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Abstract
Today there are many different audio coding algorithms, some of them standardized
by the ITU, like G.711, G.726 and G.728, and several other codecs by other
organizations, like Fraunhofer (Mp3) and Microsoft (WMA). All these algorithms
differ in several important features, like speech quality, bit or compression rate,
robustness, delay, sampling frequency, complexity and range of use.

The past decade we have witnessed a great progress towards application of low-rate
speech/music coders as well as computer related voice/music applications. Central
to this progress has been the development of speech coders capable of producing
high-quality speech and music at low rates. Most of these coders incorporate
mechanisms to: represent the spectral properties of speech/music and optimize the
coder’s performance for the human ear.

The objective of this thesis is to compare audio coding algorithms for use in an
embedded networked system: PCM and ADPCM for speech, and Mp3, WMA and
Ogg-Vorbis for music. The thesis report starts with a theoretical background of the
different transport protocols, some signal theory and information about all the audio
coding algorithms we would like to analyse.

Numerical analysis with MatLab and a subjective assessment of audio quality are
performed to find out which audio codec is best suited in an embedded VoIP
system. Our main observations are; that the quantization noise increases when the
quantization levels decreases, that is, lower bit rate result in higher quantization
noise; codecs implemented in MatLab with lower than 40 kbit/s bit rate is not suited
for an audio based embedded system; and that WMA 48 kbit/s is very well suited
for a networked embedded radio system.
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Chapter 1 - Introduction

1.1. Thesis introduction
The transmission of voice over packet switched networks, such as an IP network
(like the Internet), is an area of active research. Much of the past work focused on
using packet switching for both voice and data in a single network. Renewed interest
in packet voice, and more generally, packet audio applications has been fuelled by
the availability of supporting hardware, increased bandwidth throughout the Internet
and the desire to integrate data and voice services in the networks.

Intercom is today used as a communication system linking different rooms within a
building etc. VoIP, also called Internet telephony or IP telephony, is the
transmission of voice telephony services over IP. Combining these two technologies
this project aims to make an intercom, following on with an analysis of what audio
codec algorithm is best suited for this purpose. For more efficient use of bandwidth
it is interesting to investigate how different audio coding algorithms is encoded and
decoded.

The motivation for transporting voice over IP networks is the potential cost saving
achievable by eliminating or bypassing the circuit-switched telephony infrastructure.
This form of intercom will have several advantages compared to normal telephony
or intercom. These advantages include lower costs per call, especially for long-
distance calls; lower infrastructure costs once IP infrastructure is installed, no or
little additional telephony infrastructure is needed. Note that VoIP traffic does not
necessarily have to travel over the public Internet: it may also be deployed on
private IP networks. This may be important for a large corporation that has many
industry secrets.

Intercom today, is used as an alternative communication inside a building and
requires the installation of wires for each speaker. Making this IP based, you can
integrate the speakers to the already existing infrastructure of CAT5 cables or
WLAN infrastructure. This makes the system cheaper and easier to build. The usage
area is almost endless for example public announcements can be heard over the
built-in speaker, an emergency button triggers a remote alarm on a highway or on a
gas station etc.
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1.2. Thesis description
The transfer of voice traffic over packed network, and especially voice over IP
(VoIP), is rapidly gaining acceptance. VoIP can significantly reduce the per minute
cost, especially for long-distance bills. Today there are many different audio coding
algorithms, standardized by the International Telecommunication Union (ITU-T),
for use in VoIP networks. All these algorithms differ in several important features,
like speech quality, bit or compression rate, robustness, delay, sampling frequency,
and complexity.

This thesis aims to develop a networked embedded system (IP-telephone/Intercom),
and undertake an analysis with different audio codec algorithms implemented. The
codecs; G.711 PCM, G.726 ADPCM and G.728 LDCELP will be tested.
Additionally it will be build interface circuitry for the Rabbit trainer. Then error
coders will be added to the pc, measuring the effects. Finally, experiments with
different audio codecs will be run, considering cost and performance. If time
permits, experiments with other codecs, like MP3, WMA, Ogg-Vorbis and
Bluetooth Sub-Band Codec will be investigated. 

Figure 1.2:1 – IP-telephone to PC communication
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1.3. Thesis outline
Chapter 2 - Literature review
This chapter is a little dive into some of the protocols, audio codec algorithms and
some signal theory that will be useful for the thesis.

Chapter 3 - Design and implementation
This chapter gives the reader a short introduction to the Rabbit trainer, the
development tools used, explains the circuitry interfaces, explains how the audio
codecs were implemented and finally explains the implementation of the Visual
Basic application.

Chapter 4 - Experiments
In this chapter all the experiments are presented and it is explained how they are
performed.

Chapter 5 - Results
In this chapter all the results are presented so that the reader can make their own
decisions based on our graphs and analysis of the results.

Chapter 6 - Discussion
This chapter presents an analysis of our results presented in chapter 6 - results.
Further it explains our main observations and results from the analysis.

Chapter 7 - Conclusion
This chapter presents a clear conclusion based on our results and discussion. This
chapter also explains our suggested improvements of the project and what work that
remains.
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Chapter 2 - Literature review

2.1. Basics of VoIP
Packet voice systems accept “analogue” voice signals from telephone handsets,
digitize and compress the signal, placing the resulting series of bits into a short
packet, send the packet over a network and then decode and reconstruct the signal at
the remote end.

An IP phone perform the digitization, compression and packaging process directly
within the phone and sends the resulting stream of packets over an Ethernet
connection. [1]

Generally, the benefits of VoIP technology can be divided into the following four
categories:

• Cost Reduction: Reducing long distance telephone costs is a good reason
for implementing VoIP. Today flat rate long distance pricing is available
with the Internet and can result in considerable savings for both voice and
facsimile (at least currently). The sharing of equipment and operations costs
across both data and voice users can also improve network efficiency since
excess bandwidth on one network can be used by the other, thereby creating
economies of scale for voice (especially given the rapid growth in data
traffic).

• Simplification: An integrated infrastructure that supports all forms of
communication allows for increased standardization and reduces the total
equipment complement. This combined infrastructure can support dynamic
bandwidth optimization and a fault tolerant design. The differences between
the traffic patterns of voice and data, offer further opportunities for
significant efficiency improvements.

• Consolidation: Since people are the most significant cost elements in a
network, any opportunity to combine operations, to eliminate points of
failure, and to consolidate accounting systems would therefore be beneficial.
In the enterprise, SNMP-based management can be provided for both voice
and data services using VoIP. Universal use of the IP protocols for all
applications holds out the promise of both reduced complexity and more
flexibility. Related facilities such as directory services and security services
may be more easily shared.

• Other Advanced Applications: Even though basic telephony and facsimile
are the initial applications for VoIP, the long term benefits are expected to be
derived from multimedia and multiservice applications. For example,
Internet commerce solutions can combine WWW access to information with
a voice call button that allows immediate access to a call centre agent from
the PC. Needless to say, voice is an integral part of conferencing systems
that may also include shared screens, whiteboarding, etc. Combining voice
and data features with new applications will provide the greatest returns over
the long term. Videoconferencing can also be greatly enhanced. [2]
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2.2. VoIP related protocols

2.2.1. H.323
H.323 is a standard [3] that specifies the components, protocols and procedures that
provide multimedia communication services-real-time audio, video, and data
communications over packet networks, including Internet protocol (IP)–based
networks. H.323 is part of a family of ITU-T recommendations called H.32x that
provides multimedia communication services over a variety of networks. [3]

Fundamentally, there are four entities in a general H.323 implementation. These are
terminals, gatekeepers, gateways, and multipoint control units (MCUs).
Terminals, gateways, and MCUs are collectively known as endpoints. Not all these
entities are required in an H.323 implementation. An H.323 implementation may
consist of terminals alone, but the practical usefulness of such a network may be
greatly reduced.

Terminals are H.323 client endpoints that provide real-time bi-directional
multimedia communications. The terminal may either be a multimedia PC or a
stand-alone device. It may merely be a simple telephone. All that the H.323 standard
requires from the terminal is that it must support audio communications. Video and
data communications are optional. All audio, data, and video processing occur in the
terminal.

Gatekeepers are often referred to as the “brains” of an H.323 network. It is the most
important component of an H.323 network. The H.323 standard requires 4 functions
from the gatekeeper. These are Address Translation; Admissions Control,
Bandwidth Control; and Zone Management. Optional gatekeeper functions include
Call Control Signal Processing; Call Authorization; Bandwidth Management, and
Call Management.

Gateways are optional components of an H.323 implementation. When
communications between different networks (such as LAN and PSTN) is desired,
gateways are needed at the interface. Gateways provide data format translation,
control signalling translation, audio/video codec translation, and call
setup/termination functionality on both sides of the network.

MCUs facilitate videoconferencing with more than two participants. It serves as the
coordinator of all multimedia capabilities of the participants in a multiparty
conference. It can even provide features such as audio mixing and video selection
for participating terminals without these capabilities. It accomplishes these functions
with the use of a multipoint controller, which is required, and zero or more
multipoint processors. MCUs are not required in an H.323 implementation, unless
multiparty conferences are desired. [4]

2.2.2. SIP
The Session Initiation Protocol (SIP) [33] is a signalling protocol for initiating,
managing and terminating voice and video sessions across packet networks. SIP
sessions involve one or more participants and can use unicast or multicast
communication. Borrowing from ubiquitous Internet protocols, such as HTTP and
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SMTP, SIP is text-encoded and highly extensible. SIP may be extended to
accommodate features and services such as call control services, mobility,
interoperability with existing telephony systems, and more. SIP is being developed
by the SIP Working Group, within the Internet Engineering Task Force (IETF). The
protocol is published as IETF RFC 2543 [33] and currently has the status of a
proposed standard.

A SIP network is composed of four types of logical SIP entities. Each entity has
specific functions and participates in SIP communication as a client (initiates
requests), as a server (responds to requests), or as both. One “physical device” can
have the functionality of more than one logical SIP entity. For example, a network
server working as a Proxy server can also function as a Registrar at the same time.
Following are the four types of logical SIP entities:

In SIP, a User Agent (UA) is the endpoint entity. User Agents initiate and terminate
sessions by exchanging requests and responses. RFC 2543 defines the User Agent as
an application, which contains both a User Agent client and User Agent server, as
follows:

• User Agent Client (UAC) - a client application that initiates SIP requests.
• User Agent Server (UAS) - a server application that contacts the user when

a SIP request is received and that returns a response on behalf of the user.

Some of the devices that can have a UA function in a SIP network are: workstations,
IP-phones, telephony gateways, call agents, automated answering services.

A Proxy Server is an intermediary entity that acts as both a server and a client for
the purpose of making requests on behalf of other clients. Requests are serviced
either internally or by passing them on, possibly after translation, to other servers. A
Proxy interprets, and, if necessary, rewrites a request message before forwarding it.

A Redirect Server is a server that accepts a SIP request, maps the SIP address of
the called party into zero (if there is no known address) or more new addresses and
returns them to the client. Unlike Proxy servers, Redirect Servers do not pass the
request on to other servers.

A Registrar is a server that accepts REGISTER requests for the purpose of
updating a location database with the contact information of the user specified in the
request. [5]

2.2.3. RTP
RTP, the real-time transport protocol [6], provides end-to-end network transport
functions suitable for applications transmitting real-time data, such as audio, video
or simulation data, over multicast or unicast network services. RTP does not address
resource reservation and does not guarantee quality-of- service for real-time
services. The data transport is augmented by a control protocol (RTCP) to allow
monitoring of the data delivery in a manner scalable to large multicast networks, and
to provide minimal control and identification functionality. RTP and RTCP are
designed to be independent of the underlying transport and network layers. The
protocol supports the use of RTP-level translators and mixers.
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2.2.4. RTCP
RTCP is the control protocol for RTP (Real-time Transport Protocol) [7]. It is used
to periodically transmit control packets to participants in a streaming multimedia
session. RTCP's primary function is to provide feedback on the quality of service
being provided. This feedback may be used to scale back the sender for flow-control
reasons or to keep from congesting the network. The sender may also use the
information to change the current compression ratio. RTCP is outlined in 1889
(RTP: A Transport Protocol for Real-Time Applications, January 1996) [7].

2.3. Transport protocols

2.3.1. TCP
TCP, Transmission Control Protocol [8], fits into layered protocol architecture just
above a basic Internet Protocol which provides a way for the TCP to send and
receive variable-length segments of information enclosed in internet datagram
“envelopes”.  The internet datagram provides a means for addressing source and
destination TCPs in different networks.  The internet protocol also deals with any
fragmentation or reassembly of the TCP segments required to achieve transport and
delivery through multiple networks and interconnecting gateways. The internet
protocol also carries information on the precedence, security classification and
compartmentation of the TCP segments, so this information can be communicated
end-to-end across multiple networks.

TCP provides multiplexing, demultiplexing, and error detection in exactly the same
manner as UDP (to be explained in 2.3.2). The most fundamental difference
between TCP and UDP is that UDP is connectionless, while TCP is connection
oriented. TCP is connection oriented because before one application process can
begin to send data to another, the two processes must first “handshake” with each
other – that is, they must send some preliminary segments to each other to establish
the parameters of the ensuing data transfer. The TCP “connection” is not an end-to-
end TDM or FDM circuit as in circuit switched network. Nor is it a virtual circuit, as
the connection state resides entirely in the two end systems. Because the TCP
protocol runs only in the end systems and not in the intermediate network elements
(routers and bridges), the intermediate network elements do not maintain TCP
connection state. In fact, the intermediate routers are completely oblivious to TCP
connections - they see datagrams, not connections. [9 p.207-208]

Connection establishment
The client first sends a special TCP segment, the server responds with a second
special TCP segment, and finally the client responds again with a third special
segment. The first two segments contain no “payload”, that is, no application-layer
data. The third of these segments may carry a payload. Because three segments are
sent between the two hosts, this connection establishment procedure is often referred
to as a “three-way handshake”.

Once a TCP connection is established, the two application processes can send data
to each other, because TCP is full-duplex they can send data at the same time.
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TCP Segment structure
The TCP segment structure, shown in
Figure 2.3:1, is defined in the RFC793
[8]. The TCP segment consists of
header file and a data field. The data
field contains a chunk of application
data. The MSS (Maximum Segment
Size) limits the maximum size of a
segment’s data field. When TCP sends
a large file, such as an encoded image
as part of a web page, it typically
breaks the file into chunks of size MSS
(except for the last chunk, which will
often be less than the MSS). The TCP
header is typically 20 bytes (12 bytes
more than the UDP header).

The source and destination port
numbers in the header are used for
multiplexing/demultiplexing data
to/from upper layer applications. Also,
as with UDP, the header includes a
checksum field. A TCP segment header also contains the following fields described
below [9 p.210-211]:

• The 32-bit sequence number field and the 32-bit acknowledgment number
field are used by the TCP sender and receiver in implementing a reliable
data-transfer service.

• The 16-bit window-size (Advertised window) field is used for flow control.
This is used to indicate the number of bytes that a receiver is willing to
accept.

• The 4-bit length field specifies the length of the TCP header in 32-bit words.
The TCP header can be of variable length due to the TCP options field,
discussed below. (Naturally, the options field is empty, so that the length of
the typical TCP header is 20bytes).

• The optional and variable length options field is used when a sender and
receiver negotiate the maximum segment size (MSS) or as a window scaling
factor for use in high-speed networks. A timestamping option is also defined.
See RFC854 and RFC1323 for additional details.

• The flag field contains 6 bits. The ACK bit is used to indicate that the value
carried in the acknowledgment field is valid. The RST, SYN and FIN bits
are used for connection setup and teardown. When the PSH bit is set, this is
an indication that the receiver should pass the data to the upper layer
immediately. Finally, the URG bit is used to indicate that there is data in this
segment that the sending-side upper layer entity has marked as “urgent”. The
location of the last byte of this urgent data is indicated by the 16-bit urgent
data pointer. TCP must inform the receiving-side upper-layer entity when
urgent data exists and pass it a pointer to the end of the urgent data. (In

Figure 2.3:1 – TCP segment structure
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practice, the PSH, URG, and pointer to urgent data are not used. However,
we mention these fields for completeness).

Using TCP you obtain a reliable connection; TCP uses the sequence number and the
acknowledgment number to maintain a reliable connection. TCP views data as an
unstructured, but ordered, stream of bytes. The sequence number for a segment is
the byte-stream number of the first byte in the segment. The acknowledgement
number that e.g. host A puts in its segment is the sequence number of the next byte
host A is expecting from host B. If A misses one segment from B, B will notice this
when B does not receive a correct ACK. B then retransmits the segment requested
from A. Another reason for B to resend to a segment is when an ACK from A times
out. [9 p.210-211]

2.3.2. UDP
The User Datagram Protocol (UDP) [10] is defined to make a datagram mode of
packet-switched computer communication in the environment of an interconnected
set of computer networks available. This protocol assumes that the Internet Protocol
(IP) is used as the underlying protocol. This protocol provides a procedure for
application programs to send messages to other programs with a minimum of
protocol mechanism. The protocol is transaction oriented, and delivery and duplicate
protection are not guaranteed. [10]

UDP is a no-frills, lightweight transport protocol with a minimalist service model.
UDP is connectionless, so there is no “handshaking” before the two processes start
to communicate. UDP provides an unreliable data transfer service, that is, when a
process sends a message into a UDP socket, UDP provides no guarantee that the
message will ever reach the receiving socket. Furthermore, messages that do arrive
to the receiving socket may arrive out of order.

On the other hand, UDP does not include a congestion-control mechanism, so a
sending process can pump data into a UDP socket at any rate it pleases. Although all
the data may not make it to the receiving socket, a large fraction of the data may
arrive. [9 p.82]

UDP Segment structure
Aside from
multiplexing/demultiplexing
function and some light error
checking, it adds nothing to the IP.
In fact, if the application developer
chooses UDP instead of TCP, then
the application is almost talking
with IP. UDP takes messages from
the application process, attaches
source and destination port
number fields for the
multiplexing/demultiplexing
service, and adds (header + data)
length and checksum, and the
resulting segment to the network layer. The network layer encapsulates the segment

Figure 2.3:2 – UDP segment structure



Master thesis in Information and Communication Technology Date: 31-May-04
Analysis of audio coding algorithms for networked embedded systems Version: 2.8NO

- 10 -

into an IP datagram and then makes a best-effort attempt to deliver the segment to
the receiving host. If the segment arrives at the receiving host, UDP uses the port
numbers and the IP destination address to deliver the segment’s data to the correct
application process. Note that with UDP there is no “handshaking” between sending
and receiving transport-layer entities before sending a segment. For this reason,
UDP is said to be connectionless. [9. p.177]

The UDP segment, shown in Figure 2.3:2, is defined in the RFC768 [10]. The
application data occupies the data field of the UDP datagram. For example, for a
streaming audio application, audio samples fill the data field. The UDP header only
has four fields, each consisting of two bytes. The port numbers allow the destination
host to pass the application data to the correct process running on the destination
(that is, the demultiplexing function). The checksum is used by the receiving host to
check if errors have been introduced into the segment. In truth, the checksum is also
calculated over a few of the fields in the IP header in addition to the UDP segment.
[9. p.180]

2.3.3. UDP vs. TCP in real-time systems
No connection establishment: TCP uses a three-way handshake before it starts to
transfer data. UDP just blasts away without any formal preliminaries. Thus UDP
does not introduce any delay to establish a connection.

No connection state: TCP maintains connection state in the end system. This
connection state includes receive and send buffers, congestion-control parameters.

Sequence and acknowledgment number parameters: UDP, on the other hand,
does not maintain connection state and does not track any of these parameters. For
this reason, a server devoted to a particular application can typically support many
more active clients when the application runs over UDP rather than TCP.

Small packet header overhead: The TCP segment has 20bytes of header overhead
in every segment, whereas UDP only has 8bytes of overhead.

Unregulated send rate: TCP has a congestion control mechanism that throttles the
sender when one or more links between sender and receiver become excessively
congested. This throttling can have a severe impact on real-time applications, which
can tolerate some packet loss but requires a minimum send rate. On the other hand,
the speed at which UDP sends data is only constrained by the rate at which the
application generates data, the capabilities of the source (CPU, clock rate, and so
forth) and the access bandwidth to the internet. We should keep in mind, however,
that the receiving host does not necessarily receive all the data. When the network is
congested, some of the data could be lost due to router buffer overflow. [9. p.178]

2.3.4. IP
The Internet Protocol [11] is designed for use in interconnected systems of packet-
switched computer communication networks. The internet protocol provides for
transmitting blocks of data called datagrams from sources to destinations, where
sources and destinations are hosts identified by fixed length addresses.  The internet
protocol also provides for fragmentation and reassembly of long datagrams, if
necessary, for transmission through “small packet” networks. [11]
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The internet protocol is specifically limited in scope to provide the functions
necessary to deliver a package of bits (an internet datagram) from a source to a
destination over an interconnected system of networks.  There are no mechanisms to
augment end-to-end data reliability, flow control, sequencing, or other services
commonly found in host-to-host protocols.  The internet protocol can capitalize on
the services of its supporting networks to provide various types and qualities of
service. [11]

The Options provide for control functions needed or useful in some situations but
unnecessary for the most common communications. The Options include provisions
for timestamps, security, and special routing. The Header Checksum provides a
verification that the information used in processing internet datagram has been
transmitted correctly. The data may contain errors. If the header checksum fails, the
internet datagram is discarded at once by the entity which detects the error. The
internet protocol does not provide a reliable communication facility. There are no
acknowledgments either end-to-end or hop-by-hop. There is no error control for
data, only a header checksum. There are no retransmissions. There is no flow
control. Errors detected may be reported via the Internet Control Message Protocol
(ICMP) which is implemented in the internet protocol module. [11]

IPv4 Datagram format
Version number: These four bits
specify the IP protocol version of the
datagram. By looking at the version
number, the router can then determine
how to interpret the remainder of the
IP datagram. The current datagram
format, IPv4, is shown in Figure
2.3:3, and is defined in the RFC791
[11].

