

MDA and Integration of Legacy Systems

by

Selo & Warsun Najib

Masters Thesis in
Information and Communication Technology

Agder University College

Grimstad, May 2003

 MDA and Integration of Legacy Systems

 ii

Abstract
OMG’s Model Driven ArchitectureTM, MDATM, is the new paradigm of software
development and a new way of writing specifications and developing applications, based
on a platform-independent model (PIM). MDA divorces implementation details from
business functions. Thus, it is not necessary to repeat the process of modeling of
applications or system’s functionality and behavior each time a new technology comes
along. With the MDA, it is easier to integrate the new applications with the old
application that is already installed.

In the real time distributed telecommunication system, MDA addresses the challenge of
constantly changing infrastructure and promotes application and component reuse and
portability. The success of MDA depends highly on integration of legacy systems in a
MDA context. This activity may include reengineering of code or transforming existing
UML models to MDA context.

Objectives of our thesis are to study the possibility of developing platform independent
models (PIM) from existing UML models, components specified by interfaces in
CORBA IDL and implemented Erlang code. We also studied which aspects of the
context system (a real-time distributed telecommunication application) that can be
specified in a Platform Independent Model and which aspects are left for a Platform
Specific Model (PSM) and coding. For this study purpose, we use some UML models,
IDL interfaces, Erlang code and some use case diagrams in GSN system from Ericsson ‘s
GPRS project.

XMI gives the possibility to perform model exchange and model transformation.
Therefore, we used XMI to develop PIM from the existing UML model, CORBA IDL
interface, and Erlang code in our case study. There are two possible PIMs we can develop
for the GSN legacy systems (the existing UML model, CORBA IDL and Erlang code)
that are, a structural specificationally complete PIM and a structural and external
behavioral specificationally complete PIM.

We have developed a translator to translate CORBA IDL and Erlang code into a UML
model represented in XMI. This model is a structural specificationally complete PIM
since the model is structurally complete with model packaging, class, attribute, operation,
operation’s argument, datatype, stereotype and dependencies. We have also made an
XMI mixer to combine XMI generated by the translator (a structural specificationally
complete PIM) with XMI generated from the existing UML models (that contain external
behavioral aspects) in order to produce a structural and external behavioral
specificationally complete PIM.

The result of our study reveals many problems with the reverse engineering of Erlang
code that uses procedural programming concept. Nevertheless, we found some benefits
of using MDA in software development of legacy systems. The documentation of the
model is always up to date since we can reverse engineer the implemented code into
model whenever we want. Even if generating a behavior complete PIM is difficult, we
can have an updated structural complete PIM. Since documentation is in the high-level
model and is platform independent, then it is possible to transform the model into
multiple platforms or programming languages. We experienced that the success of the
integration of the old applications with the new application is highly dependent on MDA
tools.

 MDA and Integration of Legacy Systems

 iii

Preface
This thesis is written for Ericsson in Grimstad and is performed to complete the Master of
Science degree in Information and Communication Technology (ICT) at the Faculty of
Engineering and Science, Agder University College (Høgskolen I Agder, HIA), Norway.

We would like to thank Ericsson in Grimstad for providing the facilities so we were able
to perform our case study. We would also like to thank Parastoo Mohagheghi at Ericsson
and Jan P. Nytun at HiA for their guidance, advice and valuable help during the project.

Last, we would like to thank our families for their support, attention and motivation
during our three years of study in Norway.

 S e l o Warsun Najib

Grimstad, Norway May 2003

 MDA and Integration of Legacy Systems

 iv

Table of Contents
ABSTRACT..II
PREFACE... III
TABLE OF CONTENTS... IV
LIST OF FIGURES ... VI
LIST OF TABLES ... VI
1 INTRODUCTION..1

1.1 THESIS INTRODUCTION ..1
1.2 LEGACY SYSTEM AT ERICSSON ...2
1.3 WORK/TASK DESCRIPTION..2
1.4 LITERATURE REVIEW ..2
1.5 REPORT OUTLINE ..3

2 SOFTWARE ENGINEERING AND LEGACY SYSTEM OF TELECOMMUNICATION
APPLICATIONS...4

2.1 SOFTWARE ENGINEERING..4
2.1.1 Rational Unified Process ..4
2.1.2 Software Development ..8

2.2 LEGACY SYSTEMS IN THE TELECOMMUNICATION DOMAIN...12
2.3 SUMMARY ...14

3 MODEL DRIVEN ARCHITECTURE...15
3.1 INTRODUCTION..15

3.1.1 The Unified Modeling Language™ (UML™) ..16
3.1.2 The Meta-Object Facility (MOF™)..17
3.1.3 XML Metadata Interchange (XMI™) ...17
3.1.4 Common Warehouse Meta-Model (CWM™)..18
3.1.5 System Lifecycle - MOF, UML, CWM and XMI ...18
3.1.6 Modeling in MDA ...19

3.2 PIM-PSM DEFINITION ..19
3.2.1 PIM Definition ..20
3.2.2 PSM Definition ...22
3.2.3 Model Mapping...24

3.3 DEVELOPING APPLICATIONS WITH MDA ..26
3.3.1 MDA Structure..26
3.3.2 Build Model Process...26
3.3.3 Integration of Legacy Systems ..28
3.3.4 Interoperability ...28
3.3.5 Pervasive Services ..28

3.4 THE CHALLENGE OF MDA IN REAL-TIME DISTRIBUTED TELECOMMUNICATION APPLICATIONS..........29
3.5 SUMMARY ...30

4 PIM – PSM TRANSFORMATION..31
4.1 TRANSFORMATION PIM INTO PSM ...31

4.1.1 UML Profile..32
4.1.2 UML Profile for CORBA ..33

4.2 REVERSE ENGINEERING...33
4.2.1 Conventional Reverse Engineering...33
4.2.2 Reverse Engineering in MDA ...35
4.2.3 Reverse Engineering Tools ...36

4.3 RESEARCH IN MODELS TRANSFORMATION..36
4.3.1 Introduction ..36
4.3.2 Existing Approaches ...37

4.4 AVAILABLE MDA TOOLS..39

 MDA and Integration of Legacy Systems

 v

4.4.1 Telelogic Tau ..40
4.4.2 ArcStyler ...40
4.4.3 Objecteering ...41
4.4.4 Poseidon ...41
4.4.5 iUML...42
4.4.6 Kabira...42
4.4.7 UMT..43

4.5 VISIONS FOR THE FUTURE MDA TOOLS ..43
4.6 SUMMARY ...45

5 CASE STUDY...46
5.1 MODELS FOR CASE STUDY ..46
5.2 GOALS, METHOD AND TOOLS USED ..49
5.3 CONSIDERED ASPECTS OF DEVELOPING A PIM ...51

5.3.1 Aspects Specified in PIM ..51
5.3.2 Aspects Left for a PSM..52

5.4 XMI AS STANDARD FOR MODEL EXCHANGE ..52
5.5 DEVELOPING PIM FROM ERLANG CODE, CORBA IDL AND THE EXISTING UML MODEL..................54

5.5.1 Developing PIM from Erlang Code..54
5.5.2 Developing PIM from IDL Interfaces ...59
5.5.3 Developing PIM from Existing UML Models ...60

5.6 SUMMARY ...61
6 DISCUSSION ...63

6.1 IS THE MODEL A PIM?...63
6.2 ADOPTION OF MDA AT ERICSSON...63
6.3 FUTURE WORK: PIM GENERATOR AND UML TO ERLANG TRANSLATOR..65

7 CONCLUSION...66
ABBREVIATIONS AND GLOSSARY...67
REFERENCES..69
APPENDIX A THESIS DEFINITION..72
APPENDIX B GSN MODEL ...73

B-1 GSN MODEL STRUCTURE...73
B-2 GSN META-MODEL...73

APPENDIX C CORBA IDL: MAC.IDL...73
APPENDIX D ERLANG CODE: MACAL.ERL ...73
APPENDIX E XMI AND UML ...73

E-1 XMI of UML Model for Model Exchange ...73
E-2.a XMI of MPS Subsystem ..73
E-2.b UML Model of MPS Subsystem..73
E-3.a XMI of NCS Subsystem ..73
E-3.b UML Model of NCS Subsystem..73
E-4.a XMI of MPS and NCS Combination...73
E-4.b UML Model of MPS and NCS Combination ..73

APPENDIX F MODEL TESTING ..73
APPENDIX G ERLANG TO XMI TRANSLATOR..73

G-1 CLASS DIAGRAM..73
G-2 IMPLEMENTATION CODE ..74
G-3 DOCUMENTATION OF ERLANG TO XMI TRANSLATOR..74

 MDA and Integration of Legacy Systems

 vi

List of Figures
Figure 1 GSN Rational Unified Process [31] [27] ...8
Figure 2 System Construction Paradigm [2] ...9
Figure 3 Software systems structure [31]..13
Figure 4 The Core of MDA [12] ...15
Figure 5 Abstraction levels of PIM and PSM ...20
Figure 6 PSM CORBA..22
Figure 7 CORBA IDL ...23
Figure 8 Models Transformation [8] ...25
Figure 9 Development process of MDA model ..27
Figure 10 Source analysis and recoding [25] ..34
Figure 11 Conventional reverse engineering translator [25]...35
Figure 12 MDA Concept for reverse engineering [25] ...36
Figure 13 UMT tool ..43
Figure 14 GPRS System [31] ..46
Figure 15 Design and Implementation view of GSN Meta model [31],47
Figure 16 High level package of GSN model [31]..48
Figure 17 Analysis and Development used by Ericsson [31] ...49
Figure 18 PIM Development Method ...50
Figure 19 XMI for model exchange between tools...53
Figure 20 UML model made by Poseidon ..53
Figure 21 Model opened by UMT...53
Figure 22 Structure of Erlang Procedures ...55
Figure 23 Example of Erlang module ...55
Figure 24 Java Version of attach.erl..56
Figure 25 IDL version of attach.erl ...56
Figure 26 UML class of attach.erl...57
Figure 27 Erlang to XMI Translator..57
Figure 28 Structure of UML..58
Figure 29 eeee1.erl class ...58
Figure 30 Dependencies ..59
Figure 31 example.idl file ...59
Figure 32 Advanced Translator-1..60
Figure 33 More complete eeee1.erl class ..60
Figure 34 XMI mixer and PIM generator ...61
Figure 35 Software Development based on legacy system in Ericsson64

List of Tables
Table 1 Some UML tools that provide round trip engineering [19]36
Table 2 XMI and UML version of MDA Tools................ Error! Bookmark not defined.

 MDA and Integration of Legacy Systems

 1

1 Introduction
1.1 Thesis introduction

MDA addresses the complete life cycle of designing, deploying, integrating, and
managing applications as well as data using open standards. MDA-based standards
enable organizations to integrate whatever they already have in place with what they
build today and what they build tomorrow [8]. Most importantly, MDA enables the
creation of standardized Domain Models for specific vertical industries [6]. These
standardized models can be realized for multiple platforms now and in the future,
easing multiple platform integration issues and protecting IT investments against the
uncertainty of changing fashions in platform technology.

MDA divorces implementation details from business functions. Thus, it is not
necessary to repeat the process of modeling an application or system’s functionality
and behavior each time a new technology comes along. The following are some of the
benefits of MDA [9]:

• Reduced cost throughout the application life-cycle
• Reduced development time for new applications
• Increased return on technology investments
• Rapid inclusion of emerging technology benefits into their existing systems

MDA provides a solid framework that frees system infrastructures to evolve in
response to a never-ending parade of platforms, while preserving and leveraging
existing technology investments. It enables system integration strategies that are better,
faster and cheaper.

Although promising MDA tools are appearing at the beginning of 2003, in the
perception of the mainstream developer, there is little in terms of concrete tools that
actually support MDA beyond traditional UML modeling and skeleton-class
generation. Evolving tools provide features to define and instantiate design patterns,
but most of these tools still expose the user to UML models at the implementation
level. One weakness in the current traditional UML modeling is that the gap between
business abstract models and the concrete implementation is big. MDA introduce PSM
as a way to bridge this gap.

 MDA and Integration of Legacy Systems

 2

1.2 Legacy System at Ericsson
Currently, Ericsson uses UML base modeling to develop its real time distributed
telecommunication software systems. Software developers at Ericsson use the Rational
Rose modeling tool to develop PIM models for their projects. Component interfaces
are defined in CORBA IDL. Finally, these interfaces are implemented in C and Erlang
code manually by hand. One problem is a change in the C or Erlang code is not
followed an update of the UML model or CORBA IDL.

In the MDA context, it is possible to integrate implemented applications (legacy
systems) with new applications within software evolution. Therefore, it will be very
useful when we can develop a model from the legacy system (the existing models,
component specification in IDL and implemented code). The model should be a
platform independent model (PIM). This issue is the focus in our thesis.

1.3 Work/Task Description
By considering description of the legacy system at Ericsson and benefit of MDA
features described in the introduction above, we have defined our thesis (in agreement
with supervisors) as mentioned below. For complete thesis definition, see appendix A.

− Study which aspects of the context system (a real-time distributed
telecommunication application) that can be specified in a Platform
Independent Model (PIM) and which aspects are left for Platform specific
Model (PSM) and coding.

− Study the possibility of developing a PIM model for the legacy system
using the existing UML model, component specifications in IDL and other
artifacts.

1.4 Literature Review
A lot of information in connecting with specification of Model Driven Architecture,
MDA, UML and UML profiles is taken from the Object Management Group’s site at
http://www.omg.org. We have also found useful articles about MDA from proceedings
of 5th UML International Conference 2002 which held in Dresden, Germany,
September 30 - October 4, 2002,

Some information on mapping techniques, both PIM to PSM and PSM to PIM, are
available free in the Internet. Some other articles need password to access such as
Springer’s, ACM’s publication, IEEE journals but the university’s library subscribe
some of them so we could access some of them.

Concerning the case study preformed in this thesis, we studied various GSN
documentations papers that are available in the Ericsson GPRS project.

 MDA and Integration of Legacy Systems

 3

1.5 Report Outline
The main target group of this report is employees at Ericsson since this is an
assignment for Ericsson, to understand the possibility of using MDA to develop
applications in the telecommunication domain. Other target groups can be students and
engineers with basic knowledge or/and interest of software development.

We have written this thesis report with the following structures:
Introduction of this thesis report is presented in chapter 1.

Chapter 2 is background information to introduce software engineering and legacy
system of telecommunication application, including a brief history, some approaches to
software development and the Rational Unified Process (RUP).

Chapter 3 explains MDA including the core of MDA, process of developing
applications with MDA and challenges in the telecommunication domain.

Chapter 4 explains PIM – PSM transformation, reverse engineering and some research
in the model transformation techniques. In this chapter, we also present some available
MDA tools in the market that we have found during spring 2003, and vision on future
of MDA tools

Before we conclude our thesis, we present our case study in the GPRS project and
discussion in chapter 5 and 6 respectively. These are the practical parts of the thesis.
Chapter 5 explains models used in case study, tools used, the experiment, the results
and an analysis of the results. Chapter 6 explains our suggestion of adoption of MDA
concept for software development at Ericsson. We present some advantages and
disadvantage of using MDA to develop applications in telecommunication system
based on our case study.

This thesis is concluded in chapter 7.

 MDA and Integration of Legacy Systems

 4

2 Software Engineering and Legacy System of
Telecommunication Applications

2.1 Software Engineering
Software engineering is defined as an engineering discipline which is concerned with
all aspects of software production from the early stages of system specification through
to maintain the system after it has gone into use [14]. Software developers make thing
work by apply theories, methods and tools where these are appropriate but they use
selectively and always try to discover solution to problems even if there are no
applicable theory and methods to support it.

Software engineering is not just concerned with the technical processes of software
development, but also with activities such as software project management and
development of tools, methods and theories to support software production. Software
engineering can be seen as a structured set of activities for specification, design,
implementing, installing and maintenance of software systems.

In this section, we present a brief description of a software engineering process called
the Rational Unified Process, RUP, which is used in Ericsson.

2.1.1 Rational Unified Process

2.1.1.1 Introduction
The Rational Unified Process, RUP [15], provides a disciplined approach to assigning
tasks and responsibilities within a development organization. Its goal is to ensure the
production of high-quality software that meets the needs of its end-users, within a
predictable schedule and budget.

RUP enhances team productivity, by providing every team member with easy access to
a knowledge base with guidelines, templates and tool mentors for all critical
development activities. By having all team members accessing the same knowledge
base, no matter if you work with requirements, design, test, project management, or
configuration management, we ensure that all team members share a common
language, process and view of how to develop software.

Activities in RUP focus on creating and maintaining models [27]. Rather than focusing
on the production of large amount of paper documents, the Unified Process emphasizes
the development and maintenance of models, which are semantically rich
representations of the software system under development.

RUP is supported by tools, which automate large parts of the process. They are used to
create and maintain the various artifacts in the software engineering process: visual
modeling, programming, testing, etc. They are invaluable in supporting all the
bookkeeping associated with the change management as well as the configuration
management that accompanies to the each iteration.

 MDA and Integration of Legacy Systems

 5

RUP is a configurable process [15]. No single process is suitable for all software
development. The Unified Process fits small development teams as well as large
development organizations. The Unified Process is founded on a simple and clear
process architecture that provides commonality across a family of processes. Yet, it
can be varied to accommodate different situations. It contains a Development Kit,
providing support for configuring the process to suit the needs of a given organization.

2.1.1.2 Development phase
The software lifecycle is broken into cycles, each cycle working on a new generation
of the product. RUP divides one development cycle in four consecutive phases
[15][27].

1. Inception phase
2. Elaboration phase
3. Construction phase
4. Transition phase

2.1.1.2.1 Inception Phase
During the inception phase, software developers establish the business case for the
system and delimit the project scope. To accomplish this, developers must identify all
external entities with which the system will interact (actors) and define the nature of
this interaction at a high-level. This involves identifying all use cases and describing a
few significant ones. The business case includes success criteria, risk assessment, and
estimate of the resources needed, and a phase plan showing dates of major milestones.

The results of the inception phase are general project's requirements, initial use case
model (10 – 20 % completed) [15], an initial project glossary which usually expressed
as a domain model, an initial business case, which includes business context, success
criteria such as revenue projection, market recognition, and financial forecast. This
phase also results in an initial risk assessment, and a project plan, showing phases and
iterations, a business model, and if necessary one or several prototypes.

Software developers use some evaluation criteria for the inception phase to evaluate
development process. The evaluation criteria for this phase are: stakeholder
concurrence on scope definition and cost/schedule estimates, fidelity of the primary
use cases, credibility of the schedule estimates, priorities, risks, and development
process, depth and breadth of any architectural prototype that was developed and actual
expenditures versus planned expenditures.

2.1.1.2.2 Elaboration Phase
The purpose of the elaboration phase is to analyze the problem domain, establish an
architectural foundation, develop the project plan, and eliminate the highest risk
elements of the project [15]. To accomplish these objectives, software developers must
have a deep and obvious view of the system. Architectural decisions have to be made
with an understanding of the whole system: its scope, major functionality and
nonfunctional requirements such as performance requirements.

The Elaboration Phase is the most critical of the four phases. At the end of this phase,
hard "engineering" is considered complete and the project undergoes its most

 MDA and Integration of Legacy Systems

 6

important decision: the decision on whether or not to commit to the construction and
transition phases. For most projects, this also corresponds to the transition from a
mobile, light and nimble, low-risk operation to a high-cost, high-risk operation with
substantial inertia. While the process must always accommodate changes, the
elaboration phase activities ensure that the architecture, requirements and plans are
stable enough, and the risks are sufficiently mitigated, so developers can predictably
determine the cost and schedule for the completion of the development. Conceptually,
this level of fidelity would correspond to the level necessary for an organization to
commit to a fixed-price construction phase.

In the elaboration phase, an executable architecture prototype is built in one or more
iterations, depending on the scope, size, and risk of the project. This effort should at
least address the critical use cases identified in the inception phase, which typically
expose the major technical risks of the project. While an evolutionary prototype of a
production-quality component is always the goal, this does not exclude the
development of one or more exploratory, throw-away prototypes to mitigate specific
risks such as design/requirements trade-offs, component feasibility study, or
demonstrations to investors, customers, and end-users.

