
 
 

Component-based Development on 
the Windows DNA Platform 

 

Post-graduate Thesis  

in Information and Communication 

 Technology  

 

by 

LARS BARSTAD 

FRODE K. KRISTENSEN 

 

 

 

 

 

 

 

 

 

Grimstad, June 2000 



Component-based Development on the Windows DNA Platform 

Abstract 
 

This report deals with key areas of software development in a distributed environment. 

Distributed computing systems are becoming increasingly more popular, and the 

demands for functionality are growing accordingly. With distributed systems being used 

for so many different purposes, and with so many people depending on it to do their jobs, 

these systems must be stable and robust to continuously serve the users. If the system 

fails, for example caused by network problems or by application crash, it can in the worst 

case paralyze the organization. 

 

With this as a starting point, we have been looking at technologies for developing 

distributed systems based on the Windows DNA platform. One issue that we have been 

working on in particular is mechanisms that provide dynamically recovery from failure. 

 

We have learned that by using the right technologies developers can save themselves 

from a lot of work. After working with Windows DNA during the project period, we feel 

that it offers a good and solid platform with technologies for developing robust enterprise 

systems. Our experience is that these technologies are fairly easy to implement, as long as 

you plan your work well and use a suitable development language. 
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1 Introduction 
 

1.1 Research Motivation 

 

Today, organizations are working towards using computer systems more effectively. The 

trend shows an extensive use of distributed computer systems. More and more businesses 

run their systems over the network, with all clients accessing the same resources. A 

distributed system, or enterprise system, combine large numbers of independently 

executing programs into a seamless whole, and provide services critical to the day-to-day 

operation of the organization.  

 

Developing these kinds of distributed systems requires a lot more effort and planning 

than traditional applications running on one single computer. The system needs to handle 

multiple users accessing the same resources without letting them interfere with each 

other. Since a distributed system runs over a network, special care must be taken to 

respond dynamically to failures and recoveries. Other issues like security also require 

extra attention when messages are sent across a potentially unsafe network. 

 

As we can see, software development for distributed systems presents a number of 

different challenges. 

 

1.2 Problem Approach 

 

In this report, we will take a closer look at what the Windows DNA (Distributed interNet 

Applications Architecture) platform can provide when it comes to enterprise 

development. We will focus on common problems like message delivery and transactions 

over a network. In Windows DNA there are two technologies that deal explicitly with 

these problems: Microsoft Message Queue and Microsoft Transaction Server.  
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Since our work consisted of both research and implementation, we decided to use the 

following approach for our work: 

 

• Research theory on the subject (i.e. transactions in general) 

• Research theory on the technology in question (i.e. Microsoft Transaction Server) 

• Design the implementation using industry-standard UML diagrams 

• Implement the technology in the selected languages  (Visual C++, Visual J++ and 

Visual Basic) 

• Test and evaluate performance on the different implementations 

 

This approach worked well, and helped us stay focused throughout the project. 

 

We have included the original description of our project at the end of this report. 

Together with our technical advisor we decided to omit our look at SOAP due to time 

constraints. No information on SOAP is to be found in this report. 

 

This report as well as the source code for our components can be found at: 

http://www.reptile.no/diplom/  
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2 Components and Windows DNA 
 

2.1 What is Windows DNA? 

 

Windows DNA is a collection of software-packages and technologies that together 

provide a platform for building and deploying distributed systems, both traditional 

applications and modern web-based systems like e-commerce and intranets. Microsoft 

has developed all parts of Windows DNA. 

 

Windows DNA consists of the following applications/technologies: 

• Windows NT / Windows 2000 

- Internet Information Services 

- COM/Microsoft Transaction Server (COM + for Windows 2000) 

- Message queuing 

- Indexing services 

- Security Services 

- Network load balancing 

- Universal Data Access 

- XML support 

• SQL Server 7.0 

• SNA Server 4.0 

• Site Server 3.0 Commerce Edition 

• Visual Studio 6.0 

• BizTalk Server 

• Exchange Server 5.5 

 

[source: http://www.microsoft.com/dna] 
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In this report, we will look at the “heart” of the Windows DNA platform, namely the 

Component Object Model (COM), Microsoft Transaction Server (MTS), and Microsoft 

Message Queue (MSMQ). In addition we will look at Visual Studio 6.0, the premier tool 

for creating Windows DNA applications. We will also look at some of the enterprise 

tools bundled with Visual Studio. These tools are introduced in the next part of this 

chapter, since they in part form the basis of the following chapters on MTS and MSMQ. 

 

COM is a component technology that allows different components to communicate. This 

is done with the help of an interface. An interface describes which functions, methods 

and properties are available in a component. For a given component, the interface will 

always stay the same from version to version. If new functionality is introduced, a new 

interface is added to the component while the old interface is retained. This way existing 

applications will not be broken if a newer version of a component is installed on a 

computer. 

 

To make it possible for an application on computer A to use a COM component that 

resides on computer B, Distributed COM (DCOM) was introduced. DCOM is simply an 

extension that transparently takes care of creating and using a component on another 

computer. The developer does not need to take any action to switch from a local 

component to a remote component. Everything is handled by DCOM. 

