

Component-based Development on
the Windows DNA Platform

Post-graduate Thesis

in Information and Communication

 Technology

by

LARS BARSTAD

FRODE K. KRISTENSEN

Grimstad, June 2000

Component-based Development on the Windows DNA Platform

Abstract

This report deals with key areas of software development in a distributed environment.

Distributed computing systems are becoming increasingly more popular, and the

demands for functionality are growing accordingly. With distributed systems being used

for so many different purposes, and with so many people depending on it to do their jobs,

these systems must be stable and robust to continuously serve the users. If the system

fails, for example caused by network problems or by application crash, it can in the worst

case paralyze the organization.

With this as a starting point, we have been looking at technologies for developing

distributed systems based on the Windows DNA platform. One issue that we have been

working on in particular is mechanisms that provide dynamically recovery from failure.

We have learned that by using the right technologies developers can save themselves

from a lot of work. After working with Windows DNA during the project period, we feel

that it offers a good and solid platform with technologies for developing robust enterprise

systems. Our experience is that these technologies are fairly easy to implement, as long as

you plan your work well and use a suitable development language.

2

Component-based Development on the Windows DNA Platform

Preface

This project is a part of the master degree study (sivilingeniør) in information and

communication technology at Agder College (Høgskolen i Agder). The thesis was

scheduled for five months and counts as ten credits (vekttall).

At this point we would like to thank our technical advisor, John S. Rasmussen, for

excellent guidance and helping us stay focused on the goal of our study.

Grimstad, June 2000

Lars Barstad

Frode K. Kristensen

3

Component-based Development on the Windows DNA Platform

ABSTRACT ..2
PREFACE ...3
1 INTRODUCTION...5

1.1 RESEARCH MOTIVATION.. 5
1.2 PROBLEM APPROACH... 5

2 COMPONENTS AND WINDOWS DNA ...7
2.1 WHAT IS WINDOWS DNA? .. 7
2.2 VISUAL MODELER.. 10
2.3 VISUAL STUDIO ANALYZER ... 11

3 MICROSOFT TRANSACTION SERVER...12
3.1 TRANSACTION TECHNOLOGY... 12

3.1.1 Transaction Theory .. 12
3.1.2 Microsoft Transaction Server Overview.. 14

3.2 OUR TRANSACTION COMPONENT... 19
3.2.1 Challenge ... 19
3.2.2 Component Design... 19

3.3 IMPLEMENTATION .. 21
3.3.1 Implementation vs. Class Diagram .. 21
3.3.2 Implementation Issues.. 21

3.3.2.1 Visual Basic .. 21
3.3.2.2 Visual C++.. 22
3.3.2.3 Visual J++ ... 22

3.3.3 Performance Testing .. 23
3.4 DISCUSSION ... 25

4 MICROSOFT MESSAGE QUEUE...26
4.1 MESSAGE QUEUING TECHNOLOGY .. 26

4.1.1 Message Queuing Theory .. 26
4.1.2 Microsoft Message Queue Overview... 28

4.2 OUR MESSAGE QUEUE COMPONENT.. 33
4.2.1 Challenge ... 33
4.2.2 Component Design... 34

4.3 IMPLEMENTATION .. 35
4.3.1 Implementation vs. Class Diagram .. 35
4.3.2 Implementation Issues.. 35

4.3.2.1 Visual Basic .. 35
4.3.2.2 Visual C++.. 35
4.3.2.3 Visual J++ ... 36

4.3.3 Performance Testing .. 36
4.4 DISCUSSION ... 38

5 CONCLUSION..39
6 REFERENCES ..44
APPENDIX A: PROJECT DEFINITION (NORWEGIAN)....... ERROR! BOOKMARK NOT
DEFINED.

4

Component-based Development on the Windows DNA Platform

5

Component-based Development on the Windows DNA Platform

1 Introduction

1.1 Research Motivation

Today, organizations are working towards using computer systems more effectively. The

trend shows an extensive use of distributed computer systems. More and more businesses

run their systems over the network, with all clients accessing the same resources. A

distributed system, or enterprise system, combine large numbers of independently

executing programs into a seamless whole, and provide services critical to the day-to-day

operation of the organization.

Developing these kinds of distributed systems requires a lot more effort and planning

than traditional applications running on one single computer. The system needs to handle

multiple users accessing the same resources without letting them interfere with each

other. Since a distributed system runs over a network, special care must be taken to

respond dynamically to failures and recoveries. Other issues like security also require

extra attention when messages are sent across a potentially unsafe network.

As we can see, software development for distributed systems presents a number of

different challenges.

1.2 Problem Approach

In this report, we will take a closer look at what the Windows DNA (Distributed interNet

Applications Architecture) platform can provide when it comes to enterprise

development. We will focus on common problems like message delivery and transactions

over a network. In Windows DNA there are two technologies that deal explicitly with

these problems: Microsoft Message Queue and Microsoft Transaction Server.

6

Component-based Development on the Windows DNA Platform

Since our work consisted of both research and implementation, we decided to use the

following approach for our work:

• Research theory on the subject (i.e. transactions in general)

• Research theory on the technology in question (i.e. Microsoft Transaction Server)

• Design the implementation using industry-standard UML diagrams

• Implement the technology in the selected languages (Visual C++, Visual J++ and

Visual Basic)

• Test and evaluate performance on the different implementations

This approach worked well, and helped us stay focused throughout the project.

We have included the original description of our project at the end of this report.

Together with our technical advisor we decided to omit our look at SOAP due to time

constraints. No information on SOAP is to be found in this report.

