‘7
o)
S GTP O
X ‘ ‘ o
% ¢
(%5,-. C’fﬁversif)‘ CO\\m

Real time Integrity Control
of
Operating systems

by

Erik Mellem
Frode Olsen

Masters Thesis in
Information and Communication Technology

Agder University College
Faculty of Engineering and Science

Grimstad, June 2004

Abstract

It can be critical if an intruder gains access to an operating system and modify
tiles. To prevent this Norwegian Defence Research Establishment has proposed a
thesis that it is possible to do a real time integrity check of a virtual operating
system.

We have looked upon a system using VMware Workstation 4 as the Virtual
machine and Tripwire as the integrity controller. We have used Linux in the host
operating system and in the virtual operating system.

By modifying the host operating system’s IDE driver it is possible to monitor
which blocks the virtual operating system is writing. These blocks are then used
to find the inode and the path for the file that is written. The file is then integrity
checked with Tripwire.

The system we have developed uses approximately 45 seconds from a file is
written and until it is discovered that the integrity is violated.

Preface

This master thesis was written as a part of the Norwegian Master degree in
Information and Communication Technology. The assignment was provided by
the Norwegian Defence Research Establishment, and is a part of the project
Computer Network Operation The project has been carried out in the period
between January and May 2004.

We would like to thank our supervisors Nils Ulltveit-Moe at Agder University
College and Ronny Windvik at FFI, for valuable help and support.

Grimstad, May 2004

Frode Olsen and Erik Mellem

II

Table of contents

A B ST R A CT ittt ettt e e ettt e et e s et e e et te e e aaa— et e e i —e e e et bt e e aab—ee e e e bareeatbeeeaabreeesareeeeatreeeans |
[AN O TR 1]
TABLE OF CONTENTS ..ttt ettt ettt e e ettt e s ettt e e sttt e e s etb e e e sasbaesesbeeesssbbesesssbessesaseeeessbenesas 1l
TABLE OF FIGURES ..ottt ettt ettt e ettt sttt e e s sttt e s sttt e e s baeeessabeeessabbesesassenessabanessbbenesanes Vv
1 INTRODUCTION. ...ttt ettt ettt s et e e et bt e e s eata e e s sab e e e s s b beessaabassesabasesssbbesssesbassesabenas 1
1.1 BACKGROUNDuttiiiieeiiiiitieet e e e e e iitbere e e e e st sebbsreeeeeessabbbbaeeseessassabbaseeesesssaabbsseeesesssasbbrsaeesesssassrrres 1
1.2 INTEGRITY CONTROL ..uvtiieittieesitteeeeette e e eetteee s stbeeessataesesbeeeesssbeeesassaesesnseeessssbesesasseesessenessssrenesas 1
1.3 HIDDEN STRUCTURE AND VIRTUAL MACHINESccceiiiiittttiiiieesseiitteiieeessssssbaseeessssssssssssssesssessnsnes 1
1.4 THESIS DEFINITION .. utttttiieeeesiettetteeeesssasseseeesesssassstsesssesssassbssasssesssassssbeessesssassbtbasssesssessrbanssesssaies 2
15 OUR WORK .ottt e e s sttt e s e e s s bbbt a e e s e e s s e b bbb e e e s e e s sa bbb b e e e s e e s sabbbbaaesesssaababes 2

2 L I S N =1/ 3
2.1 EXT B FILE SYSTEM tiiiiiiiiittiiiiie e e e e ittt e e e e s s bbbt e e s e s s s eab bbb e e e e e s s e bbb b e b e s e e s s e sab b bbb e eesesssabbbbeeesesssasabares 3
2.2 SECTOR NUMBER VERSUS BLOCK NUMBERutttiiiiieiiiiiiiiieeeessiiitssieessesssssisssesssesssssssssssssesssssnnnes 4
2.3 MAP SECTOR TO BLOCK .11tttiiiiiiiittititiee e et iittiereesse st iasbbsssessesssabasbasssesssassbbbssesesssssistbasasesssssassbeneseses 4

3 VIRTUAL MAGCHINES ...ttt ettt ettt sttt e st e sttt e e s ettt e e s e ta e s e st e e e e sebbeeessstaesssanenas 5
3.1 YN = 6
3.2 RAW DISK / VIRTUAL DISK ..vviitieiteesiteeeitesssteesesessstesssbessssessssessssesssessssessssessssessssessssessssessssessssesss 7
3.3 MOUNTING VIMWARE DISKS ...uvviiiitteeeeitteeeeeteeessbeeessettesssestesessssssssssssessssssesssssesssssssessssssessssssens 7
3.4 VIMWARE NETWORKINGcoiiittttiiieeeesiiittttitesesssesstteessesssasbasesssesssassssbasssesssasstbasssesssesssresssesssains 8
341 Bridged NEtWOIKING......ccooo ittt et 8

34.2 NetWOrk AdAress TranNSIAtIONcc.eviiieiiiee ettt e e st e e e st e e e s s e e e e s srbeeeeas 9

3.4.3 HOSE ONIY NEEWOTKINGecueetitiite ittt et b e bbb n e e 9

4 INTRUSION DETECTIONooiiitii ettt ettt e e e e et e e s ssbte s s sbteaessabenesanseeseenes 10
41 INTEGRITY CONTROL t1ttiiiiiiiititiiieie e s seibtt it et e e st e bbbt ae s s e s s s asbbb b e e s s e s s s e bbb b e essasesesabbbbbesesssesabbbbaaseessases 10
N T 141 (=T [1SS 10

A 1IN =Y 010 TSR 11

4.1.3 ALtaCKk DEIWEEN CHECKSveiiceiii ittt e s e e s e e s sba e s sbasssbee e 11

O 2L T U0 0] 1 VA L= o= OSSP 11

4.2 L2321 12
4.21 Modifications Of THIPWITEcc.eivieie et 12

4.3 F N 5] TR 12
4.4 TRIPWIRE OR AIDE ...ttt ettt ettt e e s e e e e e e s et a et e e e e s s sabbeaaeee s 13

5 [O I IO I I = 14
51 1N RN {0] 01U Tox 1 o] N TN 14
5.2 VVRITE OPERATIONiiittttitiieeeseittbett e e s e s e sbb b et teesesssasbbbbeeesesssabbb b b essasssssaabbbassesessssbbbbaeesesssabrnres 15
53 D] =) Y AV = = OO 16
5.4 MODIFYING THE IDE DRIVERutttiiiiiiiiiiitiiit et e e s st s e s s s s st b aa e s e s s s s sabbaae s e s e s s sabbaaaeeeas 16
55 Q= LN [=I I U 1 =10 OO 16
5.6 [T = Y N T = 0 T T 17
5.7 PERSISTENT MODE VERSUS NON PERSISTENT MODE......uutiiteieiiiitirieeeeesiiirnrneeseesssnssssseessesssassnnes 17
5.8 08 1= = 18
5.9 MAPPING SECTORS TO PATH .. iiuttttiiiieesieiitteit s e et sesatbeesseessesastbeessesssssbtbaassasssssasbbaaesesesssasbbesenesas 18
5.10 D] L] =L TN 19
5.11 MODIFIED AND NEW FILES......iiectutttitieeiieitttietsesssesistteessesssesissseessesssssssssssssesssssssssesssessssssssssseseses 19
5.12 (070 N[0l =i =3 sl = =T =T0] KO 1= = O 20
5.13 10 I 1 (0] = O 21

