

Wavelet-based video compression:

A glimpse of the future?

by

Are Nor and Lina L. Kittilsen

Masters Thesis in
Information and Communication Technology

Agder University College
Faculty of Engineering and Science

Dunedin, New Zealand
June 2004

Abstract
Even though wavelet-based video compression has been an area of research for
more than a decade, motion estimation and compensation has been considered
complex and inefficient until recently. We have carried out a thorough investigation
of existing research work in this field, and found that fundamental problem with
wavelet-based temporal removal while obtaining highly scalability (the wavelet-
properties of multiresolution structure in combination with embedded coding), has
been solved by performing motion compensated temporal filtering within the wavelet
domain of a overcomplete three-dimensional lifting-based wavelet transform, and
that wavelet-based video CODECs now can compete with DCT-based video CODERS.
In addition we have designed and implemented a video compression prototype
founded on the Java Media Framework API and a DCT- and DWT-based still-image
compression application developed by four engineer students in a previous project.
We carefully planned a stepwise implementation progress, to help us making the
prototype extendable. The entire plan has not been implemented. However, this was
never the intention. We wanted to make a foundation that could be utilized in future
studies, both for our one interest and others. Only a so-called intra-frame CODEC
has been implemented, and has a lot of potential for further development.

ii

Preface
In December 2003 we decided to write a master thesis on use of wavelets in video
compression. Several wavelet theses regarding medical image analysis was
presented by Per Henrik Hogstad (HiA), but because of the importance of video
compression we decided on this. Per Henrik Hogstad have given us several lectures
in Linear algebra, Fourier and Wavelet theory, the first was held in Grimstad, but
because we have been writing our thesis in New Zealand, he has provided us with
wavelet lectures via MSN messenger.

We would like to thank the library manager at Agder University College, Birger
Kvamme for providing us with books and introducing the invaluable IEEE database to
us. We also want to thank our mentor, Per Henrik Hogstad for providing us with
wavelet lectures via MSN messenger at all times of the day. We have appreciated his
educational expertise, and found his knowledge of wavelets essential for our
understanding of wavelets. Special thanks is given to foreign student advisor Dr.
Willem Labuschagne, head of IT-department Dr. Ian McDonald, and senior technician
Allan Hayes at University of Otago, Dunedin, New Zealand, for making us feel
welcome, and by giving us the chance to write our master thesis at the venerable
southernmost university in the world. Dr. Zhiyi Huang has functioned as our informal
mentor, and has been most helpful in several phases of our thesis.

iii

Contents

Part 1 Fundamentals – Background material.. 8
1 Introduction .. 9

1.1 Problem Definition and Motivation ..10
1.2 Preliminary Survey of Previous Work ..10
1.3 Prototype..11

2 Methodology.. 11
2.1 Literature References ...11
2.2 Test Methods...12
2.3 Other issues..12

3 Fundamentals of Video Compression ... 12
3.1 Introduction ..12
3.2 Digital Video ...13
3.3 What is a Video CODEC? ...14
3.4 Removal of Spectral Redundancy ...15
3.5 Removal of Spatial Redundancy ...15

3.5.1 Transform Coding ...15
3.5.2 The Discrete Cosine Transform (DCT) ..16
3.5.3 Quantization ..16

3.6 Removal of Temporal Redundancy..17
3.6.1 Three-dimensional tranform coding ...18
3.6.2 Motion Estimation (ME) and Compensation (MC)18
3.6.3 Block matching algorithm (BMA) ...20
3.6.4 Phase Correlation ...21
3.6.5 Enhancements to the motion model...22

3.7 Removal of Statistical Redundancy ...23
3.7.1 Entropy Encoding ...23
3.7.2 Run-Length Encoding (RLE)..23
3.7.3 Huffman Coding ...24

3.8 Video Coding Standards ..24
4 Fundamentals of Wavelets... 25

4.1 Introduction ..25
4.2 Wavelets from a Historical Perspective ..25
4.3 ‘Fourier vs. Wavelet ...27
4.4 Wavelets Concept ..28
4.5 Wavelets as Filters ...29
4.6 The Wavelet Transform in Two Dimensions ..31
4.7 Inverting the Wavelet Transform..34

Part 2 Trends in Wavelet-Based Video Compression Research 35
5 Introduction .. 35

5.1 Existing Wavelet-Based Video CODECs..35
5.2 Who Does What with Wavelet ..35
5.3 What to Look for..36

6 Discrete Wavelet-based Transforms .. 36
6.1 The Wavelet Domain ..36
6.2 The Fast Lifting Wavelet Transform (The Lifting Scheme).......................38

6.2.1 Constructing wavelets with the lifting scheme...................................39
6.3 Three-Dimensional Wavelet Transform (3-D DWT)................................40

6.3.1 3-D SPIHT (Set Partitioning In Hierarchical Trees)40
6.3.2 Lifting-based Invertible Motion Adaptive Transform (LIMAT)41

6.4 The Dual-Tree Complex Wavelet Transform (DT CWT)...........................42

iv

6.4.1 The Dual-Tree Implementation ...43
6.4.2 Key features ..44
6.4.3 Applications ...46

6.5 The Overcomplete Discrete Wavelet Transform (ODWT)46
6.5.1 ODWT in video coders ...46

7 Wavelet-based Spatial Compression.. 47
7.1 Prosperity of Wavelet-based Image Coders..47
7.2 Embedded Zero-tree Wavelet (EZW) Compression48
7.3 Set Partitioning In Hierarchical Trees (SPIHT)49
7.4 EBCOT Coder in JPEG2000 ..50
7.5 Adaptive Wavelet Coding of Multimedia Images....................................51

8 Wavelet-based Temporal Compression.. 51
8.1 Prosperity of Wavelet-based ME/MC algorithms in Video Coders..............51
8.2 Wavelet-based Motion Estimation and Compensation in Spatial Domain ...52
8.3 Motion Estimation and Compensation in Wavelet Domain.......................53

8.3.1 Shift Dependence ...53
8.4 Motion-Compensated Temporal Filtering (MCTF)...................................56

Part 3 Java Prototype – MediaCODEC ... 57
9 Foundation .. 58

9.1 The Java Programming Language ...58
9.2 Java Media Framework (JMF)...59
9.3 The Still-Image Compression Application ...59

9.3.1 Converting colour space from RGB to YCbCr60
9.3.2 Transforming and quantizing the image ...65
9.3.3 Entropy encoding..66

10 Prototype Design... 66
10.1 A coarse CODEC sketch ..67
10.2 Layout and User Interaction ..68
10.3 File Format ...70
10.4 MDWT (Motion Discrete Wavelet Transform) CODEC71
10.5 MEWT (Motion Estimation Wavelet Transform) CODEC...........................74
10.6 The Programming Progression Plan...74

11 Implementation and Development .. 75
12 User Guide... 76

12.1 The File Menu..76
12.2 The Open Video Menu Item ...78
12.3 The View Menu ..80
12.4 The Window Menu..80

Part 4 Conclusion ... 81
13 Experimental Testing and Comparisons... 82

13.1 Testing of Image- and Video CODEC algorithms in VcDemo....................82
13.2 Comparison of Phase-Correlated and Block-based Motion Estimation84

14 Conclusion ... 85
14.1 Further Development of the Prototype ..85

References ... 87

List of Figures
Figure 3.1 Digital video ..13
Figure 3.2 Projection of 3-D scene onto a video image..13
Figure 3.3 Spatial and temporal sampling ...13
Figure 3.4 Architecture of a typical video encoder ..14

v

Figure 3.5 'Roadmap' - A typical video coder...15
Figure 3.6 'Roadmap' - A typical video coder...15
Figure 3.7 Cosine Wave ...16
Figure 3.8 Sine wave ...16
Figure 3.9 Zig-zag scan of coefficients..17
Figure 3.10 'Roadmap' - A typical video coder ...17
Figure 3.11 First four frames of the "Foreman" sequence.18
Figure 3.12 First four frames of the "Football" sequence.18
Figure 3.13 Predicted motion vectors for frame 2 of the ‘Foreman’ sequence19
Figure 3.14 Residual frame examples from VCDemo...20
Figure 3.15 The block matching algorithm ..20
Figure 3.16 Half-pixel interpolation ..22
Figure 3.17 'Roadmap' - A typical video coder ...23
Figure 4.1 Wavelet history: Timeline 1807 – 1984 [18]26
Figure 4.2 Wavelet history: Timeline 1985 – 1999 [18]27
Figure 4.3 Fourier basis functions ..27
Figure 4.4 Wavelet basis functions...27
Figure 4.5 Wavelet can be viewed as a burst of energy with dominant frequency....28
Figure 4.6 The discrete version of figure 1.3 ...28
Figure 4.7 (a) Convolving a five-sample wavelet, W, with the samples of a signal, S.
The wavelet is operating on S7. [7, slightly modified] ..29
Figure 4.8 Additional samples must be created at the edges................................29
Figure 4.9 The five-sample wavelet shown as a five-tap filter [7].29
Figure 4.10 Some scaling functions from the biorthogonal Deslauriers-Dubuc family.
a (2,2), b (4,2), c (6,2) and d (2,4). [19] ...30
Figure 4.11 Some wavelets from the biorthogonal Deslauriers-Dubuc family. a (2,2),
b (4,2), c (6,2) and d (2,4). [19]...30
Figure 4.12 The first stage of the wavelet transform...30
Figure 4.13 The first level of the DWT, including downsampling by 231
Figure 4.14 A two level wavelet transform ..31
Figure 4.15 Division of the image into four subimages [7, 8]32
Figure 4.16 (a) The original image (Lena) [15]..33
Figure 4.17 The first two levels of the inverse transform.....................................34
Figure 6.1 ‘Roadmap’ – Architecture of a typical wavelet-based video coder36
Figure 6.2 Synthesis scaling and wavelet functions, 5/3 and 9/7 subband filter sets37
Figure 6.3 Lifting scheme forward WT ..38
Figure 6.4 Lifting scheme inverse WT...38
Figure 6.5 Forward steps [15]...39
Figure 6.6 Inverse steps [15]..39
Figure 6.7 Predicting and updating coefficients in 3 levels [15]39
Figure 6.8 Split, Predict, and Update in 2 levels [15, modified]40
Figure 6.9 3-D Wavelet Decomposition [35]..41
Figure 6.10 Temporal decomposition of a group of frames (GOF) [35]41
Figure 6.11 a) Lifting representation for the Haar temporal transform, b) same, but
with motion compensated lifting steps..42
Figure 6.12 Dual tree of real filters for the Q-shift CWT [49]................................44
Figure 6.13 Wavelet and scaling function components of 16 shifted step functions for
the Q-shift DT CWT (a) and real DWT (b) [49] ..45
Figure 7.1 ’Roadmap’ - Architecture of typical image- and video coders47
Figure 7.2 Relationship between parent-child regions in (2-D) DWT sub bands.......48
Figure 7.3 Non-embedded vs. embedded bit stream...49
Figure 7.4 Example of ROI coding at 0.125 b/pixel [24]......................................50
Figure 8.1 'Roadmap' - Architecture of a typical wavelet-based video CODEC.........51

