normalized least square error (NLSE)
(equation 16) of the pixel values. In order to make NLSE more computational
efficient, the denominator is often replaced with the highest brightness quantization
level to form the peak normalized least square error (PLNSE).

Equation 16. Normalized Least Square Error

The numerator in PNLSE and NLSE represent the power spectrum of the image noise,
and the denominator describes the power spectrum of the distorted (reproduced)
image. We now have a signal to noise ratio for the reproduced image (normalized to
the number of pixels):

Equation 17. Signal to Noise Ratio (SNR)

[Sakamoto et.al. 1998].

Where KxL is the spatial resolution (e.g VGA = 640 x 480), f(k,l) is the original
image and f’(k,l) is the reproduced image. The color depth is 8 bit, so the denominator
is 2(8-1)*2 = 2552.

[]dB
255

)},('),({1

log10 2
0

1

0

2

10

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

−=
∑∑
−

=

−

=

lK

k

L

l
lkflkf

KLSNR

[]

∑∑

∑∑

= =

= =

−
= M

y

N

x

M

y

N

x
NLSE

yxf

yxfyxf

1 1

2

1 1

2

)',(

)',(),(
δ

 Camera Functionality in Modern Mobile Terminals

38

5.2.10 The objective quality measure adopted

The quality of the reproduces image is given as a SNR. To emphasize the features of
imaging, jaggies and sharpness I use a CZP. The SNR will most likely change
according to test image. A uniform test image will make little or none difference in
SNR for the different interpolation kernels. That is, an image with little high
frequency content and little curves will be reproduced with little visual distinguishing
between the images. In addition to the features jaggies and sharpness will the possible
imaging will contribute to the SNR. Since these rings are visual, they are also
measurable and will contribute to a poorer SNR if present.

5.3 Computational cost

5.3.1 General

As found in work by [Sakamoto et.al, 1998], evaluating different algorithms for
embedded systems should also include a measure for computational cost since it is of
importance to reduce power consumption. The power consumption can be reflected
through the number of processor clock cycles an operation requires to finish. A
measure for computational effort will also reflect the power consumption.

5.3.2 MIPS

Computational cost is often measured in MIPS, - Million Instructions Per Second. If
we counted the number of instructions for the code implementing a particular
operation we would have an efficiency measurement for that code. One obvious
thought is that we could calculate the time this operation would occupy the processor
simply by dividing the number of instructions by the processors MIPS. This is not
always the case due to the fact that one instruction not necessarily can be carried out
by only one clock cycle. The ARM7 processors employ a simple 3-stage pipeline with
the following pipeline stages:

• Fetch; the instruction is fetched from memory and placed in the instruction
pipeline.

• Decode; the instruction is decoded and the data path control signals prepared
for the next cycle. In this stage the instruction ‘owns’ the decode logic but not
the data path.

• Execute; the instruction ‘owns’ the data path; the register bank is read, an
operand shifted, the ALU result generated and written back into a destination
register.

For single cycle instructions the pipeline enables one instruction to be completed
every clock cycle. An individual instruction takes three clock cycles to complete, so it
has a three-cycle latency, but the throughput is one instruction per cycle. Though,
some instructions take more than one cycle. Typically load and store instructions
takes more than one cycle. Further, the memory may not work at the same speed as
the processor. This implies that the memory system needs to be implemented using
wait states. One wait state means that we have to wait one clock cycle for a memory
access.

 Camera Functionality in Modern Mobile Terminals

39

5.3.3 Clock cycles per pixel

A more suitable cost measure is therefore to measure the number of clock cycles
needed to process one pixel. (This approach was also used by [Sakamoto et.al. 1998]).
This can be performed in an easy way simply by measuring the time the operation
occupy the processor, and divide this number by the processors clock frequency.
Further, this number can be divided by the spatial resolution in order to find the
number of cycles used to process one pixel. Lower overhead means less
computational effort needed. Also, when this measure is used, we no longer have to
think of how to extract the number of instructions from the C code.

 Camera Functionality in Modern Mobile Terminals

40

 Camera Functionality in Modern Mobile Terminals

41

6 Test method and environment

6.1 Introduction
This chapter presents the test equipment - both HW and SW. My intention is to
present enough information for later reproduction of results put forward. The code
development has been divided into two implementations, one for ARMulator
(emulator for ARM processors in ARM SDT v.250), and one for Ericsson
Development Board (EDB). The reason for this was the limited time schedule for the
thesis. The limited time forced removing as many practical problems as possible and
focus on getting results produced. By dividing the code development into two SW
builds, I could use one build for visual verification and objective quality measures
(ARMulator build, - or actually any SDT since cost measures are not an issue), and
the other build to perform cost measures (EDB build). Doing so released me from
implementing the memory model and memory interface in ARMulator, and also
opportunity to run on real HW. Though, I give enough information for readers to
implement a memory model and memory interface for ARMulator or real HW to re-
examine the results put forward.