5.14 10 I 1 (0] =22 21

5.15 10 I 1 0] V== O 21
5.16 Lo 7 =TI TN 23
5.17 TTRIPWIRE «.tttttiit i e e ittt e e s ettt e e e e e et bbbt e e e e e s s b bbb e e e e e e s s s b b e b b e e s e e e s e bbb b e e e e e s e s e sa bbb abaeeessssanbbabaeeeas 23
6 [01 I T 24
6.1 INTRODUCTION. ...t ttttttiitie e s ietbtteee e e s s sebb b e e e e e e s s s bbb b e e e s e e s sa bbb b e eeseessasabbbaeeseessesabbbaeeeeessssabbbaaaseessases 24
6.2 PERFORMANCE OF THE PROTOTYPE .uttttiiiiiiiittiitiieeesiiiaiiesesessssisbbssesessssssssssssssesssssssssssssesssssnsnes 25
6.3 FILE OPERATION .1ttttiii i it iititteet e s seibtb et e e e s e iabb et e e e e e e saa b b e e e e e e e e s saa b b ab e e e e e e s saa bbb baeeseessaabbbbaeeseesaassrares 25
6.4 =T N ST = I 1V =S 25
6.5 PERFORMANCE TEST OF TRIPWIRE AND AIDE ...ttt 26
6.6 Lo = = 27
6.7 IMOUNTING FILE SYSTEMS iiiiiiettttiitieesieittttettseessessbtbesssesssesstbesssesssssstbasssesssssasbbasesesssssesresesesas 27
6.8 L= 1Y SRR 28
6.9 AAREA OF USE ..uutttiiiiie i i ieittttitt i e e et ettt a bt e e s e s s sb b et st e s e e s s st b e b e e e e e e s s e bbb b e e s saeesesaabbabaseseesssbbbbaeesesssasbberes 28
7 [ST G101]\ 29
7.1 THE PROTOTYPE .t iettttiit i e e s ettt et e e e e e e st bt e e e e e e s s bbbt e e e s e e s s s b bbb b e e s e e s s e b bbb e e e e e s e s e bbb bbb s e e essssaabbebaeeeas 29
7.2 REAL TIME ..ttt ettt ettt s ettt e e e e e et bbb e bt e e e e e s sb b b e b e e e e e e s s s b bbb e e e s e et saabbbbaeeseesnassrares 29
7.3 [T = ol U I 1= SRR 30
7.4 FURTHER WORK .11ttiiiiiiiiiititiies e sttt e sttt bt s e e s s e saab b e b e e e e e e s saa b b aa e e e e e e s sa b bbb aeeeeessaabbbbaeeseessassrares 30
8 (010 \\ [0 U] (O]\ SRR 31
REFERENGCES ...ttt ettt ettt e e et sttt e e s e b e e e s eabae s e st aa e e s ebbaeesasbbs s e sabaeessbbaeesasrassesabenas 32

IV

Table of figures

FIGURE 1 RELATION BETWEEN SECTOR, BLOCK AND PARTITION ...uvveiieeiiiiiiriereeesieinrieeeeesessisrsseeeesessssnsssseeess 4
FIGURE 2 SECTOR NUMBER TO BLOCK NUMBER.cciiitttttiitieeiieiittteteeessssssreessesssasisssssssessssissssssssessssisssssseeses 4
FIGURE 3 VMWARE ARCHITECTURE ...ccceeeiiiiiiviiiieeeseeiiiins

FIGURE 4 WRITE CALL FROM GUEST OPERATING SYSTEM
FIGURE 5 BRIDGED NETWORKING WITH VIMWARE [12].....oiiiiiiiiiisieiieie et e
FIGURE 6 NETWORK ADDRESS TRANSLATION WITH VMWARE [12]
FIGURE 7 SIMPLE INTEGRITY CHECK 11ttiiiiiiiiitttiiiieesisiitbeeieessssssbbasesasssssasbbasasasssssssbbasesasesssssbbssssesesssesrssaness
FIGURE 8 A WRITE OPERATION INITIATED BY THE CLIENT, ..

FIGURE 11 IPTABLES CONFIGURATION
FIGURE 12 THE INTEGRITY CHECKvviieiitiieeietteeesitteeeseteeessssaeesssssesssassesssssssssssssesesassessessesssssssesessssessssnsenes
FIGURE 13 INTEGRITY CHECK AGAINST WHOLE DATABASE
FIGURE 14 CHECKING ONE SINGLE FILE AGAINST THE DATABASE

1 Introduction

1.1 Background

Since the beginning of Internet in 1990 the Internet has grown with accelerating
speed. More and more computers are connected to this big computer network.
As this happens the computers are more vulnerable to attacks and people can
steal and modify files. To avoid this firewalls and anti virus software are
installed, these security barriers are not complete secure and can be omitted. This
can result in a corrupt system where intruders gains access to vital data and use
the computer to do more gravely criminality. As a second perimeter of defence
integrity control software can be installed. Integrity control discovers
unauthorized modification of information. This information can for instance be
tiles on a server. Today the integrity control of a file system is done seldom,
probably only a couple of times per week. As a result of this, it can take a long
time until the integrity violation is detected. There is also the possibility that an
intruder can discover the integrity control and is thereby able to use techniques
to bypass it. The project Computers Network Operations at Norwegian Defence
Research Establishment needs an integrity control that is able to discover
integrity violations of a file system as soon as possible, without being discovered.

1.2 Integrity Control

Integrity control software is used to discover unauthorized modification of
information. Integrity control is not meant to deny modification of information,
but only to report if there has been any integrity violations. The report is
interpreted by a system administrator who checks if it is a false alarm or if an
unauthorized modification has occurred. Integrity control is often called the
watcher of watchers and is often used to monitor intrusion detection systems and
firewalls.

1.3 Hidden structure and virtual machines

To hide an integrity control system from being discovered, it can be placed on a
remote computer. The integrity control should be executed as fast as possible
after a file is written, and it will thereby need some signalling when a file has
been written. This signal must be sent from the monitored system, and it might
be intercepted by an intruder who can compromise the integrity control system.
A solution to this problem is to use a virtual machine. A virtual machine allows a
user to install a virtual operating system inside the original operating system.
Both operating systems are then running simultaneously, and it is thereby

possible for the original operating system to monitor the virtual operating
system.

1.4 Thesis definition

Integrity control is used to discover unauthorized modification of information.
The meaning of integrity control in relation to this project is the process of
monitoring which files an intruder changes, and raise an alarm. Today the
integrity control of operating systems is rarely performed. Normally this is only
done a few times per week. Therefore, it may take a long time before an intruder
is detected. There is also a potential danger that the intruder can manipulate the
integrity control itself, if it is implemented on the machine being attacked. In this
project the integrity control will be done between two operating systems. In the
main operating system, called Controller, a virtual machine will run containing
the secondary operating system, called Client. The Client will run different
network services. It is imperative that the Controller neither can be accessed
through the Client nor the network. It is essential that any integrity violations on
the Client are detected as quickly as possible after the event happened. An
intruder shall not be aware of the existence of a Controller, which is monitoring
the Client.