 

MTS and MSMQ were introduced as supporting services that solve common challenges 

within a distributed system. MTS handles transactions, while MSMQ has mechanisms for 

guaranteed asynchronous message delivery.  

 

With the introduction of Windows 2000, Microsoft also introduced COM+. COM+ is an 

extension of COM, which among other things has built-in transaction support. This 

means that MTS does not exist as a separate component in Windows 2000. The 

functionality however remains the same. For more detailed information about COM and 

COM+, visit http://www.microsoft.com/com/. 
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From a developer’s point of view, components are the smallest building blocks of the 

Windows DNA platform. All the services you interact with in a Windows DNA solution 

are component based. For example, you can create an instance of the ADODB 

component to communicate with a database, or create an instance of ADSI to 

communicate with Microsoft Exchange Server and so on. By using this technology the 

developer can leverage all the work that has been put into developing Windows itself, 

other Microsoft applications and services, as well as a number of third-party tools.  
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2.2 Visual Modeler 

 

Visual Modeler is a tool used to visually design components and the interaction between 

components in a typical three-tier solution. As a subset of Rational Rose, Visual Modeler 

supports UML class diagrams and logic views. In addition it is possible to generate code 

from a class-diagram, as well as reverse-engineer VB projects. 

 

Our use of Visual Modeler is limited to designing our classes in an environment that does 

not tie our design to any specific language. We have also tried out the code-generation 

feature for VB, which works fairly well. The greatest advantage of using tools such as 

Visual Modeler is that it allows you to focus on the design of your component rather than 

the implementation. With the code-generation feature you also save some time writing 

tedious function declaration. The use of modeling tools seems to us like a win-win 

situation. You spend some time modeling the component, but save roughly the same 

amount of time when the software generates the function declarations for your code. 

Result: You get the model for free. More likely than not, it will also help you design a 

better component. 

 

Even though Visual Modeler is categorized as an Enterprise tool within Visual Studio, 

Visual Modeler alone is not a powerful enough solution to design a large-scale 

distributed system. Among the things missing in Visual Modeler is UML Use Case 

diagrams and activity diagrams. 
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2.3 Visual Studio Analyzer 

 

When developing distributed systems performance is a key concern. It only takes one 

poorly programmed component to slow down an entire system. When a distributed 

system is experiencing a decrease in performance, it is often difficult to locate the 

bottleneck that is causing the slowdown. 

 

Visual Studio Analyzer is designed to let developers analyze performance in a distributed 

system, by showing how all components of a distributed, multi-tier application interact. 

This is done by capturing an event-log of the communication that occurs between 

components when the application is run. Once the event-log has been created, VSA can 

be used to display time-diagrams of the interaction, graphically display how the 

components interact, and apply different filters to see only the interaction of a specific 

category. A typical category can be for example all database-calls. 

 

VSA also has a feature that allows Performance Monitor counters to be captured from a 

remote machine. These counters can be displayed together with a graphical representation 

of the event log, making it possible to detect bottlenecks. Once a bottleneck has been 

found, other means must be used to find the exact cause of it. If it is a component that is 

causing the bottleneck, traditional profiler tools can be used. If the bottleneck is caused 

by hardware (or lack of it) we can use Performance Monitor to detect which resources are 

being depleted. 
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3 Microsoft Transaction Server 
 

This chapter is divided into four parts: 

• Transaction Technology 

• Our Transaction Component 

• Implementation 

• Discussion 

 

3.1 Transaction Technology 

3.1.1 Transaction Theory 

 

In a distributed system it is common that several components are involved in performing 

a single task. Most of the time when performing such a task, components depend on the 

successful execution of other components in order to succeed. This is what we call a 

transaction: Either all components succeed in their task, or none succeed. Even though 

this sounds simple, it would present quite a challenge to the programmers to implement 

this with traditional software development methods. Each component would need to 

know about all other components, and for each task it performs check the other 

components to see if they have succeeded or not. This adds a complexity factor of n*n to 

the error handling. And on top of that, one key element of distributed systems is the 

encapsulation and reusability of each component, meaning that a component should not 

need to know about the other components that are part of the transaction. 

 

Luckily, a more effective approach has been adopted for modern distributed systems – 

the transaction manager. A transaction manager acts like a supervisor during a 

transaction. It keeps track of all participating components, collect their status (success or 

failure), and either executes or aborts the entire task. Transactions managers on different 

operating systems differ in how they execute or abort the transaction, so we won’t go into 
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more details on that. In our discussion of Microsoft Transaction Server (part 3.1.2) 

however, we will explain the details of that particular implementation. 

 

To further illustrate the concept of transactions, we will look at the classic example - the 

banking application. A banking application typically transfers money from account A to 

account B.  

 

 
Illustration 3.1  Money Transfer 

This illustration shows a transfer from account A to account B. 

 

 

There are two tasks that need to be done in order to complete the transfer: 

 

• Withdraw the money from account A. 

• Credit the money to account B. 