The outcomes of the elaboration phase are: a use-case model that is at least 80%
complete, supplementary requirements capturing the non functional requirements, a
software architecture description (SAD), an executable architectural prototype, a
revised risk list and revised business case, a development plan for the overall project,
an updated development case specifying the process to be used, and optionally a
preliminary user manual [15].

The end of the elaboration phase is the second important project milestone. At this
point, software developers have to examine the detailed system objectives and scope,
the choice of architecture, and the resolution of the major risks. The main evaluation
criteria for the elaboration phase involve: stability the vision of the product, evaluate
that executable demonstration has shown resolving of major risk element, check
whether plan for the phase sufficiently detailed and accurate, ensure that all
stakeholders agree that the current vision can be achieved if the current plan is
executed to develop the complete system, in the context of the current architecture, and
make sure that actual resource expenditure satisfy the planned expenditure

2.1.1.2.3 Construction Phase
During the construction phase, all remaining components and application features are
developed and integrated into the product, and all features are thoroughly tested. The
construction phase is, in one sense, a manufacturing process where emphasis is placed
on managing resources and controlling operations to optimize costs, schedules, and
quality [15]. In this sense, the management mindset undergoes a transition from the
development of intellectual property during inception and elaboration, to the
development of deployable products during construction and transition.

Many projects are large enough that parallel construction increments can be spawned.
These parallel activities can significantly accelerate the availability of deployable
releases; they can also increase the complexity of resource management and workflow
synchronization. A robust architecture and an understandable plan are highly

 MDA and Integration of Legacy Systems

 7

correlated. In other words, one of the critical qualities of the architecture is its ease of
construction. This is one reason why the balanced development of the architecture and
the plan is stressed during the elaboration phase.

The outcome of the construction phase is a product ready to put in hands of its end-
users. At minimum, it consists of: a software product integrated on the adequate
platforms, a user manuals and a description of the current release.

The end of the construction phase is the third major project milestone called Initial
Operational Capability Milestone. At this point, software developers decide if the
software, the sites, and the users are ready to go operational, without exposing the
project to high risks. This release is often called a "beta" release.

The evaluation criteria for the construction phase involve checking if the product
release is stable and mature enough to be deployed in the user community, checking
whether all stakeholders are ready for the transition into user community and ensure
that actual resource expenditures satisfy planned expenditures.

2.1.1.2.4 Transition Phase
The purpose of the transition phase is to ensure transition of the software product to the
user community. Once the product has been given to the end user, issues usually arise
that require developers to develop new releases, correct some problems, or finish the
features that were postponed.

The transition phase is entered when a baseline is mature enough to be deployed in the
end-user domain [15]. This typically requires that some usable subset of the system has
been completed to an acceptable level of quality and that user documentation is
available so that the transition to the user will provide positive results for all parties.
This includes "Beta testing" to validate the new system against user expectations,
parallel operation with a legacy system that it is replacing, conversion of operational
databases, training of users, software maintainers, and roll-out the product to the
marketing teams

The transition phase focuses on the activities required to place the software into the
hands of the users. Typically, this phase includes several iterations, including beta
releases, general availability releases, as well as bug-fix and enhancement releases.
Considerable effort is expended in developing user-oriented documentation, training
for users, supporting users in their initial product use, and reacting to user feedback. At
this point in the lifecycle, however, user feedback should be confined primarily to
product tuning, configuring, installation, and usability issues.

The main objectives of the transition phase include achieving: user self-supportability,
stakeholder concurrence that deployment baselines are complete and consistent with
the evaluation criteria of the vision, final product baseline as rapidly and cost
effectively as practical. This phase can range from being very simple to extremely
complex, depending on the type of product. For example, a new release of an existing
desktop product may be very simple, whereas replacing a nation's air-traffic control
system would be very complex.

 MDA and Integration of Legacy Systems

 8

The end of the transition phase is the fourth important project milestone called Product
Release Milestone. At this point, developers decide if the objectives were met, and if it
should start another development cycle. In some cases, this milestone may coincide
with the end of the inception phase for the next cycle.

The primary evaluation criteria for the transition phase involve user satisfaction and
check whether actual resources expenditures is still satisfy planned expenditures. The
following figure depicts the Rational Unified Process that described above.

 Figure 1 GSN Rational Unified Process [31][27]

2.1.2 Software Development

2.1.2.1 A Brief History
The history of software development is a history of raising the level of abstraction [13]
In the beginning of software engineering, industries used to build systems by soldering
wires together to form hard-wired programs. Increasing complexity of the systems and
the need for flexibility of programming languages has lead to development of
procedural language such as Modula, Pascal and C. In the recent years we have
programming languages such as Smalltalk, C++, Eiffel, and Java, each with the notion
of object-orientation, an approach for structuring data and behavior together into
classes and objects. Usually, we increase the level of abstraction when we moved from
one language to another. The developer is required to learn a new higher-level
programming language that may then be mapped into lower-level ones, for example
from C++ to C, to assembly code, to machine code and the hardware.

As the profession has raised the level of abstraction at which the developers work,
tools are developed to map from one layer of abstraction to the next layer
automatically. Program developers now can easily write in a high-level language that
then can be mapped to a lower-level language automatically. A simple example is,
when program developers write predecessors in assembly language and then translated
that automatically into machine language.

 MDA and Integration of Legacy Systems

 9

Software developers have been using the procedural refinement paradigm in more than
twenty years before the object technology-programming paradigm replaced it.
Recently, the evolution of software development itself is triggering today another even
more drastic change in system construction, towards model transformation. As a
concrete sketch of this, the Object Management Group, OMG, is hurriedly moving
from its Object Management Architecture vision, OMA, to the Model Driven
Architecture TM, MDA TM [12].

With traditional modeling language, a developer can define models and then by using
the available tools (code generator) can directly generate some code, which is later
fully developed. With MDA, developers do not need to add some code to the code
generated by code generator. All code and executed applications are ideally generated
automatically by tools from the models.

Figure 2 shows the system construction paradigm. In this figure we can see that the
higher level of abstraction give more flexibility and is suitable for higher complexity.
This figure also shows the history of software development where the model driven at
the higher level of abstraction will be used to develop automatically the code at the
lowest level of abstraction.

 Figure 2 System Construction Paradigm [2]

2.1.2.2 Software Development Approaches
There are many available software development approaches, but in this report we only
concern with the object oriented, component oriented, use case and model driven
approaches.

2.1.2.2.1 Object-Oriented Development
The concepts of Object-Oriented (OO) programming have been around for over four
decades. Initially developed in the field of artificial intelligence, Object Oriented
programming was embraced by Xerox as a means of developing systems that better
reflected real life needs and were more user friendly [29]. OO’s popularity and
sophistication has increased in the past several years as businesses are abandoning their
mainframe systems and incorporating more client-server models to run their businesses
and are integrating web technology as a business tool. A change in the overall pace of
business has also contributed to the increased popularity of object-oriented

 MDA and Integration of Legacy Systems

 10

programming. One of the primary features of object-oriented programming is its
relative flexibility and adaptability to changing business needs.

An object is a distinct software entity that represents a single thing or idea. An Object
is encapsulated, if its internal workings are not visible from outside of itself. Objects
cooperate and perform useful work by sending messages to each other in accordance
with published interfaces. Object instances belonging to the same class respond the
same way to the messages they receive, but objects belonging to different classes can
respond differently to the same message, a property known as polymorphism. Classes
of objects are often organized according to similarities of behavior and data, sharing
the burden of their description by inheritance from the generic to the specific.

One of the main advantages of object-oriented programming is its ease of modification
[29]; objects can easily be modified and added to a system there by reducing
maintenance costs. At modeling the real world, OO programming is also considered
better than procedural programming. It allows for more complicated and flexible
interactions. OO systems are also easier for non-technical personnel to understand and
easier for them to participate in the maintenance and enhancement of a system because
it appeals to natural human cognition patterns.

For some systems, an object oriented approach can speed development time since
many objects are standard across systems and can be reused. Components that manage
dates, shipping, shopping carts, etc. can be purchased and easily modified for a specific
system. There are almost two-dozen major OO languages and the leading commercial
object oriented languages are: C++, Smalltalk, and Java. The first one, C++, is an
object-oriented version of C language. It is compatible with C, which is actually a
superset, so that existing C code can be incorporated into C++ programs. C++
programs are relatively fast and efficient.

Another example of object oriented programming language is Smalltalk. This is a pure
object oriented language. A rich class library and a dynamic development environment
make Smalltalk a favorite of object-oriented developers.

Java is the latest, flashiest object oriented language. It has taken the software industry
by storm due to its close ties with the Internet and Web browsers. Java is a mixture of
C++ and Smalltalk [29].

2.1.2.2.2 Component-Based Development
The term of component can take many forms of things. One characteristic of
component base development is being able to assemble applications means that
components must conform to some sort of environment standard—they form part of a
component kit. Just as buying an off-the-shelf part in any other domain (such as
computer hardware) a component will only plug in if it conforms to some laid down set
of base standards. Therefore, the shape of the plug-in piece is important. This is often
called as Component Standard [41].

When looking for a component to plug in, having the right shape plug is certainly a
good start, but knowing what that part does is pretty important too. This is a form of
the specification of what a component must have and also be part of a valid definition.

 MDA and Integration of Legacy Systems

 11

It is defined as a Component Specification [41]. A major part of a component
specification is the definition of Component Interfaces, or just Interface for short.

The specification of the component is more important, from an assembly perspective,
than the way that specification is realized or implemented. It should be possible to
replace one component with another (of an equivalent specification) without affecting
the assembly. For example, we may want to be able to replace one component with
another from a different manufacturer. What matters from an assembly point of view is
the interdependency between the parts, not the way those parts work. The clear
separation of component specification from Component Implementation is therefore
another important characteristic of a component. The assembly itself should only
depend on the specification. If there is any dependency on the implementation then the
ability to replace that piece easily will be lost.

CORBA (Common Object Request Broker Architecture) Component, Enterprise
JavaBeans (EJB) and Microsoft’s COM+ are examples of component standards. Some
large organizations have defined their own component standard.

The CORBA Component Model (CCM) extends the CORBA object model (traditional
CORBA object) by defining features and services that enable application developers to
implement, manage, configure, and deploy components that integrate commonly used
CORBA services, such as transaction, security, persistent state, and event notification
services, in a standard environment [30]. In addition, the CCM standard allows greater
software reuse for servers and provides greater flexibility for dynamic configuration of
CORBA applications. With the increasing acceptance of CORBA in a wide range of
application domains, CCM is well positioned for use in scalable, mission-critical
client/server applications.

2.1.2.2.3 Use Case Driven Approach
The term use case is defined as a description of a set of sequences of actions, including
variants, which a system performs to yield an observable result of value to an actor
[27]. An actor represent a set of roles that interacting with these use cases that can
represent a human, a hardware device or even another system. .

Use case driven means that use cases are used as a primary artifact for establishing the
desired behavior of the system, for verifying and validating the system’s architecture,
for testing, and for communicating among the stakeholders of the projects [27].

In the use case driven methodology, use cases specify interfaces to a system under
consideration. Agreed use cases can be seen as formal contracts between the system
and it’s environment. In COMET [24] these contracts drives the system development
process through analysis design and testing. The use cases are also key information
when planning a development project and partitioning in increments.

2.1.2.2.4 Model-Driven Approach
The goal of the model driven engineering, such as Model Driven Architecture TM,
MDATM, is to provide the basic concepts for doing platform-independent architecture
modeling and provide the means for transforming these models to platform-specific
models toward to implementation code by using of various models automating a

 MDA and Integration of Legacy Systems

 12

seamless process. This discipline puts in the right place all the software artifacts (e.g.
business models, architectural models and design patterns) and uses them actively in
order to produce and deploy an application.

MDA proposes solutions to automate the software development process[21]. The main
objective is the reduction of the time to market based on tool support for the refinement
of models and code generation. This approach reduces development errors because it
reduces the manual development process and provides support to reuse the best-known
solutions. In this development process, the tools can provide support for the integration
of different software development phases based on the transformation of models of
different phases. The tool support provides a constructive method based on models
with the combination of concerns at modeling level.

MDA specification [9] states that: Model-Driven Architecture (MDA) is an approach
to the full lifecycle integration of enterprise systems comprised of software, hardware,
humans and business practices. It provides a systematic framework to understand,
design, operate, and evolve all aspects of such enterprise systems, using engineering
methods and tools. MDA is based on modeling different aspects and levels of
abstraction of a system and exploiting interrelationships between these models.

2.2 Legacy Systems in the Telecommunication Domain
Information and Communication Technology (ICT) is an important factor driving
economic growth worldwide. In the knowledge society the demand for the ability to
locate, process and store information increases as well as the number of companies and
products that offer ICT services. There is no doubt that the telecommunications
network is a key facilitator of the knowledge society.

Middleware software has been powering both the telecommunications network and the
Internet for many years now and will continue to power the network in the future,
while networks and services become more complex and sophisticated.
Telecommunications systems are among the most complex systems that have ever been
built by humankind. This complexity, along with the high variety of systems and their
longevity, pose very high requirements on the software engineering.

As all commercial companies are under extreme market pressure, telecommunications
operators face a dilemma. How to remain competitive without sacrificing thorough
quality controls? In order to ensure a highly available, reliable, robust and fault tolerant
telecommunications network, industry has developed and is continuing to develop
advanced software technologies to increase the quality of the software embedded in the
telecommunications infrastructure.

Sustaining and increasing competitiveness in the telecommunications market is another
area where advanced software technologies are contributing. Although business
process efficiency has typically improved, this improvement was usually very
expensive due to proprietary solutions. Standards and the introduction of ‘Commercial-
Off-The-Shelf’ (COTS) software components promise a dramatic improvement in this
also.

 MDA and Integration of Legacy Systems

 13

Typically, software systems structure of legacy systems consist of four layers as shown
in figure 3. This structure provides a set of predefined subsystems, their
responsibilities, and includes rules and guidelines for organizing the relationships
between them. On the top layer of organization scheme, application layer contains
distinct application subsystems that make up an application. The next lower layer,
business specific layer, contains a number of reusable subsystems specific to the type
of business. The middleware layer offers subsystem for utility classes and platform
independent services for distributed object computing in heterogeneous environment
and so on. The lowest layer of this structure is system software layer that contains the
software for actual infrastructure such as operating systems, interfaces to specific
hardware, device, driver and so on.

Figure 3 Software systems structure [31]

Software technology in general and especially software engineering, which includes
software development, is transient. New development, construction and integration
paradigms appear and disappear in a very short timeframe. There is an increasing need
to migrate legacy system to new platform and new software development paradigm
because legacy systems present problem such as high maintenance and lack of
documentation. There are exist two approaches that can be used to do this migration.
First, it can be done by total redevelopment of the system in the new platform and
paradigm. This approach is has some advantages such as the specifications, design and
implementation can be started with good practices but this approach has also some
disadvantages such as high cost, time consuming, high risk, etc. Second approach is
evolutionary migration that could be consists of some activities such as decomposing
the legacy system into subsystems and reverse engineering. Dividing the system into
subsystems is an effort to get easier to understand the system functionality.

Legacy systems that must be reused in a model should preferably be re-engineered
instead of wrapped with some suitable middleware system [2]. Legacy systems tend to
already be wrapped in several levels throughout their lifecycle, from the initial creation
to a constantly expanding system with expansions added, as they are needed. The
legacy system should instead be modeled at some abstraction level, in a platform
independent model.

Experiences in today’s telecommunication system development and system integration
have shown that only a few projects have the goal to develop all required system

 MDA and Integration of Legacy Systems

 14

components and data models from scratch. More than 90% of the projects [2][3] have
to deal with existing software components, legacy data models and data as well as the
existing technologies used for their realization. That means that the task of providing
new telecommunication systems is more and more a task of integration than a
development task. Again, reverse engineering of implemented code could be the most
important of this task.

2.3 Summary
Middleware software has been powering both the telecommunications network and the
Internet for many years now and will continue to power the network in the future,
while networks and services become more complex and sophisticated. Recently, the
evolution of software development itself is triggering today another even more drastic
change in system construction, towards model transformation.

Software engineering is not just concerned with the technical processes of software
development but also with activities such as software project management and
development of tools, methods and theories to support software production. Software
engineering can be seen as a structured set of activities for specification, design,
implementing, installing and maintenance of software systems. RUP is a software
engineering process that provides a discipline approach to assigning tasks and
responsibilities within a development management. This process enhances team
productivity by providing team members with easy access to knowledge base with
guidelines for all development activities. RUP divides software development process
into four phases: Inception, Elaboration, Construction and Transition phase.

Some software development approaches used today are object oriented, component
oriented, use-case driven and model driven approaches.

Software technology in general and especially software engineering, which includes
software development, is transient. New development, construction and integration
paradigms appear and disappear in a very short timeframe. Therefore, it also needs
migration of legacy system to new platform and new software development paradigm
with low cost, shortly time to market, lower risk, etc. Evolutionary migration
including reverse engineering activities is an important part. To support it the legacy
system must capture their conceptual design of software system. Model driven
approaches make it possible to save this conceptual design of software systems and
software components, which is the most valuable part of the investment.

In the next chapter, we present the Model Driven Architecture as a model driven
approach to software development. We discuss also the core of MDA, and how to
build MDA models.

 MDA and Integration of Legacy Systems

 15

3 Model Driven Architecture
The OMG Model-Driven Architecture™, MDA, is a general approach of the OMG for
building distributed heterogeneous systems. MDA is build upon the Unified Modeling
Language™ (UML), the Meta-Object Facility™ (MOF) and the Common Warehouse
Meta-model™ (CWM), which is accepted modeling standards [8]. This depicted in the
figure 4.

MDA addresses the complete life cycle of designing, deploying, integrating, and
managing applications as well as data. Platform-independent application descriptions
built using the modeling standards noted above can be realized using any major open
or proprietary platform, including CORBA®, Java, .NET, XMI / XML, and web base
platforms [10]. MDA addresses the challenges of today's highly networked, constantly
changing systems environment, providing an architecture that assures portability,
cross-platform interoperability, platform independence, domain specificity and
productivity [1]. Application that is MDA-based standards enable organizations to
integrate whatever they already have and implemented in place with whatever
application they build today and whatever they have planed to build in the future.

Figure 4 The Core of MDA [12]

3.1 Introduction
The core idea of MDA is a process model to unify the analysis and the design of open
distributed heterogeneous systems [11][7]. To facilitate this, MDA separates
implementation details from structure and business functions.

The MDA process is anchored on two levels of models, namely the Platform
Independent Model (PIM) and one or more Platform Specific Models (PSM). PIM and
PSM models will be defined in UML models as OMG's standard modeling language.
Other key OMG technologies that support the MDA as specified in [11] are:

1. The Meta-Object Facility, MOF which not only provides a standard repository
for models, but also defines a structure that helps multiple groups work with a
model and view it in a standard way;

2. The Common Warehouse Meta-model, CWM the established industry standard
for data repository integration, standardizes how to represent database models
(schema), schema transformation models, OLAP, and data mining models.

 MDA and Integration of Legacy Systems

 16

3. eXtensible Markup Language Metadata Interchange, XMI, a mapping which
expresses UML models in XML and allows them to be moved around our
enterprise as we progress from analysis to model to application.

One of the main advantages of the MDA from the developers view is that the MDA
approach and the standard that support it allow the same model specifying system
functionality to be realized on multiple platforms. It also allows different applications
to be integrated by explicitly relating their model, enabling integration and
interoperability, and supporting system evolution as platform technologies come and
go.

3.1.1 The Unified Modeling Language™ (UML™)
UML addresses the modeling of architecture, objects, interactions between objects,
data modeling aspects of the application life cycle, as well as the design aspects of
component-based development including construction and assembly [8]. UML is
powerful enough to be used to represent artifacts of legacy systems captured in terms
of Classes, Interfaces, UseCases, Activity, Graphs, etc. UML models can be easily
exported to other tools in the life cycle chain using XMI. We will discuss more about
XMI later.