1.5 Our Work

We would like to investigate the possibilities to develop a prototype that is able
to detect integrity violations of a file system as soon as possible. FFI has
suggested that we look upon the Linux operating system and VMware
Workstation [10] as the virtual machine software. We must therefore study how
the Linux file systems are build up and how VMware represent the Client’s file
system. This study will be based on available documentation, and the Linux
source code.

To achieve a real time integrity control, the Controller must be aware of which
files the Client writes to disk. We must thereby investigate how the Client
behaves when files are written to disk, and how the Controller may intercept
these write calls.

We must also do a research on how the Client can be isolated from the
Controller, and how the Client may be available to the network, while the
Controller is not.

We believe that the literature study will take a long time in this project, since
neither of us has in-depth knowledge of Linux nor file systems.

2 File system

2.1 EXT3file system

The EXTS3 file system is the most common file system for Linux, developed by
Stephen Tweedie. It is an extension of the EXT2 file system with journaling. In
case of a system failure, the EXT3 file system is recovered faster than the EXT2.
Because it is not necessary to run a file system check to find out which part of the
file system that eventually are inconsistent. The EXT3 file system is built up by
inodes [01], which works as pointers to where the file physically is located on the
disk. Each file has at least one inode. The inode contains information about the
file, such as size, when the file was created, modified or deleted. The inode also
contains the block numbers which the file occupies.

The EXTS3 file system is divided into groups. The size of the groups is dependent
of the block size. The size of one block is optional, but a common size is 4 Kilo
bytes. If the block size is 1 Kilo byte, each group consists of 8192 blocks [02]. And
in a system with a block size of 4 Kilo bytes, each group consists of 32768 blocks.
The first block on an EXT3 partition is the superblock. The superblock contains
information about the file system, such as group size, total number of blocks,
total number of inodes, block size, inode size, first inode etc. The second block is
the group descriptor, which holds information about the groups. There are many
backups of the superblock and the group descriptors on the partition. The
positions of these backups are determined by the size of the disk, but they are
commonly found in group nr 1, 3, 5, 7 and 9. If the superblock and group
descriptor are present in a group, they always occupy the two first blocks. In
each group the block bitmap and inode bitmap are present. They are located
immediately after the superblock and group descriptor if present, or at the two
tirst blocks in the group. The block and inode bitmap keeps information about
which blocks and inodes that are used in one group. The next blocks are used by
the inode table. An inode entry has a size of 128 bytes, and in a system with 4
Kilo bytes blocks, one block contains 32 inodes. The amount of inode table blocks
in each group is determined by the size of the disk and the block size. When
using a block size of 4 Kilo bytes, there will be approximately 500 inode table
blocks. The exact number is found in the superblock.

2.2 Sector number versus block number

The hard disk needs a reference to where it should read or write. This reference
is the sector number. The size of one sector may vary, but a common size is 512
bytes. Each disk may be partitioned into smaller logical disks. A logical disk acts
as a physical disk in the way a user sees it, but is actually only a part of one
bigger physical disk. Again the operating system needs a reference to where the
disk should perform a read or write operation. The block number acts as this
reference. The block number tells the position of a file in relation to the currently
active partition. This means that the first block of one partition is block number
zero, but the sector number for the first block might be 800. The size of one block
may vary from system to system, but a common value is 4 Kilo bytes. Thus, one
block consists of eight sectors.

Sectorn Soo 1600 2400
Partition 1
Block 10 1000 100 0 100

Figure 1 Relation between sector, block and partition

As seen on Figure 1 the block number applies for one partition, but the sector
number applies for the entire disk.

2.3 Map sector to block

To map a physical sector to a logical block, you need some information about the
disk architecture. The sector number corresponds to the physical disk, and the
block number corresponds to the Linux partition on the disk.

To calculate the block number, four values must be present.
e The sector number where the file physically is written on the hard disk.
e The first sector of the partition where the file was written.
e The size of one sector.
e The size of one block.

The sector size and start sector of a partition can be found with the fdisk
program in Linux. The block number is then calculated by

(sector — start sector)

Blosk = (sector size * block size)

Figure 2 Sector number to block number.

3 Virtual Machines

A Virtual Machine (VM) is a software component which simulates a real
computer. The first VM was developed by IBM [13] in 1967, as a result of their
need to disable certain modules in the real computer, while the operating system
was running.

The VM has its own virtual BIOS and hardware, which the operating system
inside the VM uses as if it was real hardware. The VM interprets and forwards
information from the operating system in the virtual machine to the computers
“real” operating system, which does the real system calls.

One useful application of a VM is the advantage that it easily can be turned off,
and its status at shut down can still be checked. The state at turn off can be
copied and modified if necessary. When testing operating system this advantage
can be used to track down where an error occurred. Today there are developed
several different virtual machines, such as Plex86, Bochs, and VMware.

VMware [10] was founded in 1998, and in 1999 they released their first product
VMware Workstation. VMware Workstation was developed as an industry
standard, and soon became a very popular virtual machine. VMware can be used
by both Linux and Windows operating systems, and are currently supporting
Windows, Linux, Novell Netware and FreeBSD as the guest operating system.
The advantage of VMware is that software developers can check if newly
developed software can run on different platforms. When using a VM the risk of
severe damages is removed, since tests are conducted in a virtual environment.

“Wirtual machine 1 “irtual rachine 2

Guest OS Guest OS

: Motherboard, Motherboard,
memory, disk, memory, disk,
displey, het displey, net

Virtual machines

VMware Workstation
Host OS

Real machine | Motherboard, memory, disk, display, net

Figure 3 VMware Architecture

3.1 VMware

The virtual machine shall not be aware that there exists any form of control on its
content. This means that there shall not be any running processes that may
indicate that the currently logged in user is monitored. This makes it necessary
for the integrity check to run on the host’s operating system.

The virtual operating system acts as an ordinary operating system. When the
virtual operating system wants to do a read or write to a disk, it tells the IDE
driver what it wants. When a file is going to be written to the disk, the file is
transformed to a sector number and a buffer, which is the content of the file. This
request is then sent to the disk, in this case the virtual hard disk. VMware takes
these calls and forward them to the host’s operating system, since only the host’s
operating system can perform input and output operation to the physical disk. In
the host’s operating system read and write requests are processed through the
IDE driver.

Virtual Cperating System

Kernel

IDE Driver |

WRITE

Vitware

‘ WRITE

Host Operating Systam

Warnel

IDE Drivar

—WRITE—

l

Figure 4 Write call from guest operating system

3.2 Raw disk / Virtual disk

With VMware it is possible to use either a virtual disk or a physical disk. The
virtual disk is a file where VMware stores the file system. These disks are flexible
and the file containing the disk information will grow according to how much
that are written to the virtual disk. It is easy to install an operating system in to a
virtual disk since the hard disk does not need to be repartitioned. Physical or raw
disks use an existing disk or partition to store the data. The virtual machine is
responsible for the data structure on this disk.