 

This should be a very simple task, but a closer look reveals that there are several things 

that can go wrong. If money is withdrawn from account A and the system fails before 

completing the transfer, the money is gone from account A even if account B has not 

received them. And if the system credits account B with the transfer amount and then 

fails, money will not be withdrawn from account A. As we can see, both these cases 

leave the system in an inconsistent state, which means that money has either been 

“created” or “disappeared” in the system. The total amount of money in the system is not 

the same after the failed transaction as it was before. In essence, this is the problem that 

transaction technology seeks to solve. 
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3.1.2 Microsoft Transaction Server Overview 

 

Microsoft Transaction Server (MTS) provides a mechanism to handle transactions and 

ensure data consistency. It makes sure that a transaction is only completed as one whole 

unit. If it fails during execution, MTS will undo the transaction and leave everything in a 

consistent state – the state it was in before the transaction started. 

 

Since MTS is built for a distributed environment, it assumes a component-based 

approach to application development. MTS has its own run-time environment, where all 

components that take advantage of Transaction Server runs. Components that run in this 

environment are COM components stored as dynamic-link libraries (DLL). Before a 

component can participate in a transaction, it needs to be configured as part of a 

Component package within MTS. This is done with an administrative tool called 

Microsoft Transaction Server Explorer. 

 

 
Illustration 3.2  Microsoft Transaction Server Explorer 

The MTS Explorer is a graphical user interface used to configure and manage MTS components within a distributed 

computer network. This screenshot shows the components contained in the package called MTSPackage. 
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MTS supports all COM components, which can be created and implemented with Visual 

Basic, Visual C++, Visual J++, or any other ActiveX/COM-compatible development 

tool. 

 

Because MTS components can take advantage of transactions, developers do not need to 

worry about whether the other components in the transaction are running successfully. 

All they need to do is to make sure that their component performs it part, and that it 

indicates failure to MTS if the operation is unsuccessful. The MTS transaction system, 

working in cooperation with database servers and other types of resource managers, 

ensures that transactions are atomic, consistent and have proper isolation. 

 

The way this is implemented in MTS is that each component has its own context object 

that is implicitly associated with a given Microsoft Transaction Server object. Context 

objects contains information about the component’s state in the execution environment, 

such as transaction, activity and security properties. These objects also simplify the 

development of components, because they let each component independently acquire its 

own resources, perform its work, and indicate its own internal state. The state of a 

component is indicated by calling the MTS-method SetComplete or SetAbort. The 

component calls SetComplete when the whole transaction is completed successfully, and 

SetAbort if an error has occurred and the transaction needs to be rolled back.  

 

 

 
Illustration 3.3 An MTS object and its associated context object 

The illustration shows how MTS keeps track of each component by assigning a context object to each. 
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The development effort to implement transactions for COM components is minimal. 

Developers do not have to specify Begin transaction, End transaction, or Abort 

transaction statements in their code. Rather, transactions are implemented by setting a 

property of an application component. If the component is marked transactional, then 

Transaction Server will build a transaction around its own processing. Any other 

components referenced by the transactional component will automatically participate in 

the transaction as well. 

 

Microsoft Transaction Server also serves as an infrastructure product that can deal with 

many of the requirements in developing and deploying multi-tier applications. An MTS 

package can be created on one machine, saved, and imported on another machine, thus 

removing the need for complex component installation software. This allows them to 

focus on implementing business functions instead. 

 

Using MTS makes it easier to build distributed applications by providing location 

transparency. MTS automatically loads the component into a process environment. A 

MTS component can be loaded into a client application process (in-process component), 

or into a separate surrogate server process environment, either on the client's computer 

(local component) or on another computer (remote component). 
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Illustration 3.4  In-process, local, and remote components 

 

MTS supports component pooling, which means that instead of creating and destroying a 

new instance of a component each time it is requested, a collection of objects is recycled. 

This increases performance by avoiding freeing and allocating memory, and is very 

beneficial in a large-scale distributed system where there is a lot of component reuse. 

 

Integration with the Microsoft Distributed Transaction Coordinator (DTC) provides a 

robust transaction management infrastructure. Transaction Server provides a transaction 

monitor that controls transactional access to resource managers, such as Microsoft SQL 

Server, the latest versions of Oracle and databases that support the ODBC interface. 

Transactions may access a single resource manager, or, through support of DTC protocol, 

transactions may coordinate and synchronize access to multiple resource managers.  

 

With the DTC, work can be committed as an atomic transaction even if it spans multiple 

resource managers on separate computers. This transaction support is transparent to the 

programmer. DTC implements a two-phase commit protocol to ensure that the transaction 
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outcome (either commit or abort) is consistent across all resource managers involved in a 

transaction.  
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3.2 Our Transaction Component 

3.2.1 Challenge 

 

The component we have created solves the classic banking case where we want to 

transfer money between two accounts. When money is transferred between the accounts, 

there are a few things that require special attention. We have to make sure that the same 

amount that is subtracted from the sender is credited the receiver. If anything goes wrong 

during the transfer, we need to roll back the entire transaction. 

 

3.2.2 Component Design 

 

We designed of three different components: Transfer, Credit and Debit.  
 

 
Illustration 3.5  UML Class Diagram 

The three components have interfaces called Transfer, Credit and Debit. They only have one member function each, 

with the same name as the respective interface. 