This report as well as the source code for our components can be found at:

http://www.reptile.no/diplom/

7

http://www.reptile.no/diplom/

Component-based Development on the Windows DNA Platform

2 Components and Windows DNA

2.1 What is Windows DNA?

Windows DNA is a collection of software-packages and technologies that together

provide a platform for building and deploying distributed systems, both traditional

applications and modern web-based systems like e-commerce and intranets. Microsoft

has developed all parts of Windows DNA.

Windows DNA consists of the following applications/technologies:

• Windows NT / Windows 2000

- Internet Information Services

- COM/Microsoft Transaction Server (COM + for Windows 2000)

- Message queuing

- Indexing services

- Security Services

- Network load balancing

- Universal Data Access

- XML support

• SQL Server 7.0

• SNA Server 4.0

• Site Server 3.0 Commerce Edition

• Visual Studio 6.0

• BizTalk Server

• Exchange Server 5.5

[source: http://www.microsoft.com/dna]

8

http://www.microsoft.com/dna

Component-based Development on the Windows DNA Platform

In this report, we will look at the “heart” of the Windows DNA platform, namely the

Component Object Model (COM), Microsoft Transaction Server (MTS), and Microsoft

Message Queue (MSMQ). In addition we will look at Visual Studio 6.0, the premier tool

for creating Windows DNA applications. We will also look at some of the enterprise

tools bundled with Visual Studio. These tools are introduced in the next part of this

chapter, since they in part form the basis of the following chapters on MTS and MSMQ.

COM is a component technology that allows different components to communicate. This

is done with the help of an interface. An interface describes which functions, methods

and properties are available in a component. For a given component, the interface will

always stay the same from version to version. If new functionality is introduced, a new

interface is added to the component while the old interface is retained. This way existing

applications will not be broken if a newer version of a component is installed on a

computer.

To make it possible for an application on computer A to use a COM component that

resides on computer B, Distributed COM (DCOM) was introduced. DCOM is simply an

extension that transparently takes care of creating and using a component on another

computer. The developer does not need to take any action to switch from a local

component to a remote component. Everything is handled by DCOM.

MTS and MSMQ were introduced as supporting services that solve common challenges

within a distributed system. MTS handles transactions, while MSMQ has mechanisms for

guaranteed asynchronous message delivery.

With the introduction of Windows 2000, Microsoft also introduced COM+. COM+ is an

extension of COM, which among other things has built-in transaction support. This

means that MTS does not exist as a separate component in Windows 2000. The

functionality however remains the same. For more detailed information about COM and

COM+, visit http://www.microsoft.com/com/.

9

http://www.microsoft.com/com/

Component-based Development on the Windows DNA Platform

From a developer’s point of view, components are the smallest building blocks of the

Windows DNA platform. All the services you interact with in a Windows DNA solution

are component based. For example, you can create an instance of the ADODB

component to communicate with a database, or create an instance of ADSI to

communicate with Microsoft Exchange Server and so on. By using this technology the

developer can leverage all the work that has been put into developing Windows itself,

other Microsoft applications and services, as well as a number of third-party tools.

10

Component-based Development on the Windows DNA Platform

2.2 Visual Modeler

Visual Modeler is a tool used to visually design components and the interaction between

components in a typical three-tier solution. As a subset of Rational Rose, Visual Modeler

supports UML class diagrams and logic views. In addition it is possible to generate code

from a class-diagram, as well as reverse-engineer VB projects.

Our use of Visual Modeler is limited to designing our classes in an environment that does

not tie our design to any specific language. We have also tried out the code-generation

feature for VB, which works fairly well. The greatest advantage of using tools such as

Visual Modeler is that it allows you to focus on the design of your component rather than

the implementation. With the code-generation feature you also save some time writing

tedious function declaration. The use of modeling tools seems to us like a win-win

situation. You spend some time modeling the component, but save roughly the same

amount of time when the software generates the function declarations for your code.

Result: You get the model for free. More likely than not, it will also help you design a

better component.

Even though Visual Modeler is categorized as an Enterprise tool within Visual Studio,

Visual Modeler alone is not a powerful enough solution to design a large-scale

distributed system. Among the things missing in Visual Modeler is UML Use Case

diagrams and activity diagrams.

11

Component-based Development on the Windows DNA Platform

2.3 Visual Studio Analyzer

When developing distributed systems performance is a key concern. It only takes one

poorly programmed component to slow down an entire system. When a distributed

system is experiencing a decrease in performance, it is often difficult to locate the

bottleneck that is causing the slowdown.

Visual Studio Analyzer is designed to let developers analyze performance in a distributed

system, by showing how all components of a distributed, multi-tier application interact.

This is done by capturing an event-log of the communication that occurs between

components when the application is run. Once the event-log has been created, VSA can

be used to display time-diagrams of the interaction, graphically display how the

components interact, and apply different filters to see only the interaction of a specific

category. A typical category can be for example all database-calls.

VSA also has a feature that allows Performance Monitor counters to be captured from a

remote machine. These counters can be displayed together with a graphical representation

of the event log, making it possible to detect bottlenecks. Once a bottleneck has been

found, other means must be used to find the exact cause of it. If it is a component that is

causing the bottleneck, traditional profiler tools can be used. If the bottleneck is caused

by hardware (or lack of it) we can use Performance Monitor to detect which resources are

being depleted.

12

Component-based Development on the Windows DNA Platform

3 Microsoft Transaction Server

This chapter is divided into four parts:

• Transaction Technology

• Our Transaction Component

• Implementation

• Discussion

3.1 Transaction Technology

3.1.1 Transaction Theory

In a distributed system it is common that several components are involved in performing

a single task. Most of the time when performing such a task, components depend on the

successful execution of other components in order to succeed. This is what we call a

transaction: Either all components succeed in their task, or none succeed. Even though

this sounds simple, it would present quite a challenge to the programmers to implement

this with traditional software development methods. Each component would need to

know about all other components, and for each task it performs check the other

components to see if they have succeeded or not. This adds a complexity factor of n*n to

the error handling. And on top of that, one key element of distributed systems is the

encapsulation and reusability of each component, meaning that a component should not

need to know about the other components that are part of the transaction.