In order to support the MDA, OMG has developed several additional specifications to
the UML that will help tailoring UML to support MDA. Three of these specifications
[12] are: 1) Action Semantics for UML specification that will enhance the language's
representation of behavior, 2) the human-readable UML Textual Notation that will
enable a new class of UML editor programs and enhance the way UML models can
easy be manipulated, and 3) standard Software Process Engineering Meta-model that
used to define a framework for describing methodologies in a standard way. This
standard will not standardize any particular methodology, but will enhance
interoperability from one methodology to another.

OMG have also developed UML Profiles. A UML profile tailors the language to
particular areas of computing, such as EDOC or particular platforms, such as EJB or
CORBA. In the MDA, both PIM and PSM models will be defined using UML profiles.
Even though the MDA is so new that its architecture is still being refined, three
supporting UML Profiles have been standardized already. A fourth specialized profile
supports modeling of real-time systems, as specified and has been developed by OMG,
as specified in [9]:

1. UML Profile for CORBA. It is used to define the mapping from a PIM models
to a CORBA-specific PSM models.

2. UML Profile for EDOC, Enterprise Distributed Objects Computing. This is
used to build PIM models of enterprise applications. It defines representations
for entities, events, process, relationships, patterns, and an Enterprise
Collaboration Architecture. As a PIM profile, it needs mappings to platform-
specific profiles.

3. UML Profile for EAI, Enterprise Application Integration. This is used to define
a profile for loosely coupled systems - that is, those that communicate using
either asynchronous or messaging-based methods. These modes are typically
used in Enterprise Application Integration, but are used elsewhere as well.

 MDA and Integration of Legacy Systems

 17

4. UML Profile for Schedulability, performance, and time. This profile supports
precise modeling of predictable - that is, real-time - systems, precisely enough
to enable quantitative analysis of their schedulability, performance, and
timeliness characteristics.

These profiles are critical links that bridge the UML community, model based design
and analysis, to the developer community such as Java, Visual Basic, and C++
developers, and to the middleware community such as CORBA developers and EJB
(Enterprise Java Beans).

3.1.2 The Meta-Object Facility (MOF™)
MOF provides the standard modeling and interchange constructs that are used in MDA
[8]. Other OMG’s standard models, such as UML and CWM, are defined in terms of
MOF constructs. This common foundation provides the basis for model/metadata
interchange and interoperability, and is the mechanism through which models are
analyzed in XMI. MOF also defines programmatic interfaces for manipulating models
and their instances spanning the application lifecycle. These are defined in IDL and are
being extended to Java.

By defining the common meta-model for all of OMG's modeling specifications, the
MOF allows derived specifications to work together in a natural way. The MOF also
defines a standard repository for meta-models and, therefore, models (since a meta-
model is just a special case of a model).

The Meta-Object Facility (MOF) is a CORBA Common Facility for the management
of meta-information. The MOF is intended for use in a wide variety of scenarios - from
type management to software development, information management and data
warehousing - the MOF can be used as a meta-information repository within CORBA
distributed systems.

3.1.3 XML Metadata Interchange (XMI™)
XMI is a model driven XML Integration framework for defining, interchanging,
manipulating and integrating XML data and objects. XMI-based standards are in use
for integrating tools, repositories, applications and data warehouses.

To support integrating of multiple tools, repositories, applications, data warehouses of
MDA, OMG and WC3 have been developed a standard interchange mechanism called
XML Metadata Interchange, XMI. This standard defines an XML-based interchange
format for UML meta-models and models. In so doing, it also defines a mapping from
UML to XML. The current version of this specification is XMI 1.2.

XMI can be used to automatically produce XML DTDs from UML and MOF models,
providing an XML serialization mechanism for these artifacts [12]. XMI has been used
to render UML artifacts, by using the UML XMI DTD, data warehouse and database
artifacts by using the CWM XMI DTD, CORBA interface definitions by using the IDL
DTD, and Java interfaces and Classes by using of a Java DTD. XMI, which marries the
world of modeling (UML), metadata (MOF and XML) and middleware (UML profiles
for Java, EJB, IDL, EDOC etc.) plays a pivotal role in the OMG’s use of XML at the
core of the MDA. In essence XMI adds Modeling and Architecture to the world of
XML. Examples of UML tool (it could be MDA tools) that support import and export
of XMI file is Rational Rose. Complete examples presented in table 1 in section 4.3.3.

 MDA and Integration of Legacy Systems

 18

3.1.4 Common Warehouse Meta-Model (CWM™)
CWM is the OMG data warehouse standard. It covers the full life cycle of designing,
building and managing data warehouse applications and supports management of the
life cycle. It is probably the best example to date of applying the MDA paradigm to an
application area. Historically, the integration between the development tools and the
deployment into the middleware framework has been weak. This is now beginning to
change by using key elements of the MDA – specific models and XML DTDs that
span the life cycle, and profiles that provide mappings between the models used in
various life cycle phases [12].

The CWM standardizes a complete, comprehensive meta-model that enables data
mining across database boundaries at an enterprise and goes well beyond. Like a UML
profile but in data space instead of application space, it forms the MDA mapping to
database schemas. The product of a cooperative effort between OMG and the Meta-
Data Coalition (MDC), the CWM does for data modeling what UML does for
application modeling.

CWM Web Services will enable CWM-based metadata interchange over the Internet
by specifying the syntax and semantics of CWM metadata interchange using a CWM
Web Services API and loosely-coupled communications. The interaction patterns,
standardized by the separate MIP RFP, will be general enough to be used elsewhere.

3.1.5 System Lifecycle - MOF, UML, CWM and XMI
In the development of an application or software, it is very important to consider life
cycles of the application. The life cycle of an application can vary dramatically
depending on whether we are building a new application from the beginning or just
adding a wrapper to an existing application. The cost of enhancement and maintenance
of an application as well as the cost of integrating new applications with existing
applications far exceeds the cost of initial development. In addition, the application life
cycles it self can be quite complex, involving several vendors in each of the life cycle
phases. Hence, the need for information interchange and interoperability between tools
and middleware provided by different vendors is critical. The MDA supports many of
the commonly used steps in model driven component based development and
deployment. A key aspect of MDA is that it addresses the complete life cycle covering
analysis and design, programming (testing, component build or component assembly)
and deployment and management. An example is the way in which UML, XMI, MOF
and CWM affect the interchange of information between tools and applications.

Information technology systems have been developed and integrated using a range of
methodologies, tools and middleware and there appears to be no end to this innovation
[8]. OMG and W3C have developed and standardized CORBA, UML, XMI, MOF and
CWM to get more complete semantic models as well as data representation
interchange standards. These technologies can be used to integrate more completely
the value chain (or life cycle) when it comes to developing and deploying component-
based applications for various target software architectures.

 MDA and Integration of Legacy Systems

 19

3.1.6 Modeling in MDA
There are two modeling concepts; specification and behavior modeling. Specification
modeling is simpler than behavior modeling. In MDA, modeling should include a
behavior modeling since the developer must make a complete PIM. MDA
documentation states that models should be represented preferably using the OMG
core technologies, MOF, UML or CWM. This implies that when we want to represent
behavior we have to investigate how this can be done using these technologies.
Following this reasoning, we conclude that we should start by looking at the
capabilities of UML and MOF, which primarily have been developed to support the
development of models that represent interacting objects and their individual
behaviors. Since the CWM is oriented towards data representation as opposed to the
definition of behaviors, then CWM is not used in behavior modeling.

The MDA development concept can be seen as a spectrum with business at the top
where the designers start with abstract definitions of the business model, refine them in
platform-independent models of the applications, and technology at the bottom where
the platform independent models refined onto platform-specific models ready to be
implemented and deployed. According to [28] some requirements for behavior
modeling are:

1. Appropriateness to represent behaviors at all required levels. This implies that
the technique has to support not only behaviors of components that are sure to
be deployed in a single node, but also behaviors of (truly) distributed
components, which are yet to be decomposed and (physically) distributed.

2. Support for simulation. This implies that the language should have an execution
model associated with it, so that behavior specifications can be simulated for
debugging and better understanding.

3. Support for top-down decomposition of behaviors. This implies that one needs
guidelines on how to decompose behaviors into smaller behaviors.

4. Support for bottom-up composition of behaviors. This implies that one should
be capable of understanding the composed behaviors of sub-behaviors in terms
of what the environment of these composed behaviors perceive.

5. Support for behavior conformance verification. This implies that one needs
techniques to verify whether a more refined behavior (e.g., a PSM or its part)
conforms to a more abstract behavior (e.g., a PIM or its part). This requires the
definition of conformance relations and possibly formal (i.e., mathematical)
support.

6. Support for (automatic) transformations. This implies that one needs support to
transform (parts of) more abstracts behaviors onto concrete behaviors. In
general moving from an abstract specification to a more concrete one is a
creative process that cannot be automated for all possible alternatives.

3.2 PIM-PSM Definition
The fulcrum of the MDA concept is the precise definition of a platform [18]. Before
models can be assigned as PIMs or PSMs with reference to that platform, a platform
must be clearly defined. Formulating a universally valid definition of a platform is a
much more difficult task and is currently the topic of much discussion within the

 MDA and Integration of Legacy Systems

 20

OMG. The MDA initiative still has quite far to go in view of such details. From a
practical standpoint, it can be expected that existing platform definitions such as
CORBA, J2EE or .NET, will serve as a reference for the models. Existing
programming languages are examples of other easily definable platforms. An object
model can be formulated in such a way as to enable the implementation in C++, C# or
Java. Thus, the description of interfaces with CORBA IDL is also a PIM with regard to
the programming language used for the actual implementation.

3.2.1 PIM Definition
There are many ways to define exactly the term of platform independent model but, the
term platform, according to OMG’s definition, is used to refer to technological and
engineering details that are irrelevant to the fundamental functionality of a software
component. Thus, a platform-independent model is a formal specification of the
structure and function of a system that abstracts away technical details. However, we
must note that platforms themselves also have a specification and an implementation.
An example is specification of component. Component constructs such as facet and
receptacles, ports, and connectors, and services, such as directory and transactions. The
platform component constructs are realized by some refinement e.g. receptacles as
some IDL interface pattern, connectors between event sources and sinks as a particular
adapter pattern, services implemented in some implementation language.

PIM is said to be platform independent since it does not contain any platform specific
information such as EJB or CORBA. However we have to note that the notion of
platform can be anything from a hardware platform, to operating system, to
middleware to another PIM [26]. Hence, the notion of platform and platform
independence is relative, which make it possible to have a number of PIMs for the
same problem space, each PIM representing a different level of abstraction. The
following figure shows reprentation of different level of abstraction. As it is depicted
in figure 5, CORBA can be a PSM (in middleware level) but it also can be a PIM in the
other upper layer.

Figure 5 Abstraction levels of PIM and PSM

The essential is, in MDA context, that PIMs are defined with OMG’s standard UML,
MOF and CWM. PIMs are designed in one of a number of OMG-standardized UML
profiles—that is, subsets of UML tailored to specific environments [9]. For example,
OMG has defined profile for CORBA, profile for EDOC, and profile for EAI a profile
specialized for applications based on asynchronous communication..

Platform
Selection
PSM

Platform
Selection

PSM

MIDDLEWARE

PIM

JavaRMI CORBA

Java C++

PIM

 MDA and Integration of Legacy Systems

 21

Using UML to define PIM has some advantages. UML models, as well as IDL-based
object models, Java interfaces, and Microsoft IDL interfaces, are declarative models
but in some important ways, UML models differ from these other kinds of declarative
models. First, UML has been defined using core UML modeling concepts and this
enhances the power of MDA. Secondly, UML models can be expressed textually as
well as graphically. Finally, UML models can be semantically much richer than
models expressed in the other declarative model languages mentioned above, which
can express syntax but very little about constraints on usage and behavior such as,
mentioned in [8]:

1. Static invariants constraints on combinations of attributes
2. Pairs of pre and post-conditions for specifying operations
3. Whether a single-valued parameter is allowed to be null.
4. Whether an operation has side effects
5. Whether subtypes of some supertype are disjoint or form a partition.
6. Patterns of specifications, designs and refinements

UML defines a formal assertion language called Object Constraint Language (OCL)
that facilitates specification of certain constraints. The UML allows formalization of
the vocabulary otherwise left imprecise in interface specifications, as an abstract yet
precise model of the state of the object providing that interface and of any parameters
exchanged.

Currently, UML and OCL already are used by OMG’s specifications such as UML,
MOF and CWM to specify constraints. Specifying constraints formally rather than in
free form text reduces ambiguity in specifications and thus makes life easier for
implementers in three important respects [8]:

1. It provides the programmer with more precise instructions, thus lessening the
extent to which the programmer has to guess at the designer’s intention or track
down the designer to find out what to do.

2. It decreases the amount of work required to get different implementations of
the same specification working together, or to integrate implementations of two
specifications whose models are unambiguously related.

3. The formal specification provides a foundation for defining conformance tests
for different implementations.

We have also found another PIM definition proposed by SINTEF1 in their project
called COMET (Component and Model based development METhodology) [24]. In
this project, they defined two types of platform-independent models:

1. A specificationally complete PIM defines a complete model of the system
specification – the external architectural structure and behavior – of a
component system in terms of a business model, a requirements model and an
architecture model as defined by COMET.

2. A computationally complete PIM which adds to a specificationally complete
PIM a definition of the system realization – the internal design structure and
behavior – of a component system in terms of a design model. The design
model is expressed using an action semantics language.

1 Name of a company in Norway working at Telecommunication and Informatics field

 MDA and Integration of Legacy Systems

 22

According to [27] structural aspects of an UML model are class, class diagram,
package, relationships (association, dependency, realization, generalization), interface,
types, role, instances and object diagram. Behavioral aspects can be a form of
interaction, interaction diagram, use case, use case diagram, activity diagram, event
and signals (operations), state machine, process and thread and state chart diagram.

3.2.2 PSM Definition
A PSM is expressed in terms of the specification model of the target platform, for
example a CORBA or Java platform. CORBA itself is implemented on an
infrastructure, which could properly be referred to as an implementation language
platform. However, to avoid confusion, it is used the term implementation language
environment to refer to such infrastructures in the MDA. Thus, analogous to the
dichotomy established for platforms, CORBA specifications are implementation
language environment independent, whereas artifacts like stubs, skeletons and the
ORB implemented in a specific language are implementation language environment
specific.

So far, PIMs and PSMs are expressed in UML. However, since UML is independent of
middleware technologies, it is not obvious to the casual observer how to harness this
power to express a PSM. For example, in order to transform a PIM into a CORBA
PSM, certain decisions need to be made. As it has mentioned in section 3.1.1, it can be
achieved and defined by a UML profile, that is a set of extensions to UML using the
built-in extension facilities of UML, stereotypes and tagged values. Stereotypes label a
model element to denote that the element has some particular semantics.

The UML Profile for CORBA, adopted in 2000, specifies how to use UML in a
standard way to define CORBA IDL interfaces, structs, unions, etc. For example, it
defines stereotypes named CORBAInterface, CORBAValue, CORBAStruct,
CORBAUnion, etc. that are applied to classes to indicate what the class is supposed to
represent. In the graphical UML notation, a stereotype is delimited by angle brackets as
illustrated in Figure 6.

AbstractResource

name : string

bind(link : in Link) : void
replace(old : in Link, new : in Link) : void
release(link : in Link) : void
list_contained(max_number : in long, workspaces : out Session::Workspaces, wsit : out WorkspaceIterator) : void
list_consumers(max_number : in long, tasks : out Tasks, taskit : out TaskIterator) : void
get_producer() : Task
expand(link_types : in LinkKinds, max_number : in long, seq : out LinkExtents, iterator : out LinkExtentIterator) : void

(from Session)

<<CORBAInterface>>

+resource

Link
(from Session)

<<CORBAStruct>>

+kind

LinkKind
(from Session)

<<CORBATypedef>>

 Figure 6 PSM CORBA

The model fragment in Figure 6 corresponds to the IDL shown in Figure 7, assuming
that UML attributes map directly to exposed attributes in CORBA interfaces of
AbstractResource class. UML Model in figure 6 is the result of reverse engineering of
CORBA IDL with Rational Rose 2000.

 MDA and Integration of Legacy Systems

 23

Figure 7 CORBA IDL

UML Profile for CORBA is additional specifications to the UML that will help to
tailor the UML to define the models. Thus, with the UML Profile for CORBA,
CORBA-based specifications can be made much more complete than is possible with
IDL only.

The ORBs of today need only understand the IDL; they do not need to understand the
formal specification of behavior and constraints in the more precise specification any
more than they need to understand informal specification of behavior and constraints
since the ORB is complete specification. Similarly, UML profiles can be defined for
other platforms, providing the essential tools for constructing PSMs. The technology is
in place to proceed in this direction. The main barrier is that there is a gap in
knowledge of how to use the technology, and there is a lack of universal availability of
appropriate tools.

Some software development project have their own PSM definition and often their
PSMs are not clearly expressed in UML. In the COMET project [24], it was mentioned
that it was not appropriate to express PSM in UML model since an implicit mapping is
done from the platform-independent model directly into code by code generating tools
such as UMT (UML Model Transformation) which uses XSLT technique.

COMET project uses EJB as specific target platform but it does not use UML profile
for EJB (from Java Community Project, JCP) because this project uses servlets and
EJB 2.0 concept that is not covered by current UML profile for EJB. PSM in the
project contains two parts that are 1) Platform Profile Model, which specifies the
system in alignment to the actual technology profile for the specific platform, and 2)
Component Implementation Model, which describes the implementation of the
component specifications in a given programming language, and the deployment
properties/ configurations for the target computing platform (hardware, operating
system, etc.) in which the system is to run.

Also according to [24], some main issues that distinct PSM from PIM is that PSM
contains of the following:

- Technology type: includes object-oriented programming languages, function-
oriented programming languages, database types, database access mechanisms

- Interaction type: a set of message types describing how a component interacts
with other components.

- Message: A usually short communication transmitted by words, signals, or
other means from one person, station, or group to another. Here used for a
message sent from one (software) component to a set of others.

interface AbstractResource
{
attribute string name;
void bind(in Link link) raises (ResourceUnavailable, ProcessorConflict, SemanticConflict);
void replace(in Link old,in Link new) raises (ResourceUnavailable, ProcessorConflict, SemanticConflict);
void release(in Link link);
void list_contained (in long max_number, out Session::Workspaces workspaces, out WorkspaceIterator wsit);
void list_consumers (in long max_number, out Tasks tasks, out TaskIterator taskit);
Task get_producer();
void expand (in LinkKinds link_types, in long max_number, out LinkExtents seq, out LinkExtentIterator iterator);
};

 MDA and Integration of Legacy Systems

 24

- Message type: Type of message, a part of interaction type. Classifier for the
types of messages that can be sent from a component to another. An example is
a synchronous message.

- Communication mechanism: The mechanism by which a component sends a
message to other components, e.g. Java RMI, socket, or RPC.

- Operation parameter type, kind (in/out/inout/return) and reference restrictions
- Type system
- Error and exception handling mechanisms
- Interface inheritance and support restrictions
- Operation sequence
- Interface properties
- Object creation mechanisms
- Event handling
- Transaction handling
- Security and general QoS

These aspects can be part of a platform-specific profile like the EJB-profile. This
profile defines how a Platform Specific Model should be structured for an EJB
environment. Ideally, the Platform Specific Model should be fully generated by the
modeling tool. In practice, it will most often be partially generated, and possibly
refined by the user.

3.2.3 Model Mapping
One of the key features of MDA is the notion of mapping [12]. A mapping is a set of
rules and techniques used to modify one model in order to get another model. These
rules can be other models. The usual mapping between the same levels of models, for
example from PIM to PIM or from PSM to PSM, is model refinement or even model
transformation to get better models (precise and complete). The mapping from PSM to
PIM is a reverse engineering approach, while the mapping from one PIM to several
PSM is the core of MDA. The more detail of these mapping explained [9]:

- PIM to PIM mappings are model refinements during the development lifecycle that
do not need any platform dependent information. Those transformations also relate
the business models and the component views. They build the bridge between
requirements, analysis and design.