3.3 Mounting VMware disks

There are several different methods to connect to the virtual machines file
system. VMware is delivered with different programs which can be used to
connect to the guests file system. vmware-mount.pl is a Perl script which can
only be used for connection to the file system, when the VM is turned off. This
script enables read and write commands to the file system. Vmware-loop is
another program that uses a network block driver to connect to the file system.
The file system is mounted in a read only mode, because writing to the file
system while VMware Workstation is running, would make the file system
inconsistent. If the host alters the block bitmap or the inode table by writing a
tile, the virtual machine would not be aware of this alternation, because it only
reads the inode table and block bitmap at start up. There is a problem with both
vmware-loop and normal mounting of the virtual machine’s disk. When the
virtual machine writes a file to the disk, the mounted file system is not updated.
The reason to this is that the host operating system does not know that the disk is
being updated. To see the changes, the host has to remount the virtual machine’s
disk. Thus the integrity control will not be able to find any integrity violations
until the disk is remounted. The vmware-mount.pl and vimware-loop might be
used on both a virtual and a raw disk. If a raw disk is used, it can be mounted
normal by the mount command in Linux. This method is quicker than using the
vmware-loop.

3.4 VMware Networking

VMware Workstation allows three different types of networking, bridged, NAT,
and host only.

3.4.1 Bridged Networking

With bridged networking, VMware use a virtual bridge and connects to the host
Ethernet adapter. The client gets its own IP-address on the network and acts as a
normal computer. This is useful if the client is going to serve different networks
services, such as web server or FTP.

Virtual
Ethernet
adapter

Virtual machine FUEEEEEEEN

Virtual Ethernet switch

Host

Virtual bridge E;IJ g;r:g:

Figure 5 Bridged Networking with VMware [12]

3.4.2 Network Address Translation

With Network Address Translation (NAT) [Figure 6] the virtual machine gets a
private IP-address instead of a unique IP-address in the network. The virtual
machine get access to the network through the host’s IP-address and the host are
forwarding packages that are going in and out from the virtual machine.
Computers on the network can not initiate connections to the virtual machine,
because only the host is visible on the network.

Wirtual
Ethernet
adapter

Virtual machine DHCP server

Virtual Ethernet switch

Host
Ethernet
= adapter

NAT device

Figure 6 Network Address Translation with VMware [12]

3.4.3 Host only networking

With host only networking VMware sets up a network between the host and the
virtual machine only. It uses a virtual network adapter that is visible only to the
host and the virtual machine will not be able to access the rest of the network.
This is useful to set up a virtual network for development with several virtual
machines.

4 |Intrusion detection

There are two main types of Intrusion Detection Systems (IDS), Network IDS
(NIDS) and Host IDS (HIDS). NIDS is a proactive type of intrusion control which
will try to detect whether someone tries to send some malicious code that can be
used to break into the network. The benefits with a NIDS are that there is only
need for one per network. The HIDS reacts in another way, it detects if an attack
succeeds and has lower false positive rate.

There are some problems with a HIDS, if someone gains root access they can
discover or disable the IDS. To prevent this, the IDS can be hidden, an alarm
could be raised, or the IDS could fight back against the intruder. Another
problem is that the HIDS has to be installed on every single computer on the
network which is going to be protected, this could be hard since different
computers have different configurations and the IDS must be configured for each
computer.

4.1 Integrity Control

If someone manages to break through the IDS there should be a second
perimeter of defence to detect if someone gains access to the system. On a Linux
computer there is many log files which programs and the system reports to when
something is done in the system. An intruder can gain access to these logs and
manipulate them in such way that no one can see that the security was violated.
As a second perimeter defence, integrity control software can be installed.
Integrity control does not prevent users from reading or change files, but
modified files can be discovered.

4.1.1 File integrity

On a computer there is a huge amount of files and folders. Some of the files can
be used and modified by normal users, and others can only be accessed by the
administrator. Some files should not be touched at all. To protect these files there
is used permissions to control who can use which files. In a standard operating
system, an administrator can use his privileges to change files. Some of these
changes are often done by a mistake and some are done by purpose. To detect
the changes in the file system integrity checks can be used. There are simple
ways to check integrity of files.

10

#l/bin/=h

lz -lakRi / >/home/files
cd fusri/bin
lz | margs -I mdSsums {1 > Jhome/sums

diff ‘home/files /homedfile=s.old
diff /home/sums /home/sums.old

Figure 7 Simple integrity check

This small program [Figure 7] [05] generates hash sums of the files and compares
these sums to old sums stored in a file. If the two files differ, one or more of the
tiles has been compromised and the system administrator should be alerted.
Something has happened to a least one of the files we are checking. But this small
program is not usable in large systems. On a large system it is better to use a
program designed for integrity checking. There are several programs on the
market which can be used for integrity checking, for example Tripwire and
AIDE.

4.1.2 Fake reports

There are still some problems with integrity control. Often integrity software
generates a report after the integrity check. An intruder can manipulate the
report, one way to do this is to gain access to the mailer daemon and manipulate
the email sent to the administrator. The intruder generates a fake report that
claims that the system is OK.

4.1.3 Attack between checks

Another way to fool the integrity check if it is not implemented decent is to do an
attack between the checks. An intruder may modify some files to do his
malicious work. When he is finished he may restore the original files again. The
integrity check will then not be able to detect that these files has been modified.

4.1.4 Read only devices
An intruder can gain access to the integrity database and manipulate it. He might
update the database and commit the changes he has done to files. To prevent
this, the database can be placed on a read only device, such as a write protected
floppy disk or a CD-ROM. The intruder will then be able to access the database
but he will not be able to manipulate it.

11

4.2 Tripwire

The first version of Tripwire was developed in the late 1980’s by Gene Kim and
Eugene Spafford [03]. It was released in 1992 and in 1997 Tripwire Inc began to
license the software from Purdue Research Foundation. In October 2000 Tripwire
Inc. released the source code for Linux under the GNU Public License (GPL).
There are minor differences between the free version of Tripwire and the
commercial version, but as an integrity control the free version is good enough.

Tripwire uses a database where a snapshot of the secure file system is stored.
When integrity checking the file system, Tripwire looks up in the database and
checks the files. If any violation are found Tripwire will generate a report which
an administrator can examine to find out if these changes where normal or not.
Tripwire supports different message-digest algorithms for integrity checking
such as MD5 sums, HAVAL [04], and CRC-32. Tripwire also checks file
attributes, such as permissions, owner, group, inode, creation time, and accessed
time. This prevents the attack between checks problem.

With Tripwire it is possible to encrypt the database to prevent intruders to access
the database and modify it. The database, configuration, policy and report files
are encrypted with an El-Gamal 1024 bits signature which protects them from
being modified. It is possible to do an integrity check on the database itself as an
extra protection.

Tripwire generates reports after a security check of the system, and it is possible
to send these reports by email to an administrator which examines the reports
and eventually correcting the errors in the system. It is possible to configure
Tripwire to just send reports if there where some violations on the system.