Luckily, a more effective approach has been adopted for modern distributed systems –

the transaction manager. A transaction manager acts like a supervisor during a

transaction. It keeps track of all participating components, collect their status (success or

failure), and either executes or aborts the entire task. Transactions managers on different

operating systems differ in how they execute or abort the transaction, so we won’t go into

13

Component-based Development on the Windows DNA Platform

more details on that. In our discussion of Microsoft Transaction Server (part 3.1.2)

however, we will explain the details of that particular implementation.

To further illustrate the concept of transactions, we will look at the classic example - the

banking application. A banking application typically transfers money from account A to

account B.

Illustration 3.1 Money Transfer

This illustration shows a transfer from account A to account B.

There are two tasks that need to be done in order to complete the transfer:

• Withdraw the money from account A.

• Credit the money to account B.

This should be a very simple task, but a closer look reveals that there are several things

that can go wrong. If money is withdrawn from account A and the system fails before

completing the transfer, the money is gone from account A even if account B has not

received them. And if the system credits account B with the transfer amount and then

fails, money will not be withdrawn from account A. As we can see, both these cases

leave the system in an inconsistent state, which means that money has either been

“created” or “disappeared” in the system. The total amount of money in the system is not

the same after the failed transaction as it was before. In essence, this is the problem that

transaction technology seeks to solve.

14

Component-based Development on the Windows DNA Platform

3.1.2 Microsoft Transaction Server Overview

Microsoft Transaction Server (MTS) provides a mechanism to handle transactions and

ensure data consistency. It makes sure that a transaction is only completed as one whole

unit. If it fails during execution, MTS will undo the transaction and leave everything in a

consistent state – the state it was in before the transaction started.

Since MTS is built for a distributed environment, it assumes a component-based

approach to application development. MTS has its own run-time environment, where all

components that take advantage of Transaction Server runs. Components that run in this

environment are COM components stored as dynamic-link libraries (DLL). Before a

component can participate in a transaction, it needs to be configured as part of a

Component package within MTS. This is done with an administrative tool called

Microsoft Transaction Server Explorer.

Illustration 3.2 Microsoft Transaction Server Explorer

The MTS Explorer is a graphical user interface used to configure and manage MTS components within a distributed

computer network. This screenshot shows the components contained in the package called MTSPackage.

15

Component-based Development on the Windows DNA Platform

MTS supports all COM components, which can be created and implemented with Visual

Basic, Visual C++, Visual J++, or any other ActiveX/COM-compatible development

tool.

Because MTS components can take advantage of transactions, developers do not need to

worry about whether the other components in the transaction are running successfully.

All they need to do is to make sure that their component performs it part, and that it

indicates failure to MTS if the operation is unsuccessful. The MTS transaction system,

working in cooperation with database servers and other types of resource managers,

ensures that transactions are atomic, consistent and have proper isolation.

The way this is implemented in MTS is that each component has its own context object

that is implicitly associated with a given Microsoft Transaction Server object. Context

objects contains information about the component’s state in the execution environment,

such as transaction, activity and security properties. These objects also simplify the

development of components, because they let each component independently acquire its

own resources, perform its work, and indicate its own internal state. The state of a

component is indicated by calling the MTS-method SetComplete or SetAbort. The

component calls SetComplete when the whole transaction is completed successfully, and

SetAbort if an error has occurred and the transaction needs to be rolled back.

Illustration 3.3 An MTS object and its associated context object

The illustration shows how MTS keeps track of each component by assigning a context object to each.

16

Component-based Development on the Windows DNA Platform

The development effort to implement transactions for COM components is minimal.

Developers do not have to specify Begin transaction, End transaction, or Abort

transaction statements in their code. Rather, transactions are implemented by setting a

property of an application component. If the component is marked transactional, then

Transaction Server will build a transaction around its own processing. Any other

components referenced by the transactional component will automatically participate in

the transaction as well.

Microsoft Transaction Server also serves as an infrastructure product that can deal with

many of the requirements in developing and deploying multi-tier applications. An MTS

package can be created on one machine, saved, and imported on another machine, thus

removing the need for complex component installation software. This allows them to

focus on implementing business functions instead.

Using MTS makes it easier to build distributed applications by providing location

transparency. MTS automatically loads the component into a process environment. A

MTS component can be loaded into a client application process (in-process component),

or into a separate surrogate server process environment, either on the client's computer

(local component) or on another computer (remote component).

17

Component-based Development on the Windows DNA Platform

Illustration 3.4 In-process, local, and remote components

MTS supports component pooling, which means that instead of creating and destroying a

new instance of a component each time it is requested, a collection of objects is recycled.

This increases performance by avoiding freeing and allocating memory, and is very

beneficial in a large-scale distributed system where there is a lot of component reuse.

Integration with the Microsoft Distributed Transaction Coordinator (DTC) provides a

robust transaction management infrastructure. Transaction Server provides a transaction

monitor that controls transactional access to resource managers, such as Microsoft SQL

Server, the latest versions of Oracle and databases that support the ODBC interface.

Transactions may access a single resource manager, or, through support of DTC protocol,

transactions may coordinate and synchronize access to multiple resource managers.

With the DTC, work can be committed as an atomic transaction even if it spans multiple

resource managers on separate computers. This transaction support is transparent to the

programmer. DTC implements a two-phase commit protocol to ensure that the transaction

18

Component-based Development on the Windows DNA Platform

outcome (either commit or abort) is consistent across all resource managers involved in a

transaction.