- PIM to PSM mappings are performed once the PIM is elaborated enough to be
associated to the characteristics of the chosen platform. It is a projection to the
execution infrastructure of the platform. An example is the projection from a
conceptual component view model to existing specific commercial middleware
platforms such as CCM for CORBA, EJB for J2EE, XMI and NET.

- PSM to PSM mappings are model refinements during the realization and
deployment of components. An example for PSM to PSM transformation is the
selection of services and preparation of their configuration. This transformation
performed in the same platform.

- PSM to PIM mappings are model reverse engineering operations. Those
transformations are needed to build abstract models from existing implementation
of specific middleware technologies like transformation the existing models that
could be defined in the, for example, CORBA IDL to the CORBA PSM toward to
the PIM. Those model transformations are part of a "mining" process, which can
hardly be fully automated.

 MDA and Integration of Legacy Systems

 25

Figure 8 shows these transformation models.

Figure 8 Models Transformation [8]

In more general case the purpose of models transformation (in this case is UML
models) can be classified into three concepts below [21]:

1. Model refinement, PIM is transformed into PSM to introduce platform specific
concepts that not included yet in the platform independent model. Some
specific concepts are introduced in generated model automatically and others
are update manually. PSM to PSM and PIM to PIM refinements provide
support to improve a model in the same modeling language space. The
transformation and refinement process include the problem of traceability. It is
generally recognized that UML’s facilities for relating models at different level
of abstraction are rudimentary and need expansion. The UML 2.0 includes this
as a basic problem.

2. Model evaluation, some UML standards provide UML extension and support
for the transformation of UML extended model into other types of modeling
technique to apply specific analysis methods. Some UML tools make the
transformation of UML model into simulation model to do evaluation of the
original model.

3. Generating of implementation, generators that provide as a result platform
specific implementation can support implementation of a PSM model. These
generators translate UML model into programming language and middleware
constructor (e.g. Java, CORBA interface, and EJB component descriptors).

The MDA’s specification allows transformations between all models. In many cases,
one element of the PIM can affect several elements of a PSM. As a result, the reverse
step is dependent on many factors. This transformation can be automated only if the
corresponding elements of a PSM fit together in such a way that exactly one element of
the PIM can be generated. Usually, when a PSM is transformed into a PIM,
ambiguities arise which can only be solved manually by a developer. For the same
reason, "round-trip modeling" is not a good approach [18]. Design information should

 MDA and Integration of Legacy Systems

 26

always be added at the appropriate level of abstraction. That way, all of the dependent
PSMs at the lower levels can be updated automatically to the greatest possible extent.

Many industries and research groups propose the MDA tool that support reverse
engineering tools, but over this time there is no tool that support fully reverse
engineering. The reverse engineering issue and the "mining" process of the PSM to
PIM mapping are only described vaguely in the MDA related documents. However,
these aspects are of crucial importance for middleware and mediation technologies.

3.3 Developing Applications with MDA

3.3.1 MDA Structure
We can think of MDA as a spectrum with business at the top and technology at the
bottom where business domain experts work at the top that is in modeling space. Here,
UML-based tools provide support and the UML language’s structure and narrower
profiles (i.e., tailored subsets) provide guidance. This development step produces PIM
model that represents the business functionality and behavior that this MDA
application will be executed, as undistorted by technological factors as possible.

As we move down to the next abstraction level of the spectrum, the business domain
recedes and technology takes over. In traditional UML like UML 1.4 and in a perfectly
efficient world, the MDA process might jump directly from the business model at the
top of spectrum to the coding or implementation at the bottom, but this is not suitable
today since the gap between these level (top to bottom) is too big, let say that
discontinuities are too great. The MDA inserts an intermediate step, that acts as bridge
between business domain on the top (PIM) to coding/implementation at the bottom.
This step produces one or more PSM models. Here, the MDA-enabled tools following
OMG-standardized mappings required.

After we completed PSM with the same information set as a coded application, but in
the form of a UML model instead of code in a program language and makefiles, we
can get the code/implementation with today’s MDA-enabled development tools that
automate the conversion of PSM to code very well, although that is not a full code
generation. This step is more mature than the PIM-PSM conversion in the previous
step. Examples of these tools is Poseidon for Java code.

Using the MDA, application developer concentrates in the business zone at the top.
Once the business functionality of the application specified at the high level of
abstraction, the generation of code can do with available and automated tools. Drawing
from libraries of code assembled by the most skilled programmers available, these
tools build scalable, secure, enterprise-quality applications. Cross-platform
invocations, hard to program but hardly creative, are coded and maintained by
machines, not people.

3.3.2 Build Model Process
MDA models must be extremely detailed: The application will be generated from it,
and will include only functionality represented explicitly—in the MDA, the business
designers and architects play a crucial role [11][12].

 MDA and Integration of Legacy Systems

 27

The MDA process defines three steps, as depicted in figure 9:

1. First, start with a Platform-Independent Model, in UML and defined at multiple
levels. Base level PIM represents only business functionality and behavior,
undistorted by technology details. This model must be a detailed model,
including stating pre- and post-conditions in OCL and Semantics in Action
Language. This detailed model will be map to multiple target platform

2. Next, the PIM is transformed into one or more PSMs. A PSM is tailored to
specify system in terms of the implementation constructs that are available in
one specific implementation technology or a specific platform, for examples a
database model, an EJB model, CORBA, XMI etc.

MDA tool applies an OMG™-standard mapping – formally a UML Profile –
that defines the route from an application’s single PIM to PSM on a target
platform. PSMs, like the PIM model, will be very detailed. This step may
require hand-editing, depending on the tool and environment.

3. The final step is to transform a PSM to implementation or code. Because a
PSM fits its technology very closely, this transformation is rather trivial.

A PSM contains the same information as an application, but expressed in UML
instead of code. MDA development tools can generate all or most of an
application from a PSM: interfaces, templates, configuration files, more. MDA
tools will generate application interfaces, code, and other files from each PSM.

Figure 9 Development process of MDA model

A PIM can be mapped to other PIM (refined) n-times until the desired system
description level is obtained. Then, the infrastructure is taken into account and the PIM
is transformed into a PSM. Then, again, PSMs are refined as many times as needed.

The MDA transformations are executed by tools. Many tools are able to transform a
platform specific model to implementation or code automatically. This is where the
obvious benefits of MDA lie. It is indeed about time that the burden of IT-workers is
eased by automating this part of their job.

Platform
Independent

Model

CORBA
Model

EJB
Model

XML/SOAP
Model

Other
Models

XML/SOAP
Code

CORBA
Code

EJB
Code

Other
Code

PIM

Reverse engineer

 First transformation

PSM
 Second transformation

Implementation

 MDA and Integration of Legacy Systems

 28

3.3.3 Integration of Legacy Systems
With MDA concept, any legacy application based on a UML model and a supported
middleware platform such as IDL can be included in a company’s circle of MDA
interoperability by simply importing its model into MDA context by available tools as
platform independent models for new applications are built.

The Model-driven Middleware Maintenance (MMM) process [7] deals with existing
legacy distributed heterogeneous systems, which have to be integrated, renovated,
redesigned, extended, etc.

Lack of a model is not a barrier; tools on the market today can reverse-engineer UML
models from code, and some even work from executables. Alternatively, stand-alone
legacy applications can be wrapped with a layer of code that exposes key functionality
to the network on a suitable middleware, and the model for this functionality and its
interfaces stored in a library for use by MDA developers.

The first activity in the integration of legacy system could be reverse engineering of
the existing/implemented code or component information models into the MDA
context, PIM or PSM and define the new application system. The reverse engineering
steps correspond to PSM to PIM followed by PIM to PIM mappings. Once all
component information models are identified and completed, the definition of how
they interoperate is needed. This task is similar to the first one and involves the reverse
engineering of relationships and dependencies between component information models
to be integrated.

The next step is PIM model that have got from the implemented code, again with
MDA concept, be integrated with PIM of new application. Before this combined PIM
can be transformed to PSM it could be need to get the suitable and ready PIM. This is
the mapping PIM to PIM activity.

Finally, from the PSM we can get target code by using of available code generators.

3.3.4 Interoperability
An MDA application is not constrained to make all of its remote (and even internal)
invocations using the middleware of its PSM. The code generation process is flexible,
and the code database of an MDA tool includes invocation formats for every supported
middleware platform [11].

Taking advantage of this, developers will pull models of existing applications and
services from libraries into the project’s environment as they construct new PIMs, and
set up cross-platform invocations by simply drawing the connections in their new
model. It’s likely that some of these existing applications will not be on the same
platform as the new PSM. Taking its cue from the actual middleware platform of these
existing applications, MDA tools will generate cross-platform invocations where
needed.

3.3.5 Pervasive Services
Every distributed application needs essential services: Naming/directory, transactions,
distributed event handling and security are used in virtually every application, but other
services come in handy as well. When these services are defined and built on a
particular platform, they necessarily take on characteristics that restrict them to that

 MDA and Integration of Legacy Systems

 29

platform, or ensure that they work best there. To avoid this, OMG will define such
services as pervasive services at the PIM level in UML [10][8]. Only after the features
and architecture of a pervasive service are fixed, platform-specific definitions will be
generated for all of the middleware platforms supported by the MDA.

OMG’s Object Management Architecture contains the industry’s most mature set of
standardized services [8]. After it was success constructed and implemented for
CORBA, these standard services now define security, transactional and persistence for
J2EE thereby proving their multiplatform applicability. OMG will retro-fit these
services to the MDA by extracting UML models and generating uniform service
definitions for virtually every platform such as web services, .NET, messaging
environments and more.

At the abstraction level of a platform-independent business component model,
pervasive services are visible only at a very high level (similar to the view the
component developer has in CCM or EJB). When the model is mapped to a particular
platform, code will be generated (or dynamically invoked) that makes the calls to the
native services of those platforms.

In Figure 4 the Pervasive Services such as Transactions, Security, etc., are shown as a
ring around the outside of the diagram to emphasize that they’re available to all
applications; E-commerce, Healthcare, Telecom, Finance, etc. It is required a common
model for directory services, events and signals, and security in integration system.

3.4 The challenge of MDA in real-time Distributed
Telecommunication Applications
MDA is a general framework that is applicable in different scenarios, and in various
vertical domains. The possibility of applicability of MDA in the telecommunication
domain have been investigated by EURESCOM [2][3] ranging from
Telecommunication Services Access and Subscription (TSAS) modeling of QoS
(Quality of Services), application of MDA in telephony networks to
Telecommunication Management Network , TMN. In all investigated domains, MDA
turned out to be suitable and generally promising because with MDA, development
could be done much faster and with less cost at a higher level of quality. However, for
some of the selected applications there are additional requirements to MDA. These
requirements mainly are the provision and possible standardization of modeling
concepts and modeling profiles as well as the standardization of code generation which
targets telecommunication specific platforms or APIs like TMN.

In particular, modeling concepts for QoS descriptions and modeling profiles for the
presentation of models using the concepts have to be defined. The QoS modeling
concepts itself are independent from any particular middleware platform, and
consequently the resultant models are PIM models. However, since the QoS modeling
concepts are used to model non-functional aspects of distributed systems and/or
services there must be modeling support for functional aspects as well. Thus, the QoS
modeling concepts and modeling concepts for non-functional aspects have to be
integrated. After the modeling phase, the QoS models have to be transformed to
platform specific code that is used to negotiate, establish and control QoS contracts at
runtime. Code generation rules have to be defined in a MDA approach for QoS to
automate this transformation.

 MDA and Integration of Legacy Systems

 30

Their investigation has found that the application of MDA for modeling QoS would
imply the following tasks:

- Provision of QoS modeling concepts
- Provision of QoS Modeling profiles
- Integration with existing concepts/profiles for functional aspects
- Provision of code generation rules to address target middleware platforms.

Besides the modeling of QoS-aspects and the provision of code generation rules, it
might also be necessary to operate QoS-contract repositories as part of the supporting
middleware platform. For this aspect, no adaptations or concretizations to the MDA are
required. The existing MOF technology is sufficient to generate and operate such
repositories. Such repositories would provide the modeling information about contracts
types, requirements and offers at runtime and by that would be the basis for
negotiation. After the negotiation phase, a concrete QoS contract, i.e. the agreed
contract has to be stored and controlled by the middleware layer. For that purpose, QoS
repositories are suitable as well.

As QoS, it is necessary to develop specific sets of modeling concepts and profiles for
TMN. After doing so, there should be standardization on these concepts and profiles.
To support MDA in the telephony network scenario the current and future services
need to be modeled in some modeling language. The modeling language has to include
concepts of the used mechanism, Parlay, SIP(Session Initial Protocol) or IN (Intelligent
Network). The main issue then would be to address the defined API’s or protocols with
specific code generators.

They also concluded that there are no specific requirements to change the MDA to be
applied in the TSAS scenario. On one hand, the scenario requires distributed
component construction for what the MDA, by definition, suites. There are no
telecommunication domain specific modeling concepts necessary that exceed the
standard modeling concepts for distributed component platforms. On the other hand,
the information model implementation can be done with MDA technologies like MOF
and XMI straightforward. More detail can found in [2][3].

3.5 Summary
The MDA addresses the challenge of constantly changing infrastructure and promotes
application and component reuse and portability.

Since MDA specification proposes solutions to automate the software development
process, it depends highly on the availability of MDA tools. These tools should support
the creation and transformation of models as well as the code generation for the
targeted platforms. The main feature of MDA tools should provided automated model
transformation between platform independent model (PIM) and platform specific
model (PSM) vice versa.

In the following chapter, we discuss the PIM – PSM transformation, reverse
engineering as an adoption of MDA specification. We also present our investigation of
available MDA tools.

 MDA and Integration of Legacy Systems

 31

4 PIM – PSM Transformation
In MDA, the PIM to PSM and PSM to PIM transformations are important in
correspondence with integration of legacy system and new applications. The MDA
concept allows one to get a PSM model from implemented code by doing reverse
engineering. This PSM can then be transformed into a PIM.

In general, model transformations play an important role within the MDA. This
includes not only the transformation between PIMs and PSMs but also transformations
of data models as supported by the CWM standard [1]. In both cases, the
transformation is defined by the provision of rules on the meta-model level. The rules
describe how instances of the source meta-model elements are transformed to instances
of the target meta-model elements.

4.1 Transformation PIM into PSM
In [8] multiple ways to transform a PIM model expressed using UML into a
corresponding PSM model expressed in UML are described. The following items are
some of them, but there is a note that the list does not address the production of
executable code from a platform-specific model.

1. A human could study the platform-independent model and manually construct a
platform-specific model, perhaps manually constructing the one-of refinement
mapping between the two.

2. A human could study the platform-independent model and utilize models of
known refinement patterns to reduce the burden in constructing the PSM and
the refinement relation between the two.

3. An algorithm could be applied to the platform-independent model and create a
skeleton of the platform-specific model to be manually enhanced by hand,
perhaps using some of the same refinement patterns in point 2 above.

4. An algorithm could create a complete platform-specific model from a complete
platform-independent model, explicitly or implicitly recording the refinement
relation for use by other automated tools.

Fully automated transformations are feasible in certain constrained environments. The
degree to which transformations can be automated is considerably enhanced when the
following conditions are obtained, as defined in [8]:

1. There is no legacy to take into account
2. The model that serves as input to the transformation is semantically rich
3. The transformation algorithms are of high quality

It is much easier to generate executable code for structural features (attributes, certain
associations and similar properties) of a model rather than behavioral features
(operations) because the behavior of property getters and setters are quite simple.
Automation of transformations is more tractable when the transformation is
parameterized, i.e. a human has a pre-defined set of options to select from, to
determine how the transformation is performed. For example, a system that transforms
a UML model to XML could allow some control over how a UML class’s attributes
are transformed, giving a human a chance to choose to put them in an ATTLIST or to
put each attribute in a separate ELEMENT.

 MDA and Integration of Legacy Systems

 32

The PIM to PSM transformation is meant to map the platform independent models to
platform specific models. However, as the model definition says, not only structures
have to be considered but also function and behavior. At that level, in the past the most
often used language for PIMs (UML) have had semantically problems. Behavior
specifications in UML were not mapped to code or transformed to PSMs, since they
were not precisely, unambiguously defined. One solution for that problem is UML
profiling. With profiling the behavior specifications are define in PSM. That means
that transformation from PIM to PSM is done by using UML profile. In that case, the
profile restricts the semantic of UML and, by doing so, it enables the implementation
of model transformation components.

Another solution is the evolution towards an action semantics definition for UML and
the precise OCL definition [8]. The action semantics specification for UML was
recently adopted by the OMG. The objective of the specification is to define what kind
of actions can be used to specify the semantics of UML descriptions. The specification
provides a metamodel for the actions, defining what kind of different actions exists,
how they are related to the existing UML metamodel and what information belongs to
an action specification.

The OCL is widely used both to define wellformedness rules for the UML meta-model
(as well as for other meta-models in the OMG), and as a way for UML users to express
precise constraints in UML models. Thus, we can transform precisely from PIM into
PSM.

4.1.1 UML Profile
Until the beginning of 2003, there is no normative definition of a UML profile, but the
Business Object Initiative RFPs elucidated the following working definition of a UML
profile. A UML profile is a specification that does one or more of the following [16]:

1. Identifies a subset of the UML meta-model (which may be the entire UML
meta-model)

2. Specifies “well-formedness rules” beyond those specified by the identified
subset of the UML meta-model. “Well-formedness rule” is a term used in the
normative UML meta-model specification to describe a set of constraints
written in natural language and OCL that contributes to the definition of a
meta-model element

3. Specifies “standard elements” beyond those specified by the identified subset
of the UML meta-model. “Standard element” is a term used in the UML meta-
model specification to describe a standard instance of a UML stereotype,
tagged value, or constraint

4. Specifies semantics, expressed in natural language, beyond those specified by
the identified subset of the UML meta-model

5. Specifies common model elements; that is, instances of UML constructs
expressed in terms of the profile.

 MDA and Integration of Legacy Systems

 33

4.1.2 UML Profile for CORBA
Most of this section is taken from [16]. The UML Profile for CORBA specification
was designed to provide a standard means for expressing the semantics of CORBA
IDL using UML notation and thus to support expressing these semantics with UML
tools. It is used to represent a CORBA type via UML notation. The usual approach is
to model it as a classifier and to stereotype the classifier to indicate whether it
represents an interface, or a valuetype, or a struct, or a union, etc. This is a legitimate
approach, since a stereotype is one of UML’s official extension mechanisms. Up to
now, however, there has been no standard set of extensions of UML for this purpose.

4.1.2.1 Structure of the Profile for CORBA
UML profile for CORBA consists of the following:

1. An identified subset of the UML Meta-model, such as association, attribute,
binding, etc.

2. Specifications of Standard Elements (Stereotypes, TaggedValues, and
Constraints)

3. Specifications of semantics in natural language
4. Specifications of Common Model Elements in terms of the Profile. This Profile

defines a number of CORBA-specific type primitives in the package
“CORBA”.

4.1.2.2 Identified Subset of UML
The CORBA Profile extends the following standard UML packages: 1) Core, 2)
Common Behavior and 3) Model Management. This profile has also concrete meta-
classes, and implicitly all super-meta-classes of these metaclasses. From Core:
Abstraction, Association, AssociationEnd, Attribute, Binding, Class, Comment,
Constraint, DataType, Dependency, ElementOwnership, Generalization, Operation,
Parameter, Permission and Usage. From Common Behavior: Exception and from
Model Management: ElementImport, Package.

4.2 Reverse Engineering
The activity of reverse engineer an implemented application (legacy system) into a
UML model is called model transformation; the success of MDA is dependent on it.
Three main concepts are involved in model transformation: the source, the destination
modeling languages and the mapping between languages. The legacy systems use
different software development paradigms and the reverse engineering technique
depends on which development paradigm that has been used. It means that reverse
engineering in MDA context is differing from procedural or procedural to other
paradigms.