6.2 The ARMulator build

6.2.1 General

Read
bitmap image Extract RGB data Create Bayer

 RGB pattern
Run demosaicing

operation
Bayer
RGB

Mask away
pixels unable to

reproduce

Measure SNR

RGB

RGB

image_in.
bmp

Create
error image

Preparatory operations

Quality measurements

Create bitmap
image

image_out.
bmp

error.bmp

fread() main() bmp2cfa()

mask()
error()

snr()
mse()

nearest()
bilinear()
cubic()

main()

dB
SNR

RGB

czp.bmp
nature.bmp

cubic.bmp
bilinear.bmp
nearest.bmp

cubic_error.bmp
bilinear_error.bmp
nearest_error.bmp

cubic
bilinear
nearest

Figure 20. Overview of SW build.

Figure 20 is an illustration of the complete ARMulator build. The image read is
chosen to emphasize feature we want to extract. The feature is extracted by
subtracting the reproduced image data from the original image data. The ARMulator
build is used for visual verification and objective quality measures. The build also

 Camera Functionality in Modern Mobile Terminals

42

creates Bayer pattern RGB from a bitmap file (windows .bmp) by removing two out
of three color in every pixel position. The build can also create a CZP for
measurement purposes. Further, the build masks border pixels that can’t be
interpolated for correct SNR measures.

Below follows a short description of the files and functions in the ARMulator build.
The complete code listing is included in Appendix C. Under the consumption taken in
this thesis, the mobile terminal uses a color filter array that reduces the color
resolution. Due to this, it is not straightforward to make a comparison since there are
not digital reference image to compare to. In this thesis, the reference (original) image
is produced taking a high quality digital image of bitmap format and remove two
colors from each pixel in a defined manner, - in this thesis using a Bayer patter color
filter array. This way an image similar to the digital image delivered from the CMOS
image sensor is created. (The same approach was used by [Wu et.al., 1997]

6.2.2 Short description of files in ARMulator build

definitions.h
A header file defining different sizes of the input image to read is included. The file
needs to be edited if the spatial resolution is to be changed.

main.c
A bitmap (windows bmp) input image are read from file and put into a buffer. The
header and data are put in separate buffers. Possibly, a CZP image can be created if
wanted. The content in the data buffer are then transformed to Bayer RGB data and
put into another buffer by removing two out of three colors at every pixel position.
There is also created a ‘bayer_out.bmp’ for visual inspection of the content in the
Bayer data buffer. Now we have Bayer data and can start the real job, - namely
interpolating back to full resolution RGB. Testing different kernels are done by
adding or removing functions implementing the from the ‘main.c’ file. For all tested
kernels the SNR are measured, and an output image together with an error image are
created as windows bmp files. Notice that the header used to create these pictures is
the header copied from the initial image read from file.

mosaic.c
This file includes the bmp2cfa function for means to convert bitmap files with full
resolution RGB into Bayer RGB. Its input is the read files data content, and it outputs
Bayer CFA data together with data bitmap content for visual inspection.

demosaic.c
Here the core of the work in the thesis lies. In this file the interpolation operation is
performed. The implementation of the kernels lies here as the function nearest,
bilinear and cubic. The interpolation is carried out calling the function from main to
the actual kernel.

 Camera Functionality in Modern Mobile Terminals

43

measure.c
The measure.c file includes the function mse and snr for measuring the SNR for the
different kernels. The snr are called from main, and snr calls mse again. The mse
function calculates the Mean Square Error (MSE) between the original and the
reproduced image. This measure is used to calculate PNLSE, and later SNR. When
interpolating, dependent of the kernel, there are boarder pixels that can’t be
interpolated. These pixels need to be masked away before the SNR calculations for
correct results. The mask simply writes zeros into these positions in the buffers
containing the original and reproduced image data. Thus, when subtracting these
positions there are no contributions to the SNR. For visual inspection and also
debugging, a function for creating an error image (error) is included. Additionally,
this file includes the function zone for creating CZP image data.

6.3 Ericsson Development Board (EDB)
The build for the EDB is identical to the ARMulator build with the following
exceptions:

• No means for performing quality measures (were not interested in doing this at
real HW since it’s already done in the ARMulator build), but means for
measuring clock cycles for a function (without getting interrupted).

• The different functions are embedded into the simple existing SW build on the
board.