Header length: Because an IPv4
datagram can contain a variable
numbers of options, these four bits are
needed to determine where in the IP
datagram the data actually begins.
Most IP datagrams do not contain
Options, so the typical IP datagram
has a 20byte header.

TOS: The Type of Service bits were
included in the IPv4 header to allow
different “types” of IP datagrams to be distinguished from each other, presumably
so that they could be handled differently in times of overload. It would be useful to
distinguish real-time datagrams (used by an IP-telephony application for example)
from non-real-time traffic (for example FTP).

Length (datagram length): This is the total length of the IP datagram (header +
data) measured in bytes. Since this field is 16bits long, the theoretical maximum size

Figure 2.3:3 – IPv4 datagram format
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of the IP datagram is 65535 bytes. However, datagrams are rarely greater than 1500
bytes and are often limited in size to 576 bytes.

Identifier, Flags, Fragmentation offset: These three fields have to do with
socalled “IP fragmentation”.

Time-to-live: The time-to-live (TTL) field is included to ensure that datagrams do
not circulate forever (due to a long-lived router loop for example) in the network.
This field is decremented by one each time the datagram is processed by a router
and is dropped when it reaches zero.

Upper layer protocol: This field is used only when an IP datagram reaches its final
destination. The value of this field indicates the transport-layer protocol at the
destination to which the data portion of this IP datagram will be passed.
Checksum (header checksum): The header checksum aids a router in detecting bit
errors in a received IP datagram. Routers typically discard datagrams for which an
error has been detected. Note that the checksum must be recomputed and restored at
each router, as the TTL field and possibly options fields as well, may change.

Source and destination IP address: These fields carry the 32-bit IP address of the
source and final destination for this IP datagram.

Options: The options fields allow an IP header to be extended.

Data (payload/message): In most circumstances, the data field of the IP datagram
contains the transport-layer segment (TCP or UDP) to be delivered to the
destination. However, the data field can carry other types of data, such as ICMP
messages. [9 p.314 - 316]

2.4. Quality of Service (QoS)
The current Internet service model is flat, offering a classless and best-effort
delivery service. The biggest problem faced by voice over packet networks is that of
providing end users with the quality of service that they get in a traditional
telephony network. Unlike the PSTN (Public Switched Telephone Network), where
a dedicated end-to-end connection is established for a call, packet based networks
use statistical multiplexing of network resources. Although sharing resources among
multiple users promotes cost effectiveness (hence the attraction of voice over packet
networks), it does not guarantee the overall quality of service offered to a user. The
next generation of IP, version 6, includes support for the flow control of packets
between one or more hosts. In conjunction with a hop-by-hop resource reservation
protocol such as RSVP, end-to-end capacity can be set aside for real-time traffic.
There are multiple parameters that determine the quality of service provided by a
network. This subsection describes the barriers to the operation of these schemes,
including requirements for codecs, bandwidth, delays, delay jitter and the packet
loss experienced in a network. [9]

2.5. Packet Loss and Missing Packets
Voice packets routed through an IP network could be lost due to its best-effort
nature. To provide reliable transmission of data in an IP network, a retransmission
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scheme is used at the transport layer (TCP), which retransmits any packets for which
an acknowledgement is not received from the destination (assuming that the packet
gets lost). However, the same scheme cannot be applied to voice, as a retransmitted
voice packet might reach the destination much later than when it is needed. Packets
arriving late due the delays described above are discarded at the receiver. There are
also packets which are lost due to the network errors and the best-effort nature of IP
networks. All these discarded and lost packets are considered as “missing packets”,
and a good reconstruction algorithm is necessary to fill in these packets. [9]

2.6. Echo
Echo occurs as a result of transmitted signals being coupled into a return path and
fed back to their respective sources. The returned signal occurs with noticeable
delay. The subjective effect of echo is also a function of delay. On short
connections, the delay is small enough for the echo to appear to the talker as a mere
natural coupling in his ear. A telephone is purposely designed to couple some
speech energy (called sidetone) in the earpiece. Otherwise, the telephone seems
dead to the talker. If the delay is more than about 25 milliseconds, the caller can
hear a distinct echo. Hence, long-distance circuits require significant attenuation to
minimize echo annoyance due to this long round-trip delay or else require
specialised signal processing circuits to remove echo. Echo affects the talker more
than the listener. Because of this echo, one can hear one’s own voice in the receiver
after a delay of more than about 25 ms - this can cause interruptions and break the
cadence in a conversation. [9]

2.7. Signal theory

2.7.1. Sampling
Sampling is the process of encoding an analogue signal in digital form by reading
(sampling) its level, at precisely spaced intervals of time. [31]

Nyqvist theorem:
“An analogue signal must be sampled at a rate of twice the maximum frequency of
the signal to produce an accurate representation of the signal. Conversely, for a
given sampling rate, the maximum frequency of the analogue signal that can be
accurately represented is one-half the sampling rate”.

2.7.2. Encode/Decode
An encoder is any program, circuit or algorithm which encodes an input signal, by
converting electronic data into a given format, e.g. binary PCM, while the decoder
converts the encoded signal back to the original format as a reconstruction of the
original input signal. [31]

2.7.3. A/D & D/A – conversion
Analogue-to-Digital (A/D)
A A/D device is a device that changes the continuous fluctuations in voltage from an
analogue device, such as a microphone, into digital information that can be stored or
processed in a sampler, digital recording device. [31]
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Digital-to-Analogue (D/A)
A D/A device is a device that changes the sample words put out by a digital audio
device into analogue fluctuations in voltage that can be sent to a mixer, amplifier, or
speaker for example. [31]

2.7.4. Quantization
Quantization is a way of representing an analogue signal by a vector of discrete
values. The signal, after quantization, has a stepped shape rather than its original
continuous curve, and the difference between this and the original signal is
quantization error. [31]

Quantization error is the difference between the actual analogue value at the
sample time and the nearest quantized (digitally encoded) value. At worst, the
quantized value encoded will be no greater than one-half increment away from the
actual analogue value. Quantization error is related to the SNR and the maximum
number of quantization increments is related to dynamic range. [31]

Quantization noise is one of the types of error introduced into an analogue audio
signal by encoding it in digital form. The digital equivalent of tape hiss, quantization
noise, is caused by the small differences between the actual amplitudes of the points
being sampled and the bit depth of the A/D converter. In the quantization of a sine
wave whose frequency is a sub-multiple of the sampling frequency, the error will
have a definite pattern which repeats at the frequency of the signal, having a
frequency content consisting of multiples of this frequency, where it can be
considered as harmonic distortion rather than noise. In music, however, the signal is
constantly changing and no such regularity exists, resulting in quantization error,
producing wideband noise, called quantization noise. [31]

Quantizing increments is the total number of stepped levels, from noise floor to
saturation, that an A/D has available for assignment of the continuously varying
analogue input voltage with each sample taken. [31]

Figure 2.7:1 – Illustration of Quantization [31]
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2.7.5. Compander/Expander
A compander is a device for noise reduction in audio devices such as recorders.
The compander will reduce the dynamic range of the signal before sending it to be
recorded. The compression makes the softer passages louder so the dynamic range
recorded is less than it would be if it were not compressed. Then on playback, the
signal is expanded, that is, the softer passages, which are too loud, are reduced in
volume to match the original signal, restoring its dynamics. [31]

Expander is a signal processing device which is the inverse of a compressor,
providing the gradual attenuation of signals that fall below a user-defined threshold.
This process, known as expansion, reduces background noise and at the same time
increases the dynamic range of the input signal. [31]

2.7.6. Aliasing
Aliasing is distortion that is produced when higher harmonic components of the
input audio signal sampled by a digital recording device, or generated within a
digital sound source, lie above the Nyquist frequency. The effects of aliasing differ
from some other types of distortion in that its pitch changes radically when the pitch
of the intended sound changes. [31]

Before a signal is subjected to the process of A/D conversion, it must be passed
through a low-pass brick-wall filter to remove any components that are higher than
the Nyquist frequency. This is because it requires at least two samples per cycle to
determine the existence and strength of a frequency component, or the A/D process
will create aliased signals. [31]

2.7.7. Signal-To-Noise Ratio and BER
Signal-to-Noise Ratio in analogue and digital communications is a measure of
signal strength relative to background noise. The ratio is usually measured in
decibels (dB).

If the incoming signal strength in microvolts is Vs, and the noise level, also in
microvolts, is Vn, then the signal-to-noise ratio, S/N (in decibels) is given by the
formula

( )ns VVlog1020S/N =
Equation 2.7:1 - SNR formula

If Vs = Vn, then S/N = 0. In this situation, the signal borders are unreadable, because
the noise level severely competes with it. In digital communications, this will
probably cause a reduction in data speed because of frequent errors that require the
source computer or terminal to resend some packets of data. Ideally, Vs is greater
than Vn, so S/N is positive. [31]

The Bit Error Rate (BER) in telecommunication is the transmission of the
percentage of bits that have errors relative to the total number of bits received in a
transmission, usually expressed as ten to a negative power. For example, a
transmission might have a BER of 10 to the minus 6, meaning that, out of 1 000 000
bits transmitted, one bit was in error. The BER is an indication of how often a
packet or other data units has to be retransmitted because of an error. Too high a
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BER may indicate that a slower data rate would actually improve overall
transmission time for a given amount of transmitted data since the BER might be
reduced, lowering the number of packets that had to be resent. [31]

2.8. Audio coding algorithms
International Telecommunication Union (ITU-T) has standardized numbers of
speech codecs that sample voice and convert it into digital code, like G.711 (PCM),
G.721 ADPCM, G.726 (ADPCM) and G.728 (LD-CELP). CCITT (International
Consultative Committee on Telecommunications and Telegraphy) changed its name
to ITU-T on 1 March 1993.

Table 2.8:1 – Audio coding algorithms
Standard: Standardized

by:
Description: Bit

rate:
(kbs)

Sampling
rate:
(kHz)

Typically end-to-
end delay (ms)
excluding channel
delay:

G.711 PCM ITU-T Pulse code
modulation

64 8 << 1

G.726
ADPCM

CCITT
(ITU)

Adaptive
Differential Pulse
Code Modulation

16, 24,
32, 40

8 60

G.728
LD-CELP

CCITT
(ITU)

Low-Delay Code
Excited Linear
Prediction

16 8 << 2

Mp3 Fraunhofer ISS MPEG1 Layer III 32 –
320

8 – 48 N/A

WMA Microsoft Windows Media
Audio

32 –
320

8 – 48 N/A

Ogg-vorbis Xiph.org
Foundation

Ogg-Vorbis 16 –
320

8 – 48 N/A

BSC Bluetooth Bluetooth Sub-
band Codec

16 –
32

8 – 48 N/A

2.8.1. G.711 PCM
Without using any knowledge of how the signal to be coded was generated,
waveform codecs attempt to produce a reconstructed signal whose waveform is as
close as possible to the original. This means that in theory they should be signal
independent and work well with non-speech signals. Generally they are low
complexity codecs which produce high quality speech at rates above about 16kbps.
When the data rate is lowered below this level the reconstructed speech quality that
can be obtained, degrades rapidly.

PCM merely involves sampling and quantizing the input waveform. Narrow-band
speech is typically band-limited to 4 kHz and sampled at 8 kHz. If linear
quantization is used then, to give good quality speech, around 12 bits per sample are
needed, giving a bit rate of 96kbits/s. This bit rate can be reduced by using non-
uniform quantization of the samples. In speech coding an approximation to a
logarithmic quantizer is often used. Such quantizers give a signal to noise ratio,
which is almost constant over a wide range of input levels, and at a rate of 8
bits/sample (or 64kbits/s) give a reconstructed signal which is almost
indistinguishable from the original uniformly quantised signal. [12]
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The accuracy of the lower amplitude parts of the signal is more important than the
larger amplitude parts, hence a non-linear method of quantization can be used to
reduce the data rate. The idea here is to vary the distance between quantization
reconstruction levels so that the distance increases as the amplitude of sample
increases. To do this, the sampled signal is first passed through a logarithmic
compressor and then uniformly quantized. In reverse the signal is passed through an
expander with the inverse transform characteristics of the compressor. This process
is referred to as “companding”. Two particular logarithmic quantization techniques
for PCM, as defined by CCITT are in worldwide use. Essentially, the G.711
standard compresses a 13-bit A-law (Europe) or 14-bit µ−law (US) linear PCM
sample to an 8 bit logarithmic representation. [23]

The definition, their relationship and translation between A-law and µ-law are given
in the tables presented in the G.711 recommendation from ITU-T. [24]

Figure 2.8:1 – PCM codec

2.8.2. G.726 ADPCM
ADPCM, Adaptive Differential Pulse Code Modulation, is a way an analogue signal
can be converted to a digital signal. In the 1980s that was first standardized by the
CCITT in G.721 for 32 kbps. Later came the standards G.726 and G.727 for 40, 32,
24 and 16 kbps. G.726 replaces G.721 and G.723 [13].

G.726 specifies how a 64 kbps A-law or µ-law PCM signal can be converted to 40,
32, 24 or 16 kbps ADPCM channels where the 24 and 16 kbps channels are used for
voice in Digital Circuit Multiplication Equipment (DCME) and the 40 kbps is for
data modem signals (especially modems doing 4800 kbps or higher) in DCME. [13]

Adaptive Differential Pulse Code Modulation (ADPCM) codecs are waveform
codecs, which instead of quantizing the speech signal directly, like PCM codecs,
quantize the difference between the speech signal and a prediction that has been
made of the speech signal. If the prediction is accurate then the difference between
the real and predicted speech samples will have a lower variance than the real
speech samples, and will be accurately quantized with fewer bits than would be
needed to quantize the original speech samples. At the decoder the quantized
difference signal is added to the predicted signal to give the reconstructed speech
signal. The performance of the codec is aided by using adaptive prediction and
quantization, so that the predictor and difference quantizer adapt to the changing
characteristics of the speech being coded. [12]
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ADPCM encoder
Subsequent of the A-law or µ-law PCM input signal to uniform PCM, a difference
signal is obtained, by subtracting an estimate of the input signal form the input
signal itself. An adaptive 31-, 15-, 7-, or 4-level quantizer is used to assign five,
four, three or two binary digits, respectively, to the value of the difference signal for
transmission to the decoder. An inverse quantizer produces a quantized difference
signal from these same five, four, three or two binary digits, respectively. The signal
estimate is added to this quantized difference signal are operated reconstructed
version of the input signal. Both the reconstructed signal and the quantized
difference signal are operated upon by an adaptive predictor which produces the
estimate of the input signal, thereby completing the feedback loop. Illustration of the
encoding process is presented in Figure 2.8:2. The encoding process is further
explained in the G.726 recommendation from CCITT (ITU). [25]

Figure 2.8:2 – G.726 ADPCM Encoder block diagram [25]

ADPCM Decoder
The decoder includes a structure identical to the feedback portion of the encoder,
together with a uniform PCM to A-law or µ-law conversion and a synchronous
coding adjustment.

The synchronous coding adjustment prevents cumulative distortion occurring on
synchronous tandem coding (ADPCM-PCM-ADPCM, etc., digital connections)
under certain conditions [see 25 §3.7]. The synchronous coding adjustment is
achieved by adjusting the PCM output codes in a manner which attempts to
eliminate quantizing distortion in the next ADPCM encoding stage. Illustration of
the decoding process is presented in Figure 2.8:3. The decoding process is further
explained in the G.726 recommendation from CCITT (ITU) [25].
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Figure 2.8:3 – G.726 ADPCM Decoder block diagram [25]

2.8.3. G.728 LD-CELP
G.728 Low-Delay Code Excited Linear Prediction (LD-CELP) compression is a 16
kbps compression. This has an algorithmic coding delay of 0.625ms. However,
because of the forward adaptive determination of the short term filter coefficients
used in most of these codecs, they tend to have high delays. The delay of a speech
codec is defined as the time from when a speech sample arrives at the input of its
encoder to when the corresponding sample is produced at the output of its decoder,
assuming the bit stream from the encoder is fed directly to the decoder. For a typical
hybrid speech codec, this delay will be in the order of 50 to 100 ms, and such a high
delay can cause problems. [12]

Encoding Processes
After the conversion from A-law or µ-law PCM to uniform PCM, the input is
portioned into blocks of five-consecutive input signal samples. For each input block,
the encoder passes each of 1024 candidate codebook vectors (stored in excitation
codebook) though a gain scaling unit and a synthesis filter. From the resulting 1024
candidate quantized signal vectors, the encoder identifies the one that minimizes a
frequency-weighted mean-squared error measure with respect to the input signal
vector. The 10-bit codebook index of the corresponding best codebook vector (or
“codevector”), which gives rise to that best candidate quantized signal vector, is
transmitted to the decoder. The best codevector is the passed through the gain
scaling unit and the synthesis filter to establish the correct filter memory in
preparation for the encoding of the next signal vector. The synthesis filter
coefficients and the gain are updated periodically in a backward adaptive manner
based on the previously quantized signal and gain-scaling excitation. Illustration of
the encoding process is presented in Figure 2.8:4. The encoding process is further
explained in the G.728 recommendation from CCITT (ITU) [26].
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Figure 2.8:4 – G.728 LD-CELP simplified encoder block diagram [26]

Decoding Processes
Upon receiving each 10-bit index, the decoder performs a table look-up to extract
the corresponding codevector from the excitation codebook. The extracted
codevector is then passed through a gain scaling unit and a synthesis filter to
produce the current decoded signal vector. The synthesis filter coefficients and the
gain are then updated in the same way as in the encoder. The decoded signal vector
is the passed through an adaptive postfilter to enhance the perceptual quality. The
postfilter coefficients are updated periodically using the information available at the
decoder. The five samples of the postfilter signal vector are next converted to five
A-law or µ-law PCM output samples. Illustration of the decoding process is
presented in Figure 2.8:5. The decoding process is further explained in the G.728
recommendation from CCITT (ITU) [26].

Figure 2.8:5 – G.728 LD-CELP simplified decoder block diagram [26]

2.8.4. MP3
The MPEG/audio compression algorithm is the first international standard for the
digital compression of high-fidelity audio. MP3 stands for MPEG1 Layer III. This
layer introduces increased frequency resolution based on a hybrid filter bank. The
MP3 encoder compresses the data on the basis of Psychoacoustics Model. The
compression is done in the frequency domain. The decoder decodes the MP3
streams by using the Huffman Decode tables. [14]

First the mp3 codec throws away what humans can't hear anyway (or at least it
makes acceptable compromises), and then it encodes the redundancies to achieve
further compression. It then breaks the signal into smaller component pieces called
“frames,” each lasting a fraction of a second. One could consider these frames to be
similar to those in a movie film. The encoding bitrate is taken into account, and the
maximum number of bits that can be allocated to each frame is calculated. For
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instance, if you're encoding at 128 kbps, you would have an upper limit on how
much data can be stored in each frame (unless you're encoding with variable
bitrates). This step determines how much of the available audio data will be stored,
and how much will be left on the cutting room floor. The frequency spread for each
frame is compared to mathematical models of human psychoacoustics, which are
stored in the codec as a reference table. From this model, it can be determined which
frequencies need to be rendered accurately, seeing as though they'll be perceptible to
humans, and which ones can be dropped or allocated fewer bits, as we wouldn't be
able to hear them anyway. The collection of frames is assembled into a serial
bitstream, with header information preceding each data frame. The headers contain
instructional “meta-data” specific to that frame. [15]

Lossy compression, both used in Mp3 and Ogg-Vorbis, is any compression that
causes information to be lost. Compressing and then uncompressing a file results in
something similar, but not identical, to the original file. This is no good for things
that must be interpreted by a computer, like executable programs/applications or
most computer-readable data, but is more than sufficient for things where the
interpretation is being done by a human (like photographs or sounds). The trick is to
remove little bits of information in places where it cannot be perceived. Lossy audio
compression works using a psychoacoustic model. That is, by modelling how your
ears (and your brain) hear sound, it is possible to find places from which to remove
information that you would not have perceived anyway. [16]

As mentioned earlier, MP3 files are segmented into zillions of frames, each
containing a fraction of a second's worth of audio data, ready to be reconstructed by
the decoder. Inserted at the beginning of every data frame is a “header frame”,
which stores 32 bits of meta-data, related to the coming data frame. As illustrated in
Figure 2.8:6, the MP3 header begins with a “sync”
block, consisting of 11 bits. The sync block allows
players to search for and “lock onto” the first
available occurrence of a valid frame, which is
useful in MP3 broadcasting, for moving around
quickly from one part of a track to another, and for
skipping ID3 or other data that may be living at the
start of the file. However, note that it's not enough
for a player to simply find the sync block in any
binary file and assume that it's a valid MP3 file,
since the same pattern of 11 bits could theoretically
be found in any random binary file. Thus, it is also
necessary for the decoder to check for the validity of
other header data as well, or for multiple valid
frames in a row. Table 2.8:2 lists the total 32 bits of
header data that are spread over 13 header positions.