In this section, we present the difference between conventional reverse engineering of
procedural source into another procedural language and reverse engineering of
procedural source into MDA context.

4.2.1 Conventional Reverse Engineering
Procedural languages structures have many similarities [25]. They have only single
entry point into the main program. In addition, they are organized as a set of callable
functions and subroutines.

 MDA and Integration of Legacy Systems

 34

Majority of data managed in these programs are global data. Persistent data is managed
through SQL and file IO operations embedded in the source code. Transaction
boundaries and error management facilities are hard coded. User interface is often
tightly coupled with processing logic. Hence, the design artifacts of procedural systems
have often been simple word documents and program source code is the only
dependable source of input for reverse engineering automation.

A Conventional reverse engineering technique is to gather detailed knowledge about
the application and rewrite the business functions in target environment. Figure 10
depicts various stages of the conventional reverse engineering.

Figure 10 Source analysis and recoding [25]

In figure 10, we can observe that the source language programs of an application are
parsed and analyzed using a source analyzer. The diagramming facilities in analyzer
tools present various views of the application such as program call graph, data usage
matrix, algorithm flow chart and so on. These views are primarily read-only and help
in gaining business functions implemented in the system and documenting application
design in text format.

Complete knowledge of the source application is the basis for formulating migration
approach. This migration approach normally consists of techniques for mapping data
structures, methods for optimizing user interface and guidelines for translating program
logic. It would also include activities for business process workflow identification,
transaction boundary identification, validation & error conditions, and data table to
business entity modeling, data access separation and data schema migration. The
application is recoded manually in target language and architecture.

Various tools that translate the source code from one language to another have been
developed with existing compiler construction tools and language translation technique
[25]. These tools use source language’s grammar to parse and recognize input
programs. The tool traverses the parse tree and applies language translation rules to
generate target language program. A pictorial representation of such a method is given
below.

 MDA and Integration of Legacy Systems

 35

Figure 11 Conventional reverse engineering translator [25]

Reverse engineering of an existing application does not finish with translating source
language into target language. It has to be extended into runtime environment
migration as well. There is a long distance between source and target environments in
architecture, transaction monitor, scripting environment, development tools, tools for
performance monitoring and to the level of network and operating system APIs.
Mapping platform services from source to target environment has always been a
manual task as this is difficult to automate.

There are some limitations in the reverse engineering approach described above, such
as i) Language translation works on line-by-line conversion concept. It is suited for
translation into similar architecture only, ii) Programs produced by language translator
are poorly structured, contain cryptic variable names, use non-optimal data structures
and maintainability of such programs is difficult, iii) Language translation does not
provide design models of the application, iv) Execution effectiveness and artifacts
consistency is not repeatable as it depends on development team’s skill set and
application knowledge the team possesses, v) Conventional reverse engineering is
equivalent to new application development with respect to manual recoding phases and
vi) Compliance to component architectures like J2EE is not feasible in language
translation approach.

4.2.2 Reverse Engineering in MDA
Reverse engineering method of an application in MDA is suggested to be set of model
translations [25]. Elements from source program will be extracted and represented as
source PSM. UML profile for the source environment will be used in identifying and
extracting relevant code segments that match profile elements [16]. Source PSM thus
obtained will be subjected to PSM-PIM translation rules to segregate core abstraction
thereby platform independent model for the application. Target environment’s UML
profile will be applied on this abstract model to arrive at a model that is compliant with
target UML profile. This PSM subjected to code generation algorithms yields target
language programs. For some PSM elements where abstraction to PIM is not optimal,
it is advisable to provide a direct mapping to target PSM through element level
mapping rules.

Figure 12 illustrates reverse engineering approach as suggested by MDA that contain
set of model transformation and translation.

 MDA and Integration of Legacy Systems

 36

Figure 12 MDA Concept for reverse engineering [25]

4.2.3 Reverse Engineering Tools
The activities in reverse engineering could be reverse engineer of implemented code
such as CORBA IDL, Java class, C++ or other codes to PSM and could be reverse
engineer of PSM to PIM. The reverse engineering activities from implemented code to
model (PSM) can be done automatically by most of available UML tools. The
following table shows the list of example of UML tools that provide “round trip”
engineering with their target code and platform.
Table 1 Some UML tools that provide round trip engineering [19]

Company Product Features Platform
Adaptive Arts Simply Objects

Professional
round-trip engineering for Delphi, Smalltalk, Eiffel, Java, C++, C#,
CORBA diagram export, report generator, multi-user

Windows

Borland JBuilder Enterprise class and package diagrams, code navigation, Java reverse engineering,
refactoring

Java VM

Gentleware Poseidon for UML adds plug-ins for JavaDoc, reverse-engineering JAR files, Java code
synchronization
code generation templates

Java VM

Oracle JDeveloper Class and activity diagrams, Java round-trip engineering, XMI export! Windows

Popkin System Architect
round-trip engineering for Java, C++, VBA, XML
data modeling, Microsoft repository support, scripting, DOORS
support

Windows

Rational Rose Professional Adds round-trip engineering, repository support, data modeling; Java,
C++, and VB versions sold separately

Windows

WebGain StructureBuilder
Enterprise

Round-trip engineering, HTML generation, component of WebGain
Studio EJB support, XMI, round-trip engineering of sequence diagrams
(unique!)

Java VM

4.3 Research in Models Transformation
4.3.1 Introduction
How to transform models into other models is an important key in success of MDA
tools. Many techniques are proposed. Since the PSM and PIM are expressed with
UML, MOF and CWM, then the transformation process proposed is transformation of
these core MDA models to other models. Code is also a model. This means that code
generation is also a model transformation.

A model is a representation of a systems structure, function and/or behavior at a certain
level of abstraction. During model transformation in the sense of a PIM to PSM

 MDA and Integration of Legacy Systems

 37

mapping, the information contained in a PIM has to be transformed to a representation
in a PSM, which is equivalent to that contained in the PIM. Some of PIM-PSM
transformation is not difficult especially when it only concerns structural aspect while
others transformation can be quite difficult for certain PSM. For example, when
transforming PIM into Java, it could be difficult since there are some PIM features that
are not supported by Java. Java does not support multiple inheritances and some
association types.

4.3.2 Existing Approaches
G., Anna, et al in [22] have identified that some approach to the models transformation
has been proposed. The existing approaches to implementing transformations are the
following:

4.3.2.1 CWM Transformation
A key aspect of data warehousing is to extract, transform, and load data from
operational resources to a data warehouse or data mart for analysis. Extraction,
transformation, and loading can all be characterized as transformations. In fact,
whenever data needs to be converted from one form to another in data warehousing,
whether for storage, retrieval, or presentation purposes, the application of
transformation rules is involved. Transformation, therefore, is central to data
warehousing.

Also in chapter 13 of the OMG’s Common Warehouse Metamodel Specification [20]
found about a model for describing Transformations. It supports the concepts of both
black-box and white-box transformations. Black-box transformations are not of much
interest to us because they only associate source and target elements without describing
how one is obtained from the other. White-box transformations, however, describe
fine-grained links between source and target elements via the Transformation
element’s association to a ProcedureExpression. Unfortunately, because it is a generic
model and re-uses concepts from UML, a ProcedureExpression can be expressed in
any language capable of taking the source element and producing the target element.
Thus CWM offers no actual mechanism for implementing transformations, merely a
model for describing the existence of a mapping.

4.3.2.2 Graph Transformation
There are many articles on model transformation based on Graph Transformations. In
[23], a transformation consists of a set of rules combined using a number of operators
such as sequence, transitive closure, and repeated application.

Each rule identifies before and after sub-graphs, where each sub-graph may refer to
source and target model elements and associations between them (introduced by the
transformation). This style of approach to model transformation introduces non-
determinism in the rule selection, and in the sub-graph selection when applying a rule.
In addition, since rules are applied in a sequence, thus resulting in a series of state
changes, one needs to be very careful about repeated rule application to ensure
termination, and the order of rule application. More details description of graph
transformation can be found in [23]

 MDA and Integration of Legacy Systems

 38

4.3.2.3 Use of UML Profiles
UML Profiles have an important role to play in model mapping. Transcription rules
can be done inside UML tools or by external tools. A model can be expressed in a
given formalism, then to transform the model into another model leads to compare the
formalism they are based upon, i.e., to compare their primitives and their semantics.
Consequently, model mapping is a meta-modeling activity.

The profile description includes the specification of Stereotypes and Tagged Values
and the UML meta-classes associated with these extensions [16]. The profiles are
supported and handled with modules. A module can include commands applied to
model elements. These commands implement the transformation of models.

4.3.2.4 Generated XSLT
eXtensible Stylesheet Language for Transformation (XSLT). A transformation in the
XSLT language is expressed as a well-formed XML document conforming to the
namespaces in XML Recommendation [40], which may include both elements that are
defined by XSLT and elements that are not defined by XSLT. XSLT-defined elements
are distinguished by belonging to a specific XML namespace, which is referred to in
this specification as the XSLT namespace. Thus, this specification is a definition of
the syntax and semantics of the XSLT namespace.

A transformation expressed in XSLT describes rules for transforming a source tree into
a result tree. The transformation is achieved by associating patterns with templates. A
pattern is matched against elements in the source tree. A template is instantiated to
create part of the result tree. The result tree is separate from the source tree. The
structure of the result tree can be completely different from the structure of the source
tree. In constructing the result tree, elements from the source tree can be filtered and
reordered, and arbitrary structure can be added.

A transformation expressed in XSLT is called a stylesheet. This is because, in the case
when XSLT is transforming into the XSL formatting vocabulary, the transformation
functions as a stylesheet. It contains a set of template rules. A template rule has two
parts: a pattern that is matched against nodes in the source tree and a template which
can be instantiated to form part of the result tree. This allows a stylesheet to be
applicable to a wide class of documents that have similar source tree structures.

A template is instantiated for a particular source element to create part of the result
tree. A template can contain elements that specify literal result element structure. A
template can also contain elements from the XSLT namespace that are instructions for
creating result tree fragments. When a template is instantiated, each instruction is
executed and replaced by the result tree fragment that it creates. Instructions can select
and process descendant source elements. Processing a descendant element creates a
result tree fragment by finding the applicable template rule and instantiating its
template. Note that elements are only processed when they have been selected by the
execution of an instruction. The result tree is constructed by finding the template rule
for the root node and instantiating its template.

In the process of finding the applicable template rule, more than one template rule may
have a pattern that matches a given element. However, only one template rule will be
applied. A single template by itself has considerable power: it can create structures of
arbitrary complexity; it can pull string values out of arbitrary locations in the source

 MDA and Integration of Legacy Systems

 39

tree; it can generate structures that are repeated according to the occurrence of
elements in the source tree. For simple transformations where the structure of the result
tree is independent of the structure of the source tree, a stylesheet can often consist of
only a single template, which functions as a template for the complete result tree.

When a template is instantiated, it is always instantiated with respect to a current node
and a current node list. The current node is always a member of the current node list.
Many operations in XSLT are relative to the current node. Only a few instructions
change the current node list or the current node during the instantiation of one of these
instructions, the current node list changes to a new list of nodes and each member of
this new list becomes the current node in turn; after the instantiation of the instruction
is complete, the current node and current node list revert to what they were before the
instruction was instantiated.

4.3.2.5 Text-based Tools
Text based tools such as awk and perl are suitable only for the simplest kinds of
transformations, largely because they deal with concrete syntax rather than abstract
syntax. While arguably more readable and maintainable than XSLT transformations,
they require the parsing of input text and serialisation of output text, rather than
providing the abstraction of a parse-tree as XSLT does.

4.3.2.6 Script Language
Some UML tools include imperative script languages with meta-model navigation
facilities similar to OCL navigation expressions. These languages are the support to
implement the mapping scripts. These languages are flexible but often are tool
dependent, and a mapping implementation is not portable [21]

4.3.2.7 Generating & importing XMI.
Some tools provide support to process and generate XML and XMI files. These files
include the meta-data of UML models and mapping is supported by transformation of
XMI files. The mapping is independent of the UML tool. Examples of the tools that
support this technique are Rational Rose, Poseidon, and objecteering.

4.3.2.8 MOF Transformation
Some tools include MOF transformation facilities based on rules. These rules provide
facilities to identify the elements in the source model, where we apply the rule and the
destination elements that we generate with the rules. An examples of the tool that
support this technique is Rational Rose.

4.4 Available MDA Tools
The MDA process is implemented by tools that integrate modeling and development
into a single environment that carries an application from the PIM, through the PSM,
and then via code generation to a set of language and configuration files implementing
interfaces, bridges to services and facilities, and possibly even business functionality.

Several vendors already provide tools that support integration at about this level,
including substantial code generation. Although these tools were not built explicitly to
OMG's MDA standard (which was not complete when they were created), it is pleasing
to see this level of support for MDA so early in its development. Many other vendors

 MDA and Integration of Legacy Systems

 40

are currently hard at work on MDA-based development tools, so It can be expected to
find advance MDA tools in the future which explicitly compliant OMG's standard.

The generation of application code from an MDA PIM through an automated or semi-
automated series of steps will be the biggest benefit of MDA. Generally, applicable
MDA tools will initially move beyond modeling with the generation of code for

1. interfaces (in OMG IDL and other interface-defining languages)
2. functionality constrained by a specification (such as the CORBA Component

Model, or EJB)
3. access to MDA-standardized Pervasive Services and Domain Facilities
4. cross-platform access to functionality already standardized in the MDA, via an

automatically-generated bridge
5. wrappers for hand-coded execution engines that make access transactional or

secure, as long as the basic interfaces to these engines have been defined in the
MDA

6. operations that get and set the values of variables declared in the model.

The next versions of tools will code execution of simple business rules; future versions
will become even more sophisticated.

We have studied some of the available MDA tools as presented below.

4.4.1 Telelogic Tau
This tool includes three important parts that are Tau/Architect, Tau/Developer and
Tau/Tester [32]. Telelogic Tau supports UML modeling, action language to specify
dynamic aspects of system’s behavior, which is compatible with UML action semantic
and complete application generation (C and extended C++ code) from all diagrams.

The tool also supports model verification with controllable model simulation that give
engineers possibility to verify their work in the analysis, design, and implementation
phases. As a result, they can quickly locate and remove errors early when corrections
can be made easiest and most cost effectively. An additional feature is generating of
documentation for a project. For more information about the tool, visit Telelogic
website [32].

4.4.2 ArcStyler
ArcStyler provides a comprehensive, architecture-driven solution for end-to-end
model-driven application development. By assisting developers with important
architectural tasks, the ArcStyler simplifies and expedites the entire development life
cycle, from the platform-independent business model to platform-specific refinement
and optimized partial code generation for the leading J2EE, CORBA, .NET, EAI and
legacy platforms, in line with the Unified Process and with the concepts of MDA [33].

ArcStyler includes support for the development of component-based architectures
implemented on EJB platforms. Business and platform independent concepts are
expressed on business models. Business modeling comprises the first stage in the full
cycle development of component-based software systems. These models are
transformed automatically into component models, which are EJB specific models.
Business models are expressed in a proprietary modeling language, and component

 MDA and Integration of Legacy Systems

 41

models are based on a UML profile. ArcStyler provides support for the automatic
generation of EJB components, from component models. ArcStyler supports
customization of the transformation process. Customization is based on the cartridge
configuration files and templates. JPython is used as the transformation language, some
scripts are generated automatically, and others are specific to the generation process.
Others features offered by this tool are test & simulation, export import model with
standard XMI / XML. Additional information about this tool can be found at
ArcStyler’s website [33].

4.4.3 Objecteering
Besides providing a UML modeler, Objecteering also provides support for description
of UML profiles (Profile Builder) [34]. The profile description includes the
specification of Stereotypes and Tagged Values and the UML meta-classes associated
with these extensions. The profiles are supported and handled with modules. A module
can include commands applied to model elements. These commands implement the
transformation of models. They are scripts in a proprietary language (J language). J
provides support for the creation of new diagrams and model elements. The commands
support transformations from model to model or from model to code or documents.
Objecteering provides traceability support to avoid inconsistency between the model
source and the model or code destination.

Other features coming with this tool are complete code generating for Java up to 70 %
& support Java pattern, code generating for C++ up to 70%, and exchange model via
standard XMI, test for EJB, creation, definition, execution and documentation. For
further information about the tool, visit Objecteering’s webaite [34].

4.4.4 Poseidon
Poseidon offers basic features such as UML modeling, support for XMI as standard
saving format, support of OCL, partial code generation for Java, reverse engineering
from Java source [35].

For the needs of software developers, Poseidon has also capability to integrate with
most popular plug-ins to support roundtrip UML/Java, UML documentation,
generating Java code from state chart, and generating Java code from OCL.
Additionally, Poseidon allows importing Rational Rose ".mdl"-files.

Code generation in Poseidon for UML is based on the Velocity Template Language.
Velocity is an open source template engine developed as part of the Apache/Jakarta
project. Originally designed for use in the development servlet based Web applications,
it has also proved useful in other areas of application including code generation, text
formatting and transformation.

The standard templates supplied with Poseidon for UML can be used to generate Java
code based on class diagrams. The generated Java code is fully Java 2 compliant. The
code can make use of all the features supported by Java 2, including exception
handling, inner classes and static initializers. With the Developer Edition, we can
modify the supplied templates or create templates to generate other output formats
such as IDL files or C++ code. A complete documentation and information about this
tool can be found at Poseidon’s website [35].

 MDA and Integration of Legacy Systems

 42

4.4.5 iUML
The name iUML is refer to intelligent UML which produced by Kennedy Carter
consist of a modeler and simulator [36]. The iUML simulator provides an execution
environment in which models can be executed and supports Action Specification
Language (ASL). This ASL is a kind of action semantic which developed by Kennedy
Carter. iUML supports pre-defined mappings to platform specific implementations,
and the definition of user configurable mappings from PIM to specific
implementations. The mappings are specified using executable UML models that
represent the source and destination meta-models. In this approach, meta-models and
ASL support the mappings, and the execution of UML models at meta-model level
implements the transformations.

Other features supported by this tool are: full code generating into executable C code
and generating of documentation in various format, html, postscript as mentioned in
iUML’s documentation that can be found at its website [36].

4.4.6 Kabira
Kabira develops Adaptive Real-time Infrastructure software based on the Model
Driven Architecture for the creation and deployment of complex, high-speed,
transactional, high-availability network-based services and software using the OMG
Model Driven Architecture [37].

The Kabira Design Center is a development support environment that combines the
flexibility of object modeling with patented model compiler technology, allowing rapid
implementation of complex and change-tolerant applications. With the Design Center,
designers can develop Kabira server applications within Rational Rose®, the world's
leading graphical UML® modeling tool. In addition, there is full support for standards
based textual based models that support UML and the OMG Action Language. The
Design Center is engineered to allow complete application definition within a model,
conforming to the OMG Model Driven Architecture (OMG MDA). By using an object
modeling methodology to design distributed applications, designers can concentrate on
the functional requirements of a business application rather than the low-level details
of implementation. The Design Center automatically generates the necessary
executable code to deploy a complete Kabira server application.

The Kabira Design Center translates high-level, UML based, object models into robust,
high-performance Kabira server applications. It includes a point-and-click graphical
user interface, together with an integrated set of compilers, code generators, auditors,
and other software elements to generate applications.

Projects are created in the Design Center to specify how application models should be
built. This means implementation decisions-such as which entities to store in a
database, which entities should be on a common node or on separate nodes, or what
attributes are accessible using CORBA-are kept independent from the high-level
application model. For more information about the tool can be found at Kabira’s
website [37].

 MDA and Integration of Legacy Systems

 43

4.4.7 UMT
UML Model Transformation Tool (UMT) is a tool to support model transformation
and code generation based on UML models in the form of XMI [38]. XMI models are
imported and converted by the tool into an intermediate format that is the basis for
validation and generation towards different target platforms. The intermediate format is
an XML format, which is called XMI-Light. See the following figure.