vi

Figure 8.2 ME/MC in spatial domain ...52
Figure 8.3 ME/MC in Wavelet Domain...53
Figure 8.4 a) Four level binary wavelet tree. b) The filter bank, used to achieve
perfect reconstruction from an inverse tree...53
Figure 8.5 Comparison of some common wavelets [20].54
Figure 8.6 Original signal and shifted version ..54
Figure 8.7 Wavelet domain representation..54
Figure 8.8 Step response of level-4 Antonini wavelet (wavelet domain
representation)...55
Figure 8.9 MCTF incorporated in a three-dimensional wavelet transform56
Figure 9.1 DWT from file to file [11] ..60
Figure 9.2 Conceptual Classdiagram of the still-image application62
Figure 9.3 Conceptual Classdiagram of the still-image application63
Figure 9.4 Sequence diagram: Compressing an image and writing to file...............64
Figure 9.5 Mallat decomposition – from JPEG2000 ...65
Figure 10.1 Coarse sketch of how to handle different type of input and output68
Figure 10.2 User interaction for compressing, displaying, and storing a movie clip..68
Figure 10.3 Layout sketch for compression options ..69
Figure 10.4 Coarse overview of the processes in the MDWT CODEC......................71
Figure 10.5 Overview of the intra-frame encoder and decoder72
Figure 10.6 Sequence diagram: Preparing the Processor for playback73
Figure 12.1 MDI window with menu ...76
Figure 12.2 Menu item: File->Open Image..77
Figure 12.3 JMF Registry Editor: Detect Capture Devices78
Figure 12.4 Open file dialog..79
Figure 12.5 Video panel with presentation controls ..79
Figure 12.6 Video encoding options dialog ..80
Figure 13.1 Original (256x256) ...82
Figure 13.2 SPIHT...82
Figure 13.3 EZW...82
Figure 13.4 JPEG2000..82
Figure 13.5 JPEG...83

List of Tables
Table 3.1 Block-matching search algorithms. Based on [6]..................................21
Table 3.2 Video compression standards ..24
Table 7.1 Coefficients ordered by magnitude...49
Table 10.1 Compression options..69
Table 10.2 Menu Items ..70
Table 13.1 PSNR Performance at 0.5 bpp and 48:1 compression ratio...................83

List of Equations
Equation 4.1 Calculate wavelet coefficients with the Continuous Wavelet Transform28
Equation 4.2 Mother wavelet ..28
Equation 4.3 Calculate coefficients using convolution..29

vii

Part 1 Fundamentals – Background material

Part 1 Fundamentals – Background material

Page 9 of 91

1 Introduction
Television and telephones have had a huge impact on the life of people in the
western world after being introduced about a century ago. The development has
been amazing; from black-white poor-resolution TV to high-quality interlaced colour
TV, from old-fashion telephones to tiny wireless (mobile) phones. And now the world
goes digital, and that is changing our life again.

We have already seen signs of ‘everyday digitalization’; video are stored on DVD’s,
The ‘Star Wars’ film shot in 2000 was the first motion picture to be shot digitally in
2000, and digital cameras has become public property. TV will be broadcasted
digitally within few years [1] and the digitalization of cinema is on its way [2].
Imagine the crystal-clear TV screens, the increased interaction possibilities, the
freedom to choose, and the foundation for new mind-blowing inventions.

Mobile operators have had visions of consumers watching video and TV-clips on
mobile phones for years. Japan and Korea have already taken the first steps, by
introducing third-generation (3G) mobile systems back in 2002. All 3G handsets sold
by Japan's largest mobile operator (NTT DoCoMo Inc. (DCM)) are video enabled.
Handsets with two cameras are being sold, which in addition to being used as a
video-phone can be utilized as a video-camera that allows hours of video recording if
combined with memory cards. More than 200 000 was sold in a couple of weeks.
Everyday we see the development and improvement of technology. 10 years from
now the whole world surrounding the 3G mobile videophone will be totally different
(by then, we will be calling it 4G, though).

However, the mobile operators dream can not yet be fulfilled. Considering the limited
maximum available bandwidth of 3G mobile systems, and that an uncompressed
“television-quality” digital video signal requires a transmission capacity of 216 Mb for
one second of video, it is evident that something has to be done. Even with the high
quality video coders of today, this can not be done in a high-quality fashion. Even
though JVT (Joint Video Team) recently released a new video coding standard which
perform superior compared to its predecessors, new visions, new creative inventions
and consumer-created request for enhanced quality will continue the request for
improved compression algorithms.

So, high compression ratio of video is crucial for today’s limited bandwidth, storage
and processor capacity, especially in handheld wireless communication devices such
as mobile phones and PDA’s. Moving Pictures Experts Group (MPEG) and
International Telecommunication Union (ITU) have standardized the most widely
used video CODECs, like MPEG-4 (MPEG) and H263 (ITU). Their standards*1 are
based on Discrete Cosine Transform (DCT). DCT is the most popular transform for
video coding applications, but there are problems which reduces visual quality at
high compression ratio when using DCT for image and video transform coding.
Preliminary surveys and existing research indicates that wavelet, a relatively new
mathematical field, is a powerful tool in the world of digital image processing. It is
shown that wavelet can reduce problems like blocking artifacts caused by DCT in still
image compression, and in fact, the most recent still image compression standard
from Joint Pictures Expert Group (JPEG), JPEG2000 is based on Discrete Wavelet
Transform (DWT).

1 All recent published standards, except MPEG-4 which provides an alternative set of wavelet-based tools
to code static texture.

1 Introduction

Page 10 of 91

1.1 Problem Definition and Motivation
The goal of this master thesis is to do a literature survey and if time permits to
develop a software video codec prototype based on wavelet. The prototype should
consider advantages and disadvantages of the previous study. This thesis should
focus on temporal redundancy removal (motion estimation and compensation) and
transform coding. These are the main stages of a video compression process that
may benefit from using wavelets. The literature survey should consider if recent
research has found ways to compress video signals using wavelets which results in
’pleasing’ visual quality at high compression ratio, and whether this outcome can
match or even outperform existing video CODECs. In addition the survey should aim
to give an impression whether wavelet based video compression is an active field of
research. If time permits, real-time processing and computational complexity are
important issues that should be discussed in the literature survey.

1.2 Preliminary Survey of Previous Work
In order to gain competence in the field of video compression and wavelet transform,
we have performed a preliminary literature study. The most important has resulted
in chapter 3 Fundamentals of Video compression and chapter 4.

“In our search, we discovered the following:
Wavelets aren’t nearly so promising for use in inter-frame CODECs, because
wavelets actually make temporal compression more difficult than DCT.
Wavelet compression is processor intensive, and so is considered better suited to still
images than video.” [5]

“Because of its good performance in compressing images, the DWT is used in the
new JPEG-2000 still image compression standard and is incorporated as a still image
compression tool in MPEG-4. However, wavelet techniques have not yet gained
widespread support for motion video compression because there is not an easy way
to extend wavelet compression in the temporal domain. Block-based transforms such
as the DCT work well with block-based motion estimation and compensation,
whereas efficient, computationally motion-compensation methods suitable for
wavelet-based compression have not yet been demonstrated. Hence, the DCT is still
the most popular transform for video coding applications.”[6]

“At the time of writing, wavelet compression has made very little impact compared to
DCT-based compression. There are numbers of reasons for this. Wavelets have been
less successful than DCT-based system in achieving good efficiency at the near-
transparent compression ratios. Also, once DCT was adopted by MPEG, most
development effort went into producing integrated circuits for MPEG – that is, DCT.
Until recently, little specialist silicon was available for wavelet compression. However,
this is changing, and now that wavelet compression has been adopted in MPEG-4 (for
static textures) and in JPEG2000, wavelet implementations are likely to become
much more common.” [7].

This triggered us to investigate what research work has been done in this field, and
has resulted in part 2. In addition we wanted to investigate use of phase correlated
ME/MC algorithms.

Part 1 Fundamentals – Background material

Page 11 of 91

1.3 Prototype
We have implemented a video compression prototype founded on a DCT- and DWT-
based still-image compression application developed by four engineer students in a
previous project. We have incorporated the DWT-based compression algorithms in
our prototype, by tearing application apart, and reconstructing the interesting parts
inside an adapted Java Media Framework API (JMF API 2.1.1). We have designed a
highly extendable prototype considering the advantages and disadvantages of the
research study presented in Part 2. We carefully planned a stepwise implementation
progress, to help us make sure making the prototype extendable. Having mainly
focused on doing a thorough design work and a literature study, the entire plan has
not been implemented. However, this was never the intention. We wanted to make a
foundation that could be utilized in future studies, both for our one interest and
others.