Figure 2.8:6 – Mp3 frame header
[15]
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Table 2.8:2 – The Thirteen Header Files' Characteristics [15]
Position Purpose Length

(Bits)
A Frame sync 11
B MPEG audio version (MPEG-1, 2, etc.) 2
C MPEG layer (Layer I, II, III, etc.) 2
D Protection (if on, then checksum follows header) 1
E Bit rate index (lookup table used to specify bit rate for this MPEG version

and layer) 4

F Sampling rate frequency (44.1kHz, etc., determined by lookup table) 2
G Padding bit (on or off, compensates for unfilled frames) 1
H Private bit (on or off, allows for application-specific triggers) 1
I Channel mode (stereo, joint stereo, dual channel, single channel) 2
J Mode extension (used only with joint stereo, to conjoin channel data) 2
K Copyright (on or off) 1
L Original (off if copy of original, on if original) 1
M Emphasis (respects emphasis bit in the original recording; now largely

obsolete) 2

Following the sync block comes an ID bit, which specifies whether the frame has
been encoded in MPEG-1 or MPEG-2. Two layer bits follow, determining whether
the frame is Layer I, II, III, or not defined. If the protection bit is not set, a 16-bit
checksum will be inserted prior to the beginning of the audio data.

The bit rate field, naturally, specifies the bit rate of the current frame (e.g., 128
kbps), which is followed by a specifier for the audio frequency (from 16,000Hz to
44,100Hz, depending on whether MPEG-1 or MPEG-2 is currently in use). The
padding bit is used to make sure that each frame satisfies the bit rate requirements
exactly.

The mode field refers to the stereo/mono status of the frame, and allows for the
setting of stereo, joint stereo, dual channel, and mono encoding options. If joint
stereo effects have been enabled, the mode extension field tells the decoder exactly
how to handle it, i.e., whether high frequencies have been combined across
channels.

The copyright bit does not hold copyright information per se (obviously, since it' is
only one bit long), but rather mimics a similar copyright bit used on CDs and DATs.
If this bit is set, it is officially illegal to copy the track (some ripping programs will
report this information back to you if the copyright bit is found to be set). If the data
is found on its original media, the home bit will be set. The “private” bit can be
used by specific applications to trigger custom events.

The emphasis field is used as a flag, in case a corresponding emphasis bit was set
in the original recording. The emphasis bit is rarely used, although some recordings
do still use it.

Finally, the decoder moves on through the checksum (if it exists) and on to the
actual audio data frame, and the process begins all over again, with thousands of
frames per audio file. [15]
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2.8.5. WMA
The Microsoft Windows Media Audio codec is designed to handle all types of audio
content, from speech-only audio recorded with a sampling rate of 8 kilohertz (kHz)
to 48 kHz high-quality stereo music. This codec is very resistant to degradation due
to packet loss because it does not use interframe memory. Its tolerance makes it
excellent for use with streaming content. In addition, by using an improved
encoding algorithm, this codec encodes and decodes much faster. The compression
algorithm used, creates audio files that need much less disk space for storage than
the same content created with other codecs. Content created using the Windows
Media Audio codec is easily distributed over the Internet because the files can be
downloaded more quickly. Therefore, if you are creating audio files for download,
the Windows Media Audio codec is a great choice because it provides near-CD
quality sound at half of the bandwidth required by most other codecs. [17]

2.8.6. Ogg-Vorbis
Ogg-Vorbis is a fully open compressed audio format for mid to high quality (8 kHz
– 48.0 kHz, 16+ bits, polyphonic) audio and music at fixed and variable bitrates
from 16 to 128 kbps/channel. This places Vorbis in the same competitive class as
audio representations such as MPEG-4 (AAC), and similar to, but higher
performance than MPEG-1/2 audio layer 3, MPEG-4 audio (TwinVQ), WMA and
PAC.

The Vorbis CODEC design assumes a complex, psychoacoustically-aware encoder
and simple, low-complexity decoder. Vorbis decode is computationally simpler than
mp3, although it does require more working memory as Vorbis has no static
probability model; the vector codebooks used in the first stage of decoding from the
bitstream are packed, in their entirety, into the Vorbis bitstream headers. In packed
form, these codebooks occupy only a few kilobytes; the extent to which they are
pre-decoded into a cache is the dominant factor in decoder memory usage.

Vorbis provides none of its own framing, synchronization or protection against
errors. It is solely a method of accepting input audio, dividing it into individual
frames and compressing these frames into raw, unformatted “packets”. The decoder
then accepts these raw packets in sequence, decodes them, synthesizes audio frames
from them, and reassembles the frames into a facsimile of the original audio stream.
Vorbis is a free-form VBR codec and packets have no minimum size, maximum
size, or fixed/expected size. Packets are designed that they may be truncated (or
padded) and remain decidable. This is not to be considered an error condition and is
used extensively in bitrate management. Both the transport mechanism and decoder
allow for a packet to be of any size, to end before, or after the packet decoder
expects.

Vorbis packets are thus intended to be used with a transport mechanism that
provides free-form framing, sync, positioning and error correction in accordance
with these design assumptions, such as Ogg (for file transport) or RTP (for network
multicast). For purposes of a few examples in this document, we will assume that
Vorbis is to be embedded in an Ogg stream specifically, although this is by no
means a requirement or fundamental assumption in the Vorbis design. [19]
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2.8.7. Bluetooth Sub-band Codec
The Bluetooth SBC is a low computational complexity audio coding system
designed for high quality audio at moderate bitrates. Bluetooth SBC is based on
low-complexity. Block diagrams of the SBC encoder and decoder algorithms are
shown in Figure 2.8:7 and Figure 2.8:8. The SBC system uses a cosine-modulated
filterbank (polyphase analysis) for analysis and synthesis. The filterbank can be
configured for 4 or 8 sub-bands. The sub-band signals are quantized using a
dynamic bit allocation scheme and block adaptive PCM quantization. The number
of bits available and the number of blocks to quantize over are variable, making the
overall bit-rate of the SBC system adjustable. This is advantageous for use in
wireless applications where the available wireless bandwidth for audio, and hence
the maximum possible bit-rate, may vary over time. [27]

In Sub-Band Coding (SBC) the input speech is split into a number of frequency
bands, or sub-bands, and each is coded independently using, for example, an
ADPCM like coder. At the receiver the sub-band signals are decoded and
recombined to give the reconstructed speech signal. The advantages of doing this
come from the fact that the noise in each sub-band is dependent only on the coding
used in that sub-band. Therefore we can allocate more bits to perceptually important
sub-bands so that the noise in these frequency regions is low, while in other sub-
bands we may be content to allow a high coding noise because noise at these
frequencies is less perceptually important. Adaptive bit allocation schemes may be
used to further exploit these ideas. Sub-band codecs tend to produce
communications to toll quality speech in the range 16-32 kbits/s. [28]

Encoding Processes
Via a polyphase analysis filter the input PCM is split into sub-band signals. For each
sub-band a scale factor is calculated. On the basis of the scale factors and the bit
allocation, levels are derived for each sub-band. Then the sub-band samples are
scaled and quantized and finally, a bitstream is generated. This process is further
explained in [22].

Figure 2.8:7 – Bluetooth sub-band encoder process [22]

Decoding Processes
In Figure 2.8:8 the operation of the decoder is illustrated. On the basis of the scale
factors, the bit allocation is calculated. For the MONO and DUAL_CHANNEL the
bit allocation is calculated for each channel independently. For the STEREO and
JOINT_STEREO channel modes, the allocation calculation for the two channels is
combined. Then the numbers of quantization levels are derived for each sub-band.
The sub-band samples are calculated and finally, via a polyphase synthesis filter, the
PCM output is generated. This process is further explained in [22].
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Figure 2.8:8 – Bluetooth sub-band codec decoder process [22]
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Chapter 3 - Design and implementation

3.1. Introduction to Rabbit trainer

3.1.1. Rabbit core module
The microprocessor chosen for this thesis is the Rabbit 3000
(RCM3400) running at 29.4 MHz. Extracted from the
datasheets provided by the manufacturer, the Rabbit has 47
I/O ports, 512K flash memory, 512K SRAM, PWM outputs,
ten 8-bit timers and one 10-bit timer with two match
registers and a 12-bit 8-channel A/D converter. It has also
interfaces to the Prototyping board, giving the Rabbit a
10/100MB Ethernet connection, IrDA transceiver etc [29]

A memory-access time of 55 ns suffices to support up to a 30 MHz clock with no
wait states; with a 30 ns memory-access time, a clock speed of up to 50 MHz is
possible with no wait states. This means that the Rabbit can execute the first
instruction in the interrupt subroutine in about 1µs, which is very good considering
that the Rabbit needs to be interrupted every 8 kHz in order to supply 64 Kbits voice
quality. [29]

Table 3.1:1 – Summary of RCM3400 features
Feature: RCM3400:
Microprocessor Rabbit 3000 running at 29,4 MHz
Flash Memory 512 K
SRAM 512 K
Serial Ports 5 shared high-speed, CMOS-compatible ports:

5 are configurable as asynchronous serial ports;
4 are configurable as clocked serial ports (SPI);
2 are configurable as SDLC/HDLC serial ports;
1 asynchronous serial port is used during programming

3.1.2. Prototyping board
The Prototyping Board included in the Development Kit makes it easy to connect an
RCM3400 module to a power supply and a PC workstation for development. It also
provides some basic I/O peripherals (RS-232, RS-485, an IrDA transceiver, an
Ethernet port, LEDs, and switches), as well as a prototyping area for more advanced
hardware development. [29].

Figure 3.1:1 – RCM3400
Core Module [29]
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Figure 3.1:2 – The Prototyping Board [29]

3.2. Development tools
To develop the GUI prototype to send sound files from pc to the Rabbit trainer,
Visual Basic V6.0 was used. V.6.0 was favoured over .Net since there are more
example files available on the internet for VB6. On the Rabbit trainer Dynamic C
8.03 is used for communication with the pc on the other side.

To perform the analysis of the different audio codecs, G.711 PCM, G.726 ADPCM
and DPCM, was implemented in MatLab V.6.5 R13. MatLab was also used to add
noise and measure these noise effects placed on the audio files. Adobe Audition
V.1.0 was used to make samples for a wider analysis, that is, samples that were not
implemented in MatLab, e.g. Mp3 and WMA files. CDex V.1.3 was used to make
Ogg-Vorbis files.

Protel 99 was used for designing the electrical circuitry and for drawing the PCB
board.

3.3. Circuitry interfaces
To realise the hardware part in the
specification it contains a built microphone
circuitry and a speaker circuitry. The
circuitry is designed to work on an external
power supply ±10V and GND, instead of
on the Rabbit trainer.

Explanations, component list, circuitry
overview, schematics and calculations can
be found in Appendix A – Datasheet for the
electrical circuitry. Figure 3.3:1 illustrates
the electrical circuitry.

Figure 3.3:1 – View of  electrical circuitry



Master thesis in Information and Communication Technology Date: 31-May-04
Analysis of audio coding algorithms for networked embedded systems Version: 2.8NO

- 28 -

3.4. Implementation of audio coding algorithms
Implementation of linear PCM, A-law PCM, µ-law PCM, DPCM and ADPCM
audio coding algorithms is performed using MatLab programming language and
environment, developed by Mathworks. Both encoder and decoder for all the
algorithms are coded. There is also an implemented function to introduce error into
the codecs where the effects are measured. An encoder, a decoder and an AWGN
(Additive White Gaussian Noise) module is implemented. The encoders and
decoders for the respective algorithms are coded in separate files like functions.
Subsequently the main encoder and decoder file calls the codec-functions for the
selected audio coding algorithm. The user can choose which codec to use to
encode/decode the input signal.

Step 1: An input signal is generated by opening a
file and reading the content into a vector.
It is possible to choose how many
characters one will read into the vector,
which would then be appropriated
according to testing and evaluation.

Step 2: The generated input signal is quantized
using the round function in MatLab. Every
sample is rounded to the nearest
quantization level. The quantized signal is
then plotted in a graph.

Step 3: The quantized samples are saved into a
file and the encoded samples are displayed
in a graph. The saved file is then passed to
the decoder and the noise module. In the
noise module error can be introduced to
the encoded signal and the effects will
then be measured.

Step 4: Dequantization is merely the inverse of
quantization.

Step 5: The decoded signal is simply a
reconstruction of the original signal. The decoded and the original signal
are plotted to visualize the difference between them. Samples of the
decoded signal are saved into a wav file. The wav file can then be played
to give an indication of the quality of the codec.

3.4.1. PCM implementation
PCM is a sampling technique used to convert voice signals into digital code. Input
signal is sampled at 8000 samples/sec.  The PCM-codec samples the input
waveform, quantizes the samples, and represents each quantizer level with a binary
index. For the implementation of PCM, a uniform quantizer is used - each sample
being rounded off to the nearest quantization level.

Figure 3.4:1 – Flowchart for
implementing audio coding
algorithms
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By choosing smaller quantization steps for small signals and larger steps for large
signals, a more robust quantizer can be obtained. Non-uniform spacing between
quantization steps can be achieved by using a non-linear compander technique.
Companding can be described as the compression and expansion of the quantization
levels. In the Recommendation G.711 [24], two companding laws are specified. The
compression characteristics for the companding laws are described below:

PCM A-law:  To encode a signal according to A-law
compression, the following algorithm was used. A in
Equation 3.4:1 is set to 86.7. V is set to 1
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Equation 3.4:1 - A-law compressor [24]

PCM µ-law: µ-law encoding use the compression
algorithm below, Equation 3.4:2. Here µ is set to 255.
V is set to 1.
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Equation 3.4:2 - µ-law compressor [24]

3.4.2. DPCM implementation
Implementation of PCM using differential coding is called DPCM. Instead of coding
the signal, differential coding is used to code the difference between two signals. By
using this means of coding, as much short-term redundancy of the speech waveform
is removed as possible. To accomplish this, a difference signal is formed by
subtracting an estimate of the signal from the original signal. The estimate is
generally obtained by a linear predictor that estimates the current samples from a
linear combination of one or more past samples.

A first-order adaptive predictor is used in the implementation:

Figure 3.4:3 – DPCM (a) encoder (b) decoder [32]

Figure 3.4:2 – Flow chart PCM a-
law and u-law
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3.4.3. ADPCM implementation
The ADPCM algorithm is implemented according to the block diagrams for
encoder/decoder in the G 7.26 recommendation from CCITT in ITU.  It is
conceptually similar to DPCM but more sophisticated in that it uses an eight-order
predictor, adaptive quantizer and adaptive predictor. The algorithm is also designed
to recognise the difference between voice and data signals, and then use either a
slow or fast quantizer adaptation mode. ADPCM provides greater levels of
prediction gain than simple DPCM, depending on the sophistication of the
adaptation logic and the number of past samples used to predict the next sample.
The prediction gain is ultimately limited by the fact that only a few past samples are
used to predict the input. Adaptation logic only adapts the quantizer, not the
prediction-weighting coefficient. The ADPCM algorithm is implemented in the way
that the user can choose between 40, 32, 24 and 16 kbit/s.

Encoder schematic:

Figure 3.4:4 – ADPCM encoder [25]

Encoder principles [25]:
1. Input PCM format conversion

This block converts the input signal s(k) from A-law or µ-law PCM to a
uniform PCM signal sl(k).

2. Difference signal computation
This block calculates the difference signal d(k) from the uniform PCM signal
sl(k) and the signal estimate se(k).

3. Adaptive quantizer
A 31-, 15, 7- or 4-level non adaptive quantizer is used to quantize the
difference signal d(k) for operating at 40, 32, 24 or 16 kbit/s, respectively.
Prior to quantization, d(k) is converted to a base 2 logarithmic representation
and scaled by y(k) which is computed by the scale factor adaptation block.
Normalized input/output characteristic values from tables in the
recommendation for the quantizer are used. 
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4. Inverse adaptive quantizer
A quantized version dq(k) of the difference signal is produced by scaling,
using y(k), specific values selected from the normalized quantization
characteristics in the recommendation and then transforming the result from
the logarithmic domain.

5. Quantizer scale factor adaptation
In this block y(k) is computed. This is the scaling factor for the quantizer and
the inverse quantizer. The inputs are the 5-bit, 4-bit, 3-bit, 2-bit quantizer
output I(k) and the adaptation speed control parameter al(k). The basic
principle used in scaling the quantizer is bimodal adaptation. Fast for speech
signal and slow for data signals. The speed of adaptation is controlled by a
combination of fast and slow scale factors.

6. Adaptation speed control
The controlling parameter al(k) can assume values in the range of  [0, 1]. It
tends towards unity for speech signals and towards zero for voice-band data
signals. The parameter is derived from a measure of the rate-of-change of the
difference signal values.

7. Adaptive predictor and reconstructed signal calculator
The primary function of the adaptive predictor is to compute the signal
estimate se(k) from the quantized difference signal dq(k). Two adaptive
predictor structures are used, a sixth order section that models zeroes and a
second order section that models poles in the input signal. This dual structure
effectively caters for the variety of input signals that might be encountered.

8. Tone and transition detector
In order to improve performance for signals originating from frequency shift
keying modems (FSK) operating in the character mode, a two-step detection
process is defined. First, partial band signal detection is invoked so that the
quantizer can be driven into the fast mode of adaptation. In addition, a
transition from a partial band signal is defined so that the predictor
coefficient can be set to zero and the quantizer can be forced into the fast
mode of adaptation.
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Decoder schematic:

Figure 3.4:5 – ADPCM decoder [25]

Decoder principles [25]:
Most blocks in the decoder are the same as those in the encoder, and the functions
are described in the encoder section. Only the blocks that differ from the encoder are
described in this section.

1. Output PCM format conversion
This block converts the reconstructed uniform PCM signal sr(k) into an A-
law or µ-law PCM signal sp(k) as required.

2. Synchronous coding adjustment
This function prevents cumulative distortion occurring on synchronous
tandem coding.

3.4.4. Implementation of noise module
A propos the analysis component of the thesis, a noise module for adding errors to
the different codecs was implemented. We wanted to introduce error and measure
the effects. The main source of error in an end-to-end PCM voice-band channel is
bit error and packet loss. BER for the different codecs are computed and plotted
versus SNR for an AWGN channel.

3.4.5. The functionality of the MatLab program
A simple text based menu appears when running the MatLab program. Then the user
can either choose to view the quantization noise for the different PCM modes, the
effect of SNR on BER, or run the codec.

Figure 3.4:6 – Menu selection guide
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When 1, 2 or 3 located within the menu are selected, the users will get the
opportunity to choose the number of steps for quantization.

Figure 3.4:7 – Number of quantization steps

When choice 3 in the menu is selected, and the number of steps for quantization is
entered, a new menu will be displayed. In this menu the user can choose which
codec to use when coding the wav-file. The selected codec will start encoding the
input-file and the quantized signal will appear in a window when the file is encoded.

Figure 3.4:8 – Mode of encoder

The encoded samples are saved into a MatLab file called samples.mat. This file is
passed to the decoder, and the decoding process can start. After decoding the file,
figures of the input-signal and the decoded signal are displayed. The program will
also save the decoded samples into a new wav-file. The user can then play this file
and compare it with the original file.

3.5. Implementation of Visual Basic application
Visual Basic was used to record and send sound to the Rabbit trainer. Initially the
program should have been sending in real-time, but due to lack of time it was
chosen to record to a file, before sending the file and playing it in “real-time” at the
receiver, Rabbit.

The implementation process were divided into several steps, these steps were;
• Play a wav file with use of GUI in VB.
• Send a wav file through a buffer to the pc speaker.
• Send sound from microphone to pc speaker.
• Send a wav file through a buffer over UDP (localhost) to the pc speaker.
• Send sound from microphone through a buffer over UDP to the pc speaker.
• Send sound from microphone through a buffer over UDP to the Rabbit

speaker.

Before trying to send a file, it was sent a text string to the Rabbit trainer; this was
done to test if the UDP socket where functioning in both ends. The extension of this
was to send a sound file in real-time over the same socket. The first obstacle was to
send sound directly through a buffer to the UDP socket (streaming), so it was
decided to save the recorded signal to a file before sending the file. Winsock was
used to send the file to the Rabbit; this is an easy and fast way to implement a UDP
or a TCP socket in a VB application. See Appendix D – Dynamic C Code for the
code implemented on the Rabbit. When adding the Winsock to the application, one
set the host and remote IP address, remote port and binds the local port for listening
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to incoming datagrams. Illustration of the application is given in Figure 3.5:1 –
Screenshot of VB application.