Figure 13 UMT tool

From figure 13 above, we can see basic mechanism in UMT tool. As input, UML
model is imported from other UML modeler such as Rational Rose, Together,
Poseidon etc, via XMI format. The XMI file then transformed into intermediate XMI
format called XMI-Light by XSLT. This PIM model then can be transformed into
various target code such as EJB, Java interface, WSDL, SQL, GML, IDL, INESC
workflow or XML schema. For more information and complete documentation about
this tool can be found at UMT’s website [38].

4.5 Visions for the Future MDA tools
MDA tools are just evolving and the existing tools, depending on their history, are
beginning to support a few or many features of an MDA tool [28]. Beyond the basic
capabilities of current MDA tools, the following paragraphs outline some visions for
the future direction of such tools.

Because meta-data will become more important and the feature-list will continue to
grow, it seems inevitable that MDA platforms will evolve to integrate different partial
tools (called plug-ins) from different vendors. Besides, the necessary common meta-
data repository of such platforms, the dynamic collaboration of the user interfaces of
the different tools, as part of the platform is an important direction for future tools.

MDA tool is most likely to be a repository of meta-data based on either the UML
meta-model or the MOF meta-meta-model or at least compatible with one or both. To
interact with various tools or tool components it has to be an active repository -
propagating changes to all interested applications through events. It has to be possible
to fill the repository with meta-data from all kinds of sources and to export all the data
in proper formats, with XMI the standard format for model-interchange. Beyond
collaboration of different vendors in a platform, new visualization capabilities will be
integrated into future MDA tools to allow more domain specific work with meta-
models and models. These capabilities could attract domain experts looking for easy
ways to change and extend their applications without diving deep into programming.

UML Model

XMI doc
of UML
Model

 XSL
Translator 1

XMI Light of
UML Model

XSL
Translator 2

Java, C#,... XML, GML,
WSDL

DB SQL EJB, Net,
J2EE

UMT

 MDA and Integration of Legacy Systems

 44

Eventually MDA tools will split their personality into analyst views, designer views,
developer views, administrator views and even end-user views. It is the ultimate goal
of MDA the avoidance of code wherever possible.

Another area of improvement is the support of aspect-oriented modeling, more
(graphical) control over model transformations based on new OMG standards and the
modeling of variants. With more precise semantic modeling, i.e. UML action
semantics and new versions of behavioral diagrams in UML 2.0 to allow MDA tools
an advanced simulation of the specified models [28]. Before any code has to be
deployed, the model semantic can be tested against specific cases with end-user
observation and intervention. The platform approach would help again to integrate
already existing simulation engines into the MDA platform.

The need for analysts and developers is more complete and sophisticated verification
of models to prevent mistakes. To measure the progress of an MDA project, advanced
metrics need to be supported inside the MDA platform. The software development
process paradigms, like RUP need to be tailored for MDA projects and support for the
processes could be integrated into MDA tools or platforms. As test and deployment is
an integral part of these process models the MDA platforms need defined ways of
doing integrated and automated testing and a the full support of deployment in the
targeted domains.

MDA is also about integration of existing (legacy) applications. Although import of
meta-data from existing applications is already covered by most MDA tools (XMI,
CWM, Harvesting of Code), the needs of a tool to allow the development of MDA
verticals will go beyond the import and transformation of meta-data. Each vertical
flavor of an MDA tool contains concrete technology bridges and adapters to simulate
and test not only on the platform independent modeling level but also against existing
platforms. The goal of a vertical oriented MDA environment is the support of the
domain experts in designing, testing and simulating solutions for a particular domain.

In most cases, MDA tools will generate code for standardized platforms, like J2EE or
.NET. However, often the platforms miss important pieces or do not go far enough in
their automation efforts. In such cases, it seems appropriate to extend MDA tools by
runtime components that allow domain-experts to change important aspects of their
system (their meta-data) during runtime or after deployment. Because these
components are dependent or derived from the meta-models, it is necessary to see them
as an integral part of the MDA tool to allow consistent forward-engineered changes.

Based on our study about MDA tools and overview described above, we can conclude
the need for perfect MDA tool, which have to support the following features:
− UML modeling support Action Language and/or OCL
− Support model documentation and web publishing.
− Code generators for major platforms
− XMI model interchange
− Integrated IDE
− Integration of modules at the PIM level, re-use previously-built PIM modules
− Transformation PIM into various PSM
− Integration with EIA tools

 MDA and Integration of Legacy Systems

 45

− CIM/PIM/PSM differentiation available
− Reverse engineering and round-trip engineering
− Executable models (in run-time as well as in development)
− Metamodel approach, so new UML and other metamodels can be developed and

“plugged in”
− Conform with MDA specification and pluggable PIM architecture
− Support for GUI and Data specification consistent with architecture
− Pluggable generators and mappings if necessary
− Pluggable “glue” code consistent with architectures supported
− Tool designed using MDA for fast evolution
− Scalable to large development teams
− Repository support, versioning, sharing, revision-marking, etc.
− Excellent user interaction design

4.6 Summary
MDA requires model transformation to succeed. Two main concepts are involved in
model transformation: the source and destination modeling languages and the mapping
between languages. UML transformations are used for three general purposes; model
refinement, model evaluation and generating of implementation.

Although promising MDA tools are appearing at the beginning of 2003, in the
perception of the mainstream developer, there is little in terms of concrete tools that
actually support MDA beyond traditional UML modeling and skeleton-class
generation. Evolving older tools provide features to define and instantiate design
patterns, but most of these tools still expose the user to UML models at the level of
abstraction of implementation code.

Some traditional UML tools, like Rational Rose, provide reengineering of
programming languages such as CORBA IDL, Visual Basic, Java, etc., but we have
not found a tool that provides automatic transformation from PSM to PIM in the higher
level of abstraction.

In the next chapter, our case study, we tried to develop a PIM from the existing UML
model, IDL interfaces and implemented code. In the MDA context, this step is an
important step in connection with the integration of legacy systems.

 MDA and Integration of Legacy Systems

 46

5 Case Study
In this chapter, we present our case study that consists of three parts. We begin with
study about which aspects of the context system (a real-time distributed
telecommunication application) can be specified in a PIM and which aspects are left
for PSM and coding. The next study is about using XMI as a standard of model
exchange. Finally, we demonstrated how to develop PIM from the existing UML
models, IDL CORBA and Erlang codes.

5.1 Models for Case Study
Models we used in our case study are part of the Ericsson’s GPRS (General Packet
Radio Services) project. Figure 14 shows an overview of the GPRS system. Software
systems that have been developed in Ericsson Grimstad is software to handle SGSN
and GGSN system as depicted in grey rectangle in the middle of the figure.

Figure 14 GPRS System [31]

A GPRS Support Node (GSN) contains functionality that is required to support GPRS
functionality for GSM (Global System for Mobile communication) and/or UMTS
(Universal Mobile Telecommunications System). The SGSN & GGSN nodes
constitute the Ericsson GSN system. From documentation of GSN system, we found
description of SGSN and GGSN node as mentioned below:
− The Serving GPRS Support Node (SGSN) keeps track of the individual MS’s

location and performs security functions and access control. The SGSN is
connected to the GSM base station system through the Gb interface and/or to the
UMTS Radio Access Network through the Iu interface. The SGSN also interfaces
the GSM Service Control Function (SCF) for optional CAMEL2 session and cost
control service support (carried out via the GPRS Service Switching Function,
SSF).

− The Gateway GPRS Support Node (GGSN) provides inter-working with external
packet-switched networks (PDN) via the Gi interface. GGSN is connected with
SGSNs via an IP-based packet domain PLMN backbone network, the Gn interface.

2 CAMEL (Customized Applications for Mobile Networks Enhanced Logic) offers Intelligent Network services in
GSM/UMTS, whereas prepaid subscribers is one.

 MDA and Integration of Legacy Systems

 47

To develop its real time distributed telecommunication software systems, software
developers in Ericsson use UML models developed in Rational Rose. The models
resulted from Rational Rose are then transformed into CORBA IDL (Interface
Definition Language). The implementation of these interfaces ier hand coded in C or
Erlang. For more information, see figure 17.

In their UML designing process, they define their own UML meta-model. Figure 15 is
a simplified meta-model of GSN. The concept High Level Package (HLP) is mainly
introduced because of the need to separate common parts of the system from specific
parts, when several products were developed within the “GSN system family”. Now,
Ericsson only has the SGSN node to bother about, but the subsystems are still grouped
into different HLPs.

Figure 15 Design and Implementation view of GSN Meta model [31],

From Figure 15 above we can observe that SGSN system has five high-level packages
that are SGSN-G, SGSN-W, Business Process, Middleware and WPP. All subsystems
model inherit model properties from high-level package that consist of subsystem,
block, unit and module.

The highest level of encapsulation used in design element is the subsystem. A
subsystem contains some blocks, units and modules. Here is a brief description of each
design elements
− A subsystem has formally defined interfaces in IDL and is a collection of blocks.
− A block has formally defined interfaces in IDL and is a collection of lower level

units. A block often implements the functionality represented by one or more
analysis classes in the analysis model.

− A unit is a collection of modules, e.g. classes/objects. Two units within the same
block may communicate without going through an interface, but in case we have an
Erlang – C border, a formal interface has to be defined even within a block.

− A module corresponds to a source code file (Erlang or C or Java). Except for the
interface modules generated from the interfaces on subsystem and block level,
source code only exists on the unit level.

Figure 16 depicts GSN model in high-level packages that exist in the product structure
as containers for different subsystems.

 MDA and Integration of Legacy Systems

 48

Figure 16 High level package of GSN model [31].

Use case view defines the functional requirements for GSN expressed as use cases.
Non-functional requirements are captured in supplementary specifications that can be
reached via requisite database.

Logical view consists of one package that defines system architecture and a number of
product related package that encapsulates the design for different parts in the GSN
product. SGSN-GT contains modeling of SGSN for GSM/TDMA.

Business specific package contains the business specific parts of the GSN system
which are common for the packet services within the GSM/UMTS domain and may be
used by all specific applications defined within GSN. The Business Specific package
collects components that implement functionality common to both SGSN-G and
SGSN-W, the idea is to share common functionality between the two SGSN variants.
The Business Specific might take advantage of functionality provided by Middleware
and WPP.

The purpose of System Architecture package is to have common system architecture
ideas that control the development and evolution of the nodes, SGSN and GGSN. The
responsibility of this package is to form system architecture for Ericsson GSN
products, SGSN and GGSN. That means to consider the necessary aspects/viewpoints
of the system and the structures they impose, its components and their inter-
relationships as well as the strategies/concepts that governing the design and evolution
of the system. The major aspects that are addresses are logical architectural aspect,
physical architectural aspect, deployment architectural aspect, concurrency aspect,
dynamical behavioral aspect and software aspect.

Package SGSN-W contains modelling of SGSN for W-CDMA. This SGSN-W package
collects components that implement SGSN-W specific functionality; it might take
advantage of functionality provided by the Middleware, Business Specific and WPP
packages in order to fulfil its tasks.

The Middleware package collects components that implement the application
framework. The SGSN-G package collects components that implement SGSN-G
specific functionality; it might take advantage of functionality provided by the
Middleware, Business Specific and WPP packages in order to fulfill its tasks.

The WPP package collects components that implement the wireless packet platform.
The purpose of WPP package is to group logic that is generic for several types of
nodes, e.g. GSN, into a unit that is distributable to an Ericsson organizational unit and
possible to develop and implement by its own "without" knowledge of its clients/user.

 MDA and Integration of Legacy Systems

 49

Responsibility of this package to offer necessary classes/ abstractions, etc. of WPP
related parts, which shall/can be used in diagrams in other packages when modeling
more GSN-specific parts.

As we have mentioned earlier, software developers in Ericsson use UML model as
modeling concept at early stage of their software development. Then the models are
transformed into IDL. Finally, these interfaces are implemented manually in C or
Erlang code. Erlang is a procedural programming language that has been using
Ericsson to develop their application. Figure 17 shows this design concept.

A&D focus

Source
Code

(Erlang / C)

ExecAnalysis
Classes

Design
Elements

[SubSystem/Block/Unit/(Module)]

IDL
Code

Supplementary
Specifications

Use-Case Model

Domain Object
Model

Use Case
Specifications

Figure 17 Analysis and Development used by Ericsson [31]

From Figure 17 above we can see that from requirement to executable, Ericsson use
IDL code to specify the component. In implementation, one IDL interface may be
realized by many files. It is also found that many procedures in Erlang file can not be
found in IDL interface, although they defines as public with -export declaration (used
by other modules in other unit, block or subsystem). It happens because change of the
source code is not followed by change of the IDL or models.

Our case study was to develop PIM from the existing UML models, interfaces
specified in IDL CORBA and Erlang codes. Since the GSN model is too big and the
fact that the term of PIM is relative thing and there are many levels of PIM, we only
used one subsystem from SGSN-GT systems and one subsystem from Middleware in
our case study. These two subsystems are implemented in Erlang. We discuss more
how to develop the PIM from the whole GSN system in discussion in chapter 6.

5.2 Goals, Method and Tools Used
The main focus of our case study is the possibility of developing a PIM from existing
UML, interfaces IDL and other artifacts (in this case Erlang Codes). To facilitate this
study, we got access to documentation of GPRS files project which developed by
Ericsson. From this documentation, we got UML models, IDL CORBA and Erlang
code files which we needed in our case study.

The first, and as a pre study, we tried transforming of the UML models into XMI
format to provide support for using various tools as defined in MDA specification. The
aim of this case study is to investigate and prove that XMI can be used to exchange the
UML models between tools. At the first step of this case study, we made a UML model
in Rose and exported into XMI file using XMI plug-in for Rose. Then, we tried to
import this XMI file by various MDA tool that support model exchange such as
Poseidon, UMT, Objecteering and so on. We investigated the compatibility of XMI.

 MDA and Integration of Legacy Systems

 50

To develop PIM UML model we used the following methods.
1. We began with the using of a single Erlang module to make a corresponding

UML class/or interface.
2. After all Erlang modules are translated into UML classes, then we search how

the classes interoperate, by means of dependencies, associations etc.
3. In addition, to have more complete UML class, such as datatypes, we used the

information from the IDL files.

These three steps generate a UML model that is a specificationally complete PIM It
means that from Erlang code and IDL, we take out structural aspect. All the UML
classes are presented in the XMI format.

We would also use part of the existing UML (external behavior aspects such as use
case diagram, activity diagram, etc.) to get more complete PIM. This part of existing
UML model should also be translated into XMI the format.

Up to this step, we have two parts of UML model in XMI that are XMI generated by
translation of Erlang (structural aspects), and XMI generated by translation of existing
UML (behavior aspects) with Rational Rose. For more detail, see figure 18.

Figure 18 PIM Development Method

To combine the two XMIs we need a XMI mixer that should generate PIM in XMI
format as a result. As shown in figure 18 that from the translator that we developed, we
can get a structural specificationally complete PIM (A), while from the XMI mixer we
can get a structural and behavior specificationally complete PIM (B).

In this thesis we only made the translator and the XMI mixer parts. This means that the
PIM we would try to build is only a structural specificationally complete PIM, but we
discuss the possibility of developing a structural and behavioral specificationally
complete PIM in chapter 6.

As tools, we used JBuilder 5 with Java 1.3, Rational Rose software and UMT. The
Jbuilder was used to make the Translator and XMI mixer. The Rose2000 was used to
transform/export the existing UML model into XMI and to import the XMI we had
from our translator. This step was to check that the translator works perfectly. UMT,
Poseidon, Objecteering, ArcStyler and Rational Rose used to prove the using of XMI
to model exchange between tools.

A

B

CORBA IDL

Existing UML

Erlang Code

XMI
MixerXMI (PSM)

Translator-1
XMI (PIM)

PIM
generator

A: structural specificationally complete PIM
B: structural and behavioral specificationally complete PIM

Rose

 MDA and Integration of Legacy Systems

 51

5.3 Considered Aspects of Developing a PIM
The term “legacy system” in this case refers to the part of the GPRS application written
in Erlang

As we have mentioned earlier there are some issues that distinct PSM from PIM. PSM
contains platform specific information that cannot be part of platform independent
model. Examples of these platform specific aspects are communication mechanism,
message type, transaction handling, event handling, exception handling, database
access mechanism, database type, operation sequence, security handling and so on.
These aspects usually are part of a platform specific profile. This profile defines how a
platform specific model should be structured for a specific platform. Ideally, platform
specific model should be generated by modeling tool. In practice, it will most often be
partially generated and refined by the user.

UML model has two main aspects that are structural and behavioral. Structural aspects
can be a form of model packaging, class diagram, class, attribute, operation,
stereotype, datatype etc. Behavioral aspects consist of external part such as state
machine, use case diagram, activity diagram, dependency and internal part such as
action language. Action language is presentation of computational features.

In the next two sections, we present an analysis --based on features described above--
of implementation code of Ericsson’s telecommunication system that is implemented
in Erlang. Since many applications are implemented in Erlang code and the fact that all
the information (structural and behavioral aspects) exist in code, we only analyzed
Erlang code to determine which aspect can be specified in UML model (PIM) and
which aspects have to be left in code or PSM.

5.3.1 Aspects Specified in PIM
As we have written in section 3.2.1, a specificationally complete PIM is defined as a
complete model of the system specification – the external structure and behavior – of a
component system in terms of a business model, a requirements model and an
architecture model. In short, we can say that a PIM should consist of structural and
behavioral aspects so when we want to develop a complete PIM from legacy system
(source code), we have to involve these aspects both of internal and external in the
resulted PIM.

We have developed a translator that can transform Erlang code into UML model in
XMI format that is a PIM. This translator is developed in Java. We called this
translator as Erlang to XMI Translator. See section 5.5.1.6 for more detail.

Implemented Erlang source code contains information about both of structural and
behavioral (internal and external) features. Beside that, it also contains other
information that is platform specific. Some of these features can be taken into a UML
model and are platform independent such as model packaging, class, attribute,
operation, operation’s argument, datatype, stereotype and dependencies, while other
aspects are platform specific. More about platform specific aspects are discussed in
section 5.3.2.

Another parts that must be specified in PIM is internal behavior (computationally) that
exist in detail sources code such as code for each operation, case-of statement, etc. In
UML model, this part is usually expressed as action semantic language.

 MDA and Integration of Legacy Systems

 52

5.3.2 Aspects Left for a PSM
Beside contains the structural and behavior aspects, the source code is also contains
various information (features) which could be a platform independent or platform
specific information. In this section, we examined which aspects of Erlang code are
platform specific.

Below we present the PSM features we have found in Erlang code that can not be
included when we do reverse engineering from Erlang code into UML PIM
automatically by our translator. Some information is collected from other GSN
documentation instead of Erlang code itself.

1. System functions/operations. These functions are only corresponding with
system function, and do not provide application function. Examples of these
functions are operations for start or restart and transaction handling.

2. Consistency check. Consistency check is run either as a part of restart or it is
invoked by operation during normal operation. Normally the system function
module uses functions in other modules to complete this task.

3. State machine module. A state module is an Erlang module implementing a
state machine. It receives function calls and invokes proper actions dependent
on the state of the objects.

4. Communication mechanism. When there is a change of process Erlang
messages passing be wrapped by an interface function offered by the module
that shall receive the Erlang message. The module that shall receive an Erlang
message is therefore required to export a function which will execute on the
client process. This interface function is then responsible to send the Erlang
message from the client process to the server process where it is received by the
module that exported the interface function. This means that interfaces are
defined by functions only, i.e. any required message passing is hidden behind
an interface functions. In our Translator we do not pay attention to this
interface, instead we include exported function as an operation, not an interface.

5. Transaction. A transaction in an SGSN is a set of signaling messages
interchanged between any network elements, aiming at the completion of a
common goal/task. For example a complete attach is handled as one transaction
where upon data is stored

5.4 XMI as standard for model exchange
In this case study, we made a UML model and export it to XMI format. The models in
XMI format would be opened by other tools, which are UMT, Poseidon, Rose,
Objecteering, etc. This process is shown in the following figure.