The current implementation contains a framework with support for opening and
playing video sequences of those content types supported by the JMF API, including
quicktime (*.mov) and msvideo (*.avi). Capturing video clips from a web camera is
also supported, the captured sequence can either be rendered direct to screen, or
stored to a ‘quicktime’ or ‘avi’ file. Our implementation does not currently support
encoding the captured video directly with our encoder; it has to be intermediately
stored to a file. We have implemented a so-called intra-frame CODEC (no attempt is
done to remove temporal redundancy), the MDWT (Motion DWT) CODEC. It includes
a MDWT encoder and decoder; this is where the DWT compression algorithms have
been exploited. In addition, we have implemented a MDWT file format and a
multiplexer/demultiplexer to handle writing and reading this format. Initially we
implemented support for sound tracks in this multiplexer/demultiplexer, but this was
removed in order to more correctly estimate the real compression performance of
our CODEC.

Experimental testing has showed that our MDWT CODEC can yield a compression
rate of 13:1 in a small resolution video clip, with good visual quality on single
frames. The major problem of our CODEC is as initially concerned, the
computationally complexity. Small-resolution video becomes very jerky, while larger-
resolution video clips are considerably worse, maybe able to show one frames pr
second. This is due to the combination of the computationally complexity of the
implemented DWT and the CODEC, the ‘slow nature’ of the Java programming
language, and most-likely and inefficient method used to draw and represent the
frames.

2 Methodology

2.1 Literature References
Agder University College have access to the IEEE database, and we have used it
comprehensively to find research papers.

We have tried to avoid using web sites as reference, in the cases we have used a
web site as a reference, and this is sites which are commonly accepted and/or
formal/official business sites.

2 Methodology

2.2 Test Methods
There is no easy way to get an absolute objective measure of image or video quality.
The best test method is still to look at the image or video sequence and determine
by a subjective visual test whether the image looks good to you or not. It is easy to
understand that this form of testing is highly subjective in that different people can
have different opinion whether the image looks good or not. This has been a
problematic challenge for researchers who of course want an absolute measure of
their work, but no obvious solution has yet been presented.

There is one measure which has gained widespread popularity among image and
video community, and that is Peak Signal to Noise Ratio (PSNR). This measures the
difference between the original image and the compressed image. The problem with
this quality measure is that it is not always given that a higher PSNR value is
analogous with better visual quality.

2.3 Other issues
Unfortunately, we did not manage to complete all our intended work on time. The
missing parts are mainly found in Part 4, we have not been able to document all the
performed tests, comparisons and discussions. Another part that suffers from this is
the references.

3 Fundamentals of Video Compression
The purpose of this chapter is to describe some basic concepts of image- and video
compression to give an overview of the most common topics in modern video coding.
Firstly we establish some concepts and terminology relating to digital video, then we
take a look at the processes in a typical video CODEC architecture, before examining
how to compress the different types of redundancies in a video sequence. The last
section in this chapter gives a brief overview of video coding standards, and the
standardization organisations these standards emerge from.

Note, in literature there are arguments about the semantics of compression, we have
used ‘compression’ to cover all techniques that reduce data. We will introduce some
basic concepts and some of the most popular algorithms used in modern video
coders.

3.1 Introduction
An uncompressed 2-hour movie requires more than 194 GB of storage, which is
equivalent to 42 DVDs or 304 CD-ROMs [2]. A “television-quality” digital video signal
requires 216 Mb of storage or transmission capacity for one second of video [6]. Or
consider another example, if you transmit a one minute uncompressed video clip
(640 x 480, 30 frames/sec, 24 bpp) using a 28.8K modem, it would take you 5 days
and 8 hours.

These examples illustrate the need for compression. The massive improvement of
video compression techniques in early nineties lead to increased use of digital video,
and introduction to several new areas. As it for example is introduced in
communication devices like mobile phones, witch offers low bit rate and less
computational power, the demand for even further improved compression techniques
increases. Compression (coding) is the science of reducing the amount of data used
to convey information [7]. It relies on the fact that information exhibits order and

Page 12 of 91

Part 1 Fundamentals – Background material

Page 13 of 91

patterning, and if this order and patterning can be extracted, the essence of the
information can often be represented using less data than for the original. We can
then reconstruct the original, or a close approximation of it. With good video
compression algorithms, the 2-hour movie can be compressed and stored on 2-3 CD-
ROMS (including audio), without noticeable difference in visual quality.

3.2 Digital Video
Digital video is probably the most important visual source nowadays. The numerous
applications available have made it an integral part of the everyday life for many of
us. It is implemented in many aspects of business, education and entertainment,
from digital TV to web-based video news.

Figure 3.1 Digital video

A video image (frame) is a projection of a 3-D scene onto a 2-D plane, see Figure
3.2. A still-image can be seen a ‘snapshot’ of the 2-D representation at a particular
instant in time, whereas a video sequence represents the scene over a period of
time, containing a sequence of still-images (frames). The video sequence is
represented as a signal in a discrete form. As illustrated in Figure 3.3, it is sampled
both spatially (typically on a rectangular grid in the video image plane) and
temporally (typically as a series of frames sampled at regular intervals in time).

Figure 3.2 Projection of 3-D scene onto a video
image

Figure 3.3 Spatial and temporal sampling

Each spatio-temporal sample, also known as a picture element or pixel (pel), is
represented digitally as one or more numbers that describe the brightness
(luminance) and colour of the sample. The visual quality of the image is influenced
by the number of sampling points. More sampling points (a higher sampling
resolution) give a ‘finer’ representation of the image, but requires higher storage
capacity. A higher temporal sampling rate (frame rate) gives a ‘smoother’
appearance to motion in the video scene but requires more samples to be captured

3 Fundamentals of Video Compression

and stored. The way the sampling is performed is crucial for correct representation
and reconstruction of the video signal. A lot of research and theories is presented in
this field, this is beyond the scope of this thesis, some fundamental sampling theory
is presented in [7, 8].

A video usually comes in colours; while a monochrome (‘grey scale’) video image
may be represented using just one number per pixel, indicating the brightness or
luminance of each sample position, representing colour requires multiple numbers
per sample. There are several alternative systems for representing colour, each of
which is known as a colour space. The most common colour spaces for digital image
and video representation are RGB (red/green/blue) and YCrCb (luminance/red
chrominance/blue chrominance).

3.3 What is a Video CODEC?
“A program or a device that compresses a signal is an encoder and a device or
program that decompresses a signal is a decoder. An enCOder/DECoder pair is a
CODEC” [6, p. 28].

Figure 3.4 Architecture of a typical video encoder

The information in a digital video is highly correlated and redundant. As illustrated in
Figure 3.4, the aim of a (lossy) video CODEC is to decrease this information by
removing the information which cannot be perceived by our visual system. There are
several solutions to reduce redundancies and irrelevant information, and in the
following sections we will depict some of them. But first we want to establish some
common terminology:

Lossless vs. Lossy compression
In lossless compression schemes, the reconstructed signal, after compression, is
numerically identical to the original image. It is typical to remove statistical
redundancy; an example of a typical lossless compression algorithm is implemented
by the widely used winzip application. Lossless compression will rarely provide
sufficient compression ratios for digital video, when used in systems or applications
with limited bandwidth. Compression schemes that remove data from the original
signal are generally referred to as lossy compression schemes. In this thesis we will
mainly consentrate on lossy compression techniques.

Intra-frame vs. Inter-frame
In intra-frame compression each frame in a moving image sequence is processed
without any consideration for previous or future frames, as opposed to inter-frame
compression where sequences of frames are processed, typically encoding only the
differences between frames. In an intra-frame video CODEC, like e.g. MotionJPEG,
spatial redundancies are usually removed, by using an image compression algorithm
on every frame in the video sequence. In an inter-frame video CODEC, like e.g.
H.263+ or MPEG-4, it is typical to remove both spatial and temporal redundancies,
by combining a spatial (image) compression technique with a motion estimation and
compensation (ME/MC) algorithm to remove the temporal redundancies.

Page 14 of 91

Part 1 Fundamentals – Background material

Page 15 of 91

3.4 Removal of Spectral Redundancy

Figure 3.5 'Roadmap' - A typical video coder

The input for video compression schemes is usually a full colour video signal in RGB
colour space. The pixels in the RGB space are represented by three numbers,
indicating the relative proportions of red, green and blue (the three primary colours
of light). RGB systems usually represent each of these three components with the
same precision which means that all three colours are treated as equally important.
The luminance is also present in all of these three colour components, and is
therefore redundant. YCrCb on the other hand, is a more efficient colour space,
because it has the property of separate luminance (Y) and colour (CrCb) parts. For
every pixel in a colour image there is one luminance (Y), and two chrominance (Cr
and Cb) components. Because the Human Visual System (HVS) is more sensitive to
luminance than colour, some of the colour information can be removed without
affecting visual quality. Since Cr and Cb are redundant, these signals can be
downsampled. This implies that we can eliminate spectral redundancy in an image or
video by converting the RGB colour space into YCrCb space. In 4:2:2 YCrCb systems,
downsampling are applied only in horizontal direction, giving a 3:2 compression
ratio. Whereas in 4:1:1 YCrCb conversion, Cr and Cb signals are downsampled in
both horizontal and vertical directions and a 2:1 compression ratio is achieved.

3.5 Removal of Spatial Redundancy

Figure 3.6 'Roadmap' - A typical video coder

Besides spectral redundancy, image- and video signals also have spatial information
we can not perceive. It is very hard to determine which pixels to remove in order to
do a compression on the signal without affecting visual quality too much. If we think
of the pixels as energy, this energy tends to be evenly distributed all over the image,
and it is therefore hard to compact the information without doing some manipulation
first. A solution is to transform the image into a different representation.

3.5.1 Transform Coding
A good transformation should be able to represent the signal with a few significant
values, or compact the energy of the image. The most widely used transform method
in modern image- and video coding algorithm is the Discrete Cosine Transform
(DCT). Until recently, DCT was thought of as the best transform method in image
coders. But when JPEG introduced their newest still-image compression standard,
JPEG2000, it was based on another transform which outperformed the DCT [9], the
Discrete Wavelet Transform (DWT). The DWT is presented in chapter 4 Fundamentals
of Wavelets.

3 Fundamentals of Video Compression

Both DCT and DWT transform the image to get decorrelated values. The aim is to
localize signal energy at different frequencies. This is done by separating the lower
spatial frequencies in the spatial domain from the higher ones, and representing
them as coefficients. The lower frequencies are more visible to the human eye, and
are the largest “building blocks” of an image, while higher frequencies add more
details. Given the fact that the HVS is less sensitive to higher spatial frequencies,
these high spatial frequency coefficients can be removed without considerably
affecting image quality.