4.2.1 Modifications of Tripwire

When testing Tripwire is was discovered that it would not send an email when
checking a single file form command line. We had to modify the source code to
allow this.

4.3 AIDE

AIDE (Advanced Intrusion Detection Environment) [09] was developed by the
Finnish students Rami Lehti and Pablo Virolainen. AIDE is distributed under the
GPL and therefore people can freely use and develop the software. As Tripwire,
AIDE supports different cryptographic options to check a file such as MD5,
SHA1 and HAVAL among other types, and it is easy to implement more
algorithms. It also provides check of file attributes. AIDE differs from Tripwire

12

because it cannot encrypt its own database and neither supports email
notification to system administrators.

4.4 Tripwire or AIDE

We first deployed a model with AIDE because it was stated that it was faster
than Tripwire [06]. In tests early in the project we also concluded this, but we
had done a mistake. We did not test on a large enough databases. When integrity
checks on small databases Tripwire and AIDE had nearly same response time,
and when doing an integrity check on a single file AIDE was slightly faster. But
when testing on larger databases AIDE was faster on doing an integrity check on
the whole system, but Tripwire was much faster on single file checking against
the database.

13

5 Prototype

5.1 Introduction

We have looked upon three alternative solutions to monitor which files that are
currently being modified on a disk.

VMware may run in different modes, such as undoable and persistent mode.
When using undoable mode, VMware creates a snapshot of the Client at the start
up and a redo log file, which shows which file that has been written or deleted, is
created. If this file is read by the Constroller, it would know which files that are
going to be modified. A problem with this solution is that the files are not written
to the disk before the snapshot is committed, which happens when the Client is
powered off. This is not convenient since the virtual machine will run as a server,
and should thereby rarely be turned off. Another solution is to modify the
VMware’s virtual IDE driver. If this can be done, the Controller will know which
blocks that are currently being updated. But VMware is not an open source
project, and thus it is difficult to get access to its source code. The last solution we
have looked upon is to modify the Controller’s kernel. Since VMware must use
the Controller’s IDE driver to write to disk, the Controller will be aware of which
sectors and blocks that are currently being written.

14

5.2 Write operation

The Client and Controller behaves equal when it comes to writing files to a disk.
Although a big difference is that the Client writes to VMware’s virtual hard disk,
and the Controller writes to the physical hard disk.

When a file is written on the Client [Figure 8], the file is sent to its IDE driver.
The IDE driver transforms the file to a Request. A Request is either a write or
read call to the disk, and contains the first sector it will use on the disk, number
of sectors it will occupy and a buffer which is the content of the file. This request
is then written to the disk, in this case the virtual disk. VMware forwards this
write request to the Controller, who sends it to the IDE driver, and the request is
written to the physical disk.

WRITE
FILE: &
Content: “TEST

Cligr
IDE DRIVER

WRITE
Sachor 745134
Mumber ol Sectors: 8
BUFFER

‘ Whiwana's Virlual ‘
& Hard Disk

WRITE
Sachor: 245134
Mumber of Sectors: 8
BEUFFER

‘ Conirpllar ‘

IDE DRIVER

WRITE
Soctar: 245134
Mumber of Seciomn: B
BUFFER

{ Phigsical ‘

Hard Disk

Figure 8 A write operation initiated by the Client,

15

5.3 IDE driver

To analyze the sector numbers that are written to disk, the IDE driver must be
modified. The ide-disk file was chosen [07], since this is at a low level in the IDE
driver. The function __ide_do_rw_disk was modified to output the first sector
number and how many sector number the write calls occupies. To generate this
output an error message by printk was chosen. In Linux there are different
categories of error messages, and you may decide where these messages are
displayed. The KERNEL_EMERGENCY error is triggered when the kernel has
been corrupted. This error occurs rarely, and would thereby fit well as output
message from the IDE driver. These types of messages are then displayed in a
First In First Out file, or named pipes as they are called in Linux. The advantage
with this kind of files is when a line is read, the line is removed.

The output of the IDE driver is printed to a file, and it must be ensured that the
source of the output is the Client. If this is not done correctly, there will be an
infinity loop in the IDE driver, since the printk message is written to a file, and
will as any other file be processed in the IDE driver. If the Client is running on
the same physical hard disk as the Controller, the output may be constraint by
using the start sector and end sector of the Client. If the Client is running on its
own disk, you may constraint this by checking the hard disk name, such as
/dev/hda.

5.4 Modifying the IDE driver

When the IDE driver is modified, it is important that the modification does not
demand too much processing, since the IDE driver is an important part of the
system. If the modified driver demands more processing time than before, the
system performance will decrease. It is important that the modification does not
interfere with the originally code in such a manner that the system becomes
unstable. The IDE driver has been modified to output the block number instead
of the sector number. This calculation should take place in the prototype rather
than in the IDE driver. But it enhances the human readability, which has been
important in the research work to understand how the IDE driver behaves.

5.5 Kernel output

The output from the IDE driver must tell which file that is currently being
written. After analyzing the structure variable Request that is passed to the
__ide_do_rw_write function, it was discovered that the sector number would
give the block number for the currently written file. From the block number the
inode and the path can be retrieved. When only one file was written, the path
name can be found with this method, but if multiple files were written in one
directory, only the first file was found. By analyzing the Request variable further,

16

the number of sectors variable was investigated. This variable contains the
number of sectors the write operation occupies. When multiple files are written
in the same directory, and the files are placed immediately after each other on
the disk, the number of sectors must be used to find the succeeding files. The
number of sectors must be divided by the number of sectors one block occupies
in order to find the number of blocks needed by the write operation. To find all
written files, each of these blocks must then be mapped to inodes. If file A and
tile B are written to disk and both are smaller or equal to the block size, the
output from the IDE driver will be the start sector of file A and the number of
sector this write calls needs, which is 16. If file A is written to sector X, then
sector X + 8 is the first sector of file B. If a file is larger than the block size, all of
its blocks are mapped to the same inode.

5.6 Filtering blocks

Not only files are written to the disk. The inode table, inode bitmap and block
bitmap are also written. These blocks can obviously not be mapped to pathnames
and must be filtered out. The block and inode bitmap are always at the start of
each group, and occupies one block each. The inode table uses approximately 500
blocks and is succeeding the bitmaps blocks. The superblock contains
information about blocks that can be filtered out, such as the number of the first
valid inode. The blocks that are bound to invalid inodes can then be filtered out.
When setting up the filter the architecture of the disk must be known. By using
the program dumpe2fs the needed information can be found.

5.7 Persistent mode versus non persistent mode

VMware has an option for persistent mode, meaning when a new file is created it
is immediately written to disk. Ideally this mode would fit well in our system,
but it creates a big problem. This is due to the fact that the inode table is not
updated until the disk scheduler tells the virtual operating system to write its
buffer to disk. When the buffer is written to disk is dependent on time and how
fast the buffer is filled up. From a file has been saved and until the buffer is
written to disk, the elapsed time is approximately 30 seconds.