Further a flowchart of the application is provided in Figure 3.5:2 – Flowchart for
VB application

Functionality of the VB application:
The application is in run-mode when the program have set all necessary IP’s, ports
and opened a new wav, so that it’s ready to record from microphone to memory.

Basically when the program is running
the only choices remaining are Record,
Choose File (to send), Statistics and
Exit. The other buttons will become
available when you need them. When
recording, it uses the mciSendString
function to record to memory, if an
error occurs during recording, the
program will end the recording. The
Play function only plays the last
recorded speech/song from memory,
and not the chosen file you want to
send.

When one have chosen a file to send
and press the Send File button, the application automatically sends the file to a set IP
on a set port. If one needs to change the receiver one should do so in VB code.
When pressing Send File, a Sent or Error message box will appear, depending on the
outcome. An illustration of the application is shown in Figure 3.5:1.

In the VB code it is possible to adjust the sample rate to 11025 (low quality), 22050
(medium quality) or 44100 (high quality, CD). One can also change how many bits
per sample wanted, 16 or 8, and how many channels wanted to record from, 1
(mono) or 2 (stereo).

Figure 3.5:1 – Screenshot of VB application
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Figure 3.5:2 – Flowchart for VB application
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Chapter 4 - Experiments

4.1. Numerical experiments

4.1.1. Test motivation
One of our goals with the master thesis is to run different experiments and to form
comparisons with the theoretical background material available. This part of the
testing is a numerical MatLab experiment with the implemented audio coding
algorithms. The experiments are simulated in such a way so that they will show
relevance to the use of codecs in VoIP or in an embedded system environment.

4.1.2. Simulation environment
The experiments were performed in MatLab. MatLab was chosen since all the
codecs were implemented in this language. MatLab is also a great tool for analysis
since it is an integrated technical computing environment that combines numeric
computation, advanced graphics and visualization. 

4.1.3. Experiment 1 – Quantization noise vs. Quantization
levels

Since quantization noise will vary according to the different audio coding
algorithms, it will be interesting to investigate the error in the quantization process
for each algorithm. In order to recognise quantization noise, simulations with
different quantization levels will be performed. 128, 64, 32, 16 and 8 quantization
levels for the algorithms are chosen for the experiment. This will give us different
errors in quantization for each simulation and the possibility to observe the effects
of this noise pertaining to the levels.  

4.1.4. Experiment 2 – BER vs. SNR
This experiment investigates the methods of modulation for the different audio
coding algorithms by simulating a system through an AWGN channel. For the
AWGN channel no distortion or effects other than the additive white gaussian noise
is assumed. With this experiment we will see the effects of introduced errors for the
respective algorithms. The outcome of the experiment considers the probability of
bit error, as a function of SNR.

Figure 4.1:1 – AWGN Noise filter

4.1.5. Experiment 3 – SNR performance of coders
In order to evaluate the quality of the different audio coding algorithms
implemented in MatLab, a comparative analysis of SNR of each algorithm was
performed. For this experiment, SNR is calculated using Equation 4.1:1 – SNR
calculation. The SNR vs. bit rate for Uniform PCM, A-law PCM, µ-law PCM and
DPCM are examined in this experiment.
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Equation 4.1:1 – SNR calculation

4.1.6. Simulation issues
Taking into account the time factor involved in the encoding and decoding of the
audio-coding algorithms, only a portion of the file was used in the simulations (as
opposed to encoding and decoding the whole inputted wav-file.) Approximately 15
hours were spent to encode/decode the whole wav-file for a specific codec on our
laptops. Therefore, 1000 characters of the wav-file were used in the simulations.
Nevertheless, this should be sufficient to give simulation results with enough data to
analyse the experiments.

4.2. Performance of subjective audio quality test
To perform a subjective audio quality test eight people were gathered to function as
panellists. They were told to rate each played sample according to its audio quality
(see Table 4.2:4 – Quality scale). Before commencing the test, for each of the
speech samples and in each music genre, best and worst quality samples were
played as models to the panel so as to give them an idea of what to expect in the
various divisions. Errors were also introduced to the speech samples and played to
the panel. The forms the panellists used for the test is shown in chapter 1 of
Appendix E and the results are presented in chapter two. The results are also
presented as graphs in 5.5 Subjective assessment of audio quality.

For both music and speech, the music as well as the speech samples where played in
random order, and the speech samples with introduced errors were played in
amongst the other samples. If one or more of the panellists so wished, the samples
were repeated.

4.2.1. Music samples
For the music part of the listening test, samples from three different genres (trance,
pop and classical) were taken. To represent trance we used an extract from Paul Van
Dyk – We’re Alive, for pop we used Smashing Pumpkins – Disarm and for classical
we used Johann Sebastian Bach – Rejouissance. Each sample lasted 10 seconds and
we made samples of the following codecs and bit rates as listed in Table 4.2:1. This
table also justifies why this rating is expected.
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Table 4.2:1 – Expected quality rating for music samples
Codec: Expected

quality
rating:

Justification of expected quality rating:

G.711 PCM:
PCM A-law 64 Kbps 3 Simple codec, medium bit rate, speech
PCM µ-law 64 Kbps 3 Simple codec, medium bit rate, speech
G.726 ADPCM:
ADPCM 40 Kbps 2 Simple codec, low bit rate, speech
ADPCM 32 Kbps 2 Simple codec, low bit rate, speech
ADPCM 24 Kbps 1 Simple codec, lowest bit rate, speech
ADPCM 16 Kbps 1 Simple codec, lowest bit rate, speech
Mp3:
Mp3 320 Kbps 5 Advanced codec, high bit rate, music
Mp3 128 Kbps 5 Advanced codec, high bit rate, music
Mp3 80 Kbps 4 Advanced codec, medium bit rate, music
Mp3 32 Kbps 2 Advanced codec, low bit rate, music
WMA:
WMA 320 Kbps 5 Advanced codec, high bit rate, music
WMA 128 Kbps 5 Advanced codec, high bit rate, music
WMA 80 Kbps 4 Advanced codec, medium bit rate, music
WMA 32 Kbps 2 Advanced codec, low bit rate, music
Ogg-Vorbis:
Ogg 160 Kbps 5 Advanced codec, high bit rate, music

4.2.2. Speech samples
A source file of a speech sample, with duration of 4.5 seconds, was downloaded [34].
The sample file contained both a male and female voice. From the source file, we
produced samples with an expected quality rating as listed in Table 4.2:2. Samples
with introduced errors were also included, and all expected quality ratings are
justified in the table presented bellow.
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Table 4.2:2 – Expected quality rating for speech samples
Codec: Expected

quality
rating:

Justification of expected quality rating:

G.711 PCM:
PCM µ-law 64 Kbps 5 Designed for speech, used in phones
PCM A-law 64 Kbps 5 Designed for speech, used in phones
PCM A-law 64 Kbps
With Error

4 Designed for speech, used in phones,
introduced error

PCM A-law 64 Kbps
With Error Burst

4 Designed for speech, used in phones,
introduced error burst

G.726 ADPCM:
ADPCM 40 Kbps 4 More advanced than PCM, low bit rate
ADPCM 32 Kbps 3 More advanced than PCM, low bit rate
ADPCM 24 Kbps 2 More advanced than PCM, low bit rate
ADPCM 24 Kbps
With Error

2 More advanced than PCM, lowest bit rate,
introduced error

ADPCM 24 Kbps
With Error Burst

2 More advanced than PCM, lowest bit rate,
introduced error burst

ADPCM 16 Kbps 1 More advanced than PCM, lowest bit rate
G.728 LD-CELP:
LD-CELP 16 Kbps 1 More advanced than ADPCM, lowest bit rate
Mp3:
Mp3 48 Kbps 3 Advanced codec, high/medium bit rate
WMA:
WMA 48 Kbps 3 Advanced codec, high/medium bit rate

4.2.3. Errors added to speech samples
It was made one sample with bit errors and one with a burst of errors of respectively
ADPCM 24 kbit/s and PCM A-law 64 kbit/s. The amount of errors added to each
sample is shown in Table 4.2:3:

Table 4.2:3 – Errors added to speech samples
Bit errors Error burstSample:

Total errors (sek) % Burst size (sek) %
PCM A-law 64 kbit/s 0.300 6.7 0.302 6.7
ADPCM 24 kbit/s 0.243 5.4 0.237 5.3

4.2.4. Quality scale
When rating the music and speech samples the panellist’s where told to use the scale
as represented in Table 4.2:4.

Table 4.2:4 – Quality scale
Rating: Explanation:

1 Bad Very annoying distortion which is objectionable
2 Poor Annoying distortion but not objectionable
3 Adequate Perceptible distortion that is slightly annoying
4 Good Slight perceptible level of distortion but not annoying
5 Excellent Imperceptible level of distortion
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Chapter 5 - Results
In this chapter, results of the implemented codecs; results of the numerical
experiments in MatLab; and the results of the subjective assessments of audio
quality will be provided.

5.1. G.711 PCM
The results of the implementation of the codecs are presented as figures of the
original signal and the decoded signal. This form of presentation gives an indication
of the codecs ability to reconstruct the original signal. But because the quantized
values are only approximates, it is impossible to recover the same signal which was
sent. Graphs of input signal and decoded signal for uniform PCM, A-law PCM and
µ-law PCM are presented. Quantization noise for these PCM modes is also
visualized by figures.

5.1.1. Uniform PCM

Figure 5.1:1 – Input and output for decoded uniform PCM

The wav-file decoded with 128
quantization levels, gives an
output signal relatively close to the
original input signal. The
quantized uniform PCM shows
that the quantization changes the
continuously ranging signal to a
range between +1 and -1. The
sampled values are rounded off to
the pre-determined discrete levels
by the quantizer. The error
occurred from the rounding off of
the quantization is also presented
in the graph as quantization noise. Figure 5.1:2 – Uniform PCM quantized
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5.1.2. A-law PCM and µ-law PCM
The figures below illustrate the results of decoded A-law and µ-law PCM.

Figure 5.1:3 – Input and output for decoded A-law PCM

Figure 5.1:4 – Input and output for decoded Mu-law PCM

Figure 5.1:5 – Quantized A-law PCM Figure 5.1:6 – Quantized Mu-law PCM

The A-law PCM decoding yielded an unexpected result, as the decoded version was
quite different from the original signal, which suggested a coding error in the A-law
decoder. There was insufficient time to find the source of this error. The µ-law
decoding gave a result similar to that of the original signal.
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5.1.3. The effects of compression algorithms

Figure 5.1:7 – Comparison of quantization and compression

Both PCM A-law and µ-law encoding use companding. The way the signal is
compressed is illustrated in Figure 5.1:7, and the compression difference can be
observed. The A-law compression algorithm amplifies all signals compared to the
PCM signal. On the other hand it can be observed that the µ-law compression
algorithm amplifies more low level than high level signals.

5.2. DPCM
This section covers the results from the DPCM implementation. Original and DPCM
decoded signals are displayed, and a figure of the quantized DPCM is also
presented.

Figure 5.2:1 – Input and output for decoded DPCM
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The DPCM algorithm gives an output decoded signal which is decreasing in range
from 250 samples and above. The decoded DPCM wav-file was played after
decoding, and the sound level of this file was much lower than the original wav-file.
The difference in signal between
each sample has been quantized
with a predictor coefficient of α =
0.45. The predictor transfer
function, in its simplest form,
simply create a weighted copy of the
previous sample, i.e. P(z)= αz−1,
where α is in the range of 0.9 for
highly correlated sub-bands. In this
way, only the prediction error signal
needs to be quantized, and therefore
this prediction error naturally has a
smaller dynamic range than the
signal itself.

5.3. G.726 ADPCM
The implemented ADPCM algorithm, gives the user the possibility to choose
between the following bit rates: 40, 32, 24 and 16 (kbit/s), all these rates were
implemented. The results of 32kbit/s ADPCM are presented below.

Figure 5.3:1 – Input and output for decoded ADPCM 32kbit/s

Figure 5.2:2 – Quantized DPCM
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Figure 5.3:2 – Quantized ADPCM 32 kbit/s

Figure 5.3:3 – Quantized ADPCM 16 kbit/s

Encoding and decoding of ADPCM were conducted for the above mentioned rates.
The results, Figure 5.3:2 and Figure 5.3:3, show that lowering the bit rates
increased the amount of distortion.
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5.4. Numerical experiments in MatLab
For the figure of quantization error for the respective PCM modes, 128 numbers of
quantization levels are used. In order to investigate and evaluate the relation
between quantization noise and the number of quantization levels, simulations with
different quantization levels were run. The numbers of quantization levels can be
selected from the 2n formula, were n is the number of bits. So in the simulation of
experiment 1, the numbers of quantization levels of 64, 32, 16 and 8 are used.

5.4.1. Quantization error for the different PCM modes

Figure 5.4:1 – Quantization error for all PCM modes

In the MatLab program, it is possible to view the quantization noise for all the
different PCM modes. The results are presented in Figure 5.4:1. As shown in the
figure, the quantization noise for the various PCM modes differs for each mode.

Since the quantization process leads to approximates of the input signal with the
detected signal having some deviation in amplitude, this deviation gives rise to
distortion. In order to better present the different quantization error, due to the
number of quantization levels, experiment 1 was performed. The MatLab code
below, is used to calculate the quantization noise.

MatLab code:
% calculation of quantization noise

quantized_samples = round(Y /delta)*delta ;
quantisation_noise(1,i) = Y - quantized_samples ;
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5.4.2. Experiment 1 – Quantization noise vs. Quantization
levels

The figures below illustrate the results collected using different quantization levels.

Figure 5.4:2 – Quantization noise for 64 level Figure 5.4:3 – Quantization noise for 32 level

Figure 5.4:4 – Quantization noise for 16 level Figure 5.4:5 – Quantization noise for 8 level

The quantization noise which occurs while encoding the wav-file is in fact the error
from the process of quantization itself. Here the samples are rounded off to the
nearest quantization level, predefined by the number of quantization levels. The
difference between the original sample and the encoded sample is known as the
quantization error. Increasing the number of quantization levels reduces the amount
of quantization noise, choosing a wider dynamic range therefore providing a more
accurate result.

Observed from the figures above, the range of the quantization noise is increased
from the range between 0.02 to -0.015 for 64 levels towards 0.15 to -0.2 for 8 levels.
This observation indicates that for each decrease of quantization levels (64 – 32 – 16
– 8) the range of quantization noise appear to double. The quantization noise is in
inverse ratio to the number of quantization levels.
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5.4.3. Experiment 2 - BER vs. SNR
Simulations were run in order to investigate the effect of introduced error to the
different codecs. The error is introduced randomly in an AWGN channel. Due to the
shape, the plot of BER as a function of SNR, is called a “waterfall curve”. This
waterfall curve is used to indicate the performance of the codecs in experiment 2.

Figure 5.4:6 – BER as a function of SNR

Figure 5.4:6 shows BER as a function of SNR in the AWGN channel. 

The failure to meet perfect performance is measured by the bit-error-rate (BER),
which is computed for the PCM modes using MatLab, and displayed as a function
of SNR. The graph establishes a close relationship between SNR and the amount of
error. An increase in SNR would reduce the probability of error significantly. The
probability of BER draws near to 0 around 15 dB SNR.

5.4.4. Experiment 3 – SNR performance of coders
Speech coders aim at reducing the bit rate, while introducing as little perceptual
distortion as possible into the speech signal. Table 5.4:1 shows the decrease of SNR
as the bit rate is reduced.

Table 5.4:1 – SNR performance
Bit rate: 64 kbit/s 56 kbit/s 48 kbit/s 40 kbit/s 32 kbit/s
Codec: SNR (dB): SNR (dB): SNR (dB): SNR (dB): SNR (dB):
1. U-PCM 43.61 32.58 20.56 16.07 1.44
2. PCM A 35.93 35.93 35.93 14.21 8.05
3. PCM µ 40.59 39.39 22.39 12.21 10.89
4. DPCM 29.43 41.29 33.36 19.03 8.11

As observed in the table above, SNR performance is affected by the bit rate. The
main observation is the considerable drop in SNR when reducing the bit rate from
40 to 32 kbit/s.
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Figure 5.4:7 – SNR performance for 128 levels

Figure 5.4:7 – SNR performance for 128 levels, shows the plot of SNR performance
for the different PCM modes, for 128 quantization levels. 1: Uniform PCM, 2: A-
law PCM, 3: µ-law PCM and 4: DPCM.

5.5. Subjective assessment of audio quality
Table 5.5:1 – Comparison of average quality rating
Codec: Average

quality
rating

(Trance):

Average
quality
rating 
(Pop):

Average
quality
rating

(Classical):

Total
Average:

Expected
quality
rating:

G.711 PCM:
PCM A-law 64 Kbps 2,0 1,8 3 2,3 3
PCM µ-law 64 Kbps 2,4 1,5 2,9 2,3 3
G.726 ADPCM:
ADPCM 40 Kbps 2,2 1,5 2,6 2,1 2
ADPCM 32 Kbps 2,8 1,5 2,8 2,4 2
ADPCM 24 Kbps 1,7 1,4 2,1 1,7 1
ADPCM 16 Kbps 1,1 1,1 1,8 1,3 1
Mp3:
Mp3 320 Kbps 3,3 4,4 4,4 4,0 5
Mp3 128 Kbps 3,9 4,6 4,5 4,3 5
Mp3 80 Kbps 3,7 3,5 3,9 3,7 4
Mp3 32 Kbps 1,9 1,7 2,8 2,1 2
WMA:
WMA 320 Kbps 4,2 4,8 4,6 4,5 5
WMA 128 Kbps 4,1 4,6 4,4 4,4 5
WMA 80 Kbps 4,1 4,5 4,0 4,2 4
WMA 32 Kbps 3,0 3,3 3,5 3,3 2
Ogg-Vorbis:
Ogg 160 Kbps 3,6 4,6 4,5 4,2 5

Table 5.5:1 and Figure 5.5:1 present the combined average quality rating from each
music genre, and an expected quality rating for each audio codec. The expected
quality rating is a comparison of the sound samples themselves, and the actual bit
rate, as we assume they should perform.
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Table 5.5:1 and Figure 5.5:1 also indicate that the expected quality rating was, for
most of the codecs, not far from the total achieved average quality rating.

Figure 5.5:1 – Comparison of average quality rating

Figure 5.5:1 – Comparison of average quality rating presents a comparison of each
genre’s quality rating, the total average and the expected quality rating.

G.711 – PCM
One can see that the A-law and µ-law algorithm has an equal total average, although
it is less than expected. It is also showing that there is a clear difference between the
Pop and Classical music genre. This could be attributed to several factors. We will
look at some of those factors in the discussion chapter.

G.726 – ADPCM
One can see that the codecs perform almost as expected, but also in ADPCM as
PCM the classical genre gets a higher rating than the pop genre. Furthermore, it is
evident that the audience has rated ADPCM 32 higher than ADPCM 40.

Mp3
From the Mp3 codec one can see that it is the trance genre that gets the lowest rating
and that both pop and classical are rated almost the same. One also see that Mp3 128
is rated slightly higher than Mp3 320 and that Mp3 80 is relatively good when
compared to Mp3 128 and 320.

WMA
As illustrated in the table and graph above, one notices that WMA gets higher
overall ratings in all genres than Mp3, and that as Mp3, the trance genre gets the
worst rating. The difference between WMA 80 and WMA 320 is low in comparison
to the expected rating.
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Ogg-Vorbis
For Ogg-Vorbis the trance genre gets rated lower than the pop and classical genre.

Summary
It is interesting to observe that although most of the codecs performed as expected,
the ratings for classical music are higher for all codecs with the exception of WMA
and Ogg-Vorbis. Furthermore one see that the music codecs where rated higher than
the speech codecs, even for those with lower bit rate than the speech codecs.

5.5.1. Music samples

Figure 5.5:2 – Results from the Trance genre

Figure 5.5:2 presents the measured average quality rating and the expected quality
rating from the Trance genre in the subjective assessment of sound quality test.
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Figure 5.5:3 – Results from the Pop genre

Figure 5.5:3 presents the measured average quality rating and the expected quality
rating from the Pop genre in the subjective assessment of sound quality test.

Figure 5.5:4 – Results from the Classical genre

Figure 5.5:4 presents the measured average quality rating and the expected quality
rating from the Classical genre in the subjective assessment of sound quality test.
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5.5.2. Speech samples
Table 5.5:2 – Test of Speech samples with audience
Codec: Average

quality rating:
Expected

quality rating:
G.711 PCM:
PCM µ-law 64 Kbps 4,7 5
PCM A-law 64 Kbps 4,4 5
PCM A-law 64 Kbps Error 3,1 4
PCM A-law 64 Kbps Error Burst 4,1 4
G.726 ADPCM:
ADPCM 40 Kbps 3,7 4
ADPCM 32 Kbps 3,1 3
ADPCM 24 Kbps 2,2 2
ADPCM 24 Kbps Error 1,8 2
ADPCM 24 Kbps Error Burst 2,2 2
ADPCM 16 Kbps 1,1 1
G.728 LD-CELP:
LD-CELP 16 Kbps 1,2 1
Mp3:
Mp3 48 Kbps 3,7 3
WMA:
WMA 48 Kbps 4,3 3

Table 5.5:2 presents all the measured average quality ratings and the expected
quality ratings from the speech listening test. The expected quality rating is a
comparison of the sound samples themselves, and the actual bit rate, as we assume
they should perform.