3.5.2 The Discrete Cosine Transform (DCT)
The Discrete Cosine Transform (DCT) is most widely used to perform transform
coding in video compression algorithms. Even though other transforms as the
Karhunen-Loeve Transform (KLT) has been known to outperform the DCT regarding
compression performance, the simplicity and computational efficiency of the DCT has
made it the first choice. The DCT has been around for well over a decade. The basic
idea behind DCT was developed by Joseph Fourier a couple of centuries ago. (Some
basics of Fourier are presented in section 4.3 ‘.) Fourier has to be applied to
continuous, periodic signals while digital signals are discrete. The Discrete Fourier
Transform (DFT) was developed to overcome this obstacle, and later a fast and more
efficient implementation of this transform was developed, known as the Fast Fourier
Transform (FFT). In
 and Figure 3.8 we can see that cosine is symmetric and sine is asymmetric about
their origin. This means that a signal containing both sine and cosine signals is
asymmetric, but it can be made symmetric by using mirroring. Since the signal is
symmetric, it can be represented only by cosines. So, as opposed to Fourier which
needs both sines and cosines to represent a given signal, the DCT is only based on
cosines which makes it less complex and very efficient.

Figure 3.7 Cosine Wave

Figure 3.8 Sine wave

When an image or a frame is transformed by DCT, it is first divided into blocks,
typically of size 8 x 8 pixels. These pixels are transformed separately, i.e. without
any influence from the other surrounding blocks. The top left coefficient in each block
is called the DC coefficient, and is the average value of the block. Since this is the
most important coefficient in the block and has the lowest frequency, it should be
coded without any loss. The rightmost coefficients in the block are the ones with
highest horizontal frequency, while the coefficients at the bottom have the highest
vertical frequency. This implies that the coefficient in the bottom right corner has the
highest frequencies of all the coefficients.

3.5.3 Quantization
By performing a transform the image is not compressed in any way, actually it
makes the file size larger [6, p. 43]. The image is only represented in a different
domain where the image data is separated into components of varying importance. It

Page 16 of 91

Part 1 Fundamentals – Background material

Page 17 of 91

is during the quantisation process that the image is compressed, and the first step of
this process is to divide each of the coefficients by an integer. The smallest or most
insignificant coefficients, usually the high frequency values, are mapped to zero. By
doing this, we remove information from the image, so the compression is irreversible
(lossy).

Soft quantization only maps the smallest coefficients to zero, while coarse
quantization maps larger, and therefore more coefficients to zero. This implies that
coarse quantization usually gives higher compression at the expense of loss in image
quality. In the coefficient matrix, the lower spatial frequencies are represented in the
top left, and the higher frequencies in the low right. The quantized coefficients can
be represented in different patterns. The aim of these patterns is to get long
consecutive streams with zeroes (or other values), so the benefit of a statistical
compression algorithm, known as Run-Length Encoding (RLE), can be as effective as
possible. Since the output coefficients vary depending of type of source and the
transform used, the optimal pattern also varies. The zigzag-pattern illustrated in
Figure 3.9 is the most used for the DCT.

Figure 3.9 Zig-zag scan of coefficients

3.6 Removal of Temporal Redundancy

Figure 3.10 'Roadmap' - A typical video coder

Spatial compression is important, but spatial compression alone does not get us even
close to common compression goals. A video signal is typically sampled with a rate of
15-30 frames second. This makes the subsequent frames in a video sequence usually
appear almost identical. In most cases, only small portions of the scene change from
frame to frame. For example, the four first frames of the sequence “Foreman”
(Figure 3.11) contains minor movement, but even in the high-motion sequence
“Football” (Figure 3.12), where the players are running and diving, the changes from
frame to frame is minor.

3 Fundamentals of Video Compression

Figure 3.11 First four frames of the "Foreman" sequence.

Figure 3.12 First four frames of the "Football" sequence.

Especially, the background information will be similar, if the camera movements and
illumination changes are insignificant. This causes a temporal redundancy between
frames. In order to remove this redundancy, modern video coders employ motion
estimation and motion compensation (ME/MC). Another approach is to utilize a
three-dimensional transform which is applied in both time and spatial domain,
instead of a two-dimensional transform combined with a ME/MC technique [6].

3.6.1 Three-dimensional tranform coding
Since a video sequence consists of a sequence of two-dimensional images, existing in
three dimensions, our intuitive idea would be to extend the tools we been using from
two-dimensions to three. Both the DCT and the DWT can be defined for three
dimensions, just as they can for one or two. In fact, this approach works for video
sequences that are soft and have only very slow motion [7], like for example in a
video conferencing sequence. Unfortunately, this is not how motion in a video scene
usually appears. Fast motion creates temporal aliasing and, if the spatial edge is
sharp, temporal aliasing is created even by slow motion. The fundamental problem
is, of course, that the temporal sampling rate of today’s video systems is too slow. If
an object moves significantly between two samples, we have no information about
what happened between the two samples. In fact, we do not even know for sure that
it is the same object... (Nyquist’s sampling theorem).

Hence, the favoured approach in modern video coders for removing temporal
redundancy is using a ME/MC algorithm combined with a 2-D transform.

3.6.2 Motion Estimation (ME) and Compensation (MC)
“The motion estimation and compensation functions have many implications for
CODEC performance. Key performance issues include:
• Coding performance (how efficient is the algorithm at minimising the residual

frame?)
• Complexity (does the algorithm make effective use of computation resources,

how easy is it to implement in software or hardware?)
• Storage and/or delay (does the algorithm introduce extra delay and/or require

storage of multiple frames?)
• ‘Side’ information (how much extra information, e.g. motion vectors, needs to be

transmitted to the decoder?)

Page 18 of 91

Part 1 Fundamentals – Background material

Page 19 of 91

• Error resilience (how does the decoder perform when errors occur during
transmission?)

These issues are interrelated and potentially contradictory (e.g. better coding
performance may lead to increased complexity and delay and poor error resilience).“
[6, p. 93]

The basic idea of ME/MC is simple: Find out if and where parts of the previous frame
have moved to in the new frame. If the CODEC knows this, it can use the previous
information to predict the new frame, and so will need less information. In practice,
doing this right is very complicated, and motion search algorithms are of a major
focus of ongoing compression research.

We can split ME/MC into two main functions:
1. Motion estimation: create a prediction of the current frame based on one or more

frames
2. Motion compensation: subtract the prediction from the current frame to produce

a ‘residual frame’.
The motion estimation is the key to this approach, the more accurate the estimation
is the less data will the residual frame contain, hence the video can be compressed
to a smaller size, and less data has to be transmitted. In addition to transmitting the
residual frame, we also have to transmit a set of motion vectors which describe the
scene motion as observed at the encoder (for example the location of the ‘best’
match). But this information is usually considerably less than an intra-frame coded
frame. In order to decode the frame, the compensation process is ‘reversed’ and the
prediction is added to the decoded residual frame (reconstruction).

Figure 3.13 Predicted motion vectors for frame 2 of the ‘Foreman’ sequence

A very simple method of inter-frame encoding is to subtract the value of the previous
frame (Figure 3.14 a). For video where the camera is not moving at all, this can yield
substantial savings. However, only a little camera motion can throw everything off.
Changes in one frame to the next are usually due to movement in the video scene,
and if we can estimate this movement accurately, and then compensate for it, a
significantly better prediction can be achieved (Figure 3.14 b).

3 Fundamentals of Video Compression

Figure 3.14 Residual frame examples from VCDemo

A number of ME algorithms have been developed in order to provide efficient
prediction of scene motion between frames. ME schemes can generally be
categorized as feature matching or region matching. Feature-matching ME is based
on tracking specific image features (e.g., edges); however, the region-tracking
methods are used almost exclusively in modern coders. We will briefly explain the
main idea behind the most commonly ME/MC algorithm, block matching algorithm,
and a ME/MC algorithm that is known to determine motion more accurately. Other
commenly used ME/MC algorithms is optical flow methods (OFE) and pel-recursive
methods.

3.6.3 Block matching algorithm (BMA)
The most widely used region-tracking technique is block matching, illustrated in
Figure 3.15, in which the current image is divided into small blocks. The previous
frame, called the reference frame, is searched for the best matching block for a given
block in the current frame, and the resulting motion vector, indicates the position of
the best-matching block.

Figure 3.15 The block matching algorithm

The difficult bit is to find the best matching block. Before starting to search we have
to establish some concepts:

Matching criteria
The ME scheme have to know what criteria to search for. Most ME schemes look for a
minimum mean square error (MSE) between blocks. Other commonly used matching
criterion for is the slightly less complex mean absolute error (MAE) or for even more
simplified comparison, the sum of absolute errors (SAE) [6].

Page 20 of 91

Part 1 Fundamentals – Background material

Page 21 of 91

Optimal block size
It is also important to consider the effect of the block size that we attempt to match.
For example, if the moving object is large and the block is large, it is harder to find a
predictor block that matches reasonably well; we may find a wrong motion vector or
maybe no acceptable match at all. If we on the other hand use a very small block,
many more motion vectors must be coded. It is also very likely that many matches
will be found; most of these will not be related to real motion within the image, only
other areas that happen to be a similar patch of image. It has been shown that
16x16 is the first easy-to-use size for the DCT [7].

Search window
Theoretical it is necessary to compare the current block with every possible region of
the reference frame, but this is usually very computationally intensive. In practice, a
good match can usually be found in the immediate neighbourhood. Hence the search
for a matching region is usually limited to a ‘search window’.

Table 3.1 Block-matching search algorithms. Based on [6]
Search algorithm Manner of operation Performance
Full-search block matching Every block within the search

window is tested against the
block it is desired to match.

Computationally intensive,
particularly for large search
windows, but usually finds the
best match.

Fast-search Usually search a few points
within the search window to find
minimum SAE, thereafter
search within a local area for
the best mach.