Since the inode table is not updated, the block cannot be mapped to an inode,
and the path would be impossible to find. Thus using persistent mode will cause
the prototype to try to map a block to an inode before the inode is written, and
thereby causing unnecessary disk reading.

When the non persistent mode is used, the sectors may be intercepted when the
scheduler tells the operating system to write its buffer to disk. This operation
takes place some time after the actual write operation, and the integrity check

17

will not executed in real time. Although the advantage is that the inode table is
written at the same time, and the prototype will find the inode at once.

5.8 Scheduler

The operating system has a disk scheduler that triggers when blocks are written
to the disk. Writing to disk is a time consuming operation, and the operating
system waits to see if there are more sectors that can be written in the same
operation. The scheduler organizes the sectors in such an order that it uses less
time to write them than the original system calls would have used, and thereby
achieving a more time efficient writing procedure. In this project disk scheduling
occurs two places; in the Client’s and in the Controller’s IDE driver. The virtual
machine has an option for writing files immediately to the disk, the persistent
mode, but the inode table is not written at the same time as the file. This makes it
impossible to map “new” blocks to inodes before the inode table has been
written. If there could be a process executing the sync command on the Client,

this problem would have been solved, since sync forces the buffer to be written
to disk.

5.9 Mapping sectors to path

When a file is written to the disk the IDE driver tells which sector and how many
sectors the file will occupy. To identify the written file, the block number must be
calculated from the sector number.

(sector — start sector)

Bloek (sector size * block size)

Figure 9 Sector number to block number.

This calculation is done by the expression in [Figure 9]. When the block number
is identified, the block’s inode must be found. All inodes in one group are stored
in the group’s inode table. To find the inode for one block, all inodes in the inode
table must be analyzed to check whether they have a reference to this block
number or not. When using a block size of 4 Kilobytes, there are approximately
500 inode table blocks in one group. In each inode table block there are 32 inodes,
making the total number of inodes in one group to approximately 16000. Because
of the large amount of inodes that must be analyzed, it is important that the
program that searches for the inodes are fast. We have looked upon debugfs to
do this mapping process. Debugfs does also have a possibility of doing the inode
to path mapping process.

18

5.10Debugfs

Debugfs is an open source program bundled together with e2fstools, written by
Theodore Ts'o. The current version of Debugfs is 1.35, released in February 2004.
Debugtfs is a tool for debugging an EXT2 or EXT3 file system. Within Debugfs
there are among others, tools for mapping between block to inode and inode to
path. The information from the superblock may also be viewed in order to
examine the architecture of a partition. The code for mapping between block to
inode are found in icheck.c, and the code for inode to path mapping are found in
ncheck.c. Icheck.c and ncheck.c uses many functions from other header files in
debugfs, and the ext2fs library. All these header files are poorly documented and
thereby difficult to interpret.

5.11Modified and new files

When a modified file is written to disk, two scenarios may occur. The file uses
either the same block as before the update, which happens rarely, or it uses a
new block. Since the file mainly uses new blocks, the inode table needs to be
refreshed. Debugfs reads the inode tables at start up and makes an inode cache.
This operation takes some time, and should therefore not take place to often. A
solution to this problem is to update the inode cache only when a block to inode
operation does not return a valid inode. This requires the filter to work properly,
and only blocks that belong to files are run with the debugfs tool.

19

5.12Concept of prototype

The prototype [Figure 10] must read the FIFO file generated by the IDE driver.
When the calculation from sector to block is finished, the filter must be applied.
If the block is valid, the process of mapping a block to inode is started. If this
process fails, the block must wait for the inode table to be updated before the
inode can be found. When the inode is found the process of mapping inode to
path is executed, and the path for the sector is outputted.

Read FIFO file

.

Seclor io block
mapping
L

Inwalid block

Filter

Valid block

l

Block o Inode

Wait for
updated Inode =
table

Inode not
found

Inode found

¥

Inode to Path

OCutput path

¥

Figure 10 The concept of sector to path mapping

20

5.13Solution #1

To map a block to an inode, a function in debugfs called do_icheck is used.
do_icheck’s code is found in icheck.c. Some of do_icheck’s code has been
removed, such as some output code, which have no purpose in the prototype.
do_icheck has been modified to return the inode number or zero, indicating if the
inode is found or not. If a legal inode is found, another function in debugfs called
do_ncheck is used. do_ncheck is found in ncheck.c and maps an inode number to
a path. It has been modified to either return the path for the inode or zero. When
the inode table is written to the disk, it is important that Debugfs’s inode cache is
updated in order to find the new inodes. This is done by closing and reopening
the file system. Some problems using both icheck.c and ncheck.c have been
experienced, and any solutions to these problems have not been found.

5.14 Solution #2

Since using both icheck.c and ncheck.c in the same program caused some
problems, another solution was developed. This was to run debugfs with system
calls, and pipe the information gained into another FIFO file. When the mapping
process from sectors to blocks and the filtering is done, the inode can be found by
the system call:

debugfs /devicename -R ‘icheck [blocknumber]’

This call returns the inode number, which is piped to another FIFO file. The path
can be found by the system call

debugfs /devicename -R ‘ncheck [inode number]’

By using system calls you ensure that the file system is up to date, because the
inode table is read for each call. Since both icheck and ncheck must read the
inode tables at each call, these operations will take some time. Typically between
1 to 10 seconds.

5.15Solution #3

Executing solution #2 takes time, and due to this another solution was
developed, which was a hybrid of solution #1 and #2. In this solution the inode
table is only refreshed if an inode is not found. This ensures that for each block
that belongs to a file, the inode is found. The icheck.c is included in the solution,
and the mapping from inode to path is executed by a system call.

When a block has been mapped to an inode, the inode number is put in a queue.
Debugfs’s ncheck is used to map inode numbers to paths. Ncheck reads the

21

inodes table each time it is executed, and it can map many inodes to paths for
each call. By keeping the inode numbers in a queue, ncheck executes with all
queued inodes. The returned paths from ncheck are kept in a new queue, which
is used to generate the system call for Tripwire.

This solution is multithreaded and uses four threads. The first thread executes
the system call sync every second, to be sure that no blocks from the virtual
machine are buffered in the host. The second thread reads the FIFO file, applies
the filter and executes the block to inode function. The third thread executes the
system call for debugfs. And the last thread reads the file generated by the
system call to debugfs and executes the integrity check. This solution guaranties
the finding of a path for each block. A drawback is that it might be a bit slow
since the process of mapping inodes to paths reads the inode tables each time it is
executed.

22

5.16Iptables

To prevent the Controller gaining access to the Internet we use a firewall called
iptables [08]. Iptables can be used to block connections from certain addresses
and ports. When opening more ports than necessary, additional vulnerability is
created in the system. In this project the host should not be accessible from the
network. Neither should the host be able to access the network, except if the
integrity is violated. Precaution where made in the prototype to achieve this
criteria. Iptables is a replacement of the old Linux firewall ipchains. Iptables is a
part of the Linux kernel, which allows faster executions than a stand alone
program.

Iptables makes it possible to specify which programs that are allowed Internet
connection. Since we are using bridged networking it is easy to filter the
Controller’s network traffic from the Client’s. With iptables all incoming and
outgoing connections from the Client are allowed. The administrator can modify
iptables to decide which incoming connections are allowed to the virtual
machine, since the Client may have several different servers.