The code for the EDB build is not included since the reader would only have little or
none use of this information since the functions described in the ARMulator build are
scattered throughout the proprietary SW build for the EDB.

For reproduction of test results the reader should implement a HW with the
characteristics described in table 2. The implementation could either be a complete
ARMulator model consisting of CPU (ARM710T model is included in ARM SDT
2.50), memory model and memory interface (these have to be specified according to
datasheet for SDRAM specified in table 2), or in real HW. For information of how to
implement the model refer to [ARM, Ref. Guide 1998, chapter 12]
Table 2. Ericsson Development Card characteristics.

Component Actual Characteristic
CPU frequency 65 MHz
8kb mixed cache

Processor ARM710T

16 word1) write
buffer

Memory frequency 65MHz
CAS latency2) 2
tRRD

2) 20 ns
tRAS

2) 50 ns
tRP

2) 24 ns

SDRAM K4S641632C-TC/L10

tRCD
2) 24 ns

1) Word = 32bit
2) Refer to [Samsung K4S641632C] for explanation.

 Camera Functionality in Modern Mobile Terminals

44

 Camera Functionality in Modern Mobile Terminals

45

7 Results

7.1 Introduction
This chapter puts forward the results of the performance and cost measures from
practical tests.

7.2 Test results

7.2.1 Performance and cost measures

In table 3 the performance and cost measures are put forward for the different
interpolation kernels. The overhead [cycles/pixels] was measured for each ‘RGB’
pixel, and must be divided by three to indicate each R, G or B pixel-processing
overhead. Further, the measurement is measured when code was run from SDRAM
and with and without cache.

Table 3 presents the objective quality measurements and the cost for the different
interpolation kernels.

Table 3. Test results.

Algorithm Overhead
[cycles/pixel]
with cache

Overhead
[cycles/pixel]
without
cache

SNR [dB]
‘czp’

SNR [dB]
‘nature’

Nearest neighbor 68 238 17,70 23,81
Bilinear interpolation 85 310 25,36 27,46
Cubic convolution 136 466 30,27 27,55

7.2.2 Test images and reproduced images.

The test images and the presentation of the reproduction by the different interpolation
kernels are included as Appendix A for convenience. The images need to shown as
bitmap files in order to maintain correct visual reproduction. It is of most importance
that these images are not compressed (using a lossy algorithm) if difference in quality
is to be visible.

The reader should be aware that printing the test results in Appendix A is not straight
forwarded. Remember that the printer not necessarily will reproduce the images
properly without care taken. The printer might interpolate or decimate the image data
for its own good (refer to Appendix B for further information). The best viewing
media is a monitor and an image processing software capable of showing windows
24-bit bitmap files with VGA resolution.

For each of the two test images, three images representing the reproduction for each
of the interpolation kernels are included. Furthermore, the error images showing the
difference between the original image and the reproduced images are included.

 Camera Functionality in Modern Mobile Terminals

46

 Camera Functionality in Modern Mobile Terminals

47

8 Discussion

8.1 Introduction
From the work done in this thesis several issues have arisen that need to be discussed:

• The test results and their correspondence to literature review
• The test results validity.
• Which interpolation kernel is most suited for mobile terminals based on

literature review and test results?
• How does the work fit into the overall camera system?
• Can the work be applied in other areas than just the demosaicing operation?
• Other issues that has arisen through the work.

8.2 Test results

8.2.1 General

This chapter discusses the test results put forward and their correspondance to
literature review.

First, if we look at the results for reproducing the CZP images (picture 3, picture 4
and picture 5 in Appendix A), we find a satisfactory coherence between the literature
review performed and the test results. The SNR number in it selves provide little
information of the quality, but when considering them, and comparing them to each
other, we can see that the cubic convolution kernel gives the best performance. This is
also confirmed through the error images. From the error images for the nearest
neighbor replication (picture 6 in Appendix A), bilinear interpolation (picture 7 in
Appendix A) and the cubic convolution (picture 8 in Appendix A), one can easily see
that the cubic convolution has less error compared to nearest neighbor and bilinear
from its larger black area. We also notice that for bilinear and cubic convolution it is
at the sharp edges the errors are apparent. This is especially true when the frequency
increases towards the upper right corner. Considering picture 6 and 11 in Appendix A
we find the ‘jaggies’ as expected from literature review. Also we find that the nearest
neighbor replication have errors spread over the whole image due to the replication of
pixel values.

Also the color in the error image gives us valuable information. The errors mainly
appear as magenta. From additive color mixing we know that this means mixing blue
and red – hence we know that red and blue color planes have more errors than green.
This makes sense since the red and blue color planes are subsampled in both
horizontal and vertical direction.