Many alternative ‘fast search’
algorithms have been developed
- n-step search
- Logarithmic search
- Cross search
- One-at-a-Time search
- Nearest Neighbours search

Aims to reduce number of
comparison operations, but
gives usually poorer
compression performance
than full-search.

Nearest-neighbours search is
reported to perform almost as
well as full search, with a very
much reduced complexity.

Hierarchical search Search the image in a coarse to
fine fashion. Usually starts with
a coarsely subsampled version
of the image, followed by
successively higher-resolution
versions until the full image
resolution is reached.

Can perform a fast- or full-
search at each level. Complexity
by performing full-search at
highest level is relatively low
because groups of pixels are
compared, not every pixel.

Can give a good compromise
between performance and
complexity and is well suited
to hardware implementations

3.6.4 Phase Correlation
Motion estimation does not necessarily identify ‘true’ motion; it is rather an attempt
to find a matching region in the reference frame that minimises the energy of the
difference block. Unlike the BMA method, which searches the blocks from luminance
matches, the phase correlation method measures the movement between the two
fields directly from their phases. Phase Correlation is a means of determining very
accurately the components of motion in an image sequence, by studying the
amplitude and phase of each frequency in the image. This is done by transforming
adjacent blocks into the frequency domain and then subtracts the transforms. The

3 Fundamentals of Video Compression

result mainly consists of frequencies were there were a significant phase shift
between fields (assuming similar frequency content). After normalizing these
frequencies, they are passed to an inverse transform, which generates a new value
to each pixel. These values represents a spatial surface (called a correlation surface),
which displays amplitude peaks corresponding to the movement of each object. The
position of the peak gives an accurate measure of the direction and speed of motion.
Phase Correlation can be employed on the whole frame, but because of the
computational complexity, a the frame is usually divided into blocks, as similar to the
BMA. [7]

Unfortunately, when using the Fourier transform or the discrete cosine transform
(DCT) in phase correlation, all precision in the spatial domain is lost. Phase
correlation will very accurately find the amplitude and direction of each motion
component in the image, but we do not longer no where in the image the motion
occurs. There are ways to calculate this by an offsetting and subtracting technique,
but it makes phase correlation a computational complex way to estimate motion.
Recognising that wavelets as apposed to Fourier, gives both frequency and location
information, we consider this a very interesting approach for wavelet-based ME.

3.6.5 Enhancements to the motion model
Sub-pixel motion estimation
Sub-pixel ME gives better block matching performance at the expense of increased
computationally complexity. Most recent ME algorithms offers sub-pixel accuracy,
this is done by interpolating the original pixels to form a higher-resolution
interpolated region. Figure 3.16 shows an example of half-pixel. Black pixels are
original integer pixel positions. Light grey pixels are formed by linear interpolation
between pairs of integer pixels. Dark grey pixels are interpolated between four
integer pixels.

Figure 3.16 Half-pixel interpolation

Choice of reference frames
ME algorithms can predict the current frame by using ‘older’ encoded frames
(forward prediction), ‘future’ frames (backward prediction), or by choosing the frame
that gives best measure (e.g. SAE) of ‘older’ and ‘future’ frames (bidirectional
frames). Some algorithms also have an option to use multiple reference frames to
perform the prediction, e.g. MPEG-1 and MPEG-2. The choice of reference frame has
influence on the compression performance of the ME algorithm.

There are a number of other advanced ways in which the motion model may be
enhanced. Several of these methods are known as rather computational complex,
but as technology performance is constantly improved, several of these techniques
are focus areas in recent research work:
Overlapped Block Motion Compensation (OBMC)

Page 22 of 91

Part 1 Fundamentals – Background material

Page 23 of 91

OBMC is among others used in the H.263 standard. OBMC is a way to reduce
blocking artifacts introduced by for example the BMA method.

Vectors that can point outside the reference picture
Variable block sizes
Complex Motion Models
 Picture warping
 Mesh-based motion compensation
 Object-based coding>

3.7 Removal of Statistical Redundancy

Figure 3.17 'Roadmap' - A typical video coder

Although the above redundancies are exploited, there is still redundancy in the
compressed signal. This is due to the statistical properties of the video signals. In
order to reduce these redundancies, some statistical lossless coding schemes are
used. Run-length coding, Huffman coding and Arithmetic coding are examples of
lossless coding techniques used to eliminate these statistical redundancies [12, 13].

3.7.1 Entropy Encoding
Entropy is a measure of disorder, or unpredictability, and the though is that if a
message is totally predictable, no information needs to be transmitted [7]. The
concept of entropy encoding is to represent frequently occurring values using short
symbols (hence using a small number of bits), and representing infrequently
occurring values with longer symbols. The Morse alphabet is probably the most well
known entropy coder, where the most frequently used letters in the English alphabet
is assigned the shortest Morse codes, and the least frequent letters are assigned the
longest codes. A variety of different entropy coders exists, the most popular used in
video coding standards are Huffman coding and arithmetic coding (e.g. JPEG2000).
We will only give a brief description of the popular Huffman coding scheme in this
section, but arithmetic coding can more closely approach the theoretical maximum
compression [13]. Entropy encoders are usually applied as the last step in the
compression process.

In a typical transform-based video CODEC, the data to be entropy encoded falls into
three main categories: transform coefficients, motion vectors and ‘side’ information
(headers, synchronisation markers, etc). Frames, residual frames (after ME/MC) and
motion vectors usually have different data structures, and can therefore benefit from
being coded with differential quantization tables, zigzag-patterns and entropy coding
tables (e.g. pre-generated Huffman tables).

3.7.2 Run-Length Encoding (RLE)
Data streams often contain long sequences with adjacent values. If such a stream
contains, let’s say one thousand consecutive zeros, this large section of similar bits
could be represented in a much smaller binary sequence like ‘1000’. This is usually
listed as pairs, for example like (0, 1000). Transform-based video CODECs have

3 Fundamentals of Video Compression

usually high benefit of RLE, because the quantization process mostly produces zeros
in the higher frequency coefficients, and when coding them with for example the
zigzag-pattern, we get lots of consecutive zeros. RLE can then compress the stream
without loss of information.

3.7.3 Huffman Coding
Huffman coding relies heavily upon accurate knowledge of signal statistics. The
symbol with the highest probability is assigned the shortest code and the symbol
with the lowest probability is represented with the longest code. To be able to decode
this Huffman coded data file, the decoder must gain knowledge about which symbols
are represented with which codes. This information is the code tree, or look-up table
and it needs to be transmitted to the decoder prior to sending the encoded data.
Huffman coding is very popular because of its effectivity and simplicity.

3.8 Video Coding Standards
ITU-T VCEG (International Telecommunications Union Video Coding Experts Group)
and ISO/IEC MPEG (Moving Picture Experts Group)have been the leading
standardization groups on video CODECs for well over a decade. Their main goal is to
make good standards, which again helps to build a bridge between hardware and
software manufacturers to allow compatibility between different systems. This
enables a video format to be played in different types of video applications.

ITU’s first standard, H.261 was developed to give good visual quality at low bit rates.
MPEG-1 on the other hand was designed to give high quality at high bit rates.
Table 3.2 shows the most important standards released by these groups.

Table 3.2 Video compression standards

Standard
(ITU)

Bit rates Usage
Standard
(MPEG)

Bit rates Usage

H.261 (1990) 64 Kbps
Video telephony

over ISDN
MPEG-1
(1993)

1.4 Mbps
Audio video

compression for
CD-storage

H.263 (1995)

20-30
Kbps to
several
Mbps

Video telephony
over packet and
circuit switched

networks

MPEG-2
(1995)

Typically
more than
3 – 5 Mbps

Compression for
storage and
broadcast

applications

H.263+ (1998)
H.263++
(2001)

20-30
Kbps to
several
Mbps

Extensions to
H.263, with
improved

compression
performance

MPEG-4
(1998)

20-30 Kbps
to high bit

rates

Transport for
multimedia
terminals

Joint Video Team (JVT)
(Merging of ITU and MPEG - December 2001)

Standard
(JVT)

Bit rates Usage

H264/MPEG4-
AVC

(2001)

From < 20
kbps to
high bit
rates

Video communication over low to high bit rates.

Following the development, it is clear that the latest standards emerged from ITU
and MPEG cover a broader range of video qualities and operating at a wider bit
range. Both H.263 and MPEG-4 cover transmission speeds from the very low 20 Kbps
to very high bit rates well above 1 Mbps.

Page 24 of 91

Part 1 Fundamentals – Background material

Page 25 of 91

In December 2001, the ITU-T VCEG and ISO/IEC MPEG formed the Joint Video Team
(JVT) to establish a joint standard, H.264/MPEG4-AVC (similar to H.262/MPEG-2
video). This new standard is based on hybrid video coding and similar in spirit to
earlier standards, but offers new key features as enhanced motion compensation,
small blocks for transform coding, improved deblocking filter and enhanced entropy
coding. Early indications give reasons to believe that this standard is superior to its
predecessors, bit rate savings around 50 % against any other standard for the same
perceptual quality has been reported. [6]

Most of the H.26x and MPEG standards are based on a hybrid-coding architecture,
which features ME/MC followed by a DCT. Even if MPEG-4 has implemented a
wavelet-based still image “texture” coder, we have yet to see a standardized video
CODEC based on the DWT.

4 Fundamentals of Wavelets
The purpose of this chapter is to provide an easy introduction to the discrete wavelet
transform (DWT), and some of the essential properties that seems to make wavelets
appropriate for image- and video compression.

We have chosen to present the DWT as filter theory, because this is the most
common way to represent wavelet in the field of video compression (and other signal
processing communities). We will thank [6,7,8,14,15] for some good wavelet
introductions, and credit especially [6,7,8] for some ideas and figures provided in
this wavelet introduction. The mathematical derivation of wavelets is well beyond the
scope of this thesis, but if you want a more fundamental understanding of wavelets,
we strongly recommend you to read some essential mathematics. Many literature
sources cover the subject in detail, we recommend [8], [15], which provides some
fundamental mathematics of wavelets, and in addition introduces some basic
mathematical structures that underlay the wavelet transform. If you like further
information it is provide in for example [16] and [17].