In [Figure 11] there is a sample configuration of the iptables on the host.
Following this rule, all incoming connections to the virtual machine will be
routed to the Client, and all other connections blocked.

Chain INPUT (policy ACCEPT)

target prot opt source destination
ACCEPT tcp -- 212.125.237.174 anywhere tocp spt:ismtp state RELATED, ESTAELISHED
ACCEPT all -- anywhers 1%2.168.1. 4
DROF all -- anywhers 1%2.1688.1.3

Chain FORWARD (poliecy ACCEERT)
target prot opt =ource destination
DROF ALL

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

ACCEPT tcp -- anywhers 212.125.237.174 top dpt:smtp
ACCEPT 211 -- 1%92Z.165.1.4 anywhere

DROF all -- 1%2.1658.1.3 anywhere

Figure 11 Iptables configuration

5.17 Tripwire

Tripwire does not allow sending email reports when checking a single file
against the database. We had to do some modifications in the source code of
Tripwire to allow this. Tripwire can check several files from command line
against the database. If it finds an integrity violation in a file, it generates an
email containing a report about which files this is.

23

6 Results

6.1 Introduction

In this project a vital part was to investigate if real time integrity control of a
virtual machine was possible. By going through the IDE driver in the Controller,
it is possible to analyze which files the Client is currently writing. When the
prototype has identified the path for this file, Tripwire compares the file against
its database, and checks if the file is modified or not. If the file is modified,
Tripwire sends a mail to the system administrator.

Write

Tripwire
Database

IDE diriver Saclor Prototype

Fath

—Wirile———— Tripwire

Raad Repor

Contact
System
Adrmmisiraton

Physical Disk

Figure 12 The integrity check

24

6.2 Performance of the prototype

Since the persistent mode only writes the file to the disk and not the inode table,
the prototype must wait for the inode table to be written before it is able to find
the path. The inode table is written approximately 30 seconds after the file was
modified. How fast a modified file is discovered is dependent on how much
activity there is on the disk, since the process of mapping blocks to path
demands a lot of disk reading. When a new block is used, the prototype must
refresh the inode cache, which uses approximately one to two seconds. The inode
is then found in three to four seconds. To find the path for an inode, ncheck
needs on the average five seconds.

This means that the prototype will use approximately 40 seconds to find the path
for a sector.

6.3 File operation

When a file is created the prototype returns the path for the file and the path for
its directory. The integrity check can not detect any abnormality with the new
file, but it reports any changes in a directory. If a file is deleted, the prototype
returns the file’s directory and Tripwire will then figure out which file that is
missing. If a file has been modified, the prototype returns the path for the file
and Tripwire will then run an integrity check on this file.

6.4 Response Time

There are many factors that affects the response time. The main factor is how
much activity there is on the disk. If the virtual machine is reading and writing a
lot to the disk, the performance of the prototype will decrease. The prototype
needs to do a lot of disk reading to perform the integrity check. It is thereby
important that the mapping process from blocks to inodes does not run together
with the mapping from inodes to paths. Tripwire’s database will also affect the
performance of the prototype. If it grows large, the integrity check will be slower.
The prototype will also affect the performance of the virtual machine. When the
prototype has a large queue of blocks, the performance of the virtual machine
will decrease, since they use the same physical disk.

25

6.5 Performance test of Tripwire and AIDE

We tested AIDE and Tripwire to find out which of the integrity software that
where the fastest. We did several testes with both checking the whole database
and just checking a single file against the database. All the tests where done on a
Linux Red Hat 9 distribution, with a Pentium 4 , 1.6 GHz processor and 1
Gigabyte of memory. There where no other applications running during the
tests. During the tests we checked the permission of files and the md5 checksum.
As we can see in [Figure 13] AIDE is slightly faster to check small databases but
when the database exceeds 5000 files Tripwire are faster.

140 -

120

100

80 -

— e AIDE

---m--- Tripwire

Seconds

60 -

© X D DN DD DL D A
A0 PO B Y RN A
LA N T A L S Q\:g\qp%(io(o

Filesin database

Figure 13 Integrity check against whole database

26

We also tested integrity checking on one single file against the database [Figure
14] and found that when the database exceeds 10000 files Tripwire is extremely
faster. On a database containing 25000 files AIDE uses slightly under 20 seconds
but Tripwire uses about 4 seconds. This means that Tripwire is five times faster
while checking one single file against the database.

25
20
% N /
c / —e—AIDE
o
S r /S | |....-- Tripwre
$ 10 / =
n
N3
-’
© ® Y > > > Z > & NS 12
A\ © O O >) Q v % N} v
LA NS M M - M M S N A S\
R
Filesin database
Figure 14 Checking one single file against the database
6.6 Iptables

Iptables are a very powerful filtering option which allows and denies network
traffic according to standard filtering options. To prevent the Controller from
being contacted through the network interface we have blocked all incoming and
outgoing connections except for outgoing SMTP traffic. SMTP allows Tripwire to
send a mail to the system administrator if the integrity has been violated. All
incoming and outgoing connections are allowed for the Client. This resulted in a
secure firewall for this projects purpose. There could be done more filtering on
the firewall, but this is dependent of the services the Client provides.

6.7 Mounting file systems

Before an integrity check is performed, the file system must be remounted, since
the Controller does not know that the mounted file system is modified. When the
vmware-loop was used, remounting the file system uses approximately 1.5

27

seconds. The normal mount command in Linux used approximately 0.5 seconds,
which is about one second faster than the vmware-loop mounting.

6.8 Real time

To detect modified files in real time, the virtual machine has to write blocks and
inode tables as fast as possible. Since there should not be any processes running
in the virtual machine, and the fact that the persistent mode only writes the file
and not the inode table to disk, we need to wait for the disk scheduler to write its
buffer, before we can detect a modified file. The buffer is written at a varying
interval, but never later than 60 seconds after the file was saved. On the average
it is written 30 seconds after the file was saved. This means that the process of
mapping sectors to paths, take place on an average of 30 seconds after a file has
been modified, and this process uses approximately 10 seconds. The integrity
control’s speed to detect a modified file depends on the size of its database. With
a large database, containing over 25000 files, Tripwire detects modified files in
about four seconds. Thus from a file is modified and until the integrity control
reports that the file has been modified, the systems uses approximately 45
seconds.

6.9 Area of use

This prototype is meant as an inner defence on a server. Normally there is some
kind of outer defence, such as firewall or intrusion detection system (IDS) that
will stop an intruder. If an intruder manages to bypass these outer defences and
gain access to a server, he will often try to make the computer more vulnerable
by modifying some files. When our system is used, the intruder would not be
aware that the system has an integrity control, since he is connected to the Client
and the integrity control runs on the Controller. When the intruder modifies files
on the Client, the Controller will report any changes in files within 45 seconds.
The Controller sends an email to the system administrator, and it will be up to
him to perform the appropriate action, such as restoring the modified files with
the originals.