 Camera Functionality in Modern Mobile Terminals

48

8.2.2 Aliasing or imaging artifacts?

When considering the error images, we see undesired artifacts (rings) in the images.
This is most apparent for the nearest neighbor, but is also visible in the error images
for the bilinear interpolation and the cubic convolution. The question is; is this
aliasing or imaging? They will both occur in the same manner in a digital image. In
the SW build I created a Bayer RGB array from a bitmap file simply by throwing two
out of three colors in each pixel. That is, I performed a hazardous decimation with no
low pass filtering before the decimator! Discovering this, I performed a “manually”
low pass filtering of the image by ensuring that the image did not contain frequencies
that exceeded the Nyquist frequency (after decimation) to ensure that no aliasing
occurred from the decimation process. In picture 2 in Appendix A we can see that no
aliasing artifacts are present in the zero inserted Bayer RGB CZP. The artifacts visible
in the error images are therefore image frequencies due to poor anti-imaging filter in
the interpolator.

8.2.3 The interpolation kernel and the input image

When considering the test image ‘nature’, we see as expected that the SNR for the
different kernels are more equal. I say expected because the large uniform sky is easy
to recreate and hence introduce no errors. Which interpolation kernel that is used here
is therefore unessential. This type of information can be used in adaptive algorithms.
If the image has uniform areas, nearest neighbor replication or bilinear interpolation
kernel is sufficient. Though, when details are to be reproduced cubic convolution
kernel should be used. The motivation behind this is to reduce power consumption.
The results put forward in table 3 shows that the cubic convolution kernel is twice as
expensive as nearest neighbor replication.

8.2.4 Computational effort

Table 3 puts forward the cost measure for the processor in form of number of clock
cycles/pixel to perform the demosaicing job. The number is normalized to reflect the
job to perform the operation on RGB values – since each pixel is represented by red,
green and blue values. From table 3 we find that substantial cost saving is
accomplished in form of the cache. The code requires approximately 2,5 times less
computational effort with cache present. The necessity to keep the pixel blocks small
should therefore be apparent. If to many pixels and FIR coefficients are included there
might not be enough space in cache and thus a decreased hit rate leading to increased
computational effort.

Relating the measure to the time spent performing the demosaicing operation, we can
calculate the time spent to produce a VGA (640 x 480) image on an ARM710T with 8
kb cache and SDRAM external memory @ 65 MHz with. The times would be 0.32
seconds for nearest neighbor replication, 0.40 seconds for the bilinear interpolation
and 0.64 seconds for the cubic convolution. If we consider a display for a mobile
terminal, the resolution can typically be QQVGA (160 x 120) the times are 0.02,
0.025 and 0.04 seconds respectively.

 Camera Functionality in Modern Mobile Terminals

49

8.3 Test result validity
Have the measures adopted shown themselves suitable measuring the objective
quality and computational cost? From the overall conformity between literature
review, discussion and practical results I would say; yes. Though, criticism has been
raised through the years claiming measures as SNR, MSE and NLSE are meaningless.
Though, this criticism is pointed to the measures when looking at the complete
camera system. For this thesis this has not been the issue since I am only
concentrating on optimizing this single operation for the HW. On the contrary, the
SNR combined with a suitable test image for feature extraction (enhancement) has
shown to produce results according to the literature review and discussion.
Still, this operation is to coexist with other operations such as compression, and
marginal differences in quality might not even be visual when considering the
complete camera system.

The implementations of the different kernels do not take general code optimizing into
account. The code optimizing is likely to decrease the number of clock cycles/pixel
for the different interpolation kernels, but is expected to give the same reduction for
all kernels since implementations only have minor differences. Also effort paid to the
data structure of the image data and how these are stored in memory for efficient
memory accesses and cache line fills are likely to reduce clock cycles/pixel for the
implementations. Again, these savings are expected to give the same reduction for all
three kernels.

8.4 Which interpolation kernel is best suited for the mobile terminal?

8.4.1 General

Now that the results are presented a question remains; which interpolation kernel is
best suited for use in mobile terminals? As a beginning, the answer will depend on the
requirements of the application. So far I have discussed the image operation
demosaicing isolated from the camera system, and with no real time requirements.
Trying to give an answer to the question in the heading, I use two application as
examples – still images and video clips for e-mail attachments.

8.4.2 Still images for e-mail attachments

The still image ‘mode’ is divided into two parts:

• Searching for the motif using real time viewfinder (the display).
• Acquiring the motif by ‘pressing the button.