4.1 Introduction
Wavelets are a mathematical procedure used in numerous types of applications, in a
large variety of areas. Wavelets arises from a constellation of related concepts
developed over a period of nearly two centuries, repeatedly rediscovered by
scientists who wanted to solve technical problems in their various disciplines. Signal
processors were seeking a way to transmit clear messages over telephone wires. Oil
prospectors wanted a better way to interpret seismic traces. Yet “wavelets” did not
become a household word among scientists until the theory was liberated from the
diverse applications in which it arose and was synthesized into a purely mathematical
theory. This synthesis, in turn, opened scientists’ eyes to new applications. Today,
for example, wavelets are not only the workhorse in computer imaging and
animation; they also are used by the FBI to encode its data base of 30 million
fingerprints. In the future, scientists may put wavelet analysis to work diagnosing
breast cancer; looking for heart abnormalities, or predicting the weather. [18]

4.2 Wavelets from a Historical Perspective
“Wavelets have had an unusual scientific history, marked by many independent
discoveries and rediscoveries. The most rapid progress has come since the early
1980s, when a coherent mathematical theory of wavelets finally emerged.” [18]

4 Fundamentals of Wavelets

In an article [18] written by science writer Dana Mackenzie, with the assistance of
several leading wavelets experts, including Drs. Ingrid Daubechies, Stèphane Mallat
and Yves Meyer, we found a concise wavelet history timeline representation, which
we really enjoyed. This is presented in Figure 4.1 and Figure 4.2. If you prefer a
more detailed history, we can especially recommend [17, chapter 2], which provides
a really thorough history guide and examination of the discovered wavelets.

Figure 4.1 Wavelet history: Timeline 1807 – 1984 [18]

Page 26 of 91

Part 1 Fundamentals – Background material

Page 27 of 91

Figure 4.2 Wavelet history: Timeline 1985 – 1999 [18]

4.3 ‘Fourier vs. Wavelet
The most successful compression systems are based on transforms that move
between the time or space domain and the frequency or spatial frequency domain.
The fundamental building block for all such transform is the Fourier theorem, which
states that any periodic function may be represented by an infinite sum of cosine and
sine waves with different frequencies. This was revealed in 1807 (published 16 years
later) by Joseph Fourier, who without knowing it discovered a new functional
universe. [15]

Even though the Fourier transformation probably is the most commonly used, it has
some severe limitations which makes it inadequate for some purposes. When
transforming a signal with the Fourier transformation, the time information will
become unavailable. Because the Fourier transformation is defined as an integral
from -8 to 8, a frequency component will affect the transformation equally regardless
of where it occurs in the signal being transformed. Since most signals in practice are
non-stationary, it is often more interesting to find where a frequency occurs, than
finding the value of it. Several solutions have been developed to overcome this
problem, the most known is maybe the modified version of the Fourier
transformation, known as the Short Term Fourier transformation (STFT). The basic
idea of the STFT is that it assumes that for some interval, the frequency of the signal
does not change. It then applies the ordinary Fourier transformation to that interval.
This interval is shifted to the right and the same procedure is repeated. In order to
find the accurate location of a frequency, the interval has to be quite small, but the
smaller it gets, the less accurate can we distinguish the different frequencies. This is
a result of Heisenberg’s uncertainty principle, and is impossible to solve. What we
can do is to improve this technique by varying the interval. This is also basically the
same way as the wavelet transformation works.

 and Figure 4.4 illustrates that wavelets basis-functions possess the ability of
localizing frequencies, as opposed to the Fourier transform.

Figure 4.3 Fourier basis functions

Figure 4.4 Wavelet basis functions

The other fundamental difference between wavelets and conventional transform
techniques such as the Fourier transform and the DCT is that they search for
similarities between a fixed basis function (sine or cosine) and the original signal,

4 Fundamentals of Wavelets

while the wavelet transform have a huge number of basis functions that can be used,
as long as they satisfy certain mathematical criteria.

4.4 Wavelets Concept
There are two ways to determine the wavelet transform. Most transforms have only
one way, a formula. For example, with the following formula, we can calculate
wavelet coefficients, W(a,b), which gives us information about details from a signal
[15]. The signal is represented by the function f(x) in Equation 4.1 and Equation 4.2.

∫
∞

∞−

=== dxxxffbafWbaW baba)()(),)((),(,
*

,
* ψψψ

Equation 4.1 Calculate wavelet coefficients with the Continuous Wavelet Transform

The basic function ψ is usually called the mother wavelet:

⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

bx
a

xba ψψ 1)(,

Equation 4.2 Mother wavelet

In this chapter we will not concentrate on this formula, we will rather try to
understand wavelet as the concept of filters, which is the way the wavelet transform
is calculated in practice [8].

A wavelet can be used to ‘pick out’ details from a signal by multiplying it with the
signal. The product would contain asymmetric information where the original signal
had frequency content similar to that of the wavelet. Just as with the Fourier
transform, integrating the result we get would give us a nonzero coefficient. (These
are the same coefficients we find with Equation 4.1 for continuous wavelet
transforms.) It is obvious that this result is depended on where on the signal the
wavelet is placed. To get information on the whole signal, we have to ”walk” the
wavelet across the signal being transformed, this process is known as convolution
[7].

In compression we are not dealing with analogue signals, but with a sequence of
digital samples. The wavelet shown in would look more like Figure 4.6, where it is
represented as a sequence of 13 sample values, six on each side of the origin.

Figure 4.5 Wavelet can be viewed as a
burst of energy with dominant frequency

Figure 4.6 The discrete version of figure 1.3

In Figure 4.7 the wavelet is moved along, one sample at the time, and the
convolution product is evaluated for each position. For simplicity, the wavelet is only
represented by the five samples, W-2 to W2.

Page 28 of 91

Part 1 Fundamentals – Background material

Page 29 of 91

Figure 4.7 (a) Convolving a five-sample wavelet, W, with the samples of a signal, S. The
wavelet is operating on S7. [7, slightly modified]

Figure 4.6 (b) The wavelet is moved along to next signal sample, S8. [7, slightly modified]

In Figure 4.7 (a) the wavelet is operating on sample S7, the output of the convolution
is a new value S7’, calculated in Equation 4.3

Equation 4.3 Calculate coefficients using convolution

As shown in Figure 4.8 we have to create additional samples at the edges to
convolve the wavelet over the whole sample set. In the example, only two additional
samples are needed at each end. The signal is typically extended by ‘reflecting’ the
edge samples far enough to accommodate the wavelet [7]. At the left-hand side we
create S-1 = S0 and S-2 = S1. The idea of moving a wavelet over the image and
picking out details shows us how wavelets can give both frequency and location
information.

Figure 4.8 Additional samples must be created at the edges.

4.5 Wavelets as Filters
The convolution process just described can be represented as a digital filter, as
shown in Figure 4.9.

In this classical representation of a filter, the signal samples, S, are input
sequentially to the left-hand side and pass through four delays (‘T’) equal to the
sample interval. When sample S7 is at the centre of the filter, the output, ‘S7’, is the
same as shown in Equation 4.3. The impulse response of the filter is the wavelet
shape shown in [7].

Figure 4.9 The five-sample wavelet shown as a five-tap filter [7].

4 Fundamentals of Wavelets

Viewing wavelet as filters, introduces another point – a wavelet is actually two
complementary functions, or two complementary filters. Although there are a great
number of complexities in the design and implementation of wavelet and scaling
functions, the concept of fractional compression is quite simple. We filter the signal
by convolving it with the wavelet, which extracts the high-frequency detail of the
signal, behaving like a high-pass filter. The signal is also convolved with the
complementary scaling function that removes the high frequencies [7]. One is known
as the wavelet (or as the wavelet filter/band-pass filter), the other as the scaling
function. and Figure 4.10 shows some examples of scaling functions and wavelets
from the biorthogonal Deslauriers-Dubuc family. From left to right: (2,2), (4,2), (6,2)
and (2,4). The first number is the number of vanishing moments of the analyzing
wavelet (the wavelet that decomposes a signal) and the second number is the
number of vanishing moments of the synthesizing wavelet (the wavelet that
reconstructs the signal). Note that with increasing number of vanishing moments the
wavelet becomes smoother or more regular. The same is true for the scaling
function. Note also that the shape of these wavelets is not the rule. Although there
are many wavelets that look like this, there are also many wavelets that look
completely different. [19]

Figure 4.10 Some scaling functions from
the biorthogonal Deslauriers-Dubuc family.
a (2,2), b (4,2), c (6,2) and d (2,4). [19]

Figure 4.11 Some wavelets from the
biorthogonal Deslauriers-Dubuc family. a
(2,2), b (4,2), c (6,2) and d (2,4). [19]

The signal is split into two parts, one resulting sub-band which contains high
frequency information and one which contains low frequency information. Figure 4.12
shows this decomposition process. So, say the signal represents an image, then as
the high frequencies represents the fine details in an image, we now have a set of
wavelet coefficients representing the fine detail of the image, H, and an image from
which the fine detail has been removed, L.

Figure 4.12 The first stage of the wavelet transform

Page 30 of 91

Part 1 Fundamentals – Background material

Page 31 of 91

Because of the bandwith restrictions, the sampling density may be halved [7]. Figure
4.13 shows the same first stage of the wavelet transform as Figure 4.12, but here
the downsampling operation is visible. It is represented by the symbol (↓2). This
means that we downsample by two, we throw away every other sample2. We keep
the 1st, 3rd, 5th... samples and throw away the 2nd, 4th, 6th... samples, say. [8]
Therefore if our signal includes 1024 samples, then the sub-band H contains 512
samples, as do L. Because of this downsampling operation, the DWT is called a
(maximally) decimated or complete transform.