 

 

The Transfer component handles money transfers from one account to another. To do 

this, it relies on the two other components: Credit and Debit. By splitting the task into 

three components, we emphasize the way each of the components doesn’t know (or care) 

about the status of the other components. Transaction Server handles that.  
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Illustration  3.6  The complete Transfer transactions 

This illustration shows three transactions: Transfer, Credit and Debit. The Credit and Debit transactions are 

both part of the Transfer transaction, in addition to run as individual transactions as well. 
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3.3 Implementation 

3.3.1 Implementation vs. Class Diagram 

 

Since Visual Basic, Visual C++ and Visual J++ have different methods of implementing 

features such as callbacks and events, we anticipated slight changes between the methods 

of the same class in the different languages. In the case of the banking application 

however, no callbacks or events are used, so the implementation (with regards to methods 

and interfaces) is the same in all languages. 

 

3.3.2 Implementation Issues 

3.3.2.1 Visual Basic 

Visual Basic is definitely the easiest of the three languages when it comes to component 

development. Creating a COM component is as easy as running a wizard, selecting 

ActiveX DLL, and adding the methods of your interface as public functions or 

subroutines. When creating an MTS component you also need to include a reference to 

Microsoft Transaction Server Type Library, and set the MTSTransactionMode property 

to indicate in which way the component participates in a transaction. It is also advisable 

to set the project property Version compatibility to Binary Compatibility so the 

component isn’t given a new GUID each time it is compiled. 

 

The only thing the programmers has to worry about is remembering that all components 

that are participating in a transaction must be created with CreateInstance instead of 

CreateObject, and that each component must call either SetComplete or SetAbort to 

indicate its state. The fact that Visual Basic manages to hide almost all the details of 

COM, IDL and interfaces is impressing. 

 

22 



Component-based Development on the Windows DNA Platform 

3.3.2.2 Visual C++ 

C/C++ in general is regarded as one of the most robust, high-performance languages 

available on any computer, and is the industry standard for commercial applications. 

Visual C++ is the most widely used tool when it comes to building commercial Windows 

applications. 

 

The high performance of Visual C++ does come at a cost however. To build COM 

components with Visual C++, you need to know the basic internal workings of COM, as 

well as have good knowledge of C++. Similar to Visual Basic, Visual C++ has a wizard 

that helps you get started on your component (ATL COM AppWizard). Unlike VB, VC 

requires you to start with creating an interface rather than directly editing code.  

 

Note: Starting by describing its interface is a more politically “correct” approach to 

component-development. 

 

Calling the MTS CreateInstance and SetComplete/SetAbort is actually easier than VB, 

since VC automatically adds a member variable named m_spObjectContext and 

initializes it with a pointer to the transaction context. 

 

3.3.2.3 Visual J++ 

Visual J++ is the newest product in Visual Studio. Using it to create basic COM 

components are easy, all you need to do is select a checkbox in the option dialog. If you 

want to create more advanced components though, things get a little more complicated. 

The first thing we noticed when starting doing more advanced COM programming in 

Java was that there didn’t seem to be a policy on whether or not you should use IDL files. 

Some examples mentioned the use of IDL files without explaining why or when you need 

to use them, while others talked about the “ActiveX Wizard for Java” which we to this 

date have not seen anywhere in the application.  
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When creating an MTS component we quickly discovered that we needed an interface ID 

in order to create components using CreateInstance (which is necessary for them to be 

part of the transaction). The documentation said nothing about how the interface ID was 

assigned or how we could define it ourselves.  

 

Our general impression was that COM in VJ++ was harder than it should be. The 

documentation was lacking, and there seemed to be a lack of a general strategy for how 

to create COM components with the tool. 

 

3.3.3 Performance Testing 

 

In order to test the performance for each component we had developed, we used 

Microsoft Web Application Stress Tool. For the testing we created a web page which used 

our MTS components to transfer money between two accounts. 

 

 
Illustration 3.7  Web-based client for the MTS components 

This example screenshot shows the parameters for transferring 1 unit of money from account 3 to account 4. 

 

We recorded a script that transferred money from one account to another, and let the 

stress testing tool run it over and over again for 20 minutes. Six threads were running 

continuously, which was the optimal stressing limit before the web server got overloaded 
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and performance dropped dramatically. The test computer was not a robust server, but a 

Pentium 200 workstation running Personal Web Server. 

 

Table 3.1  Stress testing results for the MTS component 

The table below shows the results after stress testing three components developed in VC, VJ and VB. Each 

component was stressed with the exact same job, which was to transfer money from one account to 

another using MTS and a database connection.  

 Requests/Sec Requests Total Current Connections 

VB 24.38451219 29987 5.46341463 

VC 23.06543209 28031 5.67901234 

VJ 22.88352535 27978 5.58821129 

 

The chart below presents the Requests/Sec column from the table above. It may seem 

somewhat strange that VB yielded best performance. Our VSA analysis indicates that VB 

takes better advantage of component-pooling than the other languages. As a result of this 

it is slightly faster. 