For the viewfinder functionality, the time the image operations require to finish is an
issue. For this purpose the demosaicing operation needs to be fast. The faster
operations, the more frames per second (fps) are possible. However, the quality of the
operation is less important due to poor display reproduction quality. For this purpose
the nearest neighbor replication kernel is a suitable interpolation kernel. However,
when the user has ‘pressed the button’ image quality is an issue, and the time
consumption is of less importance. Now the cubic convolution kernel would be the

 Camera Functionality in Modern Mobile Terminals

50

natural choice. If switching between the two interpolation kernels is undesired,
bilinear interpolation is a good trade-off offering a visual quality near the cubic
convolution and requiring only a computational effort close to the nearest neighbor
replication. Moreover, the image is to be compressed, and the compression scheme is
most likely to be JPEG (Joint Photographic Experts Group). Also, considering the
GPRS terminals today, typically only one time slot is offered for uploading of data
offering a slow data rate (worst case 9,6kbps) hard compression is likely to be used in
order to reduce image data size. With this in mind, the most suitable kernel would be
the bilinear interpolation since the high frequency detail surviving the anti-imaging
filter is in some extent removed again by the JPEG codec. Though, new storage media
as MultiMedia Card and Memory Stick offer simple means for transferring data
between the mobile terminals and PC’s. With these solutions the user might want the
uncompressed image stored, then the cubic convolution kernel would be preferable
again. (Another issue is that the user might want to compress the images to fit as
many images into the storage medium and therefore image quality is less important).

8.4.3 Video clips as e-mail attachment

Recording video clips we have a situation somewhat similar to the viewfinder
functionality in the still image ‘mode’. The difference is that now the operation needs
to be both fast and offer good visual quality. The use for better quality is due to the
possibility to send the clip as an e-mail attachment to be viewed e.g. at a high
resolution PC monitor. However, the compression used scheme (e.g. MPEG-4) will
again in some extent suggest the choice of interpolation kernel. If the visual
improvement is not visible at the peer, then the use of the cubic convolution kernel
might be unnecessary. Again, as for the still image application, the bilinear
interpolation kernel might be the best trade-off between visual performance and
computational effort.

8.5 Other application areas for the results

8.5.1 Downsampling

Mathematically, interpolation and the decimation operation are duals of each other
[Ifeachor and Jervis, 1993, p. 494-498]. The duality property means that a decimator
can readily be derived from an interpolator equivalent and vice versa. Following this
property – the anti-aliasing filter prior to the decimator can use the same kernels for
decimation as the interpolator uses for its anti-imaging filter. Hence, e.g. the
downsampling operation in the camera system in figure 4 of the YUV to YUV 4:2:0
can apply the different kernels found in this thesis according to the trade-off between
visual quality and computational effort as it did for the demosaicing process.

8.5.2 Scaling

The demosaicing operation is about pixel interpolation for the different color planes.
Now, up-scaling and down-scaling is the same operation as demosaicing only
considering all color planes together. That is, scaling is an interpolation (up-scaling)
or a decimation (down-scaling) operation. Again, as a trade-off between visual quality
and computational effort an interpolation or decimation kernel needs to be chosen.

 Camera Functionality in Modern Mobile Terminals

51

8.6 A suggestion to a simplified image pre-processing chain

8.6.1 General

The motivation for this part is to discuss some issues that have arisen from previous
discussions and work in this thesis. The discussion here takes a more general look at
the whole pre-processing chain using the work from of the demosaicing operation.

8.6.2 Using the nature of Bayer pattern decimation

Considering the current image pre-processing chain (figure 21), we find duplication of
interpolation and decimation schemes. In this discussion I argue for a simplified pre-
processing chain for mobile terminals.

We remember from previous discussions that the CMOS image sensor output is a
subsampled RGB image (RGB BAYER). The demosaicing operation interpolates this
subsampled Bayer pattern to full RGB. Then there is a RGB to YUV color
conversion. The main reason for this conversion is that e.g. JPEG uses YUV color
space as input for compression. After this, a new decimation is performed, now in the
YUV color space. After compression and decompression, we need to interpolate back
to full YUV info again. Then, a new color space conversion back to full RGB
resolution.

DECIMATION
(CMOS SENSOR)

INTERPOLATION
(DEMOSAICING)

COLOR SPACE
CONVERSION

DECIMATION
(YUV

SUBSAMPLING)

INTERPOLATION
(YUV

INTERPOLATION)

COLOR SPACE
CONVERSION

SENDER

RECEIVER

RGB
RGB

 BAYER RGB YUV

YUV 4:2:0

YUVRGB

COMPRESSION

DECOMPRESSION

YUV 4:2:0

Figure 21. Interpolation and decimation in the pre-processing chain today.