19

Component-based Development on the Windows DNA Platform

3.2 Our Transaction Component

3.2.1 Challenge

The component we have created solves the classic banking case where we want to

transfer money between two accounts. When money is transferred between the accounts,

there are a few things that require special attention. We have to make sure that the same

amount that is subtracted from the sender is credited the receiver. If anything goes wrong

during the transfer, we need to roll back the entire transaction.

3.2.2 Component Design

We designed of three different components: Transfer, Credit and Debit.

Illustration 3.5 UML Class Diagram

The three components have interfaces called Transfer, Credit and Debit. They only have one member function each,

with the same name as the respective interface.

The Transfer component handles money transfers from one account to another. To do

this, it relies on the two other components: Credit and Debit. By splitting the task into

three components, we emphasize the way each of the components doesn’t know (or care)

about the status of the other components. Transaction Server handles that.

20

Component-based Development on the Windows DNA Platform

Illustration 3.6 The complete Transfer transactions

This illustration shows three transactions: Transfer, Credit and Debit. The Credit and Debit transactions are

both part of the Transfer transaction, in addition to run as individual transactions as well.

21

Component-based Development on the Windows DNA Platform

3.3 Implementation

3.3.1 Implementation vs. Class Diagram

Since Visual Basic, Visual C++ and Visual J++ have different methods of implementing

features such as callbacks and events, we anticipated slight changes between the methods

of the same class in the different languages. In the case of the banking application

however, no callbacks or events are used, so the implementation (with regards to methods

and interfaces) is the same in all languages.

3.3.2 Implementation Issues

3.3.2.1 Visual Basic

Visual Basic is definitely the easiest of the three languages when it comes to component

development. Creating a COM component is as easy as running a wizard, selecting

ActiveX DLL, and adding the methods of your interface as public functions or

subroutines. When creating an MTS component you also need to include a reference to

Microsoft Transaction Server Type Library, and set the MTSTransactionMode property

to indicate in which way the component participates in a transaction. It is also advisable

to set the project property Version compatibility to Binary Compatibility so the

component isn’t given a new GUID each time it is compiled.

The only thing the programmers has to worry about is remembering that all components

that are participating in a transaction must be created with CreateInstance instead of

CreateObject, and that each component must call either SetComplete or SetAbort to

indicate its state. The fact that Visual Basic manages to hide almost all the details of

COM, IDL and interfaces is impressing.

22

Component-based Development on the Windows DNA Platform

3.3.2.2 Visual C++

C/C++ in general is regarded as one of the most robust, high-performance languages

available on any computer, and is the industry standard for commercial applications.

Visual C++ is the most widely used tool when it comes to building commercial Windows

applications.

The high performance of Visual C++ does come at a cost however. To build COM

components with Visual C++, you need to know the basic internal workings of COM, as

well as have good knowledge of C++. Similar to Visual Basic, Visual C++ has a wizard

that helps you get started on your component (ATL COM AppWizard). Unlike VB, VC

requires you to start with creating an interface rather than directly editing code.

Note: Starting by describing its interface is a more politically “correct” approach to

component-development.

Calling the MTS CreateInstance and SetComplete/SetAbort is actually easier than VB,

since VC automatically adds a member variable named m_spObjectContext and

initializes it with a pointer to the transaction context.

3.3.2.3 Visual J++

Visual J++ is the newest product in Visual Studio. Using it to create basic COM

components are easy, all you need to do is select a checkbox in the option dialog. If you

want to create more advanced components though, things get a little more complicated.

The first thing we noticed when starting doing more advanced COM programming in

Java was that there didn’t seem to be a policy on whether or not you should use IDL files.

Some examples mentioned the use of IDL files without explaining why or when you need

to use them, while others talked about the “ActiveX Wizard for Java” which we to this

date have not seen anywhere in the application.

23

Component-based Development on the Windows DNA Platform

When creating an MTS component we quickly discovered that we needed an interface ID

in order to create components using CreateInstance (which is necessary for them to be

part of the transaction). The documentation said nothing about how the interface ID was

assigned or how we could define it ourselves.

Our general impression was that COM in VJ++ was harder than it should be. The

documentation was lacking, and there seemed to be a lack of a general strategy for how

to create COM components with the tool.

3.3.3 Performance Testing

In order to test the performance for each component we had developed, we used

Microsoft Web Application Stress Tool. For the testing we created a web page which used

our MTS components to transfer money between two accounts.

Illustration 3.7 Web-based client for the MTS components

This example screenshot shows the parameters for transferring 1 unit of money from account 3 to account 4.

We recorded a script that transferred money from one account to another, and let the

stress testing tool run it over and over again for 20 minutes. Six threads were running

continuously, which was the optimal stressing limit before the web server got overloaded

24

Component-based Development on the Windows DNA Platform

and performance dropped dramatically. The test computer was not a robust server, but a

Pentium 200 workstation running Personal Web Server.

Table 3.1 Stress testing results for the MTS component

The table below shows the results after stress testing three components developed in VC, VJ and VB. Each

component was stressed with the exact same job, which was to transfer money from one account to

another using MTS and a database connection.

 Requests/Sec Requests Total Current Connections

VB 24.38451219 29987 5.46341463

VC 23.06543209 28031 5.67901234

VJ 22.88352535 27978 5.58821129

The chart below presents the Requests/Sec column from the table above. It may seem

somewhat strange that VB yielded best performance. Our VSA analysis indicates that VB

takes better advantage of component-pooling than the other languages. As a result of this

it is slightly faster.

Illustration 3.8 Chart with the stress testing results

Stress testing results showing performance presented as Requests/Sec for the components developed in

VC (Visual C++), VJ (Visual J++) and VB (Visual Basic).