Figure 5.5:5 – Results from the Speech listening test

Figure 5.5:5 presents the measured average quality rating and the expected quality
rating from the Speech part in the subjective assessment of sound quality test.
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G.711 – PCM
From the table and graph above one notice that the PCM codec performs almost as
expected, and those samples containing errors is rated lower than those with a burst
of error.

G.726 – ADPCM
One can see that ADPCM performs almost as expected for all the different bit rates
of the codec.

G.728 – LD-CELP
As illustrated from the table and graph above, LD-CELP performs almost as
expected.

Mp3
One can see that Mp3 is rated just as expected.

WMA
As one can observe from the table and graph above, WMA is rated just above
expected.

Summary
On average one can see that most of the codecs are rated as expected. Both Mp3 48
kbit/s and WMA 48 perform surprisingly good compared to PCM A-law and µ-law
64 kbit/s.

5.5.3. Speech samples with introduced errors
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Figure 5.5:6 – Errors found by the participants1

1 E on the X-axis indicates that the sample contained errors. EB on the X-axis indicates that the
sample contained a burst of error.
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Figure 5.5:6 presents the number of participants who perceived an error or an error
burst in the played sample. Note that 4 and 10 respectively are the same sample -
without introduced errors, and that 16 is LD-CELP without introduced errors.

5.6. Electrical circuitry
The circuitry was tested in the laboratory and showed normal behaviour during
performance testing. The tests performed were: input of different frequencies - to
see if the LP-filter had the correct cut-off frequency (15 kHz). The second test dealt
with the transfer of sound directly from microphone to speaker, this was performed
in order to observe that the op-amp did not go into saturation.

One of the original goals was to measure computational complexity of codecs on the
Rabbit. Since the codecs were not implemented on the Rabbit in an embedded
system, measuring computational complexity due to lines of Kbytes used and
complexity of the code could not be performed. However, the codecs were
implemented in MatLab, and from the computational complexity of this code we
have made an assumption of the complexity of each codec when implemented on an
embedded system.

Table 5.6:1 – Computational complexity
Computational
complexity:

Codec:

Very low Uniform PCM, µ-law
Low A-law, DPCM
Medium ADPCM, LD-CELP
High Mp3, WMA, Ogg-Vorbis, Bluetooth Sub-band codec

5.7. Visual Basic application
The steps performed to accomplish transfer of a file to the Rabbit are listed in 3.5
Implementation of Visual Basic application.

The first version of the application sent a text string from PC A to PC B. This
version had a very simple GUI for the user to follow. In addition, a text string from
PC A to the Rabbit was sent (to check that the UDP socket worked). The second
version recorded sound from the microphone on the PC and made it possible to save
the recorded signal to a file. It is also possible to play the recorded signal before
saving it. During the third application, a file (up to 8 Kb) was able to be sent through
a buffer over a UDP socket, to a given IP and PORT. Since the codecs were not
implemented on the Rabbit it was not possible to see whether the file arrived on the
Rabbit or not. Tests from PC A to PC B communication however, showed that it
worked, that is, PC B played the signal when it arrived.
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Chapter 6 - Discussion
The scope of this thesis was to do an analysis of different audio coding algorithms
for networked embedded systems. Original the intention was to implement G.711 A-
law and µ-law PCM, G.726 ADPCM and G.728 LD-CELP into an embedded
system. Then we wanted to introduce errors and measure the effects. An analysis of
all this should then be performed. After some time, it was clear that it was very
much to do, if we should proceed with the original plan. Development of an
application containing of encoders for all the audio coding algorithms,
implementation of the corresponding decoders in the Rabbit processor, development
of the electrical circuitry interface to the Rabbit trainer, were to time consuming.
Since the scope of the thesis was to analyze the performance of audio coding
algorithms, we had to do some adjustments to the original plan.

Along with the supervisor, we decided to implement the audio coding algorithms by
themselves in MatLab. If we managed to implement them there, run numerical
experiments, and analyze the effects, we would still have results attached to the
scope of the thesis. To achieve a more profound analysis of the audio coding
algorithms we also added a subjective assessment test to measure the audio quality.
These actions would still give us material to analyze audio coding algorithms for
networked embedded systems. But even with these adjustments we continued
working with the development of a visual basic application and the circuitry
interface.

The focus in our following discussion is based on the thoughts and views we have
on the implementation of the codecs, the experiment results from numerical test and
the subjective audio quality test. Our application and printed circuit board are
evaluated as well. Issues and complications which occurred during the project
period will be commented.

6.1. The implementation of the codecs

6.1.1. Evaluation methods
In order to evaluate the performance of the implemented audio coding algorithms,
comparison of the input signal and the decoded output signal by figures were done.
By evaluating the implemented algorithms this way, we can say something about the
accuracy of the coding. But, comparison by figures only, is not a good way to
estimate the quality. A signal can sound sufficient, even though the comparison of
the inn and output signal by figures can differ. With this in mind, we also listened to
the decoded wav files, to obtain a sense of the quality.

6.1.2. Possible source of errors
The way the audio coding algorithms are coded in MatLab can give possible errors
in the behaviour of the codecs. Error in the MatLab programming code and the
assumption of the fact that if to graphs look alike, they actually are. 
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6.1.3. The results
We were satisfied with the implementation and performance of the different audio
coding algorithms. Uniform PCM, µ-law PCM, DPCM and ADPCM were fully
implemented and gave results as expected. The A-law PCM compression algorithm
in the encoder seems to work. But, the decoded signal of A-law PCM presents some
strange results. This is probably caused by some kind of error in the expanding
algorithm in the decoder.

Another observation worth mentioning is the decrease of range in the DPCM signal.
Listening to the decoded DPCM wav-file also supports this observation. It sounded
like the file had decreased in volume, compared to the original wav-file. The DPCM
has a simple structure with a first order predictor. This will cause quantization noise
accumulation. The stepsize for this codec is very important. Small stepsize results in
slope overload distortion and large stepsize results in granular distortion.

However this should not result in that large distortion for our DPCM codec. Due to
the theoretical behaviour of the codec, we suggest failure in implementation more
likely than feature of codec. If given more time, this would have been investigated
further.

6.2. The numerical experiments in MatLab
The experiments in MatLab were performed to analyze the different audio coding
algorithms numerically. We wanted to investigate the effects of noise and errors
related to the algorithms. Our first experiment considers the difference in
quantization noise for the codecs. This is errors which occur in quantization process
in the encoders. Experiment 2 considers the relationship between BER and SNR.
These types of errors are related to transmission over a channel, e.g. voice over IP.

6.2.1. Evaluation methods
Several simulations with different numbers of quantization steps were run to
evaluate difference in quantization noise. The figures from the simulations indicate
that the quantization noise differs for the different algorithms, but we were more
interested in the relationship between quantization noise and numbers of
quantization levels.  

For the other experiment simulation over an AWGN channel, with introduction of
random errors, was performed. The method used for evaluation of this experiment
was to display the BER as a function of SNR. 

6.2.2. Possible source of errors
One possible source of error with these experiments is the selection of numbers of
samples in the simulation. For experiment 2 the sequence of the wav-file could not
be too short. By using a small sequence with few samples the BER versus SNR
might not give results accurate enough. On the other hand, due to long simulation
time, we had to come up with a sequence not too long, but still would provide an
indication of BER vs. SNR.

The random function in the AWGN code should also be considered talking about
things that would affect our results. Since the introduction of errors is randomly
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distributed, different results could be observed related to where the errors are
situated in the wav-stream for different simulations.   

6.2.3. Experiment 1 – Quantization noise vs. Quantization
levels

The quantization noise decreases in relation with an increasing number of
quantization levels. These levels are related to the bit rate. The equation used to find
the number of levels is 2n were n is number of bits.

Example:
n = 7 bits
27 = 128 numbers of quantization levels
8000 samples/s * 7 = 56 kbit/s

Increasing number of levels means higher number of bits. In addition, the bit rate
will increase. Increase of bit rate results in greater bandwidth requirement Real time
systems like VoIP sessions strive to reduce the required bandwidth, whilst still
maintaining an adequate quality.

As one in real time system want to reduce both bandwidth and bit rate for audio
transmission over an IP network, this involve a reduction of quantization levels.
This results in an increase in quantization noise as it depends on the number of
quantization levels. The challenge here will be to reduce noise, whilst at the same
time maintaining a low bandwidth. With this in mind the wav-form codec’s used in
the simulation, might be inadequate. A solution could be a move towards hybrid
coders like LD-CELP and LPC to reach a bandwidth of 2.4 kbit/s(LPC), as these
codecs have lower bandwidth requirement for speech transfer.   

6.2.4. Experiment 2 – BER vs SNR
The result of Experiment 2 indicated the relationship between BER and SNR.
Randomly distributed errors were introduced. Several simulations were performed
in order to investigate the AWGN module in MatLab. This examination confirmed
that our noise module was able to create randomly distributed error patterns as
desired. In addition it would be interesting to add a burst of error as well in this
experiment. This could imitate the effects of e.g. loss of packets in transmission real
time transmission.

A possible situation which could occur during the randomly insertion of bit error to
the audio stream for the DPCM codec were observed. This situation did not occur
during the simulations, but were found during thoughts around the experiment. The
first difference sample in the DPCM decoder is set to be the same as the first sample
received at the receiver end of the transmission system. If this sample contains error
from the random introduction of errors, it will cause error in several cycles and then
re-synchronise, otherwise it will just have a DC offset.
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Equation 6.2:1 – SNR calculation
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This experiment was not fully completed as intended, due to insufficient time. Just
the first step of the original experiment was performed. A noise module is developed
and randomly adds bit error to the encoded signal, according to the percentage of
error selected by the user. The next step would be to measure the effects of these
introduced errors. Evaluating and visualizing the SNR vs. BER for the different
codecs using Equation 6.2:1 – SNR calculation to calculate SNR.

6.2.5. Experiment 3 – SNR performance of coders
From Table 5.4:1 one can see an overall decrease in SNR from 48 to 40 kbit/s,
though it is not that high for Uniform PCM, the other codec’s almost halves their
SNR from 48 to 40 kbit/s. The other considerable drop is from 40 to 32 kbit/s where
for example Uniform PCM only performs 1.44 dB SNR. As mentioned before the
quantization noise for the codecs increases as the number of quantization levels
decreases. The PCM coder uses rounding and as a result of this the signal will
contain some redundancy. As the performance of this type of speech coder degrades
quickly for bit rates less than 40 kbits/s, moving towards linear predicted coders or
low bit rate coders should be implemented to achieve adequate quality of audio with
low bit rates.

A first-order adaptive predictor is used in our implementation of the DPCM.
Considering that this coder remove some redundancy from the speech signal and are
generally used for bit rates above 16 kbits/s, we observe that DPCM performs better
than the other codecs for e.g. 40 kbit/s. This supports the statement above.

6.3. Subjective assessment of audio quality

6.3.1. Evaluation methods
As pointed out earlier, the user’s perception of quality is not universal, and depends
on many factors including sound quality and the user’s content specific perception
of sound quality. Another recognized determinant of quality is the purpose and level
of user engagement. 

This method uses a large number of human listeners to produce subjective quality
scores with statistical confidence (it considers the mean of the obtained quality
opinions). The method is applied to both one-way and two-way (conversational)
listening scenarios, and it is applied under a controlled testing environment (method
of scoring, properties of voice samples used in tests, etc.). The overall MOS (Mean
Opinion Score) quality scores lie on a 1–5 scale, as shown in Table 4.2:4 – Quality
scale. ITU Recommendation P.800 describes the techniques for performing MOS,
while ITU Recommendation P.830 describes the methods for subjective evaluation
of speech codecs. However, MOS quality assessment has several shortcomings:

• The setup of experiments can be quite costly and time-consuming, as it
requires a large number of participants in controlled environment.

• Because these tests directly involve humans and their subjective judgements,
they are influenced by uncontrollable aspects of the subjects (mood, level of
engagement, etc.).

• They are unpractical if there is a requirement for frequent or on-line real-
time testing. Such a requirement exists in the case of design and
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configuration of networks and appliances. As if when we had implemented
the codecs to the Rabbit and wanted to test the system on a large number of
humans.

These drawbacks suggest that objective computational models can automatically
and repeatedly estimate the ongoing quality of speech required to quantify the
subjective clarity and quality of networked voice applications.

For some applications, such as IP-telephony, users typically require high audio
quality. If IP-telephone conversation have too much packet loss or uses an audio
codec that does not work sufficient for the user they would rather use the landline,
even though using IP-telephony can save money.

It can be hard for the panellists to distinguish between the samples, since many of
the samples are of high quality. To rate a adequate sample just after a excellent one
might also be a problem, since the panellists may be uncertain of how low they
should rate.

It is also worthwhile mentioning the distinction between sound quality as measured
by mathematical procedures or computational models (i.e., the degree of errors or
quantization noise) and the observed quality or sound fidelity.

6.3.2. Possible source of errors
• The speaker’s ability to quote the samples played, that is, how much

distortion or background noise that comes from the computer.
• The panellist’s placement pursuant to the speakers, that is, listening distance

and angle to the speakers.
• The volume the samples are played in.
• Acoustics of the room.
• Each panellist’s comprehension of what good and bad sound is. Each human

have their own psychoacoustics.
• If the panellists do not focus on their task, to rate the samples, they might not

pay enough attention so that they can hear the difference of the samples. It
should be mentioned that some samples can sound almost the same even
though they aren’t.

We also discovered that what order the samples were played in, had consequences
for what rating the next sample got, if a adequate (3) sample were played after a
excellent (5) sample it typically got a 2 as a rating. And when a poor (2) sample
where played after the adequate (3) sample some panellist’s were uncertain if they
should put a 1 or a 2 as a rating.
.
The MOS (Mean Opinion Score) results were almost as expected for each music
genre, except for the classical genre where the speech codecs and Mp3 got higher
rated than expected. The audio codecs ability to quote the frequencies and the
human psychoacoustics has effect on how the panellists experience the sound, and
also if they actually like listening to the genre played. This also means that a music
sample with no drastic changes of the frequencies could sound better even with a
lower compression.
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6.3.3. Music samples
It appears that sound down to 80 kbps appeal too the human listeners, even though,
according to a mathematical interpretation of distortion, e.g. SNR, they are distorted
in comparison to the originals, one should be able to hear the difference between 80
kbps and 320 kbps. It should also be mentioned that even though the output signal of
a codec does not look exactly the same as the input, it might be inaudible for the
listeners.

The so-called good samples were rated very harsh in the trance genre, this might be
since they where played just after a poor or adequate sample. Or it might be that this
was the first of the three tests. Only three out of five expected samples where rated
above 4 in average. An all-over observation is that WMA gets higher ratings than
Mp3, and that the speech codecs do not perform very well for music, even for those
whit lower bit rates. This is not an unexpected observation, since the speech codecs
are designed to do their best performance for exactly speech.

Most of the ratings are approximately as expected, for all the genres. Another
observation is that samples played more than once are rated approximately the same,
which gives this type of rating method more validity.

For classical music the test started with the “worst” samples, ADPCM, which gave
this codec a slightly higher rating than expected. Most of the classical samples were
rated higher than the other two genres. The reason for this might be that the panellist
normally do not listen to this type of music and therefore do not listen carefully
enough when the samples are played. All over one can see that the rating of classical
music is higher for all the codecs but WMA and Ogg-Vorbis.

6.3.4. Speech samples
Both the WMA 48 samples perform approximately just as well as PCM A-law/µ-
law and ADPCM 40. One should also note that WMA 48 is half the file-size of a
PCM A-law/µ-law sample and therefore requires less bandwidth when sending on
an IP-based network.

One reason that Mp3 48 and WMA 48 performs as good as they do is that they have
a more sophisticated encoding process than the decoding process, whilst PCM
perform a decoding process which is the inverse of the encoding. In an embedded
system the encoding process for Mp3, WMA and even Ogg-Vorbis would not be an
advantage since the amount of processors time used will increase compared to other
codecs. So for an embedded VoIP system a PCM or even an ADPCM 40 kbit/s
coder would be preferred. On the other hand if you want to make an embedded
“radio”, that is an embedded system that only require a decoder, WMA and Mp3 48
is a better alternative than PCM, especially in one want to play music on the system.

One should also be critical to the results given from this way of testing, as
mentioned in possible source of errors, the order of which the samples are played in
affect the next samples rating. One can observe from figure 6.5:5 that Mp3 48 is
played just after ADPCM 40 and one might expect a slightly higher rating, which it
also got. But when comparing Mp3 48 to the next WMA 48 sample, one sees that
WMA is rated higher, not only once, but twice.
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6.3.5. Speech samples with introduced errors
In the speech test we also introduced some errors to some of the samples. This was
done to see whether the panellists heard the errors and if they would rate the
samples worse than the same sample without errors or a burst of errors.

From Figure 5.5:6 – Errors found by the participants, we observe that sample 4 and
10 are the same sample, WMA 48, and that 16 is LD-CELP - without introduced
errors. As we discussed in last chapter WMA 48 got very high ratings  compared to
PCM, but still 50 % of the audience thought there were errors in the sample, the
second time only 1 of the of the audience thought there were errors introduced to the
sample. When a sample with an EB (error burst) is played the sample got higher
rated, since the overall quality of the sample is interpreted as better. When a sample
with randomly introduced errors was played, the audience rated the sample lower,
since the overall quality was interpreted as worse than the “original”. The reason for
the panellists to think it was errors introduced to LD-CELP is reasonable, since the
quality of this sample were quite low, just as ADPCM 16.
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Chapter 7 - Conclusion
The goal of this thesis was to implement some audio codec algorithms on an
embedded system and perform several different tests on the system. Due to
insufficient time no codecs were implemented on the Rabbit trainer, instead several
tests were performed with G.711 – PCM, G.726 – ADPCM and DPCM
implemented in MatLab. To achieve a more profound analysis of the codecs, a
subjective assessment test was also added to measure the audio quality. In this
listening test other music codecs and speech codecs were also tested.

As a result of the subjective assessment of audio quality we can conclude that the
best suited audio algorithm for speech on an embedded system, e.g. VoIP system, is
WMA 48 kbit/s, provided you have a processor that handles the complexity of this
codec. For implementation on simpler processors, we recommend ADPCM 40
kbit/s, as this is sufficient for speech. For music, the scenario would be a radio based
networked embedded system, which would only require a decoder on the embedded
system. Then there is no need for the same complexity as on the encoding side, an
implementation of WMA 80 kbit/s would be recommended for this system.

The results from the numerical experiments indicate that quantization noise
increases when the quantization levels decreases meaning lower bit rate result in
higher quantization noise. SNR for the different coding algorithms drop
considerably below a bit rate of 40 kbit/s. In addition, the computational complexity
will increase for codecs with lower bit rates. With this in mind the wav-form
codec’s used in the simulation, might be inadequate for bit rates below 40 kbit/s. A
solution could be a move towards hybrid coders like LD-CELP and LPC to reduce
the bandwidth requirement. 

7.1. Recommendations for future work
The first step in which future projects could address, is to implement the audio
codecs, in Dynamic C, on the Rabbit. Then it would be interesting to make the
system work in real-time, and not only from PC to Rabbit. When this is done, one
could make the PC application choose which audio codecs it should use. The
application would then need to be able to find out what codecs that is available on
the receiving side of the communication channel. If both ends support e.g. WMA 80
kbit/s, but are using PCM 64 kbit/s, it would be interesting for both parts to swap to
WMA, since this would give a better audio quality and as a result of that more
satisfied users of the system.
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Abbreviations
Table 7.1:1 – Abbreviations and its explanations
Abbreviation: Explanation:
A
ACK Acknowledgment (TCP)
ADPCM Adaptive Differential Pulse Code Modulation
AUC Agder University College (also see HiA)
AWGN Additive White Gaussian Noise
B
BSC Bluetooth Sub-band Codec
C
CCITT Commite' Consultatif International de Telegraphique et

Telephonique. (International consultative committee on
telecommunications and Telegraphy).