The Bayer pattern is based upon the same thoughts used for the YUV color model.
That is, the image can be represented as luminance and chrominance information. The
Bayer pattern CFA is made on the approximation that green represent luminance

 Camera Functionality in Modern Mobile Terminals

52

information, and red and blue represent chrominance information. Since the eye is
less sensitive for chrominance information than luminance information, chrominance
information can be subsampled more than luminance information without any visual
degradation in image quality. This feature is exploited both in YUV subsampling and
the Bayer pattern. That is, chrominance information is subsampled at a higher rate
than luminance information. The most common subsampling used for YUV
subsampling is YUV 4:2:0, which means that the luminance information is not
subsampled, the chrominance information is subsampled in both vertical and
horizontal direction. This leaves us with half the data size (of the full RGB
resolution). The Bayer pattern gives a reduction in data size to one third of the full
RGB resolution.

From the similarities in the YUV color model and the Bayer pattern, I suggest a
simplified block diagram for the interpolation and decimation operations in the pre-
processing chain in figure 22. Here we consequently remain in the RGB color space.
This way we save two color space conversions that include multiplications and
additions. Furthermore, we save one interpolation (the demosaicing) and one
decimation (the YUV downsampling). Using the simplified pre-processing chain in
figure 22, the mobile terminal only needs to run the demosaicing operation on the
receiver side. This way both time and power consumption is saved.

The drawback for this scenario is that JPEG uses YUV color space as input. The
switching to RGB color space might not be straight forwarded, but I leave this
obstacle for later research. Further research has to look into how the JPEG
compression scheme will be affected when RGB are input instead of YUV. How will
the visual quality be affected and how hard can we compress are central questions. A
simple way getting around the whole problem is changing the compression format.
The drawback for this approach is a proprietary system with reduced area of
application.

DECIMATION
(CMOS SENSOR)

INTERPOLATION
(DEMOSAICING)

SENDER

RECEIVER

RGB
RGB

 BAYER

RGB

COMPRESSION

DECOMPRESSION

Figure 22. Simplified interpolation and decimation in the pre-processing chain.

 Camera Functionality in Modern Mobile Terminals

53

8.7 Frequency domain versus spatial domain processing

Although this thesis has worked with the demosaicing operation isolated, the
operation is to be implemented as part of an image processing chain. In compression
schemes as JPEG, a frequency transformation as DCT for frequency domain
transformation is already present, and this enables processing in frequency domain.
Also, the processor experiences continuously increased execution speed that might
enable applying more coefficients in the FIR filter and thereby including more pixels
for better visual result. Thus the pixel block used in the demosaicing operation might
be more efficient to process in frequency domain.

Knowing this, further research should look into whether it is efficient to perform more
of the image pre-processing operations in frequency domain. If we also combined
operations in order to reduce the number of memory accesses, noticeable reduction in
computational effort and power consumption may be achieved. How this would be
affected when JPEG 2000 (using wavelets instead of DCT) becomes common should
also be investigated.

 Camera Functionality in Modern Mobile Terminals

54

 Camera Functionality in Modern Mobile Terminals

55

9 Conclusion

Work has shown that the demosaicing operation is equivalent to the mathematical
operation of interpolation, and that optimizing potential lie within the implementation
of the anti-imaging filter for the interpolator. This filter can be realized as a FIR filter
with the filter coefficients obtained from a suitable interpolation function (kernel).

My work has investigated the nearest neighbor replication, bilinear and cubic
convolution interpolation kernels from literature review. Furthermore I, have
implemented and measured these kernels with respect to performance (SNR) and cost
(clock cycles/pixel on typical hardware found in mobile terminals today.

Considering the interpolation kernels isolated from the pre-processing chain, the cubic
convolution kernel offers the highest image quality (SNR = 30,27 dB for CZP)
requiring only moderate computational effort (136 clock cycles/pixel at 65 MHz). The
quality improvement gained using cubic convolution lies in preservation of high
frequency details and reduced anti-imaging. Though, the demosaicing operation is to
coexist with other image operations possibly masking away the visual improvement
from the demosaicing operation (as e.g. compression). With this in mind, the bilinear
interpolation kernel is the most suited interpolation kernel of the three kernels offering
a good trade-off between image quality (SNR = 27,46 dB for CZP) and computational
effort (85 clock cycles/pixel at 65 MHz). The simplest interpolation kernel, the
nearest neighbor replication offers the poorest image quality (SNR = 23,81 dB for
CZP) and should not be used unless the system lacks computational capacity. The
nearest neighbor replication interpolation kernel only requires 68 clock cycles/pixel at
65 MHz.