25

Component-based Development on the Windows DNA Platform

3.4 Discussion

Of the three tools we used to create Microsoft Transaction Server components, only one

(Visual J++) presented us with implementation problems. That was due to awkward

support for COM/MTS in Visual J++ rather than a problem with COM/MTS itself.

We think the three development tools we selected (Visual Basic, Visual C++ and Visual

J++) is a fair representation of development tools in general, so MTS should be no harder

to use with development tools from other vendors than Microsoft.

During our testing MTS performed well as a transaction manager, and the ease of use

makes it easy for programmers to write components that support transactions. Even when

there is no need for a transaction, the object-pooling capability of MTS makes it

worthwhile for components that are frequently used.

The ability to configure MTS components with a dedicated tool makes MTS attractive in

an enterprise distributed system, because it allows a network administrator to control and

administer the system down to component level, rather than leaving the details to the

programmer.

Writing components that take advantage of Microsoft Transaction Server is easy,

understanding distributed systems and transaction theory well enough to design effective

systems is a bit more demanding. Our conclusion is that MTS is a powerful technology

well worth spending some time learning.

26

Component-based Development on the Windows DNA Platform

4 Microsoft Message Queue

This chapter is divided into four parts:

• Message Queuing Technology

• Our Message Queue Component

• Implementation

• Discussion

4.1 Message Queuing Technology

4.1.1 Message Queuing Theory

With the trend moving toward distributed computing in enterprise environments, it is

important to have flexible and reliable communication among applications. Businesses

often require independent applications running on different systems to communicate with

each other and to exchange messages even though the applications may not be running at

the same time.

There are two types of message communication; synchronous and asynchronous.

Synchronous, or message passing communication, requires that both communicating

applications are up and running because data is being passed directly between them.

Telephone conversations implement synchronous communication. Asynchronous, or

message queuing communication, does not have that requirement. It allows applications

to communicate indirectly through a message queue. Voice mail, where the message is

queued and later retrieved, is an example of asynchronous communication.

Many things can prevent messages from being delivered over a network. Network

connections can be broken, the receiver application may have crashed, servers are down

or the network can be overloaded. This is very serious, since one of the most critical

27

Component-based Development on the Windows DNA Platform

factors of a distributed system is its uptime, defined as the percentage of time the system

is available to its users. If messages cannot be passed over the network, the system is not

available.

The consequence of this is that the users will be unable to use the system until all

necessary components are operational. For example, consider a data-collection process

where information is continuously being entered on a client computer, sent across the

network and stored on a server. Just a single network failure or server crash can cause the

process to stop because data can no longer be registered. An alternative way of

registering data is, of course, to use pen and paper and type in the data later. This is

usually not an acceptable option.

Illustration 4.1 Blocked connection

Blocked connection between two processes preventing them from exchanging messages.

To enable applications to use asynchronous messages, message queue systems have been

developed. A message queue allows an application to send messages without worrying

about whether the receiver is operational or not. Maintaining a separate queue on the

sender and the receiver makes this possible. A message will not be removed from the

local (sender) queue until the receiver has given an acknowledgement on the reception of

the message. This way, even though the network is down, messages will be delivered as

soon as the connection between the sender and the receiver is operational.

28

Component-based Development on the Windows DNA Platform

4.1.2 Microsoft Message Queue Overview

Microsoft Message Queue is a technology that guarantees error-free message delivery

between applications in a network, even if you’re not able to communicate with the

system for a period of time. MSMQ is a standard part of Windows NT Server (introduced

with NT Option Pack), like Microsoft Transaction Server (MTS) and Internet Information

Server (IIS).

Message queuing assumes asynchronous communication. The client application sends its

messages via an interface to a queue, which works as a buffer. The server will invoke the

same queue, and collect all the messages when it is ready to process them. In this way,

the client application has no direct contact with the server. It only depends on being able

to deliver the messages to the queue. Communicating this way makes it a lot easier for

the server to process the messages as well, since it only has one client to respond to – the

queue.

Illustration 4.2 Message delivery via Microsoft Message Queue

The illustration shows two processes exchanging messages using MSMQ.

The administration tool is called MSMQ Explorer. It is used to create, administer and

view sites, connected networks, computers and queues on your MSMQ server.

29

Component-based Development on the Windows DNA Platform

Illustration 4.3 Microsoft Message Queue Explorer

MSMQ consists of three basic components (Illustration 4.4):

• Interfaces

• Messages

• Queues

Illustration 4.4 The three basic components in MSMQ

The illustration shows how two applications communicate via MSMQ, and how MSMQ is made of

interfaces, messages and queues.

30

Component-based Development on the Windows DNA Platform

Interfaces are provided so that applications can communicate with MSMQ, and be able to

send and receive messages. MSMQ actually provides two APIs. One API is defined as a

set of C function calls, and the other API is defined as a set of COM objects. The COM

API includes more services, and can be used by all programming languages that support

COM.

Messages are created, sent and received by applications. They can either be stored in

memory or on disk, where memory storage is faster and disk storage provides more

reliability. Each message can be up to 4 MB in size. Some messages are time critical, so

if they have not been received by a certain amount of time, it may be appropriate to throw

them away. MSMQ takes care of this, and discards the messages that have timed out.

Messages can time out either for not being received or not reaching the queue within its

time limits. Also, messages can be given a priority between 0 and 7, allowing time

critical messages to be processed more quickly. If desired, MSMQ can create a log with

all messages processed by a queue. Other great features include encrypting, digitally

signatures and more.

Queues are managed by a queue manager, where messages are sent into and received.

The queue managers can communicate with each other to send messages from one queue

to another. Applications and people with the right permissions can set properties for

queues, however, the only property required is its pathname. The pathname is just a

character string (such as “machineX/myqueue”) identifying the machine the queue is on

and the name of the queue. Other properties define things like type of queue, maximum

size in bytes that a queue can hold, routing between queues and more. Queues can also be

configured to participate in transactions using Microsoft Transaction Server.