  

 

 
Illustration 3.8  Chart with the stress testing results 

Stress testing results showing performance presented as Requests/Sec for the components developed in 

VC (Visual C++), VJ (Visual J++) and VB (Visual Basic). 
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3.4 Discussion 

 

Of the three tools we used to create Microsoft Transaction Server components, only one 

(Visual J++) presented us with implementation problems. That was due to awkward 

support for COM/MTS in Visual J++ rather than a problem with COM/MTS itself. 

 

We think the three development tools we selected (Visual Basic, Visual C++ and Visual 

J++) is a fair representation of development tools in general, so MTS should be no harder 

to use with development tools from other vendors than Microsoft. 

 

During our testing MTS performed well as a transaction manager, and the ease of use 

makes it easy for programmers to write components that support transactions. Even when 

there is no need for a transaction, the object-pooling capability of MTS makes it 

worthwhile for components that are frequently used. 

 

The ability to configure MTS components with a dedicated tool makes MTS attractive in 

an enterprise distributed system, because it allows a network administrator to control and 

administer the system down to component level, rather than leaving the details to the 

programmer. 

 

Writing components that take advantage of Microsoft Transaction Server is easy, 

understanding distributed systems and transaction theory well enough to design effective 

systems is a bit more demanding. Our conclusion is that MTS is a powerful technology 

well worth spending some time learning. 
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4 Microsoft Message Queue 
 

This chapter is divided into four parts: 

• Message Queuing Technology 

• Our Message Queue Component 

• Implementation 

• Discussion 

 

4.1 Message Queuing Technology 

4.1.1 Message Queuing Theory 

 

With the trend moving toward distributed computing in enterprise environments, it is 

important to have flexible and reliable communication among applications. Businesses 

often require independent applications running on different systems to communicate with 

each other and to exchange messages even though the applications may not be running at 

the same time.  

 

There are two types of message communication; synchronous and asynchronous. 

Synchronous, or message passing communication, requires that both communicating 

applications are up and running because data is being passed directly between them. 

Telephone conversations implement synchronous communication. Asynchronous, or 

message queuing communication, does not have that requirement. It allows applications 

to communicate indirectly through a message queue. Voice mail, where the message is 

queued and later retrieved, is an example of asynchronous communication. 

 

Many things can prevent messages from being delivered over a network. Network 

connections can be broken, the receiver application may have crashed, servers are down 

or the network can be overloaded. This is very serious, since one of the most critical 
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factors of a distributed system is its uptime, defined as the percentage of time the system 

is available to its users. If messages cannot be passed over the network, the system is not 

available. 

 

The consequence of this is that the users will be unable to use the system until all 

necessary components are operational. For example, consider a data-collection process 

where information is continuously being entered on a client computer, sent across the 

network and stored on a server. Just a single network failure or server crash can cause the 

process to stop because data can no longer be registered. An alternative way of 

registering data is, of course, to use pen and paper and type in the data later. This is 

usually not an acceptable option. 

 

 
Illustration 4.1  Blocked connection 

Blocked connection between two processes preventing them from exchanging messages.  

 

 

To enable applications to use asynchronous messages, message queue systems have been 

developed. A message queue allows an application to send messages without worrying 

about whether the receiver is operational or not. Maintaining a separate queue on the 

sender and the receiver makes this possible. A message will not be removed from the 

local (sender) queue until the receiver has given an acknowledgement on the reception of 

the message. This way, even though the network is down, messages will be delivered as 

soon as the connection between the sender and the receiver is operational. 

28 



Component-based Development on the Windows DNA Platform 

4.1.2 Microsoft Message Queue Overview 

 

Microsoft Message Queue is a technology that guarantees error-free message delivery 

between applications in a network, even if you’re not able to communicate with the 

system for a period of time. MSMQ is a standard part of Windows NT Server (introduced 

with NT Option Pack), like Microsoft Transaction Server (MTS) and Internet Information 

Server (IIS). 

 

Message queuing assumes asynchronous communication. The client application sends its 

messages via an interface to a queue, which works as a buffer. The server will invoke the 

same queue, and collect all the messages when it is ready to process them. In this way, 

the client application has no direct contact with the server. It only depends on being able 

to deliver the messages to the queue. Communicating this way makes it a lot easier for 

the server to process the messages as well, since it only has one client to respond to – the 

queue. 

 

 
Illustration 4.2  Message delivery via Microsoft Message Queue 

The illustration shows two processes exchanging messages using MSMQ.  

 

The administration tool is called MSMQ Explorer. It is used to create, administer and 

view sites, connected networks, computers and queues on your MSMQ server. 
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Illustration 4.3  Microsoft Message Queue Explorer  

 

MSMQ consists of three basic components (Illustration 4.4): 

 

• Interfaces  

• Messages 

• Queues 

 

 

 
Illustration 4.4  The three basic components in MSMQ 

The illustration shows how two applications communicate via MSMQ, and how MSMQ is made of 

interfaces, messages and queues. 
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Interfaces are provided so that applications can communicate with MSMQ, and be able to 

send and receive messages. MSMQ actually provides two APIs. One API is defined as a 

set of C function calls, and the other API is defined as a set of COM objects. The COM 

API includes more services, and can be used by all programming languages that support 

COM. 