Further work should put effort into investigate the performance of the different
interpolation kernel when considering the whole camera system. Furthermore,
research should look into potential cost savings when image operations are combined
resulting in fewer memory accesses. Also, since the JPEG compression in the camera
system uses a DCT, research should look into possible cost savings if processing was
carried out in the frequency domain.

 Camera Functionality in Modern Mobile Terminals

56

 Camera Functionality in Modern Mobile Terminals

57

10 Abbreviations

1-D - One-Dimensional
2-D - Two-Dimensional
2,5G - 2,5’d Generation
3G - Third Generation
ARM - Advanced RISC Machine
ASIC - Application Specific Integrated Circuit
CFA - Color Filter Array
CIF - Common Interchange Format
CISC - Complex Instruction Set Computer
CMOS - Complementary Metal Oxide Semiconductor
CPU - Central Processing Unit
CZP - Circular Zone Plate
DAC - Digital to Analog Converter
DCT - Discrete Cosine Transform
DFT - Discrete Fourier Transform
DSP - Digital Signal Processor
FIR - Finite Impulse Response
fps - frames per second
GPRS - General Packet Radio Service
HW - Hardware
IDFT - Inverse Discrete Fourier Transform
IP - Intellectual Property
JEDEC - Joint Electron Device Engineering Council
JPEG - Joint Photographic Experts Group
Kbps - Kilo bytes per second
LPF - Low Pass Filter
MIPS - Million Instructions Per Second
MMS - Multimedia Messaging Service
MPEG - Motion Picture Experts Group
MSE - Mean Square Error
NLSE - Normalized Least Square Error
PC - Personal Computer
PDA - Personal Digital Assistant
PNLSE - Peak Normalized Least Square Error
RGB - Red, Green and Blue
RISC - Reduced Instruction Set Computer
SDT - Software Development Toolkit
SW - Software
SRAM - Synchronous Random Access Memory
SDRAM - Synchronous Dynamic Random Access Memory
SNR - Signal-to-Noise Ratio
UMTS - Universal Mobile Telecommunication System
VGA - Video Graphics Array

 Camera Functionality in Modern Mobile Terminals

58

 Camera Functionality in Modern Mobile Terminals

59

11 References

[Baxes, 1994] Baxes, G.A., "Digital image processing -

principles and application", John Wiley & Sons
1994, ISBN: 0471009490.

[Gonzales and Woods, 1992] Gonzalez, Woods, "Digital Image Processing",

Addison-Wesley Pub Co 1992, ISBN:
0201508036.

[Jain, 1989] Jain, A.K.,“Fundamentals of Digital Image

Processing”, Prentice Hall 1989, ISBN:
0133361659.

[Ifeachor and Jervis, 1993] Ifeachor, E.C., Jervis, B.W., “Digital Signal

Processing – A Practical Approach”, Addison-
Wesley 1993, ISBN: 020154413X.

[Defatta et al, 1988] Defatta, D.J., Lucas, J.G., Hodgkiss, W.S.,

“Digital Signal Processing – A System Design
Approach”, John Wiley & Sons 1988, ISBN:
047183788.

[Pratt, 1991] Pratt,W.K., "Digital Image Processing – Second

Edition", John Wiley & Sons 1991,
ISBN:0471857661.

[Furber, 1996] Furber, S., “ARM System Architecture”,

Addison-Wesley 1996, ISBN: 0201403528.

[Kernighan and Ritchie, 1989] Kernighan, B.W., Ritchie, D.W.,

“Programmeringsspråket C, 2. opplag”, Tano
Prentice Hall 1989, ISBN: 8251827051. (In
Norwegian).

[Sakamoto et al, 1998] Sakamoto, T., Nakanishi, C., Hase, T.,

”Software Pixel Interpolation for Digital Still
Cameras Suitable for 32-Bit MCU”, IEEE
Transactions on Consumer Electronics, Vol. 44,
No. 4, November 1998, p. 1342-1352.

[Keys, 1981] Keys, R.G., “Cubic Convolution Interpolation

for Digital Image Processing”, IEEE
Transactions on Acoustics, Speech and Digital
Signal Processing, Vol. ASSP-29, No. 6,
December 1981, p. 1153-1160.

 Camera Functionality in Modern Mobile Terminals

60

[Rifman and McKinnon, 1974] Rifman, S.S., McKinnon, D.M., “Evaluation of
Digital Correction Techniques for ERTS Images
– Final Report“, Report 20634-6003-TU00.
TRW Systems, Redondo Brach, Calif., July
1974.