Compander Short for compressor/expander
D
DPCM Differential Pulse Code Modulation
F
FDM Frequency Division Multiplexing
FIN Finish, No more data from sender (TCP)
G
GUI Graphical User Interface
H
HiA Høgskolen i Agder (also see AUC)
HTTP Hypertext Transfer Protocol
I
I/O Input / Output
ICMP Internet Control Message Protocol
ICT Information and Communication Technology
IETF Internet Engineering Task Force
IP Internet Protocol
ITEE Information Technology and Electrical Engineering
ITU-T International Telecommunication Union
L
LAN Local Area Network
LDCELP Low-Delay Code Excited Linear Prediction
M
MCI Media Control Interface
MCU Multipoint Control Unit
Mp3 MPEG1 Layer III
MOS Mean Opinion Score
MPEG Moving Picture Experts Group
MSS Maximum Segment Size (TCP)
P
PCM Pulse Code Modulation
PSH Push Function (TCP)
PSTN Public Switched Telephone Network
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Q
QoS Quality of Service
R
RFC Request For Comments
RST Reset the connection (TCP)
RTCP Real-time Transport Control Protocol
RTP Real-time Transport Protocol
S
SIP Session Initiation Protocol
SIP Session Initiation Protocol
SMTP Simple Mail Transfer Protocol
SYN Synchronize sequence numbers (TCP)
T
TCP Transmission Control Protocol
TDM Time Division Multiplexing
TOS Type of Service (IP)
TTL Time To Live (IP)
U
UDP User Datagram Protocol
UQ The University of Queensland
URG Urgent Pointer field significant (TCP)
V
VB Visual Basic
W
WMA Windows Media Audio codec
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Chapter 1 - Description

1.1. Objective
The circuitry is an interface circuitry giving the rabbit trainer a microphone and a
speaker.

1.2. Power supply
The power supply should be connected to ±10V and GND.

1.3. I/O ports
• [TB1 PMW_in] – Input signal from PMW on the rabbit
• [TB2 To_A/D] – Output signal to A/D on rabbit
• [TB3  Power] – Power supply for the circuitry
• [TB4 Speaker] – Output signal to speaker

1.4. Overview

Figure 1.4:1 - Electrical circuitry component overview

1.5. Connections
Table 1.5:1 - Overview of connections
[TB1 PMW_in]
1. GND
2. In signal from PMW

[TB3  Power]
1. -10 V
2. GND
3. +10 V

[TB2 To_A/D]
1. Out signal to A/D
2. GND

[TB4 Speaker]
1. Out signal to speaker
2. GND

1.6. Dimension
Height: 75 mm
Width: 81 mm
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1.7. List of components
Table 1.7:1 - List of components
Part: Value: Package: Library: Footprint:
Power supply pin ± 10V DC, GND 1 x 03 TB3 PCTB3
Op-amp LM358 3 x 04 Op-Amp DIP8
Microphone 34L1T 1 x 02 MIC01 MIC01
Speaker connection 426-2773 (Farnell) 1 x 02 TB2 PCTB2
I/O ports TB2 2 x 02 TB2 PCTB2
Q1 PN 3565 QNPN QNPN TO92/C
C1 10 µF CAP CAP RAD0.2A
C2 1 nF CAP CAP RAD0.2A
C3 1 nF CAP CAP RAD0.2A
C4 1 nF CAP CAP RAD0.2A
C5 1 nF CAP CAP RAD0.2A
R1 1,5 KΩ RES RES AXIAL0.4
R3 1 KΩ RES RES AXIAL0.4
R4 10 KΩ RES RES AXIAL0.4
R5 100 KΩ RES RES AXIAL0.4
R6 10 KΩ RES RES AXIAL0.4
R7 100 KΩ RES RES AXIAL0.4
R8 10 KΩ RES RES AXIAL0.4
R9 10 KΩ RES RES AXIAL0.4
R10 10 KΩ RES RES AXIAL0.4
R11 390 Ω RES RES AXIAL0.4
R12 5,6 KΩ RES RES AXIAL0.4
R13 10 KΩ RES RES AXIAL0.4
R14 10 KΩ RES RES AXIAL0.4
R15 10 KΩ RES RES AXIAL0.4
R16 390 KΩ RES RES AXIAL0.4
R17 5,6 KΩ RES RES AXIAL0.4
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1.8. Circuitry overview

1.8.1. Top layer

Figure 1.8:1 - Top layer

1.8.2. Bottom layer

Figure 1.8:2 - Bottom layer
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1.9. 3D Overview

Figure 1.9:1 - 3D Overview of electrical circuitry
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1.10. Schematic overview

1.10.1. Microphone

Figure 1.10:1 - Schematic overview of the
Microphone circuitry
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1.10.2. Speaker

Figure 1.10:2 - Schematic overview of  the Speaker circuitry
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Chapter 2 - Calculations

2.1. Voltage amplification
The Low Pass-filter is a Butterworth filter of second order. Its function is to let all
the low frequencies pass through, and block out the high frequencies. A second
order filter cuts the frequency response with a “sharpness” of 12 dB / Octave. (A
first order filter cuts of with 6 dB / Octave, a third order with 18 dB / Octave, and so
on).

2.1.1. Amplifier (op-amp)

times
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Equation 1 - Amplifier gain after the op-amps

2.1.2. Amplification after LP-filter
( ) times

K
KA LPv 6,1
10

3906,5
_ ≈

Ω
Ω+Ω

=

Equation 2 - LP-filter and Speaker circuitry gain

timesAA LPvv 6,122_ =+
Equation 3 - Total gain of microphone circuitry

The same LP-filter is used for the speaker circuitry as the microphone circuitry. This
means that some of the resistors and capacitors have equal values, those are listed
below.

Table 2.1:1 - List of resistors and capacitors with equal value
Microphone: Speaker: Value:

Res: R8,9,10 R13,14,15 10 KΩ
Res: R11 R16 390 Ω
Res: R12 R17 5,6 KΩ
Cap: C2,3 C4,5 1 nF

2.2. Cut-off frequency
The cut-off frequency chosen is 15 kHz and the constant K [31 p.274] is 1,586, while
our LP-filter is taken from [31 p.274 fig.5.16]. 15 kHz is high, given that speech will
be sent to the trainer. However since this is a prototype music samples also should
be sent to see how the system handled this. If speech was all that was required to be
sent, a typically choice of the cut-off frequency would be 4 kHz.

A 12 dB / Octave LP-filter cuts the frequency response with 12dB each time the
frequency doubles.  This means that in a filter-circuit with a cut-off of 500 Hz and
an in-signal of 90 dB will be about 78 dB at 1 kHz and 66 db at 2 kHz.
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nF
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C
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Π
=

Π
= −

Equation 4 – Capacitors value

R11 and R16 is set to 390 Ω (closest standard value) and R12 and R13 is set to 5,6 KΩ,
which make R11+12 = 5990 KΩ.

The cut-off frequency can easily be changed by replacing the respective capacitors
and resistors.

2.3. Current amplifier
The speaker circuitry includes a unity gain buffer built in a common collector
amplifier; see U2A on figure 1.10:2 – Speaker circuitry. This is to amplify the
current before the LP-filter.

Fc = cut-off at -3dB = 15 KHz

RC = 1/2Πfc

R6 = R7 = R8 = R

(R9+R10) = R * (K-1)

C2 = C3

Choose R = 10kΩ
K = 1.586

C2,3 = 1/ (2ΠRfc)
C2,3 = 1 / (2Π * (10 x 103) * (15 x 103 ))
C2,3 = 1.06 * 10-9

C2,3 = 1 nF

R11+R12 = R * (K-1)
R11+R12 = 10 * 103 * (1.586 – 1)
R11+R12 =5.86 x 103Ω
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Chapter 1 - Main

1.1. Codec
%======================================================
%
%======================================================
clear all ;
close all ;
%======================================================
% Input values
%======================================================

selection = input('Menu Selection guide \n 1\) View the quantization noise for
different PCM modes\n 2\) View the effect of SNR on BER \n 3\) Run the codec \n
Enter your choice : ' ) ;

L = input('\n\nEnter the number of steps for quantization : ') ;

bit_rate = 32 ;

%======================================================
fid = fopen('data\PCMCDQuality.wav','r') ;
if fid == -1

errordlg('File doesnot exists','Error') ;
return ;

end

Y = fread(fid, 4000, 'int16') ;   
fclose(fid) ;

if selection == 1
mode = 1 ;
encoder(selection, mode, Y, L, bit_rate) ;

elseif selection == 2
mode = 1 ;
encoder(selection, mode, Y, L, bit_rate) ;
AWGN_noise(mode) ;

elseif selection == 3
mode = input('\n\nMode of encoder\nMode 1 : Uniform PCM \nMode 2 : A Law

PCM \nMode 3 : Mu Law PCM \nMode 4 : DPCM \nMode 5 : ADPCM \nEnter the
mode of operation : ') ;

%SNR_channel = input('\n\n Enter the desired SNR for channel (in dB) : ') ;

encoder(selection, mode, Y, L, bit_rate) ;
decoder(mode, L, bit_rate) ;
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else
errordlg('Incorrect mode selected','Error') ;
return ;

end

1.2. Encoder
function encoder(selection, mode, Y, L, bit_rate)

%======================================================
headlength = 256;
header = Y(1:headlength);
Y = Y(headlength+1: length(Y));
max_sample_value = power(2,16)/2 ; % range is from -32768 to + 32767
Y_normalized = Y/max_sample_value ;
delta = 2 / L ;
figure ;
iteration = 1 ;
binary = [] ;

while (iteration < 5) ;

switch mode
case 1

[quantized binary quantisation_noise] = PCMencoder(Y_normalized, delta, L) ;
SNR_case1 =

10*log10(power((sum(Y_normalized)/sum(quantisation_noise)),2)) ;

case 2
Alaw_PCM = PCM_A_law_encoder(Y_normalized) ;
[quantized binary quantisation_noise]  = PCMencoder(Alaw_PCM, delta, L) ;
SNR_case2 =

10*log10(power((sum(Y_normalized)/sum(quantisation_noise)),2)) ;

case 3
mulaw_PCM = PCMMu_law_encoder(Y_normalized) ;
[quantized binary quantisation_noise] = PCMencoder(mulaw_PCM, delta, L) ;       

SNR_case3 =
10*log10(power((sum(Y_normalized)/sum(quantisation_noise)),2)) ;

case 4
DPCM = DPCMencoder(Y_normalized) ;
[quantized binary quantisation_noise] = PCMencoder(DPCM, delta, L) ;

SNR_case4 =
10*log10(power((sum(Y_normalized)/sum(quantisation_noise)),2)) ;

case 5
% for ADPCM
ADPCM_quantized = ADPCMencoder( Y*8191/32767, bit_rate, 'lin');
%max_sample_value = power(2,((bit_rate/8)-1))/2 ;
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max_sample_value = 1 ;
ADPCM_normalized = (ADPCM_quantized/max_sample_value)' ;
[quantized binary quantisation_noise] = PCMencoder(ADPCM_normalized,

delta, L) ;

otherwise
errordlg('Incorrect mode of encoding','Error') ;
return ;

end

if selection == 1
hold on ;
plot(quantisation_noise(1:100),color(iteration)) ;          
iteration = iteration + 1 ;
mode = iteration ;       

elseif selection == 2

switch iteration
case 1

save 'data\BinarySamples1.mat' binary ;    
case 2

save 'data\BinarySamples2.mat' binary ; 
case 3

save 'data\BinarySamples3.mat' binary ; 
otherwise

save 'data\BinarySamples4.mat' binary ; 
end

iteration = iteration + 1 ;
mode = iteration ;

else
%binary = [header' binary] ;
encoded_samples = [header ; quantized'] ;
save 'data\samples.mat'  encoded_samples ;
save 'data\BinarySamples.mat'  binary ; 
hold on ;
plot(Y_normalized(1:500),'r') ;
if mode ~= 5

plot(quantisation_noise(1:500),'g') ;       
legend('samples', 'Quantization noise') ;           

end

hold off ;
break ;

end

end
if selection == 1
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legend('Uniform PCM', 'A-law PCM', 'Mu-law PCM', 'DPCM') ;
end
hold off ;
figure ;

SNR=[SNR_case1,SNR_case2,SNR_case3,SNR_case4] ;
t=[1:4] ;   
stem(t,SNR) ;
title('plot of SNR for different PCM modes');
ylabel('SNR in dB');

function index = color(iteration)
switch iteration

case 1
index = 'r' ;       

case 2
index = 'b' ;

case 3
index = 'g' ;

otherwise
index = 'k' ;

end

1.3. Decoder
function decoder(mode, L, bit_rate)
%======================================================
% Input values
%======================================================
%  mode = 1 ;
%  L = 32 ;
%  bit_rate = 32 ;

load 'data\samples.mat'  encoded_samples ;
data = encoded_samples ;

%======================================================
headlength = 256; % assumes SPPACK headers
header = data(1:headlength) ;
data = data(headlength+1: length(data));

delta = (2 / L) ;

switch mode
case 1

% PCM
PCM_decoded = (PCMdecoder(data, delta))*(power(2,16)/2) ;
wav_data = [header ; PCM_decoded'] ;

case 2
% A law  
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PCM_decoded = PCMdecoder(data, delta) ;
Alaw_PCM_decoded = PCMA_law_decoder(PCM_decoded)*(power(2,16)/2)

;
wav_data = [header ; Alaw_PCM_decoded'] ;

case 3
% Mu law
PCM_decoded = PCMdecoder(data, delta) ;
PCMMu_decoded = PCMMu_law_decoder(PCM_decoded)*(power(2,16)/2) ;
wav_data = [header ; PCMMu_decoded'] ;

case 4
% DPCM
PCM_decoded = PCMdecoder(data, delta) ;
DPCM_decoded = DPCMdecoder(PCM_decoded)*(power(2,16)/2) ;
wav_data = [header ; DPCM_decoded'] ;

case 5
% for ADPCM
ADPCM_decoded = ADPCMdecoder(data, bit_rate);
plot(ADPCM_decoded*32767/8191) ;
decoded_samples = ADPCM_decoded*32767/8191 ;   
wav_data = [header ; decoded_samples] ;

otherwise
%for LCELP

end

fid = fopen('data\mix4out.wav','w') ;
fwrite(fid, wav_data ,'int16') ;
fclose(fid) ;

[fid, message] = fopen('data\PCMCDQuality.wav','r');        % open given raw data
file
if fid == -1

error(message) ;
return

end

Y = fread(fid, 4000, 'int16');       % put the datafile into a vector %uint8
fclose(fid) ;

figure ;
t= 1:length(Y) ;
subplot(2,2,1)
plot ( Y , 'k') ;
%hold on
subplot(2,2,2)
plot (wav_data, 'b')
%hold off



Appendix B – MatLab Code Date: 31-May-04
Analysis of audio coding algorithms for networked embedded systems Version: 1.2NO

-8-

Chapter 2 - G.711 PCM

2.1. Uniform PCM

2.1.1. Encoder
function [quantized, binary_PCM, quantisation_noise] = PCMencoder(Y, delta, L)

quantized = [] ;
temp =[] ;

for i = 1 : length(Y) ,
level = 0 ;
for j = 1:L,

if Y(i) >= (-1+delta*(j-1)) & Y(i) < (-1+delta*(j))
level = j-1 ;
break ;

end
end
quantized(1,i) = level ;
temp = [temp dec2bin(level, log2(L))] ;
binary_PCM = rem(double(temp),48) ;

% calculation of quantization noise
quantized_samples = round(Y(i)/delta)*delta ;
quantisation_noise(1,i) = Y(i) - quantized_samples ;

end

2.1.2. Decoder
function PCM_decoded = PCMdecoder(PCM_encoded, delta)

%======================================================
% PCM decoder
%======================================================

for i = 1 : length(PCM_encoded) ,   
temp = PCM_encoded(i) * delta ;    
PCM_decoded(1,i) = -1 + temp  ;

end

2.2. A – Law

2.2.1. Encoder
function Alaw_PCM = PCM_A_law_encoder(Y) ;

%======================================================
% PCM A-law encoder
%======================================================
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A = 86.7;               % A-law value
Y_max = max(Y(:));      % Finding Y_max
denom = 1 + log(A); 
Alaw_PCM = [];

for i = 1 : length(Y) ,

if ((abs(Y(i))/Y_max) >= 0 & (abs(Y(i))/Y_max) <= 1/A)      %A-law compressor
Alaw_PCM(1,i) = (A*abs(Y(i))/denom)*sign(Y(i));

elseif ((abs(Y(i))/Y_max) >= 1/A & (abs(Y(i))/Y_max) <= 1)
Alaw_PCM(1,i) = Y_max * (1 + log(A*abs(Y(i))/Y_max)/denom);

end
end

2.2.2. Decoder
function Alaw_PCM_decoded = PCMA_law_decoder(Alaw_PCM) ;

%======================================================
% PCM A-law decoder
%======================================================

A = 86.7;               % A-law value
Alaw_PCM_max = max(Alaw_PCM(:));      % Finding Y_max
denom = 1 + exp(A); 
Alaw_PCM_decoded = [];

Signy = sign(Alaw_PCM);
for i = 1 : length(Alaw_PCM) ,

if ((abs(exp(Alaw_PCM(i)))/exp(Alaw_PCM_max)) >= 0 &
(abs(exp(Alaw_PCM(i)))/exp(Alaw_PCM_max)) <= 1/A)      %A-law compressor

Alaw_PCM_decoded(i) =
(A*abs(Alaw_PCM(i))/denom)*sign(Alaw_PCM(i));

elseif ((abs(exp(Alaw_PCM(i)))/exp(Alaw_PCM_max)) >= 1/A &
(abs(exp(Alaw_PCM(i)))/exp(Alaw_PCM_max)) <= 1)

Alaw_PCM_decoded(i) = Alaw_PCM_max * (1 +
exp(A*abs(Alaw_PCM(i))/Alaw_PCM_max)/denom);   

end
end

2.3. µ – Law

2.3.1. Encoder
function mulaw_PCM = PCMMu_law_encoder(Y) ;
mu = 255;               % Mu-law value
Y_max = max(Y(:));      % Finding Y_max
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denom2 = log(1 + mu);

for i = 1:length(Y),
mulaw_PCM(1,i) = Y_max * sign(Y(i))*log(1+(mu*abs(Y(i))/Y_max))/denom2;

end

2.3.2. Decoder
function PCMMu_decoded = PCMMu_law_decoder(mulaw_PCM) ;

mu = 255;               % Mu-law value
Y_max = max(mulaw_PCM(:));      % Finding Y_max
denom2 = log(1 + mu);

PCMMu_decoded=[];

% decompress the output signal
Signy = sign(mulaw_PCM);
for i = 1:length(mulaw_PCM),

PCMMu_decoded(i) = Signy(i)* ((exp(mulaw_PCM(i)*denom2 *
Signy(i)/Y_max) - 1))*(Y_max/mu);
end
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Chapter 3 - DPCM

3.1.1. Encoder
function DPCM = DPCM_encoder(Y) ;

%======================================================
% DPCM encoder
%======================================================

DPCM = [];

% find the difference signal with alpha=0.45
alpha = 0.45;
DPCM(1) = Y(1);
for k = 2:length(Y),

DPCM(1,k) = Y(k) - alpha*Y(k-1);
end

3.1.2. Decoder
function DPCM_decoded = DPCMencoder(DPCM_encoded) ;

%======================================================
% DPCM encoder
%======================================================

DPCM_decoded = [];

% find the difference signal with alpha=0.45
alpha = 0.45;
DPCM_decoded(1) = DPCM_encoded(1);
for k = 2:length(DPCM_encoded),

DPCM_decoded(k) = DPCM_encoded(k) - alpha*DPCM_decoded(k-1);
end
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Chapter 4 - G.726 ADPCM

4.1. Encoder
function [I,sr,dout,dqout,yout,aiout,biout,tdout,trout,alout] = ADPCMencoder(sl, N,
format);
%ADPCM Adaptive differential pulse code modulation.
% [I, SR] = ADPCM( SL, N) encodes the PCM coded input signal SL
% with N kbit/s adaptive differential pulse code modulation (ADPCM)
% where N is selected from 40, 32, 24, or 16 kbit/s.
% If N is not specified, the bit rate is set to N = 32 kbit/s.
%
% By default, the input signal SL is assumed to be represented with
% 14-bit signed-magnitude uniform PCM, i.e., its amplitude range is
% -8191 <= sl <= 8191. This input format is also selected by
% ADPCM(SL, N, 'lin'). If the input signal is 8-bit logarithmic PCM
% (mu-law in accordance with LIN2MU), ADPCM( SL, N, 'mu') has to
% be used.
%
% The first output is I, the encoder output signal which represents
% the bit stream over the channel. The samples of I are from the
% discrete alphabet -2^((N/8)-1), ..., +2^((N/8)-1). The second (optional)
% output is the reconstructed speech signal SR (scaled approximately
% between -8191 and +8191) which would be the output of the corres-
% ponding ADPCM decoder in the case of error-free transmission of I.
%
% If more than two outputs are specified, a whole list of
% diagnostic outputs (internal variables of the algorithm) becomes
% available:
%
% [I,SR,D,DQ,Y,AI,BI,TD,TR,AL] = ADPCM( SL, N);
%
% with the following interpretation:
%
% D prediction difference signal
% DQ quatized prediction difference signal
% Y scale factor for adaptive quantizer
% AI recursive predictor coefficients (2-column matrix)
% BI non-recursive predictor coefficients (6-column matrix)
% TD tone detector signal
% TR transient detector signal
% AL speed control for scale factor adaptation
%
% Note that this latter option is VERY memory intensive as all
% variables are vectors/matrices of the size of the input signal.
%
% This function uses also APUPDATE, AIUPDATE, BIUPDATE.
% The decoder is provided by I_ADPCM.
%
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% References:
% The algorithm follows closely the ITU-T (former CCITT)
% recommendation G.726 "40, 32, 24, 16 kbit/s Adaptive Differential
% Pulse Code Modulation (ADPCM)". The recommendation specifies
% various fixed-point formats for the internal variables which are
% not simulated in this MATLAB implementation. However, most of the
% variable names etc. are consistent with the recommendation.