31

Component-based Development on the Windows DNA Platform

Microsoft Message Queue defines three types of applications (Illustration 4.5):

• MSMQ server

• Independent client

• Dependent client

Illustration 4.5 Three types of applications defined by MSMQ

At least one MSMQ server must be available in every MSMQ installation. The most

important things it contains are queues, a queue manager, support for the MSMQ API and

software to route messages between queues.

Independent clients support the MSMQ application programming interface (API), and

they also have a queue manager with their own queues. Applications running on an

independent client are able to send messages even if they are not online with the MSMQ

server, because message sent by the application are stored in the client’s queue. This is a

great advantage if the network goes down, or if the client is running on a laptop and is not

always wired to the network. When an independent client reconnects to the network, its

queue manager automatically detects this and forwards all messages to an MSMQ server.

Dependent clients are more limited than independent clients. They provide all MSMQ

APIs, but require an available network connection to an MSMQ server in order to

operate. For this purpose, the MSMQ servers contain a proxy function to support these

systems. Dependent clients are intended for systems with permanent connection to a

32

Component-based Development on the Windows DNA Platform

network, such as a desktop machine connected to a LAN. However, there is one

advantage with dependent clients. Since dependent clients have no queues on their own,

an MSMQ environment with dependent clients is easier to manage than if independent

clients were used.

While the basic idea of message queuing is simple, the kinds of things applications want

to do with messages are often not so simple. Accordingly, MSMQ provides a powerful

set of services for those applications that need it.

33

Component-based Development on the Windows DNA Platform

4.2 Our Message Queue Component

4.2.1 Challenge

The system we have been looking at is a data collection process, where data is being

entered on a client and stored on a server somewhere else in the network. We have used a

melting process at a steel mill as our fictive case. During this process, data is being

registered by the people supervising the process. This data is very important for further

analysis in order to improve the melting process and accurately calculate costs associated

with the particular batch being produced. If the network is unavailable, the workers are

unable to register the data, and must write down the information by other means (i.e. pen

and paper). In a real-time production environment where the focus is on using the most

cost-effective production method, unexpected delays can be both costly and create

frustration among the workers.

To solve this problem, we need to design a component that let the user register data on

the client, regardless of any possible problems with the network connection. Our

component must be able to receive data from the client, even if the network fails, and

pass it on to the server. The data storage on the server should be transparent to the user.

34

Component-based Development on the Windows DNA Platform

4.2.2 Component Design

We have designed two components, one for the sending application and one for the

receiving application.

Illustration 4.6 UML Class Diagram

The sender class is the smaller of the two classes, containing only three functions.

InitSendQueue initializes the queue, SendData sends a message to the queue, and

CloseSendQueue closes the queue when the application exits.

The receiver class is a little more complex, but is still quite simple. We have

InitListenQueue and CloseListenQueue which create and close the queue respectively.

Since the receiver is the passive part of the message process, it needs to check the queue

regularly to see if any messages has arrived. This is done with the Listen function. When

a message arrives, the Listen function calls ReceiveData to retrieve the message. Listen is

called once per message, so after ReceiveData has processed a message, it calls Listen

again to wait for the next message. When the application is shut down, StopListen is

called to abort the Listen routine.

35

Component-based Development on the Windows DNA Platform

4.3 Implementation

4.3.1 Implementation vs. Class Diagram

The only difference in implementation between the languages was the naming of the

callback/event procedure that was called/fired whenever the receiver needed to be

notified of a new message. Even though this is more a matter of syntax than a design

change, we mention it here to avoid possible confusion if someone choose to read the

source code.

4.3.2 Implementation Issues

4.3.2.1 Visual Basic

The Visual Basic component was created as an ActiveX DLL. VB hides the details of

COM in a wonderful way. We just needed to implement MSMQ , which we did by

adding the Microsoft Message Queue Object Library to our project. This gave us access

to all the objects in the MSMQ API. There were no specific problems in VB.

4.3.2.2 Visual C++

When you know how to create COM components with Visual C++, the threshold for

using MSMQ is not high. We created our project using the ATL COM AppWizard, which

gave us the fundament for our component. Furthermore, in order to get access to the

MSMQ API, we included the dynamic link library mqoa.dll.

From here, we had no trouble using the MSMQ functionality in our component. It’s the

same as implementing MTS; the technology itself is not hard to implement, however,

handling COM is a bit trickier in VC than VB.

36

Component-based Development on the Windows DNA Platform

4.3.2.3 Visual J++

The implementation in Visual J++ gave us a bit more trouble than VB and VC. Like in

VC, we first created a new project using the ATL COM AppWizard. Then to gain access

to MSMQ, we had to add a COM wrapper to the project called Microsoft Message Queue

Object Library.

When it came to calling the MSMQ functions, we learned that the syntax in VJ was a lot

“uglier” than in VB and VC. For example, when calling a function called LookupQueue,

we had to pass nine parameters in VJ while one was sufficient in VB and three in VC. In

addition, it was not possible to look up a queue using the queue name in VJ, so we had to

look it up using the queue’s Type ID. These implementation differences gave us some

trouble, since the documentation for VJ was poor compared to the other languages.

4.3.3 Performance Testing

Like we did on the MTS components, we used Microsoft Web Application Stress Tool to

test the performance for our implementations of the MSMQ component. For that use, we

created a simple web-based client.

Illustration 4.7 Web-based client for the MSMQ components

This example screenshot shows client interface that sends a message using the MSMQ component.