Figure 4.13 The first level of the DWT, including downsampling by 2

The decomposition process may be repeated for the low frequency band, L. The high-
frequency part, H, represent half of the transform, it contains the smallest details we
are interested in and we could stop here. However, the low-frequency band, L, still
contains some details and therefore we can split it again by repeating the filter-
downsample operation. Figure 4.14 shows what this means. In this figure we have
labelled the first-stage sub-band H9 and L9. This is simply because in our example
they contain 512 samples and 29 = 512. Similarly, the second filter-downsample
sub-bands are labelled H8 and L8 because it contains 28 = 256 samples. The 256 H8
samples represent an additional one-fourth of the transform. Repeating the filter-
downsample operation once again on the sub-band L8, generates H7 and L7, each
containing 27 = 128 terms.

Figure 4.14 A two level wavelet transform

This process may be repeated further if desired, until, in the limit, the sub-band that
contains the low-frequencies, contains only 1 sample (L0, which is equivalent to the
‘DC’-coefficient (section 3.5.2) or the average value of the entire image).

4.6 The Wavelet Transform in Two Dimensions
An image is a two-dimensional signal. So how do we apply a wavelet transform to a
two-dimensional image? It is possible to construct two-dimensional wavelets, but the
transform is separable, so generally the two-dimensional image is handled by

2 Downsampling will not be explained in further detail in this thesis. A more thorough explanation can be found in [3],
chapter 17 (about Quadrature Mirror Filters, page 280-281).

4 Fundamentals of Wavelets

applying the wavelet and scaling functions in both the horizontal and vertical
directions. The image is split in two parts, high frequency and low frequency
operating, say in the horizontal direction first. The two resulting subimages contain
both high- and low-frequency vertical information. Each of the subimages is now
convolved with the wavelet and the scaling function vertically, each producing two
new separations. The process is shown in Figure 4.15.

Figure 4.15 Division of the image into four subimages [7, 8]

After this process, we have four subimages. The downsampling process is not visible
in this figure, but it has been applied, both horizontally and vertically in the same
way as in Figure 4.13. Each subimage will therefore have one quarter of the samples
of pixels of the original.

So, we have seen that a single-stage wavelet transformation consists of a filtering
operation that can decompose a two-dimensional signal into four frequency bands.

Figure 4.16 show the result of a transformation on an image, (a) is the original
image, and (b) shows the result of a single-stage wavelet transform. The top-left
corner (LL) is the original image, low-pass filtered with the scaling function and
subsampled in the horizontal and vertical dimensions. The bottom-left corner, LH,
contains residual horizontal frequencies. The top-right corner consists of the residual
vertical frequencies, HL, (for example the vertical bars in the background are visible
here) whilst the bottom-right corner contains residual diagonal frequencies, HH.

As shown in Figure 4.14 we can repeat the decomposition process for the low
frequency band. For a two-dimensional signal we decompose the LL component to
produce another set of four sub-bands: a new LL band that is a further subsampled
version of the original image, plus three more residual frequency bands. Repeating
the decomposition three times gives the wavelet representation shown in Figure 4.16
(c). The small image in the top left is the low-pass filtered original and the remaining
squares contain progressively higher-frequency residual components. Each sample in
(b) and (c) represents a wavelet transform coefficient.

Page 32 of 91

Part 1 Fundamentals – Background material

Page 33 of 91

Figure 4.16 (a) The original image (Lena) [15]

Figure 4.15 (b) A single pass of the transform, showing the three sets of coefficients, and the
residual filtered image. [7, 15]

Figure 4.15 (c) The example shows three iterations and the resulting ten subbands. [7, 15]

4 Fundamentals of Wavelets

4.7 Inverting the Wavelet Transform
A critical feature in compression is the possibility to reconstruct the signal perfectly.
A wavelet algorithm has perfect reconstruction when the transformed signal yields
exactly the original signal after transforming it back to the original domain (usually
after performing some operation on it) by applying an inverse wavelet transform.
This process is also known as a synthesis, which is the inversion of an analysis (the
forward transform process). This means that the transform has to be invertible.
The construction of high-pass and low-pass reconstruction filters is highly complex,
and is only comprehensible in the context of the Fourier transform. We will settle
with stating that the DWT is invertible when certain mathematical conditions are
fulfilled. Haar is the simplest wavelet filter that shows perfect reconstruction.

To find the inverse transform, the decomposition process is reversed, as represented
in Figure 4.17. This shows a one-dimensional signal, but this process can easily be
generalized into the case of two-dimensional signals. This process continues until the
last output is the original signal. Note that if no data processing is done, the
transform – inverse transform process is lossless

Figure 4.17 The first two levels of the inverse transform.

Page 34 of 91

Part 2 Trends in Wavelet-Based Video Compression
Research

5 Introduction
Until recently, the trend in wavelet video compression research have been to use
wavelet to the transform coding but not to use wavelets qualities in Moton
Compensated Prediction, but researchers have started to focus more on the latter
approach.

Even if wavelet in video compression lately have been a common research topic,
most video compression tools available is based on DCT. If you do a quick search on
the internet, some wavelet based video compression tools are available though, but
the tools publicly available are only intra-frame based. Very few, if none, present a
commercially available product based on inter-frame video compression, even if this
has been a research topic for a decade now.

The motivation for this work is therefore to establish whether wavelet based video
coding have the potential of producing the same good results as wavelet in still
image coding has proven to do.

5.1 Existing Wavelet-Based Video CODECs
There are no standardized video CODECs today that use wavelet based transform
coding, but some implementations with wavelets exist. Some companies have
developed wavelet based video compression products. The initial use of wavelet in
video was with the old IMMIX Cube NLE systems, which used wavelet to provide
better video quality at lower bit rates than the competing Motion-JPEG, but due to
some other problems with the IMMIX, it lost the battle against M-JPEG. But wavelets
did not loose though, and it is implemented as the chosen transform coder in Motion-
JPEG2000, the video extension of JPEG-2000. Some other video CODECs that have
implemented wavelets are Indeo v4 and v5. Aware has also made a software video
codec, and as for the aforementioned CODECs, it only makes use of intra-frame
compression, and a good inter-frame wavelet compression CODECs are still to be
presented to the public.

5.2 Who Does What with Wavelet
Scientists from all parts of the world are researching on wavelets. Some are working
independently, using their spare time and out of passion for this exciting field of
research, whilst others are doing their research related to universities, corporate
research labs or special interest organisations. The interest is huge, and the number
of papers/research works is enormous.

MPEG and ITU-T decided to work together in JVT in 2001. They are currently working
on the H26L standard, where the video compression algorithm will be founded on
DCT. This does not mean that they have abandon wavelet totally. Both ITU-T and
especially MPEG have done comprehensive research on wavelets in the field of video
coding, but they have not yet chosen to implement it in their video coders. Bla Bla,
say something about this...

5 Introduction

When searching for papers in the field of wavelet and video compression, several
other groups and research facilities have presented their work, especially in the IEEE
database. Large companies like Sharp Labs, Philips, Sony, Digital Cinema and
Microsoft are companies that we see have been very active in this field. This can give
an indication that wavelet seems promising for commercial use, and that it is
probable that support for wavelets based image and video coding will be
incorporated in future hardware and software components.

Mobile phone companies like Nokia and Sony-Ericsson also seem to have taken
interest in wavelets research, and assuming that this is a field that would benefit
greatly of wavelets good compression properties, it will be exiting to follow the
development of a possible wavelet CODEC inside a handheld device like a mobile
camera phone.

5.3 What to Look for
There are a large amount of papers out there, so obviously just picking papers on
luck will not be any good. We therefore had to start off by doing a wide search for
wavelet and video compression, mainly this search was done by using the IEEE
Explore database searching tool available from the IEEE web site. It is crucial that
the gathered information is scientifically acknowledged in order to establish a well
founded conclusion. We soon got an overview of what seemed to be the most
respected researchers in our field of interest, and used this as our foundation for our
future research.

6 Discrete Wavelet-based Transforms
In this chapter we first introduce the wavelet domain, and then depict a fast and
efficient way to construct wavelets, called the lifting scheme. In the following we
describe three different wavelet transforms; the three-dimensional DWT, the dual-
tree complex DWT, and the overcomplete DWT.

Figure 6.1 ‘Roadmap’ – Architecture of a typical wavelet-based video coder

Note that when mentioning the classical, standard, or conventional DWT we refer to
the convolution-based DWT as it is illustrated in chapter <2.x>.

We have been given the dual-tree complex DWT slightly more interest than the
practical use in video coding justifies, because of its special nature, and the benefit it
may have for other areas, like (medical) image processing. If interested in more
information of the DT CWT and its applications, we recommend [20].

6.1 The Wavelet Domain
A huge amount of techniques takes place in the wavelet domain. Doing something in
the wavelet domain, wavelet space, band-to-band, or in-band simply means that the
process are performed after a wavelet transform is executed. As illustrated in Figure
6.1, state of the art wavelet-based video CODECs usually perform in-band ME/MC.
When using a 3-D transform, doing something in the wavelet domain, means
performing the algorithm after all three decomposition has been done.

Page 36 of 91

Part 2 Trends in Wavelet-Based Video Compression Research

Many techniques performed in wavelet domain do not depend on one specific wavelet
transform, but rather of certain properties that the transform adds to the domain.
Therefore, research papers presenting i.e. a new ME/MC algorithm or a new
quantisation scheme, seldom mentions which wavelet transform is used, how it is
constructed, or what type of wavelet filter the transform use. We will now briefly
present some of the filters and transforms used in wavelet-based video coding.

One of the most favoured wavelet filters in image- and video coding when using the
standard DWT is the biorthogonal Cohen–Daubechies–Feaueveau 9/7 filter (also
called the ‘9/7 filter’ and ‘Daubechies’s 9-7 filter’) [21], because of its good energy
compaction properties. This filter is for example used in the JPEG2000 standard.
Another popular filter in image compression is the Antonini (7,9) tap filter [22]. This
is the filter that was used in the FBI fingerprint compression system. A third filter
set, which is defined by the JPEG2000 standard, is the 5/3 integer transform [23],
this is constructed by a lifting scheme, and was first proposed for image compression
by Le Gall and Tabatai [24]. Figure 6.2 shows the wavelet and scaling functions
associated with the 5/3 and 9/7 transforms defined by JPEG2000. As a digression,
we will mention section 7.5 which briefly present a paper which discusses wavelet
filters, and a way to choses wavelet filters adaptively depending on the statistical
nature of the image being coded.