 

Messages are created, sent and received by applications. They can either be stored in 

memory or on disk, where memory storage is faster and disk storage provides more 

reliability. Each message can be up to 4 MB in size. Some messages are time critical, so 

if they have not been received by a certain amount of time, it may be appropriate to throw 

them away. MSMQ takes care of this, and discards the messages that have timed out. 

Messages can time out either for not being received or not reaching the queue within its 

time limits. Also, messages can be given a priority between 0 and 7, allowing time 

critical messages to be processed more quickly. If desired, MSMQ can create a log with 

all messages processed by a queue. Other great features include encrypting, digitally 

signatures and more. 

 

Queues are managed by a queue manager, where messages are sent into and received. 

The queue managers can communicate with each other to send messages from one queue 

to another. Applications and people with the right permissions can set properties for 

queues, however, the only property required is its pathname. The pathname is just a 

character string (such as “machineX/myqueue”) identifying the machine the queue is on 

and the name of the queue. Other properties define things like type of queue, maximum 

size in bytes that a queue can hold, routing between queues and more. Queues can also be 

configured to participate in transactions using Microsoft Transaction Server.  
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Microsoft Message Queue defines three types of applications (Illustration 4.5): 

 

• MSMQ server 

• Independent client 

• Dependent client 

 

 
Illustration 4.5  Three types of applications defined by MSMQ 

 

 

At least one MSMQ server must be available in every MSMQ installation. The most 

important things it contains are queues, a queue manager, support for the MSMQ API and 

software to route messages between queues. 

 

Independent clients support the MSMQ application programming interface (API), and 

they also have a queue manager with their own queues. Applications running on an 

independent client are able to send messages even if they are not online with the MSMQ 

server, because message sent by the application are stored in the client’s queue. This is a 

great advantage if the network goes down, or if the client is running on a laptop and is not 

always wired to the network. When an independent client reconnects to the network, its 

queue manager automatically detects this and forwards all messages to an MSMQ server. 

 

Dependent clients are more limited than independent clients. They provide all MSMQ 

APIs, but require an available network connection to an MSMQ server in order to 

operate. For this purpose, the MSMQ servers contain a proxy function to support these 

systems. Dependent clients are intended for systems with permanent connection to a 
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network, such as a desktop machine connected to a LAN. However, there is one 

advantage with dependent clients. Since dependent clients have no queues on their own, 

an MSMQ environment with dependent clients is easier to manage than if independent 

clients were used. 

 

While the basic idea of message queuing is simple, the kinds of things applications want 

to do with messages are often not so simple. Accordingly, MSMQ provides a powerful 

set of services for those applications that need it.  
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4.2 Our Message Queue Component 

4.2.1 Challenge 

 

The system we have been looking at is a data collection process, where data is being 

entered on a client and stored on a server somewhere else in the network. We have used a 

melting process at a steel mill as our fictive case. During this process, data is being 

registered by the people supervising the process. This data is very important for further 

analysis in order to improve the melting process and accurately calculate costs associated 

with the particular batch being produced. If the network is unavailable, the workers are 

unable to register the data, and must write down the information by other means (i.e. pen 

and paper). In a real-time production environment where the focus is on using the most 

cost-effective production method, unexpected delays can be both costly and create 

frustration among the workers. 

  

To solve this problem, we need to design a component that let the user register data on 

the client, regardless of any possible problems with the network connection. Our 

component must be able to receive data from the client, even if the network fails, and 

pass it on to the server. The data storage on the server should be transparent to the user. 
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4.2.2 Component Design 

 

We have designed two components, one for the sending application and one for the 

receiving application.  

 

 
Illustration 4.6  UML Class Diagram 

 

The sender class is the smaller of the two classes, containing only three functions. 

InitSendQueue initializes the queue, SendData sends a message to the queue, and 

CloseSendQueue closes the queue when the application exits. 

 

The receiver class is a little more complex, but is still quite simple. We have 

InitListenQueue and CloseListenQueue which create and close the queue respectively. 

Since the receiver is the passive part of the message process, it needs to check the queue 

regularly to see if any messages has arrived. This is done with the Listen function. When 

a message arrives, the Listen function calls ReceiveData to retrieve the message. Listen is 

called once per message, so after ReceiveData has processed a message, it calls Listen 

again to wait for the next message. When the application is shut down, StopListen is 

called to abort the Listen routine. 
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4.3 Implementation 

4.3.1 Implementation vs. Class Diagram 

 

The only difference in implementation between the languages was the naming of the 

callback/event procedure that was called/fired whenever the receiver needed to be 

notified of a new message. Even though this is more a matter of syntax than a design 

change, we mention it here to avoid possible confusion if someone choose to read the 

source code. 

 

4.3.2 Implementation Issues 

4.3.2.1 Visual Basic 

The Visual Basic component was created as an ActiveX DLL. VB hides the details of 

COM in a wonderful way. We just needed to implement MSMQ , which we did by 

adding the Microsoft Message Queue Object Library to our project. This gave us access 

to all the objects in the MSMQ API. There were no specific problems in VB. 