 MDA and Integration of Legacy Systems

 53

 Figure 19 XMI for model exchange between tools

Not all tools support export/import of XMI. For example the Telelogic Tau does not
support this facility. An important aspect of this process is the XMI version. Various
UML tools in the market use different version of XMI. In our investigation of UML
tools, Poseidon and Rose can export-import XMI file, see table 2 for more detail.
Although UMT supports import of XMI files, but only XMI files that are of the same
version (UMT use the XMI 1.0 for UML 1.3) can opened by UMT. UMT could open
XMI files exported by Poseidon, Objecteering and Rose.

Here is an example of the model made by Poseidon.

Figure 20 UML model made by Poseidon

This model then is transformed into the XMI format. The XMI format of this model
can be seen in appendix E. Then, the XMI resulted by this transformation is opened
with UMT as shown in figure 21.

Figure 21 Model opened by UMT

Rose

UMT

XMI

Poseidon

Objecteering

Other
= Export/import
= Import
= Export

 MDA and Integration of Legacy Systems

 54

In our experiment, we found that the UML model from Poseidon, can not be opened by
Rational Rose because XMI resulted by Poseidon use different encoding. Table below
shows summary of XMI and UML version used by various tools.

Table 2 XMI and UML version of MDA Tools

No. Tool XMI version UML version Encoding
1. Rose 2000 1.0 / 1.1 1.4 ISO-8859-1, UTF-16,
2. Objecteering 1.0 / 1.1 1.4 -
3. Poseidon 1.4/1.5/1.6 1.0 / 1.1 / 1.2 1.4 UTF-8
4. UMT 0.61 1.0 and 1.1 1.1/1.3 and 1.3/1.4 ISO-8859-1

Although there is problem in compatibility caused by various XMI version, UML
version and encoding format used by UML & MDA tools, this case study has proved
that XMI gives an opportunity to exchange models between UML & MDA tools as
long as they use the same XMI version and encoding. It will be an advantage since
model exchange between tools gives the opportunity to transform model to other target
platform.

5.5 Developing PIM from Erlang Code, CORBA IDL and the
Existing UML Model
Implemented code contains complete information. Actually, we can get the complete
model of system application from the code, but it would be a difficult task to do
automatically. In this section, we present the developing of PIM from Erlang code,
IDL and the existing UML model, and also discuss what kind of possible PIM we can
get. As we mentioned in section 3.2.1, a PIM is relative and there are many levels of
PIM. SINTEF have defined that PIM can be a specificationally complete PIM and a
computationally complete PIM.

As baseline of developing PIM models, we use Erlang code, CORBA IDL files and the
existing UML models. We will develop structural aspects of PIM from Erlang and IDL
files, while part of behavioral aspects such as use case from the existing UML models.
Since the existing UML model has no internal behavioral aspects (computationally
features) such as action semantic, the PIM we would try to build is only a
specificationally complete PIM.

Since a PIM is expressed in UML, we would try to make the translator that generates
UML models in XMI format. This kind of translator performs reverse engineering
from code into model. Currently, there is no available tool that supports reverse
engineering of Erlang source code that written with procedural concept.

5.5.1 Developing PIM from Erlang Code
The purpose of this case study is to study the possibility of developing a class (or
interface) from Erlang modules. In more general, we would study developing of UML
classes from Erlang modules. Before we made a translator, we made its corresponding
Java class and idl interface.

 MDA and Integration of Legacy Systems

 55

5.5.1.1 General Structure of Erlang Procedure
The following figure shows the general structure of Erlang code. The complete
structure of an Erlang module can be seen in appendix D.

Figure 22 Structure of Erlang Procedures

One procedure can have many variations of execution (operation) which separates with
(;). Number of arguments between them may not be the same. When other procedure/
system wants to use these operations, the value and number of arguments decides
which operation should be executed. The procedure is ending with dot (.). In Erlang
programming language, a module may contain some procedures. All public procedures
(with a number of operation’s arguments) are declared with - export statement.

5.5.1.2 Example of Erlang Module
Figure 23 is the example of Erlang module, for more complete listing can be sees in
appendix D. In this figure, we just show the procedure/functions module in this
module. This module has 6 operations, where two of them {check_new_attach()
and check_ra_update()} can be found in example.idl file.

Figure 23 Example of Erlang module

In next section, we propose the correspondent Java class and idl interface for the
attach.erl. At this time, we neglect the datatype handling, since Erlang is not type
specific. We discuss more detail about datatypes in section 5.5.2.

 procedure_name1 (att1,att2,att3……) //execution 1
 ……,
{res1,res2,res3….};

procedure_name1 (att2,att3,att4……) // execution 2
……, One procedure

{res1,res2,res3….};

procedure_name1 (att3,att4,att5……) // execution n
 ……,
{res1,res2,res3….}.

-module(attach).

-export([check_new_attach/1,check_ra_update/1]).
-export([start_restart/4]).
-define(module_ref, 49).
-define(index," ").
-include("getID.hrl").
-include("setID.hrl").

call_children()-> ...
bind_module()-> ...
get_phases(a5, a6,a7) -> [];
get_phases(a4, a6,a7) -> [].
start_restart(a1, a3, a6, a2) -> {{continue,default},a1}.
check_new_attach(a1) -> ...
check_ra_update(a1) -> ...
check_attach() -> ...

 MDA and Integration of Legacy Systems

 56

5.5.1.3 Java Version
In this part of our case study we do not concern with the detail of the internal code in
the operations/ procedure, but we just concern with the operation/procedure name,
visibility of operation (public or private), return value, datatype, dependency to other
module and constant (data) definitions.

Figure 24 Java Version of attach.erl

5.5.1.4 IDL CORBA Version
IDL files include all the operations declared as public, while some procedures in
Erlang are not declared as public. The following IDL is the result of our manually
translation from attach.erl. We translated only the public procedures. In Java class, all
Erlang procedures can be translated as public or private operations.

Figure 25 IDL version of attach.erl

5.5.1.5 UML Model
After we studied the comparison above, we propose UML class for Erlang module as
shown in Figure 26 below. The figure is the UML class of module attach.erl. All
“define” statement in Erlang module is expressed as attributes in UML class, exported
operations expressed as public operation, and other operation expressed as private
operation in UML class.

public class attach {

const int module_ref=49;
const String index=" ";

-import getID;
-import setID;

private void get_phases(String b1 , String b2, String b3) {..}
public start_restart(String b4, String b5, String b6, String b7)
{..return data}

public int check_new_attach(String b1) { .. return fault}
public int check_ra_update(String b1) { .. return fault}
}

#ifndef attach_
#define attach_

-include getID.idl;
-include setID.idl;

module _attach
const int module_ref=49;
const String index=" ";

interface macal {
start_restart(in String c1, in String c2,in String c3,in String c4)
check_new_attach(out int fault)
check_ra_update(out int fault)
}
#endif

 MDA and Integration of Legacy Systems

 57

attach.erl
- Module_ref : module_ref = 49
- Module_type : module_type = branch_module
- Dynamic_proc : dynamic_proc = true
- Sysfunc_vsn_001 : sysfunc_vsn_001:true
- Index : index = ""

- call_children()
- bind_module()
- get_phases()
+ start_restrat()
+ check_new_attach()
+ check_ra_update()
- check_attach()

Figure 26 UML class of attach.erl

In this step, we do not pay attention yet to the PSM or PIM features of Erlang code but
in the translator we developed, we removed some PSM features that exist in Erlang
code.

5.5.1.6 Erlang to XMI Translator
In order to develop PIM from Erlang code we created a translator to translate the
Erlang code into XMI. This translator we called Erlang to XMI Translator. We used
Java as programming language since we have experiences with this programming
language. The principle of the translator is depicted in the following figure. For
complete class diagram model and its implementation code can be seen in appendix G.

Figure 27 Erlang to XMI Translator

The translator consists of two main parts that are Erlang Parser and XMI Writer. In the
Erlang Parser, we analyze Erlang source code and collect Erlang-module’s information
such as module name, subsystem name, block name, unit name, operations exported
outside of module, included hrl files (Erlang header), and operation’s argument.
Structures and names of subsystem, block and unit is refer to directory (package)
structure and names in GSN project.

All collected information that are PIM features is sent to the second part of Translator,
XMI writer. This part is a kind of template that contains XMI-tags to produce XMI
document. In this template, we used XMI version 1.0 as a standard to write XMI
document. As a result, this Translator produces UML model in XMI format that are
compatible with all UML tools that support XMI version 1.0 as standard exchange
format such as UMT and Rational Rose.

Erlang to XMI Translator that we developed can be used to transform a single Erlang
file as well as multiple files in a package, and also a package that consist of a number
of packages. XMI resulted from the Translator is arranged hierarchically according to
the package structure i.e in the term of subsystem, block and unit. For example, we
want to transform the whole Subsystem AAA package. The Translator will give an
output an UML model, in XMI format of course, named AAA and contains package
AAA which have stereotype <<Subsystem>> and inside this package consists of a
number of package which have stereotype <<Block>>, and again inside this package

 Erlang
Parser

 XMI
Writer

Erlang
Code

UML in
XMI

Translator-1

 MDA and Integration of Legacy Systems

 58

consists of a number of package which have stereotype <<Unit>>. Also inside each
package, consist of a number of classes corresponding with package structure of Erlang
source.

Here is an example of the structure.

Figure 28 Structure of UML

Figure 29 shows eeee1.erl class as the result of our Translator after we opened it with
Rose. As shown in the figure, we use datatype that same as variable name. For
example, variable ‘Module_ref’ has datatype ‘module_ref’ and variable ‘ENode’ has
datatype ‘eNode’. This is because Erlang code does not define datatype. We would
solve this problem by using of IDL interface. Therefore, in our Translator we will
introduce IDL parser to capture datatype from IDL file. This advance Translator will
be discussed in the next section.

Figure 29 eeee1.erl class

Figure 30 below depicts dependencies of the example class to other classes inside the
same unit, except the datatype class. This datatype class is the result of translation from
hrl module. Hrl module is a class that contain variable definition such as record,
constants etc.

 MDA and Integration of Legacy Systems

 59

Figure 30 Dependencies

About the Translator
1. Erlang parser can generate a complete class with attributes and operations if the

structure of source code follows the Erlang template defined in the GPRS project.
2. The names of the classes refer to the Erlang files names with their extension. We

can not omitted the extension because there is a hrl file that is the same with the
Erlang file in the same package. This will cause duplicated class name if we omit
the extension.

3. Not all datatypes can be found in the same subsystem, some datatypes of
operation’s arguments use datatypes from other subsystem.

4. Operations have various type return value, sometimes return value is to call another
operation from different block or subsystem. We did not handle the return value.

5.5.2 Developing PIM from IDL Interfaces
The Translator that we have developed in section 5.5.1.6 generates UML model in
XMI as a result. In our scenario, this XMI file should be a structural specificationally
complete PIM. The model we have got from section 5.5.1 has problem with datatype of
attributes and operation’s arguments. This because it is difficult to get the datatyes
from Erlang modules since Erlang has no datatype. To solve this problem we used the
information from IDL files since the Erlang code is realization of IDL files. The IDL
files contains informatioan about datatype. It means that the datatypes used in Erlang
can be found in IDL files.

Here is an example of IDL interfaces we have chosen from the GPRS project. For
Ericsson developer see original file in appendix C.

Figure 31 example.idl file

#ifndef example.idl
#define example.idl
module example2
{
 interface AttachLimit {
 bbbT::tag check_new_attach(out aaaT::gmmCause FaultReason);
 bbbT::tag check_ra_update(out aaaT::gmmCause FaultReason);
 };

interface QoSNego{
 bbbT::tag check_qos(in mvsgT::nsapi nsapi, …, out mvsgT::llcSapi llcsapi);
 bbbT::tag check_ra_update(in mpsT::raInList ra_in_list, . ,out mpsT::raOutList ra_out_list);
 bbbT::tag check_modify(in mpsT::modInList mod_in_list, out mpsT::modOutList mod_out_list);
 bbbT::tag compare_qos(in mvsgT::nsapi nsapi, ……, out mvsgT::radPrioLevel rad_prio_level);
 bbbT::tag map_ext_qos(in mvsgT::qualityOfService qos_req, ….,out mvsgT::extQoS extQos_sub);
 };

interface AdmCtol : ccc::QoSNegotiation, ccc::AttachLimit {};
};
#endif

 MDA and Integration of Legacy Systems

 60

This IDL file is implemented in three Erlang modules, so we can find out datatype of
operation’s arguments of these modules in example.idl.

Figure 32 below shows the advanced translator we developed to include the
information of datatypes from IDL file. We introduce IDL parser into previous
Translator as depicted in the figure that will collect datatype of operation’s argument.
For all operations found in Erlang code, we seek corresponding operations in IDL file,
then collect its datatype of operation’s arguments for each operation and finally use
this datatype when we construct UML model of Erlang module in XMI Writer.

Figure 32 Advanced Translator-1

In fact, since the Erlang files are implementation by hand of IDL files then it is
naturally that some datatypes in Erlang code is not found in IDL files. To solve this
problem we used the datatypes as we did in section 5.5.1. Figure 33 is the complete
eeee1.erl class. As shown is this figure, for example, the argument’s datatype in
operation get_segments(Enode:in erlAtom, IdType: in String) are datatypes from IDL.

 Figure 33 More complete eeee1.erl class

5.5.3 Developing PIM from Existing UML Models
The PIM we have got from our Translator as described in step 1 (section 5.51) and step
2 (section 5.5.2) is PIM which is structural specificationally complete. If we want to
get more complete PIM with external behavior, we must use parts of the existing UML
model. The term of parts here means model elements such as use cases, activity
diagrams or sequence diagrams.

There are two possible ways to combine some parts of the existing UML model into
the UML model generated by the Translator. We can combine manually (redraw part
of existing UML to resulted model) or by using XMI mixer. It means that the

Erlang
Code

IDL
CORBA

 XMI
Writer

UML in
XMI

IDL
Parser

Erlang
Parser

Parser

Translator-1

 MDA and Integration of Legacy Systems

 61

Translator must have a mixer that can combines structural and external behavioral
aspects of PIM. The following figure shows a method that we propose to develop PIM
that contains both of external structural and behavioral aspect as defined SINTEF. The
Translator consists of XMI Mixer and PIM Generator. XMI Mixer is used to combine
XMI input and PIM Generator will remove PSM information of combined XMI.

Figure 34 XMI mixer and PIM generator

5.5.3.1 XMI Mixer
The XMI mixer is used to combine the XMI from individual translation. This means
that the whole GSN model can be developed by individual translation of each
subsystem and combine all resulted XMIs to construct a whole GSN system. This is
because the Translator is designed to translate only in subsystem level.

Since the mixer can also be used to combine the models that are created separately, it is
possible to combine the models made by different tools since many tools support
model exchange in XMI format. We have proved to combine three models that are
built by different tools. Two models (model1.mdl and model2.mdl) made with
Rational Rose and one model from the translation of Erlang code with our Translator.
For complete models, see appendix G about Translator documentation.

5.5.3.2 PIM Generator
PIM generated by this PIM generator will be a structural and external behavioral
specificationally complete PIM. We will discuss more about this PIM Generator in
section 6.3 on future work.

5.6 Summary
In our case study, we have presented how to develop a platform independent model
from a legacy telecommunication system. The main activity of this process is reverse
engineering from existing code (Erlang code in this case) into a UML model. To
facilitate this reverse engineering we have developed an Erlang to XMI Translator,
which could transform Erlang code into a UML model in XMI format.

The UML model generated from reverse engineering is not complete yet because
Erlang is not an object-oriented language and does not define datatype. In addition, it is
difficult to capture all (internal and external) behavioral features from the code. To
improve this UML model we use other sources, which are IDL CORBA files and the
existing UML model. Additional information we can get from IDL files is the datatype
of operation’s argument. Therefore, we have two sources that are Erlang code and

XMI from
Existing UML

 XMI from
Reverse
Engineering PIM

in
XMI

XMI

Mixer PIM
generator

 MDA and Integration of Legacy Systems

 62

CORBA IDL as input to the Translator. We propose to use the existing UML to
complete the external behavior feature of PIM in the future.

We have added another function to the Translator, an “XMI Mixer”, which can
combine several UML models (in XMI format). As input of the XMI mixer, we can
use both XMI files of the Translator and other XMI files generated by other tools that
use XMI version 1.0, UML 1,4 and ISO-8859-1 encoding. We can use this XMI Mixer
to build bigger and more complete model from different sources. In appendix G, we
show the use of XMI mixer to combine XMI files that contains use case diagram
(external behavior).

 MDA and Integration of Legacy Systems

 63

6 Discussion
In this chapter, we present three issues for discussion. The first one is to discuss
whether the model result of our case study is a PIM, followed by our suggestion to
Ericsson’s software developer about adoption of MDA to develop telecommunication
applications based on legacy systems and finally we discussed future work.

6.1 Is the Model a PIM?
Since our case study is to study the possibility of developing PIMs, we must analyze
whether the model we got from our case study is a PIM or not. It is not an easy task
because, as stated in many references, a PIM is relative concept.

A model is said to be platform independent if it does not contain any platform specific
information/features. However, we have to note that the notion of the platform can be
anything from a hardware platform, to operating system, to middleware to another
PIM. Hence, the notion of platform and platform independence is relative, which make
it possible to have a number of PIMs for the same problem space, each PIM
representing a different level of abstraction. A model is also said to be a platform
independent if it has a complete structure and model element such as model packaging,
class, attribute, operation, datatype of operation’s argument, and all kind of stereotype.
A model is also said to be a platform independent just because it can be mapped into
multiple platforms and programming languages (for code generation).

We can say that the UML model generated by Erlang to XMI Translator is a PIM
because we have removed all platform specific information in the parsing process. As
we have described in section 5.3.2, we have taken out platform specific information
from Erlang code such as transaction handling, communication mechanism, state
module etc. In addition, the model is structurally complete with packaging, class,
attribute, operation, datatype of operation’s argument, and all kind of stereotype

We tried to map the model into Java and C++ programming languages. In appendix F,
we present an example of code generating of a UML class generated by the translator,
into Java and C++ by Rational Rose.

6.2 Adoption of MDA at Ericsson
Based on the results of our study and literatures study about MDA, we can conclude
some advantages and disadvantage of using MDA in the software development. Here
are some benefits of the MDA approach:

1. Model documentation is always up to date, because changing and developing
software system in C and/or Erlang can be reverse engineered into a UML
model with the Translator.

2. The same UML model may be used to generate multiple format, target platform
and programming language

3. Use of XMI as standard format to model exchange between (MDA) tools
shows it’s benefit. Therefore, it is useful when we have a translator to translate
the model or implemented code into XMI.

4. During technology changes, conceptual model stay the same.

 MDA and Integration of Legacy Systems

 64

The disadvantage of using MDA in software development is that currently there is not
available MDA tool that fully supports the MDA approach in software development.

Based on the results of our study we have some suggestions for using MDA for
software development at Ericsson.

The GSN project uses Erlang and C as implementation language. Since we only
developed a translator to support integration of legacy system from the Erlang source
code, it will be very useful if Ericsson also develops a translator to transform C code
into a platform independent UML model. Another issue that could be a future work is
to develop a translator to translate UML models directly into Erlang and C code. The
following figure is a process to integrate the legacy systems into MDA context we
proposed.

Figure 35 Software Development based on legacy system in Ericsson

 Code Generation Integration

Implemented
C Code

PIM UML
in XMI

IDL CORBA

Modified
and/or New
Erlang or C
code

Translator 2
C to XMI

MDA tool
(Rose 2002)

New Application
or model

modification

Translator-3
XMI to Erlang

and C

Implemented
Erlang code

Translator 1
 Erlang to XMI

ExixtingUML
Model

Export
to XMI
with
Rose

XMI mixer and
PIM generator

UML
model in
XMI

Reverse Engineering

 MDA and Integration of Legacy Systems

 65

The method has three blocks; Reverse Engineering, Integration and Code Generation.
As shown in figure 35, the reverse engineering process will translate the legacy system
(Erlang, C, IDL and the existing UML models) into XMI. The XMI is a platform
independent UML model (PIM). With a MDA tool, this XMI can be imported into an
UML model to be modified or added with new models. The integration of the XMI file
resulted by the reverse engineering process and the new UML model for software
evolution is performed in the Integration block. Finally, the modified model can be
transformed into code. Since there is no available MDA tool that support full code
generation from UML models into C or Erlang, we proposed a translator to generate
the code from XMI. This translator should use the old code files (Erlang and C) to
generate new code files.