[Adams, 1995] Adams, J.E., “Interactions between color plane

interpolation and other image processing
functions in electronic photography”,
Proceedings of SPIE Vol. 2416, p. 144-151,
1995.

[Adams, 1997] Adams, J.E., “Design of Practical Color Filter

Array Interpolation Algorithms for digital
cameras”, Proceedings of SPIE, Vol. 3028, p.
117-125, 1997.

[Hou et al, 1987] Hou, Hsieh S. et.al., “Cubic Splines for Image

Interpolation and Digital Filtering”, IEEE
Transactions on Acoustics, Speech and Signal
Processing”, Vol.ASSP-26 P.508-517, 1987.

[Wu et.al. 1997] Wu, X., Choi, W.K., Bao, P., “Color Restoration

from Digital Camera Data by Pattern Matching”,
Proceedings of SPIE, Vol. 3018, p. 12-17, 1997.

[Gerdfelder and Muller, 1999] Gerdfelder, N. and Muller, W., ”Objective

quality estimation for digital images in
multimedia environments”, in Color Imaging:
Vision and Technology, edited by L.W.
MacDonald and M.R. Luo, John Wiley & Sons
Ltd. 1999, ISBN: 0471985317.

[Turkowski, 1990] Turkowski, K., ”Filters for common Resampling

Tasks”, Graphics Gems I, April 1990 p 147-165.
(http://www.worldserver.com/turk/computergrap
hics/ResamplingFilters.pdf)

[Gunasekara, 1996] Gunasekara, O., ”Wireless applications for

compact RISC mcus”, in Electronic Product
Design, May 1996, p. 72-77.

[Allison, 2001] Allison, A., “Inside The New Computer

Industry”, January 2001.
(http://www.arm.com/news.ns4/iwpList125/)

[ARM, Ref. Guide 1998] ARM, “ARM Software Development Toolkit

Version 2.50, Reference Guide”, Nov 1998.

http://www.worldserver.com/turk/computergraphics/ResamplingFilters.pdf
http://www.worldserver.com/turk/computergraphics/ResamplingFilters.pdf
http://www.arm.com/news.ns4/iwpList125/

 Camera Functionality in Modern Mobile Terminals

61

[www.arm.com] ARM Limited home page.

[ARM, ARM710T] [ARM, “ARM 710T Datasheet”,

ARM DDI 0086B, July 1998]

[ARM, App. Note 34] ARM, “Writing Efficient C for ARM”,

Application Note 34, ARM DAI 0034A, January
1998.

[Samsung K4S641632C] Datasheet for SDRAM used in real HW

(K4S641632C-TC/L10).

[RKN, 2001] Personal conversation with HW team leader

Rune Knutsen at Ericsson AS in Grimstad
26.03.2001.

www.arm.com

	Camera Functionality in
	Modern Mobile Terminals
	- Software FIR filter for demosaicing with RISC -
	Masters Thesis
	 in
	Information and Communication Technology
	Tryggve I. Mikkelsen

	 Abstract
	 Preface
	 Table of contents
	 List of figures
	List of tables
	List of equations
	 1 Introduction
	1.1 General field of interest
	1.2 Thesis proposal
	 1.3 Limitations and concretization
	 1.4 Method
	 1.5 Report structure

	 2 What is demosaicing?
	2.1 Introduction
	2.2 The digital image
	2.3 Color space models
	2.4 What does the demosaicing operation do?

	 3 A mobile terminal hardware architecture
	3.1 Introduction
	3.2 The image sensor
	3.3 The RISC processor
	3.4 External memory
	 3.5 Typical hardware architecture
	3.6 Writing efficient code for the HW

	 4 Optimizing the demosaicing operation
	4.1 Introduction
	4.2 Adaptive and non-adaptive algorithms
	4.3 Mathematical review of the demosaicing operation.
	 4.4 The anti-imaging filter - the interpolation kernel
	4.5 Implementing the demosaicing operation

	 5 Measuring performance and cost for the demosaicing
	5.1 Introduction
	5.2 Subjective and objective image quality
	5.3 Computational cost

	 6 Test method and environment
	6.1 Introduction
	6.2 The ARMulator build
	6.3 Ericsson Development Board (EDB)

	 7 Results
	7.1 Introduction
	7.2 Test results

	 8 Discussion
	8.1 Introduction
	8.2 Test results
	8.3 Test result validity
	8.4 Which interpolation kernel is best suited for the mobile terminal?
	8.5 Other application areas for the results
	 8.6 A suggestion to a simplified image pre-processing chain
	8.7 Frequency domain versus spatial domain processing

	 9 Conclusion
	 10 Abbreviations
	 11 References