 

4.3.2.2 Visual C++ 

When you know how to create COM components with Visual C++, the threshold for 

using MSMQ is not high. We created our project using the ATL COM AppWizard, which 

gave us the fundament for our component. Furthermore, in order to get access to the 

MSMQ API, we included the dynamic link library mqoa.dll.  

 

From here, we had no trouble using the MSMQ functionality in our component. It’s the 

same as implementing MTS; the technology itself is not hard to implement, however, 

handling COM is a bit trickier in VC than VB. 
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4.3.2.3 Visual J++ 

The implementation in Visual J++ gave us a bit more trouble than VB and VC. Like in 

VC, we first created a new project using the ATL COM AppWizard. Then to gain access 

to MSMQ, we had to add a COM wrapper to the project called Microsoft Message Queue 

Object Library.  

 

When it came to calling the MSMQ functions, we learned that the syntax in VJ was a lot 

“uglier” than in VB and VC. For example, when calling a function called LookupQueue, 

we had to pass nine parameters in VJ while one was sufficient in VB and three in VC. In 

addition, it was not possible to look up a queue using the queue name in VJ, so we had to 

look it up using the queue’s Type ID. These implementation differences gave us some 

trouble, since the documentation for VJ was poor compared to the other languages. 

 

4.3.3 Performance Testing 

 

Like we did on the MTS components, we used Microsoft Web Application Stress Tool to 

test the performance for our implementations of the MSMQ component. For that use, we 

created a simple web-based client. 

 

 
Illustration 4.7  Web-based client for the MSMQ components 

This example screenshot shows client interface that sends a message using the MSMQ component. 
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The script that we recorded with the stress testing tool simply sent messages to an 

MSMQ queue using this web client. The script was running for 20 minutes, with nine 

threads stressing the application continuously (nine threads was the limit before the web 

server became overloaded, and performance decreased for all components). The test 

computer was a Pentium 200 workstation running Personal Web Server. 

 

Table 4.1  Stress testing results for the MSMQ component 

The table shows the results after stress testing three components developed in VC, VJ and VB. Each component did 

the exact same job, which was to send a message to a queue in MSMQ.  

 Requests/Sec Requests Total Current Connections 

VC 24.69250914 29994 8.32098765 

VJ 18.90695122 23215 8.02439024 

VB 16.99414634 20890 8.31707317 

 

 

The chart below presents the Requests/Sec column from the table above, where we can 

see that Visual C++ gave best performance in the test. 

 

 
Illustration 4.8  Chart with the stress testing results 

Stress testing results showing performance presented as Requests/Sec for the components developed in 

VC (Visual C++), VJ (Visual J++) and VB (Visual Basic). 
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4.4 Discussion 

 

Our experiences with implementing the Microsoft Message Queue (MSMQ) in the three 

languages we selected (Visual Basic, Visual C++, Visual J++) closely match the 

experiences we had implementing the Microsoft Transaction Server Component. 

 

Of the three languages, Visual Basic was the easiest to work with, hiding all complexity 

in a well thought out manner. Visual C++ has a steeper learning curve, and you need a 

more detailed understanding of how COM operates. But in the whole VC presented us 

with few difficulties. Again Visual J++ turned out to be the rotten apple among the three,  

with more complex function calls, poor documentation, and what seemed to be less 

functionality than the other languages. It is possible that there are better ways of using 

COM and MSMQ from VJ, but with the documentation currently available it’s hard to 

say. 

 

In general, we found MSMQ easy to work with. The concept of message-queing is 

straightforward, so that should not be an obstacle for programmers wanting to take 

advantage of MSMQ. Like MTS, Microsoft Message Queue has much to offer to those 

developing distributed systems. 
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5 Conclusion 
 

Our goal has been to look at the performance of components written in a selection of 

programming languages. We wanted to find out if any languages were more suited to 

building components than others with regards to performance and complexity. 

Furthermore, we wanted to evaluate Microsoft Transaction Server and Microsoft 

Message Queue to see if they represent good solutions when it comes to transaction 

services and message queuing. 

 

While working with distributed systems through this study and through our work 

experience, we feel that we have an idea of what the status of this area is today and where 

it is headed. We will share these ideas at the end of this chapter. 

 

When developing the components, Visual Basic was our starting point. VB is widely 

known for its ease of use and its powerful features, although some developers using more 

advanced languages often describe it as a toy rather than a real programming language. 

The reason for starting out with VB was simple – VB hides nearly all the complexity of 

COM, making it the perfect tool for prototyping COM components. When it comes to 

development time, neither Visual C++ nor Visual J++ stand a change against VB.  

 
Note: Our previous programming experience is about 50% VC, 30% VB and 20% VJ. In 

our opinion this does not significantly affect our evaluation of the three languages, but 

ultimately we leave that decision to the reader. 

 
Visual C++ requires the programmer to know the basics of how COM works in order to 

be an efficient tool. Even though VC includes a wizard that goes a long way in creating 

the component for you, it presents you with questions on threading model, interface and 

aggregation, as well as reference explicit COM interfaces. Without the proper knowledge, 

it is easy to make mistakes that could drastically affect the functionality and performance 
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of your component. Still, it is hard to put down VC because of these things, because it is 

in the nature of VC to give the programmer total control rather than sacrificing control or 

performance to make things easier. As the only one of the three languages, VC requires 

you to start out by declaring the interface of your component through an IDL file. All in 

all, we think Visual C++ is an efficient tool for creating high-performance components, 

given that the programmer has the necessary skill. 