An important observation is that our system will not deny a user from modifying

tiles. And an intruder might exploit the system during the time from a file is
modified until the system administrator has restored the original file.

28

7 Discussion

7.1 The prototype

Three different solutions of mapping blocks to path have been tested. The
selected solution is not the best, since the file system’s inode tables must be read
for each time the process of mapping an inode to path is executed. This operation
should ideally happen only when a modification in an inode table have occurred.
In the first prototype, we include both the icheck.c and ncheck.c from debugfs,
but there were some compatible problems when both files were used. No
problems were encountered when only one file was included, but when both
were included Debugfs generated a Segmentation Fault error in different parts of
the code. Debugfs source code is complex and poorly documented, which made
the debugging process difficult. In the end we had to abandon the debugging
and search for another solution. We then developed a system that executed both
the mapping from block to inode and inode to path with system calls. This
approach worked fine, although the performance was bad since both mapping
processes needed to read the inode table for each call.

The solution we ended up with included the icheck.c file from debugfs and
executed the mapping from inode to path as a system call.

7.2 Real time

The project aimed to detect modified files in real time. From the view of the
Controller, the integrity check happens in real time, since it reacts as soon as a
file is written to the disk. Seen from the point of the Client the system is not in
real time, because approximately 45 seconds is needed from a file is written until
it is detected as modified. Since we got the constraints that there shall not be any
running processes which may indicate to a user that he is monitored, the system
we have developed is as near real time as you may get.

The system uses some time before a block can be mapped to a path, due to the
fact that the inode table is not written at the same time as the file when using
persistent mode. This could be solved if a process in the Client had executed the
sync command often. If this process had been running, the inode table would
have been written at the same time as the file, and our prototype would have
found the path as soon as the inode tables had been refreshed. And thereby the
prototype would have detected a modified file at approximately 30 seconds
earlier than it does now.

29

7.3 Difficulties

A big problem with this project has been the absence of useful documentation of
the IDE driver. Because of this, much time has been used to read the IDE driver’s
source code. This code is complex and poorly documented, and it has been
difficult to understand the behaviour of the IDE driver. An important tool in the
research process of the IDE driver has been the Dumpe2fs, which displays the
superblock and the group information for a file system. By using different
outputs from the Request variable, together with Dumpe2fs, has been vital to
understand how the IDE driver behaves, such as when a file is written and when
the inode table is updated.

Another problem has been the Segmentation Errors in Debugfs, when both the
icheck.c and ncheck.c files where included. The error happened at different parts
in both files, and we could not find any reason for the error. Although when they
where used separately, they both worked fine.

7.4 Further work

There are possible to make the prototype faster in detecting integrity violations.
In the prototype the icheck.c and ncheck.c compatible problems should be
solved. This would save approximately five seconds. If the sync command
cannot be executed on the virtual machine, the disk scheduler in the virtual
machine should be modified. If the disk scheduler writes the inode table at the
same time as the file is written, when using persistent mode, approximately
thirty seconds would be saved. Although modifying the disk scheduler can be
difficult, since there is not much documentation about it. If the compatible
problems could be fixed and the disk scheduler modified, the prototype will use
approximately 10 seconds to detect that a file is modified.

When there is a great deal of read and write operations on the disk, the
performance of both the virtual machine and the prototype will decrease. One
solution that might increase the performance of both systems is to add a new
physical disk. By modifying the IDE driver to write to both disks, the new disk
will be a perfect backup of the virtual machine’s disk. By letting the prototype
read from the backup disk, it will not interfere with the virtual machines read
operations. It is important that both disks have the equal architecture, such as
group sizes, block size and total size. This solution has not been tested, but it
should work if the IDE driver is modified correctly.

30

8 Conclusion

In this project we have looked upon the possibility to run an integrity check on a
virtual machine as fast as possible after a file’s content has been modified. An
integrity control is usually rarely executed, maybe only a couple of times per
week, and thus it might take a long time from a file is modified until it is
discovered by the system administrator.

By using a virtual machine, the Client, there is possible to run an integrity check
from the host machine, the Controller, and thereby hiding the integrity check
from the Client. This means that the Controller must have access to the Client’s
disk and the file’s that are being written. Since the Client runs inside the
Controller, all physical hardware is controlled by the Controller. To be able to
detect which file that is being written from the Client, we have proposed a
solution that uses approximately 45 seconds from the file is written until the
Controller has detected that the file’s content is modified. The solution is based
on analyzing the Client’s write requests, through the Controller’s IDE driver.

This system will not deny a user from modifying a file, but it is only monitoring
the file’s integrity and sending a report if the integrity is violated. The system
administrator must perform the appropriate action to deal with the integrity
violation.

Because our system uses a virtual machine, it has been important that a user does
not have access to the Controller. We have proposed a solution that uses iptables
to deal with connection control. All traffic are allowed to the Client, but only
outgoing SMTP traffic are allowed from the Controller, which enables mail
sending.

We have proposed some action that will make our system faster. The most
important suggestion is to modify the Client’s disk scheduler to write the inode
table at the same time as the file is written. This modification would save
approximately 30 seconds from the total time of detecting a modified file.

31

References

[01]

[02]

[03]

[04]

[05]

[06]

[07]

[08]

[09]

[10]

[11]

Silberschatz Galvin, Operating System Concepts Fifth Edition, John
Wiley & Sons, INC, 1999

EXT?2 file system,http://kris.koehntopp.de/inkomploehntopp/01963.html
[Accessed February 06, 2004]

Tripwire history, http://www.sao.org/newsletter/companies/woody07-
01L.htm
[Accessed March 12, 2004]

Y. Zheng,]J. Pieprzyk and J. Seberry: HAVAL -- a one-way hashing
algorithm with variable length of output, Advances in Cryptology --
AusCrypt'92, Lecture Notes in Computer Science, Vol. 718, pp. 83-104,
Springer-Verlag, Berlin, 1993.

Anton Chuvakin, ups and down of UNIX/Linux host-based security
solutions, April 2003

AIDE vs. Tripwire, http://www .fbunet.de/aide.shtml,
[Accessed April 12, 2004]

A small trail through the Linux kernel,
http://www.win.tue.nl/~aeb/linux/vfs/trail-3.html

[Accessed February 01, 2004]

Iptables, http://www.iptables.org [Accessed April 20, 2004]

AIDE, http://www.fbunet.de/aide.shtml [Accessed February 6, 2004]
VMware, http://www.vmware.com [Accessed February 15, 2004]
Bridged networking,

http://www.vmware.com/support/gsx3/doc/network_bridged_gsx.html
[Accessed May 04, 2004]

32

[12] NAT VMware,
http://www.vmware.com/support/gsx3/doc/network_nat_gsx.html
[Accessed May 04, 2004]

[13] The Virtual Machine, http://www.cap-lore.com/CP.html
[Accessed March 05, 2004]

[14] Plex86 x86 Virtual Machine, http://plex86.sourceforge.net/
[Accessed February 08,2004]

[15] Bochs x86 PC emulator, http://sourceforge.net/projects/bochs/
[Accessed February 08, 2004]

33

	Abstract
	Preface
	T
	Table of figures
	References