Benefits of this solution are:
1. Model documentation is always up to date. Even if generating a behavior

complete PIM is difficult, we can have an updated structural complete PIM.
2. It is short time to market and low cost. It is because all the implementation

development is based on legacy system.

6.3 Future Work: PIM Generator and UML to Erlang Translator
We have developed a translator to translate Erlang into XMI and an XMI mixer to
combine XMI resulted by individual translation of Erlang code. The mixer can also be
used to combine XMI resulted by translation of Erlang code and XMI resulted by
translation of the existing UML model that contains the external behavior aspects. See
appendix G for an example of how to combine XMI resulted by translation of Erlang
code and XMI that contains use case diagrams. However, this step is just a part of
activity in integration of legacy systems. Here are our proposals for future work, see
figure 35:

1. Developing Translator 2 to translate C code into a UML model in XMI,
2. Developing Translator 3 to translate UML models in XMI into C and Erlang

codes, and
3. PIM generator. This generator is only needed when behavior aspects of the

existing UML contains PSM features

Since the part of GSN system is also implemented in C, we need a translator to
translate this source code into a platform independent UML model in XMI. This part
should be combined with the UML model we have got from the translation of Erlang
code. The combination process can be done with the XMI mixer we have developed.

After we have a translator to translate the Erlang code into XMI and a translator to
translate the C code into XMI, we need another translator to generate Erlang and C
code from XMI. This kind of the translator should use the existing code as baseline, so
it is only the modified parts that should be changed.

As we have mentioned in our method that to develop a structural and external behavior
specificationally complete PIM, we have to involve the existing UML models as
source for external behavioral aspects. The existing UML may contain PSM features
that must be removed. Therefore, we need a PIM generator that will remove the PSM
features. When the existing UML models (external behavior aspects) do not contain
PSM features, we do not need the PIM generator.

 MDA and Integration of Legacy Systems

 66

7 Conclusion
In our thesis, we have explained and demonstrated using MDA approach to support the
integration of legacy systems in a telecommunication application. We have developed
a platform independent UML model from a part of the GSN system used at Ericsson
that is implemented in Erlang.

The important step in the integration of the legacy systems is reverse engineering of
the implemented code into the MDA context in form of a UML model. In order to
perform the reverse engineering process we have developed an Erlang to XMI
Translator that can transform Erlang code into UML models in XMI. Based on our
study about which aspects should be specified in PIM and which aspects are left to
code, we only took out structural aspects of PIM such as model packaging, class,
attribute, operation, operation’s argument, datatype, stereotype and dependencies in the
translator, while PSM features are left for coding. The translator has an additional
function that can combine several UML models (in XMI) into a bigger and more
complete model.

The UML model resulted by the Erlang to XMI Translator is a PIM. It is because we
have removed all platform specific information from source code in the parsing
process. This kind of PIM can be said as a structural specificationally complete PIM
since the model is structurally complete with model packaging, class, attribute,
operation, operation’s argument, datatype, stereotype and dependencies. Other possible
PIM that can be developed from the existing UML models, IDL and code is a
structural and external behavioral specificationally complete PIM. It is hard even
impossible to get a more complete PIM that include the internal behavior aspects since
these aspects are best expressed detail in code.

By using our method to develop PIM from the source code, CORBA IDL and the
existing UML, Ericsson and other readers can expand the PIM developing process to
obtain a more complete PIM that involves all structural and behavioral aspects. These
issues can become sources for further research and study in software development,
especially software development for telecommunication applications at Ericsson.

Benefits of adopting an MDA approach in software development at Ericsson are:
− Model is always up to date, because with MDA concept, changing and

developing software system is done in the model and then transformation and
code generator are used to produce code. In addition, changing in the code can be
reverse engineered to get the updated of the UML model. Even if generating a
behavior complete PIM is difficult, we can have an updated structural complete
PIM.

− UML models are easier to read and understand than source code.
− The conceptual model stays the same, when technology changes. The same UML

model may be implemented into multiple platforms and programming languages.

Many industries and research groups propose the MDA tools that support reverse
engineering, but over this time, there is not available tool that fully supports the MDA
specification. The reverse engineering issue and the "mining" process of the PSM to
PIM mapping are only described vaguely in the MDA related documents. Although the
MDA still has quite a way to go, the concept is already used and will give benefits to
software development process.

 MDA and Integration of Legacy Systems

 67

Abbreviations and Glossary
BFOP Business Function Object Patterns
CCM CORBA Component Model
OCL Object Constraint Language
COMET Component and Model based development METhodology.
CORBA Common Object Request Broker Architecture
COTS Commercial-Off-The-Shelf
CWM™ Common Warehouse Meta-model
DTD Document Type Definition
EAI Enterprise Application Integration
ECA Enterprise Collaborative Architecture
EDOC Enterprise Distributed Objects Computing
GGSN Gateway GSN
GPRS General Packet Radio Service
GSN GPRS Service Node
HLP High Level Package
IDL Interface Definition Language
J2EE Java 2 Enterprise Edition
JCP Java Community Process
MDA™ Model-Driven Architecture™
MDC Meta-Data Coalition
MMM Model Middleware Maintenance
MOF™ Meta-Object Facility
OMG Object Management Group
PIM Platform Independent Model
PSM Platform Specific Model
ROI Return on Investment
SAD Software Architecture Description
SGSN Serving GSN
TMN Telecommunication Management Network
TSAS Telecommunication Services Access and Subscription
UML™ Unified Model Language
UMT UML Model Transformation Tool
WPP Wireless Packet Platform
WSDL Web Services Description Language
XML eXtensible Markup Language
XMI XML Metadata Interchange
XSL eXtensible Stylesheet Language
XSLT XSL for Transformation

Structural aspect of UML = class, class diagram, package, relationships (association,

dependency, realization, generalization), interface, types, role,
instances and object diagram.

Behavioral aspect of UML= interaction, interaction diagram, use case, use case
diagram, activity diagram, event and signals (operations), state
machine, process and thread, action semantic and state chart
diagram.

 MDA and Integration of Legacy Systems

 68

Structural specificationally complete PIM = Platform independent UML model that
has complete structural aspect and follow UML specification.

Structural and Behavioral specificationally complete PIM = Platform independent
UML model that has complete both of structural and
behavioral aspects, and follow UML specification

Specificationally complete PIM = a complete model of the system specification – the
external architectural structure and behavior – of a component
system in terms of a business model, a requirements model
and an architecture model.

Computationally complete PIM = a complete model which adds to a specificationally
complete PIM a definition of the system realization – the
internal design structure and behavior – of a component
system in terms of a design model. The design model is
expressed using an action semantics language

 MDA and Integration of Legacy Systems

 69

References
[1] Call for presentation for MDA™ Implementers' Workshop: May 12-15, 2003,

Succeeding with Model Driven Systems Orlando, Florida, USA,
http://www.omg.org/news/meetings/MDA2003/call.htm

[2] Kath, Olaf, 2002, Impacts of Changes in Enterprise Software Construction for
Telecommunications Model Driven Architecture – Assessments of relevant
technologies, EURESCOM Project, IKV++ Technologies AG.

[3] Herzog, Michael, 2002, Impacts of Changes in Enterprise Software
Construction for Telecommunications Model Driven Architecture – Adaptation
and Impact for Telecom Domain. EURESCOM Project,, Telekom AS,
Deutsche

[4] C. Stephen, M. Simon, R. Kerry, 2002, Meta-Object Facility Tutorial,
http://www.dstc.edu.au/Research/Projects/MOF/ accessed January 2003.

[5] G. Caplat, Jean Louis, 2001, Model Mapping in MDA, INSA, Bat. Blaise Pascal
F69621 Villeurbanne Cedex, France.

[6] OOPSLA Workshop 2002, Generative Techniques in the context of Model
Driven Architecture, Washington, USA. www.softmetaware.com/oopsla2002
accessed January 2003.

[7] J.P. Wadsack, and J.H. Jahnke 2002, Toward Model Driven Middleware
Maintenance. In the OOPSLA 2002 Workshop Generative Techniques in the
Context of Model Driven Architecture, November 4-8 2002, Washington, USA.
http://www.softmetaware.com/oopsla2002/jahnkej.pdf accessed January 2003.

[8] Miller, Joaquin and Mukern, Jishnu, 2001, Model Driven Architecture, Object
Management Group, http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
accessed January 2003.

[9] Object Management Group: MDA Specifications, OMG official website at
http://www.omg.org/mda/specs.htm accessed December 2002.

[10] Object Management Group: MDA Overview, OMG official website at
http://www.omg.org/mda/executive_overview.htm accessed December 2002.

[11] Siegel, Jon Ph.D., 2001, "Developing in OMG's Model Driven Architecture
(MDA)". OMG’s White Paper Revision 2.6 http://www.omg.org/mda accessed
January 2003.

[12] Object Management Group: http://www.omg.org/mda accessed January 2003.

[13] Mellor, S.J., 2002, Executable UML: A Foundation for Model Driven
Architecture, Addison Wesley. Boston, USA.

[14] Sommerville, Ian, 2001, Software Engineering, Addison Wesley, USA

[15] Rational Unified Process whitepaper, 1998, Rational Unified Process: Best
Practices for Software Development Teams, www.rational.com accessed
January 2003.

[16] Object Management Group: 2002, UML profiles for CORBA Specification,

[17] Object Management Group: 2002, UML profiles for EDOC Specification

 MDA and Integration of Legacy Systems

 70

[18] K. Thomas, 2002, Model Driven Architecture, Interactive Objects Software
GmbH, published in ObjektSpektrum, Deutsche

[19] Summary of UML tools Features, www.jeckle.de/umltools.htm accessed
January 2003.

[20] Object Management Group official website at http://www.omg.org accessed
January 2003.

[21] M., Miguel, J. et.al., 2002, Practical Experiences in the Application of MDA,
UML Conference proceeding, Springer-Verlag Berlin.

[22] G., Anna, L., Michael, et.al., Transformation: The Missing Link of MDA CRC
for Enterprise Distributed Systems, DSTC, Australia
www.dstc.edu.au/Research/Projects/Pegamento/ publications/icgt2002.pdf.

[23] D. Varro, G. Varrao, and A. Patarica., Designing the Automatic Transformation
of Visual Languages http://www.inf.mit.bme.hu/FTSRG/Publications/TR-12-
2000.pdf, accessed January 2003.

[24] B., Arne-Jørgen, E. Brian, Ø.A. Jan, 2002, Methodology Handbook with
documentation of the COMET meta-models, Affiliation: SINTEF Telecom and
Informatics, Norway, www.sintef.no

[25] Kulandaisamy, P.D.J., Nagaraj, N.S., Thonse, S., 06th September 2002,
Representing Procedural Source in UML, SETLab Infosys Technology
Limited, Bangalore, India,
www.omg.org/news/meetings/workshops/UML2002-Manual/04-
2_Reverse_Engineering_Procedural_Code_using_UML.pdf

[26] Mos, Adrian and Murphy, John, 2002, A Framework for Performance
Monitoring, Modeling and Prediction of Component Oriented Distributed
Systems, Dublin City University, Ireland, ACM proceeding October 2002.

[27] Booch, G., Rumbaugh, J., Jacobson, I., 1998, The Unified Modeling Language
User Guide, ISBN 0-201-57168-4, Addison Wesley, USA

[28] Belaunde, Mariano, December 2002, MODA-TEL, Initial Identification of
issues for further research, MODA-TEL Consortium, France Telecom, France,
http://www.modatel.org/~Modatel/pub/deliverables/D2.2-final.pdf.

[29] Azad Technology, Overview of Object OrientedConcept, Term and Experience,
www.azadtech.com accessed January 2002.

[30] Marvie, R., Merle,P.,2002, CORBA Component Model: Discussion and use
with OpenCCM, Laboratoire d’informatique Fondamentale de Lille UPRESA,
CNRS, France

[31] Lars E. and Per-Martin H., 2002, GPRS support nodes overview,Ericsson,
Grimstad, Norway.

[32] Telelogic Tau documentation, www.telelogic.com

[33] ArcStyler documentation, http://www.io-software.com/

[34] Objecteering documentation, www.objecteering.com

[35] Poseidon http://www.gentleware.com/

[36] iUML user guide, www.kc.com

 MDA and Integration of Legacy Systems

 71

[37] Kabira http://www.kabira.com

[38] UMT website, http://www.modelbased.net/

[39] Serrano, M.A., Oca, C.M., Carver,D.L., Evolutionary Migration of Legacy
System to an Object-Based Distributed Environment, Department of Computer
Science, Louisiana State University, USA.

[40] XSL Transformations (XSLT) Version 1.0 W3C Recommendation 16
November 1999, http://www.w3.org/TR/1999/REC-xslt-19991116.html.

[41] Component-Based Software Development / COTS Integration,
http://www.sei.cmu.edu/str/descriptions/cbsd.html

 MDA and Integration of Legacy Systems

 72

Appendix A Thesis definition
Supervisor: Parastoo Mohagheghi (Ericsson, NTNU) and Jan P. Nytun (HiA).
Student(s): Selo Sulistyo, Warsun Najib

Responsible line manager: Gunn Marit Eriksen
Thesis Title: MDA and Integration of Legacy Systems
Subtitle:
Background: The Model Driven Architecture (MDA) addresses the challenge of
constantly changing infrastructure and promotes application and component reuse
and portability. The success of MDA depends highly on integration of legacy
systems in a MDA context. This activity may include reengineering of code or
transforming existing UML models.
Thesis definition: The objectives of the thesis are:

• Study which aspects of the context system (a real-time distributed
telecommunication application) that can be specified in a Platform
Independent Model (PIM) and which aspects are left for a Platform Specific
Model (PSM) and coding.

• Study the possibility of developing a PIM model for the legacy system using
the existing UML model, component specifications in IDL and other artefacts.

Competence: Object-Oriented analysis and design using UML. During the work, the
student(s) will learn more about MDA.
Security: Ericsson should approve access to the UML models needed to perform a
case study in the GPRS project. Ericsson should approve whether all the thesis or
parts of it will be available for public access. Therefore it is required to deliver a final
version to Ericsson before the deadline for presentations and delivery to HiA for
approval.
Originality, IPR and reuse:
Limitations: It is required to write the thesis in English.

Activities: Main activities are described in the definition. A more detailed activity list
and time plan will be made later.
Prerequisites:
Working place and conditions: The students need an office and user account
during spring 2003 to study the UML model.
Budget and funding:
References:

• www.omg.org/mda

• Executable UML: A Foundation for Model-Driven Architecture
Stephen J. Mellor, Marc J. Balcer
© 2002 / 0-201-74804-5 / Addison Wesley Professional

 MDA and Integration of Legacy Systems

 73

Appendix B GSN Model

B-1 GSN Model Structure
See in CDROM.

B-2 GSN meta-model
See in CDROM.

Appendix C CORBA IDL: mac.idl
See in CDROM.

Appendix D Erlang Code: macal.erl
See in CDROM.

Appendix E XMI and UML
E-1 XMI of UML Model for Model Exchange
See in CDROM

E-2.a XMI of MPS Subsystem
See in CDROM

E-2.b UML Model of MPS Subsystem
See in CDROM

E-3.a XMI of NCS Subsystem
See in CDROM

E-3.b UML Model of NCS Subsystem
See in CDROM

E-4.a XMI of MPS and NCS Combination
See in CDROM

E-4.b UML Model of MPS and NCS Combination
See in CDROM

Appendix F Model Testing
See in CDROM

Appendix G Erlang to XMI Translator

G-1 Class Diagram
See in CDROM.

 MDA and Integration of Legacy Systems

 74

G-2 Implementation Code
See in CDROM.

G-3 Documentation of Erlang to XMI Translator

EXT logo

Figure g-1 EXT logo

Installing:

− Copy the Translator.zip file from CD
− Extract it into directory C:\Translator
− If you want to install to another directory otherthan C:\Translator, you have

to modify run.bat file.

Running:

− After the translator is installed you can run the software by double click
run.bat

− Output files will be located in the Translator directory.
− The name of the XMI output file will be the same as the name of selected

file or directory.

Requirements:

− To open the XMI output file from the translator we use Rational Rose.
− Rational Rose needs Rose to XMI plugins in order to open XMI files. The

plugins can be downloaded from rational website (www.rational.com).
− We use Rose XMI plugins version 1.3.4. To install this plugins, follow

instructions from downloaded files.
− To be able to open XMI files, the XMI file that will be opened must be

located in same directory where DTD files located. This directory is inside
XMI plugins directory installation.

 MDA and Integration of Legacy Systems

 75

Main Menu Screen shot
Here is the main window when Erlang to XMI Translator is started:

Figure g-2
Translator has three main menus which located in the File menu:

1. Transform to Class is used to transform the Erlang Module (directory or file)
into a class diagram in XMI.

2. Transform to Interface is used to transform the Erlang Module (directory or
file) into an Interface in XMI.

3. Combine XMI is used to combine the XMI results. This mixer can also used to
combine with the XMI files generated by Rose2000.

Translate to XMI Menu
After you have selected and clicked on the “Transform to Class” menu, a window
will appear that ask s for the directory to transform (sub system, block unit or single
Erlang module). This is the default directory. Figure g-4 shows that NCS directory is
selected to be transform to XMI. The file output is named NCS.xml.

Figure g-3

Then you can click the Open button to run the Translator. The Translator should work
and display as following:

 MDA and Integration of Legacy Systems

 76

 Figure g-4 Command line display.

This figure shows the process of translation where the translator parses the operation’
arguments in IDL file. After the process is completed, the following report will be
displayed. The file output is located in the directory where you placed the Java code.

 Figure g-5 Report for Translation of subsystem NCS

Combine XMI Menu

Since the GSN model is too big to be translated in one try, we develop the “Combine
XMI” menu. This menu is used to combine the XML files generated by the Translator
or Rose. The combine XMI process integrates models that are made separately. It is
possible to combine the XMI files that are generated by the Translator or by Rose, or
between Rose’s models or between XMI resulted by Translator.

Figure g-6 shows the combine menu.

Figure g-6 Combine menu

 MDA and Integration of Legacy Systems

 77

After you clicked the Combine menu, the following Frame will appear.

Figure g-7 Input dialog frame

Then you can fill in the name of file output, package and stereotype. If you do not fill
in the field then the system will use the default name as follow: output.xml for output
file, package for package and none for stereotype.

After you click OK the following figure will appear

Figure g-8 Dialog frame to select files

You can then select multiple xml files by using of CTRL + click. In figure 3, I have
chosen NCS.xml and MPS.xml. Then click open, and the following figure should be
shown

Figure g-9

 MDA and Integration of Legacy Systems

 78

Open output XMI in Rational Rose
You can then open the output.xml with Rose. Example of the result when we open
XMI files generated by translator in Rose, can bee seen in CDROM.

The Translator can also be used to combine the XMI resulted by export process from
Rose as well. The following is an example where I combine the 3 models. Two models
is made with Rose (ModelRose3.mdl and modelRose.mdl) and one model is resulted
by Translator (nrhlob.xml from Erlang).

1. Model 1: ModelRose3.mdl

Figure g-10

2. Model 2 : modelRose.mdl

Figure g-11

 MDA and Integration of Legacy Systems

 79

3. nrhlob.xml opened with Rose model.

Figure g-12

4. The result: combined.xml

Figure g-13
About the Translator

1. The Erlang parser can generate a complete class if the structure of source code
(Erlang) follows the Erlang template defined in the GPRS project.

2. The names of the classes refer to the Erlang files names with their extension.
We could not omit the extension because there is found hrl files that have the
same name with the Erlang files in the same package. This will cause
duplicated class name if we omit the extension.

3. Not all datatypes can be found in the same subsystem, some datatypes of the
operation’s arguments use datatypes from other subsystems.

4. Operations have various type return value, sometimes the return value is to call
another operation in other block or subsystem. We did not handle the return
value.