37

Component-based Development on the Windows DNA Platform

The script that we recorded with the stress testing tool simply sent messages to an

MSMQ queue using this web client. The script was running for 20 minutes, with nine

threads stressing the application continuously (nine threads was the limit before the web

server became overloaded, and performance decreased for all components). The test

computer was a Pentium 200 workstation running Personal Web Server.

Table 4.1 Stress testing results for the MSMQ component

The table shows the results after stress testing three components developed in VC, VJ and VB. Each component did

the exact same job, which was to send a message to a queue in MSMQ.

 Requests/Sec Requests Total Current Connections

VC 24.69250914 29994 8.32098765

VJ 18.90695122 23215 8.02439024

VB 16.99414634 20890 8.31707317

The chart below presents the Requests/Sec column from the table above, where we can

see that Visual C++ gave best performance in the test.

Illustration 4.8 Chart with the stress testing results

Stress testing results showing performance presented as Requests/Sec for the components developed in

VC (Visual C++), VJ (Visual J++) and VB (Visual Basic).

38

Component-based Development on the Windows DNA Platform

4.4 Discussion

Our experiences with implementing the Microsoft Message Queue (MSMQ) in the three

languages we selected (Visual Basic, Visual C++, Visual J++) closely match the

experiences we had implementing the Microsoft Transaction Server Component.

Of the three languages, Visual Basic was the easiest to work with, hiding all complexity

in a well thought out manner. Visual C++ has a steeper learning curve, and you need a

more detailed understanding of how COM operates. But in the whole VC presented us

with few difficulties. Again Visual J++ turned out to be the rotten apple among the three,

with more complex function calls, poor documentation, and what seemed to be less

functionality than the other languages. It is possible that there are better ways of using

COM and MSMQ from VJ, but with the documentation currently available it’s hard to

say.

In general, we found MSMQ easy to work with. The concept of message-queing is

straightforward, so that should not be an obstacle for programmers wanting to take

advantage of MSMQ. Like MTS, Microsoft Message Queue has much to offer to those

developing distributed systems.

39

Component-based Development on the Windows DNA Platform

5 Conclusion

Our goal has been to look at the performance of components written in a selection of

programming languages. We wanted to find out if any languages were more suited to

building components than others with regards to performance and complexity.

Furthermore, we wanted to evaluate Microsoft Transaction Server and Microsoft

Message Queue to see if they represent good solutions when it comes to transaction

services and message queuing.

While working with distributed systems through this study and through our work

experience, we feel that we have an idea of what the status of this area is today and where

it is headed. We will share these ideas at the end of this chapter.

When developing the components, Visual Basic was our starting point. VB is widely

known for its ease of use and its powerful features, although some developers using more

advanced languages often describe it as a toy rather than a real programming language.

The reason for starting out with VB was simple – VB hides nearly all the complexity of

COM, making it the perfect tool for prototyping COM components. When it comes to

development time, neither Visual C++ nor Visual J++ stand a change against VB.

Note: Our previous programming experience is about 50% VC, 30% VB and 20% VJ. In

our opinion this does not significantly affect our evaluation of the three languages, but

ultimately we leave that decision to the reader.

Visual C++ requires the programmer to know the basics of how COM works in order to

be an efficient tool. Even though VC includes a wizard that goes a long way in creating

the component for you, it presents you with questions on threading model, interface and

aggregation, as well as reference explicit COM interfaces. Without the proper knowledge,

it is easy to make mistakes that could drastically affect the functionality and performance

40

Component-based Development on the Windows DNA Platform

of your component. Still, it is hard to put down VC because of these things, because it is

in the nature of VC to give the programmer total control rather than sacrificing control or

performance to make things easier. As the only one of the three languages, VC requires

you to start out by declaring the interface of your component through an IDL file. All in

all, we think Visual C++ is an efficient tool for creating high-performance components,

given that the programmer has the necessary skill.

Visual J++ should in theory be the most suitable language for developing components.

As a strong object-oriented, modern language with true multi-platform compatibilities,

Java has certainly gained its share of attention. Strangely enough, we found VJ to be the

tool where we ran into most trouble when implementing the components. The COM

support in VJ is more confusing than in the other languages. For example, there does not

seem to be a clear strategy on whether or not you should use IDL files when

programming in Java. Turning a java class into a component is as easy as selecting a

checkbox. The documentation we found on VJ and COM was only dealing with the most

basic issues. Documentation about components participating in transactions was lacking.

Overall, we found both Visual Basic and Visual C++ to be good choices for developing

COM components. Working with Java and COM was very confusing, and better

documentation would be most welcome. In addition, using Java with COM ties your

solution to the Windows platform. In the context of this report this is not a problem since

we are looking at Windows DNA. But when looking at the big picture, tying Java to

Windows removes one of the best features of Java, which is true multi-platform support.

We recommend that anyone who has chosen Java as their main language for distributed

applications at least evaluate other technologies which retain Java’s multi-platform

support before going with COM. One such technology is Enterprise JavaBeans.

Microsoft Transaction Server is one of the main technologies we have been looking at.

After implementing a simple MTS component in three different languages, we feel

confident that we have a solid background for evaluating it in terms of ease of use and

functionality. For the average programmer the technical side of MTS programming is

41

Component-based Development on the Windows DNA Platform

very easy to learn. To properly understand transaction theory and know when to use it is

likely to be more of a challenge. As for the quality of the transaction service, we found it

very powerful and robust. The component-pooling capabilities are a further incentive to

consider using MTS, even when a transaction is not required.

Likewise, Microsoft Message Queue is easy to use, and message queuing should be a

fairly easy concept to understand. Learning to implement the MSMQ technology is a bit

more work than learning MTS, mainly because more objects and methods are involved.

However, no part of it is too complex for an intermediate programmer. For successful use

of MSMQ, it is important to understand when asynchronous communication is important.