 

Visual J++ should in theory be the most suitable language for developing components. 

As a strong object-oriented, modern language with true multi-platform compatibilities, 

Java has certainly gained its share of attention. Strangely enough, we found VJ to be the 

tool where we ran into most trouble when implementing the components. The COM 

support in VJ is more confusing than in the other languages. For example, there does not 

seem to be a clear strategy on whether or not you should use IDL files when 

programming in Java. Turning a java class into a component is as easy as selecting a 

checkbox. The documentation we found on VJ and COM was only dealing with the most 

basic issues. Documentation about components participating in transactions was lacking.  

 

Overall, we found both Visual Basic and Visual C++ to be good choices for developing 

COM components. Working with Java and COM was very confusing, and better 

documentation would be most welcome. In addition, using Java with COM ties your 

solution to the Windows platform. In the context of this report this is not a problem since 

we are looking at Windows DNA. But when looking at the big picture, tying Java to 

Windows removes one of the best features of Java, which is true multi-platform support. 

We recommend that anyone who has chosen Java as their main language for distributed 

applications at least evaluate other technologies which retain Java’s multi-platform 

support before going with COM. One such technology is Enterprise JavaBeans. 

  

Microsoft Transaction Server is one of the main technologies we have been looking at. 

After implementing a simple MTS component in three different languages, we feel 

confident that we have a solid background for evaluating it in terms of ease of use and 

functionality. For the average programmer the technical side of MTS programming is 
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very easy to learn. To properly understand transaction theory and know when to use it is 

likely to be more of a challenge. As for the quality of the transaction service, we found it 

very powerful and robust. The component-pooling capabilities are a further incentive to 

consider using MTS, even when a transaction is not required. 

 

Likewise, Microsoft Message Queue is easy to use, and message queuing should be a 

fairly easy concept to understand. Learning to implement the MSMQ technology is a bit 

more work than learning MTS, mainly because more objects and methods are involved. 

However, no part of it is too complex for an intermediate programmer. For successful use 

of MSMQ, it is important to understand when asynchronous communication is important. 

Using MSMQ in a setting where the component waits for an answer after sending a 

message must be avoided. 

 

To summarize MTS and MSMQ, we found that both technologies are easy to use, and 

they include powerful features that make it well worth spending some time learning. 

MTS and MSMQ may be all it takes to turn an unusable distributed system into a good 

solution. As the trends move towards more use of distributed systems, and with 

Windows-based systems in almost every company, MTS and MSMQ will certainly be 

part of many future solutions. 

 

When developing distributed systems, performance is a key concern. It only takes one 

poorly developed component to slow down an entire system. When a distributed system 

is experiencing a decrease in performance, it is often difficult to locate the bottleneck that 

is causing the slowdown.  

 

To help developers analyze performance in a distributed system, tools like Visual Studio 

Analyzer have been created. We expected Visual Studio Analyzer to give us more 

performance information that it actually did, so it turned out to play a smaller part in our 

performance analysis than we initially thought. There are several reasons for this. The 

most important being that our components spends most of their time using other 
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components like MTS and MSMQ, so the differences between the languages became 

marginal.  

 

Once we started stress testing our components using Microsoft’s Web Stress Application 

(nicknamed Homer), this became even clearer. There were a few surprises though – VB 

actually outperformed VC in the MTS test. We found the reason for this with VSA. VB 

was able to take better advantage of component-pooling than VC. 

 

Note: Our limited stress testing was performed in a real-world scenario on one of our 

test-servers, and as such do not meet the standards required for commercial lab-testing. 

 

Distributed systems are the latest trend within the software industry. Even though much 

has been said and written about distributed systems, our impression is that many spend to 

little time analyzing and building the right architecture for their solutions. The 

consequence of this is that many “distributed-systems” are closer to client-server 

applications than true multi-tier distributed systems. 

 

Without proper planning components tend to remain as part of the system they were built 

for, and never realize their full potential as reusable components. The main reason for this 

is that developers use their experiences from building client/server applications, and 

merely package their classes within components. The same applies to how the 

development tools are selected. Programmers stick with the tools they are familiar with, 

rather than evaluate which tools are the best for the job at hand.  

 

From a practical point of view however, it is hard to criticize developers for using the 

tools they know. Many software projects have stranded because developers overrate their 

skills at adopting new tools. In other cases it can be hard to justify the expenses involved 

with learning and buying new tools. Making the correct choices between introducing new 

technology or leveraging existing knowledge is a critical factor when it comes to building 

distributed systems. 

 

43 



Component-based Development on the Windows DNA Platform 

In our opinion, the essence of a distributed system is proper analysis, design and 

architecture. It is important to make the right choices when it comes to tools and 

technologies, and re-use existing components whenever you can. That is what distributed 

systems are about. With tools like Visual Basic and Visual C++, and technologies like 

COM, MTS and MSMQ, developers are much more likely to successfully make the 

transition from client/server development to the new world of distributed systems. 
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