% input argument checks, default bit-rate and format setting
if (nargin < 1) | (nargin > 3)

disp('ADPCM: 1 to 3 input variables required!')
return

end
if nargin == 1

N = 32;
disp('***** N = 32 kbit/s *****');

end
a = N==[40 32 24 16];
if (sum(a) ~= 1)

N = 32;
disp('***** N = 32 kbit/s *****');

end;
if nargin <= 2

format = 'lin';
end;
if isstr(format) ~= 1

error('ADPCM: Input format must be string variable!')
elseif strcmp(format,'mu')

sl = 8191*mu2lin(sl);
elseif ~strcmp(format, 'lin')

error('ADPCM: wrong input format')
end
if min(size(sl)) ~= 1

error('ADPCM: Input signal must be a row or column vector only');
end;
sl = sl(:); % force input signal to be a column vector
if max(abs(sl)) > 8191

disp('ADPCM warning: there can be clipping');
disp(['You should use the  amplitude range of ',...

'-8191 <= SL <= 8191 for the input signal SL!']);
end;
if max(sl) <= 1

disp('ADPCM warning: there can be underflow');
disp(['You should use the amplitude range of ',...

'-8191 <= SL <= 8191 for the input signal SL!']);
end;

I  = zeros(size(sl)); % allocate output memory (channel symbols)
sr = zeros(size(sl)); % allocate output memory (reconstructed speech)
if (nargout > 2) % allocate memory for diagnostic outputs
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dout  = zeros(size(sl));
dqout = zeros(size(sl));
yout  = zeros(size(sl));
aiout = zeros(length(sl),2);
biout = zeros(length(sl),6);
tdout = zeros(size(sl));
trout = zeros(size(sl));
alout = zeros(size(sl));

end

% define quantizer tables and scale-factor adaptation tables
if N == 40

h_fi   = fliplr([6 6 5 4 3 2 1 1 1 1 1 0 0 0 0 0]);
h_wi   = fliplr([43.50 33.06 27.50 22.38 17.50 13.69, ...

11.19 8.81 6.25 3.63 2.56 2.50 2.44 1.50 0.88 0.88]);
h_iadq = fliplr([4.42 4.21 4.02 3.81 3.59 3.35 3.09 2.80 2.48, ...

2.14 1.75 1.32 0.81 0.22 -0.52 -inf]);
h_qan  = fliplr([4.31 4.12 3.91 3.70 3.47 3.22 2.95 2.64 2.32, ...

1.95 1.54 1.08 0.52 -0.13 -0.96 -inf]);
end;
if N == 32

h_fi   = fliplr([7 3 1 1 1 0 0 0]);
h_wi   = fliplr([70.13 22.19 12.38 7.00 4.00 2.56 1.13 -0.75]);
h_iadq = fliplr([3.32 2.91 2.52 2.13 1.66 1.05 0.031 -inf]);
h_qan  = fliplr([3.12 2.72 2.34 1.91 1.38 0.62 -0.98 -inf]);

end;
if N == 24

h_fi   = fliplr([7 2 1 0]);
h_wi   = fliplr([36.38 8.56 1.88 -0.25]);
h_iadq = fliplr([2.91 2.13 1.05 -inf]);
h_qan  = fliplr([2.58 1.70 0.06 -inf]);

end;
if N == 16

h_fi   = fliplr([7 0]);
h_wi   = fliplr([27.44 -1.38]);
h_iadq = fliplr([2.85 0.91]);
h_qan  = fliplr([2.04 -inf]);

end;

% numerical constants (leakage, step sizes etc.)
c1  = 0.125; % 2^-3
c2  = 0.9375; % 1-2^-4
c3  = 0.03125; % 2^-5
c4  = 0.96875; % 1-2^-5
c5  = 0.015625; % 2^-6
c6  = 0.984375; % 1-2^-6
c7  = 0.0078125; % 2^-7
c8  = 0.9921875; % 1-2^-7
c9  = 0.01171875; % 3*2^-8
c10 = 0.99609375; % 1-2^-8
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c11 = 0.998046875; % 1-2^-9

% initialize internal variables
yu=1.06; yl=0; dms=0; dml=0; ap=0;
dq = zeros(1,7); % difference signal vector [dq(k),dq(k-1),...,dq(k-6)]
ai = zeros(1,2); % recursive predictor coefficients [a1(k),a2(k)]
bi = zeros(1,6); % non-recursive predictor coefficients

% [b1(k),b2(k),...,b6(k)]
p  = zeros(1,3); % surrogate vector for recursive predictor

% adaptation [p(k),p(k-1),p(k-2)]
srv = zeros(1,2); % reconstructed-speech vector [sr(k),sr(k-1)]

% loop through all signal samples
for k = 1:length(sl)

% difference signal computation and quantization
sez  = bi * dq(1:6)'; % signal prediction, non-recursive part
se   = ai * srv' + sez; % signal prediction, recursive part
d    = sl(k) - se; % difference signal computation
al   = min(ap, 1); % hard-limit speed control parameter
y    = al*yu + (1-al)*yl; % update quantizer scale factor

x    = log2(abs(d)) - y; % scale difference signal in log domain
I(k) = sign(d) * (sum(h_qan <= x)-1); % flash quantizer

% inverse quantization and signal reconstruction
dqh  = sign(I(k)) * 2^(h_iadq(abs(I(k))+1)+y); % inverse quant./log
dq   = [dqh dq(1:6)]; % shift difference signal vector
p    = [dq(1)+sez, p(1:2)]; % shift surrogate vector

sr(k)= se + dq(1); % reconstruct speech sample
srv  = [sr(k), srv(1)]; % shift reconstructed-speech vector

% adaptation of predictor coefficients
ai   = aiupdate(ai,p,c9,c10,c7,c8,c2);
bi   = biupdate(bi,dq,N,c7,c10,c11);

% quantizer scale factor adaptation
WI   = h_wi(abs(I(k))+1);
yu   = c4*y + c3*WI; % fast (unlocked) scale factor
yu   = max(min(yu,10.00),1.06);

yl   = c6*yl + c5*yu; % slow (locked) scale factor

% tone and transition detection
td   = ai(2) < -0.71875; % partial band signal detection
tr   = td & (abs(dq(1)) > 24*2^yl);
if tr==1

ai = zeros(1,2);
bi = zeros(1,6);

end;

% quantizer adaptation speed control
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FI   = h_fi(abs(I(k))+1);
dml  = c8*dml + c7*FI; % long term average of F[I(k)]
dms  = c4*dms + c3*FI; % short term average of F[I(k)]
ap   = apupdate(ap,dms,dml,y,td,tr,c1,c2); % speed control parameter

% write diagnostic outputs
if (nargout > 2)

dout(k)    = d;
dqout(k)   = dqh;
yout(k)    = y;
aiout(k,:) = ai;
biout(k,:) = bi;
tdout(k)   = td;
trout(k)   = tr;
alout(k)   = al;

end
end;

4.2. Decoder
function reconstructed_signal = ADPCMdecoder(ADPCMsignal, N);

% input argument checks, default bit-rate and format setting
if nargin == 1

N = 32;
disp('***** N = 32 kbit/s *****');

end
a = N==[40 32 24 16];
if (sum(a) ~= 1)

N = 32;
disp('***** N = 32 kbit/s *****');

end;
if nargin <= 2

format = 'lin';
end;

reconstructed_signal = zeros(size(ADPCMsignal));% allocate output memory
(reconstructed speech)
% define quantizer tables and scale-factor adaptation tables
if N == 40

h_fi   = fliplr([6 6 5 4 3 2 1 1 1 1 1 0 0 0 0 0]);
h_wi   = fliplr([43.50 33.06 27.50 22.38 17.50 13.69, ...

11.19 8.81 6.25 3.63 2.56 2.50 2.44 1.50 0.88 0.88]);
h_iadq = fliplr([4.42 4.21 4.02 3.81 3.59 3.35 3.09 2.80 2.48, ...

2.14 1.75 1.32 0.81 0.22 -0.52 -inf]);
h_qan  = fliplr([4.31 4.12 3.91 3.70 3.47 3.22 2.95 2.64 2.32, ...

1.95 1.54 1.08 0.52 -0.13 -0.96 -inf]);
end;
if N == 32

h_fi   = fliplr([7 3 1 1 1 0 0 0]);
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h_wi   = fliplr([70.13 22.19 12.38 7.00 4.00 2.56 1.13 -0.75]);
h_iadq = fliplr([3.32 2.91 2.52 2.13 1.66 1.05 0.031 -inf]);
h_qan  = fliplr([3.12 2.72 2.34 1.91 1.38 0.62 -0.98 -inf]);

end;
if N == 24

h_fi   = fliplr([7 2 1 0]);
h_wi   = fliplr([36.38 8.56 1.88 -0.25]);
h_iadq = fliplr([2.91 2.13 1.05 -inf]);
h_qan  = fliplr([2.58 1.70 0.06 -inf]);

end;
if N == 16

h_fi   = fliplr([7 0]);
h_wi   = fliplr([27.44 -1.38]);
h_iadq = fliplr([2.85 0.91]);
h_qan  = fliplr([2.04 -inf]);

end;

% numerical constants (leakage, step sizes etc.)
c1  = 0.125; % 2^-3
c2  = 0.9375; % 1-2^-4
c3  = 0.03125; % 2^-5
c4  = 0.96875; % 1-2^-5
c5  = 0.015625; % 2^-6
c6  = 0.984375; % 1-2^-6
c7  = 0.0078125; % 2^-7
c8  = 0.9921875; % 1-2^-7
c9  = 0.01171875; % 3*2^-8
c10 = 0.99609375; % 1-2^-8
c11 = 0.998046875; % 1-2^-9

% initialize internal variables
yu=1.06; yl=0; dms=0; dml=0; ap=0;
dq = zeros(1,7); % difference signal vector [dq(k),dq(k-1),...,dq(k-6)]
ai = zeros(1,2); % recursive predictor coefficients [a1(k),a2(k)]
bi = zeros(1,6); % non-recursive predictor coefficients

% [b1(k),b2(k),...,b6(k)]
p  = zeros(1,3); % surrogate vector for recursive predictor

% adaptation [p(k),p(k-1),p(k-2)]
srv = zeros(1,2); % reconstructed-speech vector
[reconstructed_signal(k),reconstructed_signal(k-1)]

% loop through all signal samples
for k = 1:length(ADPCMsignal)

% difference signal computation and quantization
sez  = bi * dq(1:6)'; % signal prediction, non-recursive part
se   = ai * srv' + sez; % signal prediction, recursive part
al   = min(ap, 1); % hard-limit speed control parameter
y    = al*yu + (1-al)*yl; % update quantizer scale factor
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% inverse quantization and signal reconstruction
dqh  = sign(ADPCMsignal(k)) * 2^(h_iadq(abs(ADPCMsignal(k))+1)+y); %

inverse quant./log
dq   = [dqh dq(1:6)]; % shift difference signal vector
p    = [dq(1)+sez, p(1:2)]; % shift surrogate vector
reconstructed_signal(k)= se + dq(1); % reconstruct speech

sample
srv  = [reconstructed_signal(k), srv(1)]; % shift reconstructed-speech vector

% adaptation of predictor coefficients
ai   = aiupdate(ai,p,c9,c10,c7,c8,c2);
bi   = biupdate(bi,dq,N,c7,c10,c11);

% quantizer scale factor adaptation
WI   = h_wi(abs(ADPCMsignal(k))+1);
yu   = c4*y + c3*WI; % fast (unlocked) scale factor
yu   = max(min(yu,10.00),1.06);

yl   = c6*yl + c5*yu; % slow (locked) scale factor

% tone and transition detection
td   = ai(2) < -0.71875; % partial band signal detection
tr   = td & (abs(dq(1)) > 24*2^yl);
if tr==1

ai = zeros(1,2);
bi = zeros(1,6);

end;

% quantizer adaptation speed control
FI   = h_fi(abs(ADPCMsignal(k))+1);

dml  = c8*dml + c7*FI; % long term average of F[ADPCMsignal(k)]
dms  = c4*dms + c3*FI; % short term average of F[ADPCMsignal(k)]
ap   = apupdate(ap,dms,dml,y,td,tr,c1,c2); % speed control parameter

end

4.3. AI Update
function ai = aiupdate(aio,p,c1,c2,c3,c4,c5);
%AIUPDATE Update of recursive predictor coefficients ai.
% ai = aiupdate(aio,p,c1,c2,c3,c4,c5)
%
% function: update a1 and a2 coefficient of second-order predictor
%
% input:aio old coefficient of second-order predictor
% p surrogate vector
% c1 = 3*2^-8
% c2 = 1-2^-8
% c3 = 2^-7
% c4 = 1-2^-7
% c5 = 1-2^-4
%



Appendix B – MatLab Code Date: 31-May-04
Analysis of audio coding algorithms for networked embedded systems Version: 1.2NO

-19-

% output: ai coefficients of second-order recursive predictor

% 1995-05-16, Martin Kummernecker
% 1995-08-30, Gernot Kubin (g.kubin@ieee.org)
% Vienna University of Technology, Vienna, Austria

sgnp = sign(p);
sgnp(2:3) = sign(sgnp(2:3) + 0.5); % modify 0's to 1's

ai(1) = c2*aio(1) + c1*sgnp(1)*sgnp(2);
if abs(aio(1)) > 0.5

fa1 = 2*sign(aio(1));
else

fa1 = 4*aio(1);
end;
ai(2) = c4*aio(2) + c3*(sgnp(1)*sgnp(3) - fa1*sgnp(1)*sgnp(2));
ai(2) = max(min(ai(2),0.75),-0.75);
b = c5-ai(2);
ai(1) = max(min(ai(1),b),-b);

4.4. AP Update
function ap = apupdate(apo,dms,dml,y,td,tr,c1,c2);
% ap=apupdate(apo,dms,dml,y,td,tr,c1,c2)
%
% function: update speed control parameter ap(k)
% implements eq. (7) of recommendation G.726
%
% input:apo old speed control parameter ap(k-1)
% dml long term average of F[I(k)]
% dms short term average of F[I(k)]
% y quantizer scale factor y(k)
% td tone detector
% tr transition detector
% c1 = 2^-3
% c2 = 1-2^-4
%
% output: ap speed control parameter

if tr==1
ap = 1;

elseif ( abs(dms-dml) >= c1*dml | y < 3 | td==1 )
ap = c2*apo + c1;

else
ap = c2*apo;

end;

4.5. BI Update
function bi = biupdate(bio,dq,N,c1,c2,c3);
% BIUPDATE Update of non-recursive predictor coefficients



Appendix B – MatLab Code Date: 31-May-04
Analysis of audio coding algorithms for networked embedded systems Version: 1.2NO

-20-

% bi=biupdate(bio,dq,N,c1,c2,c3)
%
% function: update coefficients of sixth-order predictor
%
% input: bio old coefficient of sixth-order predictor
% dq difference signal vector
% c1 = 2^-7
% c2 = 1-2^-8
% c3 = 1-2^-9
%
% output: bi coefficients of sixth-order predictor

% 1995-05-16, Martin Kummernecker
% 1995-08-30, Gernot Kubin (g.kubin@ieee.org)
% Vienna University of Technology, Vienna, Austria

sgndq = sign(dq);
sgndq(2:6) = sign(sgndq(2:6) + 0.5); % modify 0's to 1's
if N == 40

bi=c3*bio+c1*sgndq(1)*sgndq(2:7);
else

bi=c2*bio+c1*sgndq(1)*sgndq(2:7);
end;
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Chapter 5 - AWGN Module

5.1. AWGN code
function AWGN_noise(mode)
%======================================================
% Random noise
%======================================================
SNR_range = 0:25 ;

figure ;
for i = 1:4,

if i == 1
load data\BinarySamples1.mat  binary ;     

elseif i == 2
load data\BinarySamples2.mat  binary ;     

elseif i == 3
load data\BinarySamples3.mat  binary ;     

else
load data\BinarySamples4.mat  binary ;     

end

BER = calculate_BER(binary) ;
hold on ;
plot(SNR_range, BER, color(i)) ;  

end
title('Plot of SNR(dB) versus BER(%)') ;
legend('Uniform PCM', 'A-law PCM', 'Mu-law PCM', 'DPCM') ;

hold off ;

function BER = calculate_BER(binary)

for i = 0:25, % SNR range
awgn_noised_signal = awgn(binary,i,'measured',0,'db') ;

for j = 1:length(awgn_noised_signal),
if awgn_noised_signal(j) >= 0.5

noised_signal(i+1,j) = 1 ;
else

noised_signal(i+1,j) = 0 ;
end

if noised_signal(i+1,j) ~= binary(j)
error_signal(i+1,j) = 1 ;

else
error_signal(i+1,j) = 0 ;

end
end
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end

Bits_in_Error = sum(error_signal,2) ;
BER = (Bits_in_Error / (length(binary)))*100 ;
function index = color(iteration)
switch iteration

case 1
index = 'r' ; 

case 2
index = 'b' ;

case 3
index = 'g' ;

otherwise
index = 'k' ;

end

5.2. Random noise
%function random_noise = PCMencoder(encoded_samples);
%======================================================
% Random noise error = input('Enther the number of error in % : ') ; % no of levels
%======================================================

load binPCM.mat  binary_samples  ;
headlength = 256; % assumes SPPACK headers
header = encoded_samples(1:headlength);
encoded_sig = binary_samples(headlength+1: length(binary_samples));

error_p = error/100;
no_of_bits_in_error = floor(error_p * length(encoded_sig)) ;

no_of_groups = floor(length(encoded_sig) / no_of_bits_in_error) ;
err_pattern = [] ;
for i = 1:no_of_bits_in_error,
error_pattern = [err_pattern randerr(1, no_of_groups)] ;

end
err_pattern = [error_pattern zeros(1,length(encoded_sig)-length(error_pattern))] ;

input_bin = [] ;
for i = 1:length(encoded_sig),

input_bin(i) = numeric(encoded_sig(i)) ;
if err_pattern(i) == 1 

if encoded_sig(i) == 1
errored_sig(i) = 0 ;

else
errored_sig(i) = 1 ;

end
else

errored_sig(i) = numeric(encoded_sig(i)) ;
end

end
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%Noise_power = power(random_noise,2);
%Signal_power = power(encoded_sig,2);

%SNR = Signal_power' / Noise_power ;
%SNR_db = 10*log(SNR)

channel_noise = errored_sig' + encoded_sig ;
channel_sig = [header ; channel_noise] ;
save noise.mat channel_sig;

t= 1:length(encoded_sig) ;
subplot(2,2,1)
plot (t, channel_noise, 'k') ;
%hold on
subplot(2,2,2)
plot (t, encoded_sig, 'b') ;
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Chapter 1 - Visual basic V.6.0 Code

1.1. form1.frm
Option Explicit
Private Declare Function Playsound Lib "winmm.dll" Alias "PlaySoundA" (ByVal
lpszName As String, ByVal hModule As Long, ByVal dwFlags As Long) As Long
Private Declare Function sndPlaySound Lib "winmm.dll" Alias "sndPlaySoundA"
(ByVal lpszSoundName As String, ByVal uFlags As Long) As Long

Const SND_SYNC = &H0         '  play synchronously (default)
Const MWAVE = &H1        '  The program will continue operation with the
sound playing at the same time
Const SND_NODEFAULT = &H2    '  silence not default, if sound not found
Const SNDSTOP = &H16         '  Stop playing song
Dim i As String

Private Sub cmdChooseSendFile_Click()
CommonDialog1.ShowOpen
lblfiletosend.Text = CommonDialog1.FileName
cmdSendFile.Enabled = True  ' Enables the Send File command

End Sub

Private Sub cmdExit_Click()
End

End Sub

Private Sub cmdSendFile_Click()
Dim b(0 To 8000) As Byte
On Error GoTo ErrHandler3

Open lblfiletosend.Text For Binary Access Read As #1
Get #1, , b

UDP_socket.SendData b
'Close lblfiletosend.Text

If EOF(1) Then
MsgBox "SENT"

Else
MsgBox "ERROR"

End If
ErrHandler3:
End Sub

Private Sub Command1_Click()
CommonDialog1.CancelError = True
On Error GoTo ErrHandler1

CommonDialog1.Filter = "WAV file (*.wav*)|*.wav"
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CommonDialog1.Flags = &H2 Or &H400
CommonDialog1.ShowSave
cmdSendFile.Enabled = True  ' Enables the Send File command

'If file already exists then remove it
FileFound CommonDialog1.FileName
If ValidFile = True Then
Kill CommonDialog1.FileName
End If

'MCI command to save the WAV file
i = mciSendString("save capture " & CommonDialog1.FileName, 0&, 0, 0)

ErrHandler1:
End Sub

Private Sub Command2_Click()
'Samples Per Second that are supported:
'11025       low quality
'22050       medium quality
'44100     high quality (CD music quality)
'Bits per sample is 16 or 8
'Channels are 1 (mono) or 2 (stereo)

i = mciSendString("seek capture to start", 0&, 0, 0) 'Always start at the beginning
i = mciSendString("set capture samplespersec 11025", 0&, 0, 0) 'CD Quality
i = mciSendString("set capture bitspersample 8", 0&, 0, 0)  '16 bits for better

sound
i = mciSendString("set capture channels 1", 0&, 0, 0) ' 1 channel(s) for mono
i = mciSendString("record capture", 0&, 0, 0)  'Start the recording

Command3.Enabled = True  'Enable the STOP BUTTON
Command4.Enabled = False  'Disable the "PLAY" button
Command1.Enabled = False  'Disable the "SAVE AS" button

End Sub

Private Sub Command3_Click()
i = mciSendString("stop capture", 0&, 0, 0)

Command1.Enabled = True 'Enable the "SAVE AS" button
Command4.Enabled = True 'Enable the "PLAY" button

End Sub

Private Sub Command4_Click()
i = mciSendString("play capture from 0", 0&, 0, 0)

End Sub

Private Sub Command5_Click()
Dim msg As String
Dim mssg As String * 255
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i = mciSendString("set capture time format ms", 0&, 0, 0)
i = mciSendString("status capture length", mssg, 255, 0)

msg = "Milliseconds = " & Str(mssg) & vbCrLf
i = mciSendString("set capture time format bytes", 0&, 0, 0)
i = mciSendString("status capture length", mssg, 255, 0)

msg = msg & "Bytes = " & Str(mssg) & vbCrLf
i = mciSendString("status capture channels", mssg, 255, 0)
If Str(mssg) = 1 Then

msg = msg & "Channels = 1 (mono)" & vbCrLf
ElseIf Str(mssg) = 2 Then

msg = msg & "Channels = 2 (stereo)" & vbCrLf
End If

i = mciSendString("status capture bitspersample", mssg, 255, 0)
msg = msg & "Bits per sample = " & Str(mssg) & vbCrLf

i = mciSendString("status capture bytespersec", mssg, 255, 0)
msg = msg & "Bytes per second = " & Str(mssg) & vbCrLf

Label3.Caption = msg
End Sub

Private Sub Form_Load()

' The control's name is UDP_socket.
With UDP_socket

.RemoteHost = "localhost" ' Remote IP (rabbit)

.RemotePort = 1002        ' Port to connect to.