Using MSMQ in a setting where the component waits for an answer after sending a

message must be avoided.

To summarize MTS and MSMQ, we found that both technologies are easy to use, and

they include powerful features that make it well worth spending some time learning.

MTS and MSMQ may be all it takes to turn an unusable distributed system into a good

solution. As the trends move towards more use of distributed systems, and with

Windows-based systems in almost every company, MTS and MSMQ will certainly be

part of many future solutions.

When developing distributed systems, performance is a key concern. It only takes one

poorly developed component to slow down an entire system. When a distributed system

is experiencing a decrease in performance, it is often difficult to locate the bottleneck that

is causing the slowdown.

To help developers analyze performance in a distributed system, tools like Visual Studio

Analyzer have been created. We expected Visual Studio Analyzer to give us more

performance information that it actually did, so it turned out to play a smaller part in our

performance analysis than we initially thought. There are several reasons for this. The

most important being that our components spends most of their time using other

42

Component-based Development on the Windows DNA Platform

components like MTS and MSMQ, so the differences between the languages became

marginal.

Once we started stress testing our components using Microsoft’s Web Stress Application

(nicknamed Homer), this became even clearer. There were a few surprises though – VB

actually outperformed VC in the MTS test. We found the reason for this with VSA. VB

was able to take better advantage of component-pooling than VC.

Note: Our limited stress testing was performed in a real-world scenario on one of our

test-servers, and as such do not meet the standards required for commercial lab-testing.

Distributed systems are the latest trend within the software industry. Even though much

has been said and written about distributed systems, our impression is that many spend to

little time analyzing and building the right architecture for their solutions. The

consequence of this is that many “distributed-systems” are closer to client-server

applications than true multi-tier distributed systems.

Without proper planning components tend to remain as part of the system they were built

for, and never realize their full potential as reusable components. The main reason for this

is that developers use their experiences from building client/server applications, and

merely package their classes within components. The same applies to how the

development tools are selected. Programmers stick with the tools they are familiar with,

rather than evaluate which tools are the best for the job at hand.

From a practical point of view however, it is hard to criticize developers for using the

tools they know. Many software projects have stranded because developers overrate their

skills at adopting new tools. In other cases it can be hard to justify the expenses involved

with learning and buying new tools. Making the correct choices between introducing new

technology or leveraging existing knowledge is a critical factor when it comes to building

distributed systems.

43

Component-based Development on the Windows DNA Platform

In our opinion, the essence of a distributed system is proper analysis, design and

architecture. It is important to make the right choices when it comes to tools and

technologies, and re-use existing components whenever you can. That is what distributed

systems are about. With tools like Visual Basic and Visual C++, and technologies like

COM, MTS and MSMQ, developers are much more likely to successfully make the

transition from client/server development to the new world of distributed systems.

44

Component-based Development on the Windows DNA Platform

6 References

Windows DNA: http://www.windows.com/dna/

Component Object Model: http://www.windows.com/com/

Visual Studio: http://msdn.microsoft.com/vstudio/

Visual Java: http://msdn.microsoft.com/visualj/

Visual Basic: http://msdn.microsoft.com/vbasic/

Visual C++: http://msdn.microsoft.com/visualc/

NT Option Pack (MSMQ & MTS):

http://www.microsoft.com/NTServer/web/exec/overview/option_pack4.asp

The Evolution of Windows DNA:

http://www.microsoft.com/dna/discover/evolution.asp

MSDN: What Is Visual Studio Analyzer?

MSDN: Visual Studio Analyzer Reference

MSDN: Visual Modeler Reference

MSDN: Developing MTS Components with Java

MSDN: About MSMQ

MSDN: Changes to MSMQ COM Components in MSMQ 2.0

MSDN: Using MSMQ ActiveX Components from Java

CD:

Mastering Distributed Application Design and Development Using Microsoft Visual

Studio 6.0

http://msdn.microsoft.com/training/courseware/1298_sp.asp

45

http://www.windows.com/dna/
http://www.windows.com/com/
http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/visualj/
http://msdn.microsoft.com/vbasic/
http://msdn.microsoft.com/visualc/
http://www.microsoft.com/NTServer/web/exec/overview/option_pack4.asp
http://www.microsoft.com/dna/discover/evolution.asp
http://msdn.microsoft.com/training/courseware/1298_sp.asp

	 Abstract
	Preface
	1 Introduction
	1.1 Research Motivation
	1.2 Problem Approach

	2 Components and Windows DNA
	2.1 What is Windows DNA?
	2.2 Visual Modeler
	2.3 Visual Studio Analyzer

	
	3 Microsoft Transaction Server
	3.1 Transaction Technology
	3.1.1 Transaction Theory
	3.1.2 Microsoft Transaction Server Overview

	3.2 Our Transaction Component
	3.2.1 Challenge
	3.2.2 Component Design

	3.3 Implementation
	3.3.1 Implementation vs. Class Diagram
	3.3.2 Implementation Issues
	3.3.2.1 Visual Basic
	3.3.2.2 Visual C++
	3.3.2.3 Visual J++

	3.3.3 Performance Testing

	3.4 Discussion

	4 Microsoft Message Queue
	4.1 Message Queuing Technology
	4.1.1 Message Queuing Theory
	4.1.2 Microsoft Message Queue Overview

	4.2 Our Message Queue Component
	4.2.1 Challenge
	4.2.2 Component Design

	4.3 Implementation
	4.3.1 Implementation vs. Class Diagram
	4.3.2 Implementation Issues
	4.3.2.1 Visual Basic
	4.3.2.2 Visual C++
	4.3.2.3 Visual J++

	4.3.3 Performance Testing

	4.4 Discussion

	5 Conclusion
	6 References