.Bind 1001                ' Bind to the local port.
End With

'Close any MCI operations from previous VB programs
i = mciSendString("close all", 0&, 0, 0)

'Open a new WAV with MCI Command...
i = mciSendString("open new type waveaudio alias capture", 0&, 0, 0)

End Sub

Private Sub Form_Unload(Cancel As Integer)
i = mciSendString("close capture", 0&, 0, 0)

End Sub

Private Sub Timer1_Timer()
Dim mssg As String * 255

i = mciSendString("status capture mode", mssg, 255, 0)
Label1.Caption = " " & mssg

End Sub
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1.2. Module1.bas
'****************************************************************
'Windows API/Global Declarations for :FileFound()
'****************************************************************
Public Declare Function FindFirstFile& Lib "kernel32" Alias "FindFirstFileA"
(ByVal lpFileName As String, lpFindFileData As WIN32_FIND_DATA)

Public Declare Function FindClose Lib "kernel32" (ByVal hFindFile As Long) As
Long

Public Const MAX_PATH = 260

Type FILETIME ' 8 Bytes
dwLowDateTime As Long
dwHighDateTime As Long

End Type

Type WIN32_FIND_DATA ' 318 Bytes
dwFileAttributes As Long
ftCreationTime As FILETIME
ftLastAccessTime As FILETIME
ftLastWriteTime As FILETIME
nFileSizeHigh As Long
nFileSizeLow As Long
dwReserved¯ As Long
dwReserved1 As Long
cFileName As String * MAX_PATH
cAlternate As String * 14

End Type
Declare Function mciSendString Lib "winmm.dll" Alias "mciSendStringA" (ByVal
lpstrCommand As String, ByVal lpstrReturnString As Any, ByVal uReturnLength
As Long, ByVal hwndCallback As Long) As Long

Global ValidFile As Boolean

Function FileFound(strFileName As String) As Boolean

Dim lpFindFileData As WIN32_FIND_DATA
Dim hFindFirst As Long

hFindFirst = FindFirstFile(strFileName, lpFindFileData)

If hFindFirst > 0 Then
FindClose hFindFirst
ValidFile = True

Else
ValidFile = False

End If
End Function
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Chapter 1 - Dynamic C Code

1.1. UDP_srv.c
#class auto
#define TCPCONFIG 1
#define PORTA_AUX_IO
#define MAX_UDP_SOCKET_BUFFERS 1
/* what local UDP port to use - we receive packets only sent to this port */
#define LOCAL_PORT 1234

/*  If this is set to "0", we will accept a connection from anybody.
* If it is set to all "255"s, we will receive all broadcast packets instead.
*/
#define REMOTE_IP "0"
/*#define REMOTE_IP "255.255.255.255" broadcast*/
#memmap xmem
#use "dcrtcp.lib"

udp_Socket sock;

/* receive one packet (heartbeat) */
int receive_packet(void)
{

static char buf[128];

#GLOBAL_INIT
{

memset(buf, 0, sizeof(buf));
}

/* receive the packet */
if (-1 == udp_recv(&sock, buf, sizeof(buf))) {

/* no packet read. return */
return 0;

}

printf("Received-> %s\n",buf);
return 1;

}

void main()
{

sock_init();
/*printf("Opening UDP socket\n");*/

if(!udp_open(&sock, LOCAL_PORT, resolve(REMOTE_IP), 0, NULL)) {
printf("udp_open failed!\n");
exit(0);
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}

/* receive heartbeats */
for(;;) {

tcp_tick(NULL);
receive_packet();

}
}
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Chapter 1 - Rating of audio samples
1. Some samples will be played to raise awareness regarding the quality of the

sound (best and worst) of the various samples.
2. The samples will then be played in random order and rated from 1 to 5, where 1

is bad and 5 is excellent. See Table 1:1 - Quality scale.
3. If one sample sounds worse, equal or better to the previous sample, indicate this

by means of a W for WORSE, E for EQUAL or B for BETTER in the WEB
column.

4. (SPEECH ONLY) Indicate by means of an E in the Error column if you think
there have been added errors or an error burst to the sample.

Table 1.1:1 – Quality Scale
Rating: Explanation:

1 Bad Very annoying distortion which is objectionable
2 Poor Annoying distortion but not objectionable
3 Adequate Perceptible distortion that is slightly annoying
4 Good Slight perceptible level of distortion but not annoying
5 Excellent Imperceptible level of distortion

1.1. Rating of Music samples
Table 1.1:1 - Music samples

Trance:
Paul Van Dyk

Pop:
Smashing Pumpkins

Classical:
J.S Bach

No: Quality:
(1 to 5)

WEB: Quality:
(1 to 5)

WEB: Quality:
(1 to 5)

WEB:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
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1.2. Rating of Speech samples
Table 1 - Speech samples
Sample: Quality:

(1 to 5)
WEB: Error:

(E)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
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Chapter 2 - Results
Eight participants took the audio-quality test. The results of these tests are presented
in the subchapter under the respective genres. The performance of the test is
explained in the main report chapter 4.2

2.1. Trance
Table 2.1:1 - Trance samples, results part I

1 2 3 4

Played: No:

Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB

PCM µ-law 1 3 3 3 3

PCM µ-law 2 3 E 3 E 2 W 3 E

ADPCM 16 3 2 W 1 W 1 W 1 W

ADPCM 32 4 5 W 4 B 4 B 2 B

WMA 320 5 4 W 4 W 5 B 5 W

MP3 320 6 3 W 2 W 3 W 5 W

ADPCM 24 7 2 W 2 W 3 E 1 W

PCM A-law 8 2 B 2 B 2 W 2 B

WMA 128 9 5 B 5 B 5 B 5 B

ADPCM 40 10 2 W 3 W 4 W 1 W

ADPCM 40 11 2 E 2 W 3 W 1 E

MP3 80 12 4 B 4 B 5 B 4 B

WMA 80 13 5 B 5 B 5 E 4 W

MP3 30 14 2 W 1 W 2 W 2 W

WMA 30 15 4 B 3 B 4 B 3 B

WMA 30 16 4 E 3 E 5 B 3 E

Ogg-V 160 17 5 B 5 B 5 B 5 B

Mp3 128 18 5 E 4 W 5 E 4 W

Table 2.1:2 - Trance samples, results part II
5 6 7 8

Played: No:
Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB

PCM µ-law 1 3 2 1 4

PCM µ-law 2 2 E 2 E 2 B 4 E

ADPCM 16 3 1 W 1 W 1 W 2 W

ADPCM 32 4 3 B 2 B 1 W 4 B

WMA 320 5 5 B 5 B 5 B 5 B

MP3 320 6 5 E 4 W 4 W 4 W

ADPCM 24 7 2 W 1 W 2 W 2 W

PCM A-law 8 3 E 1 E 3 B 3 B

WMA 128 9 5 B 4 B 4 B 4 B

ADPCM 40 10 3 W 3 W 1 W 3 W

ADPCM 40 11 3 E 3 E 3 B 3 E

MP3 80 12 4 B 4 B 3 E 5 B

WMA 80 13 5 B 4 E 4 B 5 E

MP3 30 14 3 W 2 W 1 W 4 W

WMA 30 15 3 E 4 B 2 B 4 E

WMA 30 16 3 E 4 E 2 E 3 W

Ogg-V 160 17 5 B 3 W 2 W 2 W

Mp3 128 18 5 E 4 B 4 B 4 B
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Table 2.1:3 - Trance samples, results part III
Average: Expected

rate:

Played: No:
Quality:
(1 to 5)

Quality:
(1 to 5)

PCM µ-law 1 2,4 3
PCM µ-law 2 2,3 3
ADPCM 16 3 1,1 1
ADPCM 32 4 2,8 1
WMA 320 5 4,2 5
MP3 320 6 3,3 5
ADPCM 24 7 1,7 1
PCM A-law 8 2,0 3
WMA 128 9 4,1 5
ADPCM 40 10 2,2 2
ADPCM 40 11 2,2 2
MP3 80 12 3,7 4
WMA 80 13 4,1 4
MP3 30 14 1,9 3
WMA 30 15 3,0 3
WMA 30 16 3,0 3
Ogg-V 160 17 3,6 5
Mp3 128 18 3,9 5

2.2. Pop
Table 2.2:1 - Pop samples, results part I

1 2 3 4

Played: No:
Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB

WMA 320 1 5 5 4 5
WMA 128 2 5 E 5 B 4 E 5 E
WMA 80 3 5 E 5 E 3 W 5 E
WMA 30 4 4 W 4 W 4 B 3 W
MP3 320 5 5 B 5 E 4 E 5 B
MP3 128 6 5 B 5 E 4 E 5 E
MP3 80 7 5 W 4 W 3 W 4 W
MP3 30 8 3 W 2 W 1 W 2 W
MP3 30 9 2 W 2 E 2 B 2 E
Ogg-V 160 10 5 B 4 B 5 B 5 B
PCM µ-law 11 1 W 1 W 3 W 3 W
PCM A-law 12 1 E 1 B 3 E 3 E
ADPCM 40 13 1 W 1 W 2 W 2 W
ADPCM 32 14 1 W 1 E 2 W 1 W
ADPCM 24 15 1 E 1 E 1 W 1 W
ADPCM 16 16 1 W 1 W 1 E 1 W
ADPCM 16 17 1 W 1 E 1 E 1 W
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Table 2.2:2 - Pop samples, results part II
5 6 7 8

Played: No:
Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB

WMA 320 1 5 5 4 5
WMA 128 2 4 W 5 E 4 E 5 E
WMA 80 3 5 B 4 W 5 B 4 W
WMA 30 4 3 W 3 W 3 W 2 W
MP3 320 5 4 B 4 B 5 B 3 B
MP3 128 6 4 E 4 E 5 E 5 B
MP3 80 7 3 W 3 W 4 W 2 W
MP3 30 8 1 W 1 W 1 W 1 W
MP3 30 9 2 W 1 E 1 B 2 B
Ogg-V 160 10 5 B 5 B 5 B 3 B
PCM µ-law 11 1 W 1 W 1 W 1 W
PCM A-law 12 1 E 1 E 2 B 2 B
ADPCM 40 13 2 B 1 E 1 W 2 E
ADPCM 32 14 2 E 1 E 1 E 3 B
ADPCM 24 15 2 E 2 B 1 W 2 W
ADPCM 16 16 1 W 1 W 1 E 1 W
ADPCM 16 17 1 E 2 B 1 W 1 E

Table 2.2:3 - Pop samples, results part III
Average: Expected

rate:

Played: No:
Quality:
(1 to 5)

Quality:
(1 to 5)

WMA 320 1 4,8 5
WMA 128 2 4,6 5
WMA 80 3 4,5 4
WMA 30 4 3,3 3
MP3 320 5 4,4 5
MP3 128 6 4,6 5
MP3 80 7 3,5 4
MP3 30 8 1,5 2
MP3 30 9 1,8 2
Ogg-V 160 10 4,6 5
PCM µ-law 11 1,5 2
PCM A-law 12 1,8 2
ADPCM 40 13 1,5 1
ADPCM 32 14 1,5 1
ADPCM 24 15 1,4 1
ADPCM 16 16 1,0 1
ADPCM 16 17 1,1 1
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2.3. Classical
Table 2.3:1 - Classical samples, results part I

1 2 3 4

Played: No:
Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB

ADPCM 40 1 3 3 3 2
ADPCM 32 2 3 W 3 E 4 B 2 E
ADPCM 24 3 1 W 2 W 2 W 2 W
ADPCM 16 4 1 W 1 W 1 W 1 W
PCM A-law 5 3 B 3 B 4 B 3 W
PCM A-law 6 2 W 2 W 4 E 3 B
PCM µ-law 7 2 B 3 B 3 W 3 E
PCM µ-law 8 2 B 3 E 4 B 3 E
WMA 320 9 5 B 4 B 5 B 5 E
MP3 320 10 4 W 4 B 5 E 5 B
WMA 30 11 4 E 3 W 5 E 4 E
MP3 30 12 3 W 3 W 4 W 3 W
WMA 80 13 5 B 5 B 5 B 2 W
MP3 80 14 5 W 4 W 5 E 4 B
WMA 128 15 5 B 5 B 4 W 4 E
MP3 128 16 5 E 5 E 5 B 5 B
Ogg-V 160 17 4 W 5 B 4 W 5 E
Ogg-V 160 18 5 B 5 E 4 E 5 E

Table 2.3:2 - Classical samples, results part II
5 6 7 8

Played: No:
Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB Quality:
(1 to 5)

WEB

ADPCM 40 1 2 3 2 3
ADPCM 32 2 2 E 4 B 2 W 2 W
ADPCM 24 3 2 E 3 W 1 W 3 B
ADPCM 16 4 1 W 2 W 1 W 2 W
PCM A-law 5 2 B 4 B 3 B 4 B
PCM A-law 6 2 E 2 W 2 W 3 W
PCM µ-law 7 2 E 3 E 2 W 4 B
PCM µ-law 8 2 E 4 B 1 W 4 E
WMA 320 9 4 B 5 B 4 B 5 B
MP3 320 10 4 E 5 E 5 B 5 E
WMA 30 11 3 W 4 W 3 W 4 W
MP3 30 12 2 W 1 W 3 W 2 W
WMA 80 13 4 B 3 B 4 B 4 B
MP3 80 14 3 W 4 B 5 B 4 E
WMA 128 15 4 B 4 E 5 B 5 B
MP3 128 16 4 E 3 W 5 E 5 E
Ogg-V 160 17 5 B 2 W 5 E 4 W
Ogg-V 160 18 5 E 3 B 5 B 4 E
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Table 2.3:3 - Classical samples, results part III
Average: Expected

rate:

Played: No:
Quality:
(1 to 5)

Quality:
(1 to 5)

ADPCM 40 1 2,6 1
ADPCM 32 2 2,8 1
ADPCM 24 3 2,0 1
ADPCM 16 4 1,3 1
PCM A-law 5 3,3 3
PCM A-law 6 2,5 3
PCM µ-law 7 2,8 3
PCM µ-law 8 2,9 3
WMA 320 9 4,6 5
MP3 320 10 4,6 5
WMA 30 11 3,8 3
MP3 30 12 2,6 3
WMA 80 13 4,0 4
MP3 80 14 4,3 4
WMA 128 15 4,5 5
MP3 128 16 4,6 5
Ogg-V 160 17 4,3 5
Ogg-V 160 18 4,5 5

2.4. Speech
Table 2.4:1 - Speech samples, results part I

1 2 3

Played: No:

Quality
(1 to 5)

W
E
B

Error Quality
(1 to 5)

W
E
B

Error Quality
(1 to 5)

W
E
B

Error

PCM µ-law 1 4 5 5
ADPCM 40 2 4 W 4 W 4 W
Mp3 48 3 4 E 4 E 3 W
WMA 48 4 5 B 5 B 4 B
PCM A-law 5 5 W 5 E 4 E
PCM A-law 6 4 W 5 E 5 B
ADPCM 32 7 3 W 4 W 5 B
Mp3 48 8 3 W 3 W 4 W
ADPCM 24E 9 2 W 1 2 W 1 2 W
WMA 48 10 5 B 4 B 4 B
ADPCM 24EB 11 2 W 1 2 W 1 2 W
PCM A-law
64E

12 4 B 4 B 1 2 E 1

ADPCM 16 13 1 W 1 W 1 W
PCM A-law
64EB

14 5 B 1 4 B 1 3 B 1

ADPCM 24 15 2 W 2 W 2 W
LD-CELP 16 16 1 W 1 W 1 W 1
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Table 2.4:2 - Speech samples, results part II
4 5 6

Played: No:

Quality
(1 to 5)

W
E
B

Error Quality
(1 to 5)

W
E
B

Error Quality
(1 to 5)

W
E
B

Error

PCM µ-law 1 5 5 5
ADPCM 40 2 3 W 4 W 4 W
Mp3 48 3 4 B 5 B 4 E
WMA 48 4 4 E 5 E 1 4 W 1
PCM A-law 5 5 B 5 E 5 B
PCM A-law 6 5 E 4 W 3 W
ADPCM 32 7 2 W 3 W 2 W
Mp3 48 8 5 B 4 B 2 E
ADPCM 24E 9 2 W 1 3 W 1 1 W 1
WMA 48 10 5 B 5 B 5 B
ADPCM 24EB 11 1 W 1 3 W 1 3 W 1
PCM A-law 64E 12 2 B 1 3 E 4 B 1
ADPCM 16 13 1 W 2 W 1 W
PCM A-law 64EB 14 4 B 1 4 B 1 5 B 1
ADPCM 24 15 2 W 3 W 3 W
LD-CELP 16 16 1 W 2 W 2 W 1

Table 2.4:3 - Speech samples, results part III
7 8

Played:
No:

Quality
(1 to 5)

W
E
B

Error Quality
(1 to 5)

W
E
B

Error

PCM µ-law 1 4 4
ADPCM 40 2 3 W 3 W
Mp3 48 3 4 B 4 B
WMA 48 4 3 W 1 5 B 1
PCM A-law 5 3 E 4 W
PCM A-law 6 3 E 4 E
ADPCM 32 7 2 W 3 W
Mp3 48 8 3 B 3 E
ADPCM 24E 9 1 W 1 W
WMA 48 10 5 B 4 B 1
ADPCM 24EB 11 2 W 1 3 W
PCM A-law 64E 12 3 B 1 2 W 1
ADPCM 16 13 1 W 1 W
PCM A-law 64EB 14 4 B 1 4 B 1
ADPCM 24 15 2 W 2 W
LD-CELP 16 16 1 W 1 W
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Table 2.4:4 - Speech samples, results part IV1

Average: Expected:

Played: No:
Quality:
(1 to 5)

Error: Error:
(E)

Quality:
(1 to 5)

PCM µ-law 1 4,7 0 1 5
ADPCM 40 2 3,7 0 2 4
Mp3 48 3 4,0 0 3 4
WMA 48 4 4,4 4 4 4
PCM A-law 5 4,6 0 5 5
PCM A-law 6 4,2 0 6 5
ADPCM 32 7 3,1 0 7 3
Mp3 48 8 3,3 0 8 4
ADPCM 24E 9 1,8 5 9E 2
WMA 48 10 4,6 1 10 4
ADPCM 24EB 11 2,2 6 11EB 2
PCM A-law 64E 12 3,1 6 12E 4
ADPCM 16 13 1,1 0 13 1
PCM A-law 64EB 14 4,1 8 14EB 4
ADPCM 24 15 2,2 0 15 2
LD-CELP 16 16 1,2 2 16 1

E = Error, EB = Error Burst

The participants were to put an E in the Error column when the thought they heard
an error in the sample. Test examples of error samples were played before the rating
test.

1 E indicates an Error, EB indicates an Error Burst
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