Figure 6.2 Synthesis scaling and wavelet functions, 5/3 and 9/7 subband filter sets

The classical DWT is, as we saw in <2.x Fundamentals of DWT>, based on
convolution. However, there exist other ways to construct the same wavelets. In
section 6.2 we depict a less computational complex way to calculate the wavelet
transform, the lifting scheme. It seems that the use of lifting to perform the DWT has
gained increased popularity in the image- and video compression community. As an
example, lifting scheme wavelets form the basis of the JPEG2000 image compression
standard.

A large number of recent developed ME/MC algorithms depend on a so-called shift
invariant WT. The standard DWT is shift variant, therefore we have presented two
different shift invariant wavelet transforms, a complex WT and an overcomplete WT,
which in addition to shift invariance offers the important property of perfect
reconstruction. As a digression, in the section depicting the overcomplete WT, we
mention a transform called the Complete-to-Overcomplete DWT (CODWT) [25], this
transform can be calculated in to ways; one using convolution and another using
lifting.

Page 37 of 91

5 Introduction

All the transforms mentioned until now are two-dimensional (to be specific, they are
separable, using one-dimensional WT in two directions). It is also possible to perform
multiple-dimensional transform (also separable, using one-dimensional WT in
multiple directions). The three-dimensional transform removes both spatial and
temporal redundancies, and has been researched in a lot of papers; some are
mentioned in section 6.3.

6.2 The Fast Lifting Wavelet Transform (The Lifting Scheme)
The original lifting scheme was introduced by Wim Sweldens in mid-nineties, and is a
general framework to design biorthogonal wavelet filters which can be used in all
types of discrete wavelet transforms. As opposed to classical constructions, the lifting
scheme is not based on the Fourier Transform. This makes it possible to construct
second generation wavelets; wavelets which are not necessarily translates and
dilates of the mother wavelet. However, this scheme will never come up with
wavelets that could not be found by [27]. These second generation wavelets can be
used on places where no Fourier transform is available; for example on bounded
domains in applications such as data segmentation, to analyze data that live on
curves or surfaces, or for adapting to irregularly sampled data [33].

The main advantages lifting offers wavelet-based video CODECs is the reduction of
computationally complexity. It allows a faster implementation and a fully in-place
calculation of the wavelet transform. The latter removes the need for auxiliary
memory in order to store temporary data during the calculation. In [34] it is proven
that for long filters, the lifting scheme cuts computation complexity in half, compared
to the standard iterated FIR filter bank algorithm (the classical DWT). This type of
wavelet transform is already much more efficient than the Fast Fourier Transform
(FFT), and lifting speeds things up with another factor of two, due to the fact that the
lifting scheme makes optimal use of similarities between the odd and even values, or
high and low pass filter.

For classical wavelet transforms one have to use the Fourier transform to see that an
inverse wavelet transform yields exactly the original signal [33]. But by using lifting,
it is easy to see that a given wavelet filter could be perfectly reconstructed by
undoing the operations of the forward transform. As seen in Figure 6.4 the inverse
wavelet transform is just a mirror of the forward transform in Figure 6.3.

Figure 6.3 Lifting scheme forward WT

Figure 6.4 Lifting scheme inverse WT

The original lifting scheme has been further developed, and several different lifting
schemes now exists. They will not be described here, but as an example, integer
lifting [Cal96], [Uyt97b] and multidimensional lifting [Kov97], [Uyt97a] are to quite
recent and interesting developments.

Page 38 of 91

Part 2 Trends in Wavelet-Based Video Compression Research

6.2.1 Constructing wavelets with the lifting scheme
The name ‘lifting’ comes from the way the wavelet is constructed, it starts with a
simple wavelet, often called the ‘Lazy wavelet’, which does not do anything, however
it has the formal properties of a wavelet. Then the lifting scheme gradually builds a
new wavelet by adding in new basis functions, improving the properties of the ‘Lazy
wavelet’. We will now briefly explain how the basic idea of the lifting scheme works
in practise by using an example. Since the inverse transform can be found by
reversing the forward transform, and simply change each ‘+’ into a ‘-’ and vice
versa, we concentrate on explaining the forward process.

The lifting process starts with splitting the even (a) and odd (b) samples, followed by
two steps, a predict and an update step as illustrated in Figure 6.5.

Figure 6.5 Forward steps [15]

Figure 6.6 Inverse steps [15]

• We start by splitting the two samples in Figure 6.5, the odd sample is the green
9, and the even sample is the peach-coloured 7.

• Then we predict the new even sample by subtracting the original even from the
original odd, 7-9=-2.

• We directly update the odd sample, by adding half the new predicted even
sample to the original odd, 9+(-2/2)=8.

• As illustrated in Figure 6.6, to get back to our original values, the process is
simply inverted.

In Figure 6.7 and Figure 6.8 we see the lifting scheme working on 8 samples in
several levels. The updated odd (green) samples are used as the input for the next
level. These are split, predicted an updated as in the first pass. This process can
continue until we in the end has one single odd element left.

Figure 6.7 Predicting and updating coefficients in 3 levels [15]

Page 39 of 91

6 Discrete Wavelet-based Transforms

Figure 6.8 Split, Predict, and Update in 2 levels [15, modified]

6.3 Three-Dimensional Wavelet Transform (3-D DWT)
Karlsson and Vetterli first proposed the use of a separable three-dimensional (3-D)
discrete wavelet transform (DWT) for video compression.

6.3.1 3-D SPIHT (Set Partitioning In Hierarchical Trees)
Pearlman and Kim have extended the popular 2-D SPIHT image coder (described in
section 7.3) to a 3-D video coder [35]. 3-D SPIHT, among others [36][37], performs
quite well because the energy between frames is compacted by a wavelet transform,
which in turn can be quantized and entropy coded in order to obtain good
compression ratios. This is a more natural way of removing temporal redundancy.

Typically a three level three-dimensional wavelet decomposition (like the one shown
in i) with the 9/7 biorthogonal wavelet filters is performed on a Group of Frames
(GOF) of size 16, as shown in Figure 6.10. First the GOF is temporally transformed
(1-D) followed by a spatial domain transform (2-D). The temporal transform could be
done by applying the wavelet filter to all the frames in the video sequence, but this
obviously would result in large delays because all the frames have to be traversed
before any transmission could begin. Also a lot of memory is needed when
transforming large video sequences, possibly containing millions of frames. Therefore
the frames are divided into group of typically 16 frames, in order to be able to do an
effective temporal transformation in systems with limited amount of memory.

Page 40 of 91

Part 2 Trends in Wavelet-Based Video Compression Research

Figure 6.9 3-D Wavelet Decomposition [35]

Figure 6.10 Temporal decomposition of a
group of frames (GOF) [35]

As for 2-D SPIHT, 3-D SPIHT also produces an embedded bit stream, in order to
provide a progressive video transmission, which makes it very scalable and also
being able to choose an appropriate video quality. 3-D SPIHT supports separation of
colour and luminance, which again stresses that the coding is very scalable in that
both colour and luminance (monochrome) video can separately be extracted from
the same bit stream. If a system has a limited bandwidth, it is possible to obtain a
better resolution level, by using the luminance components only. As for 2-D SPIHT,
the main feature of 3-D SPIHT is its speed and simplicity.

6.3.2 Lifting-based Invertible Motion Adaptive Transform (LIMAT)
LIMAT was introduced by Secker and Taubman in [38]. Taubman is an authority on
use of the wavelet transform in highly scalable image- and video compression, and
has presented several research papers in this field, including EBCOT [39] which is
the core of the JPEG2000 image compression standard.

LIMAT is a framework for constructing three-dimensional transforms, based on any
temporal wavelet kernel and motion model, while retaining perfect reconstruction.
This invertibililty property is inherited from a lifting realization of the three-
dimensional DWT, in which each lifting step is compensated for the estimated scene
motion. Incorporation of sophisticated motion models allows the transform to adapt
to complex motion, which is demonstrated in [38] with a deformable mesh motion
model. The LIMAT framework can be used with any temporal wavelet kernels,
consistently superior performance is observed in [38] with the 5/3 wavelet as
compared to Haar. This differs from evidence reported in the context of block-based
and framewarping approaches [39, 40].

Page 41 of 91

6 Discrete Wavelet-based Transforms

Figure 6.11 a) Lifting representation for the Haar temporal transform, b) same, but with motion
compensated lifting steps

The 3-D-DWT is essentially applied in a separable fashion along the displaced blocks,
but the effects of expansion and contraction in the motion field are observed by the
appearance of “disconnected” pixels between the blocks. For the transform to remain
invertible, these disconnected pixels must be treated differently, which seriously
affects coding efficiency. In addition, perfect reconstruction is only possible with
integer block displacements, although extensions to half-pixel accuracy have been
demonstrated. These methods invariably involve block-based motion models, which
cannot capture expansive or contractive motion.

Deformable meshes can improve motion compensation by tracking expansions and
contractions, while maintaining a continuous motion field. More importantly, only
continuous motion mappings allow us to understand the proposed transform as truly
applying the temporal DWT along a set of motion trajectories. Experimental results in
[38] reveal that this is particularly desirable for compression performance. However,
without motion compensation, temporal filtering produces visually disturbing
ghosting artefacts in the low-pass temporal subband. This is clearly undesirable
where temporal scalability is of interest. The challenge therefore lies in finding a way
to effectively exploit motion within the spatio-temporal transform

6.4 The Dual-Tree Complex Wavelet Transform (DT CWT)
Magarey and Kingsbury developed a motion estimation algorithm, using a 2-D DWT
which is based on a complex-valued pair of 4-tap FIR filters with Gabor-like
characteristics [41, 42, 43]. The aim of this work was to identify true motion as far
as possible, using a hierarchical and phase-based approach. This ME algorithm is
further depicted in a later section <>, but the complex-valued DWT they discovered
are the subject of this section.

Magarey and Kingsbury was motivated by Fleet and Jepson [44] to use the efficiency
of the DWT subband decomposition with complex-valued (Gabor-like) basis filters to
provide the phase information required for their ME algorithm. “The desirable
property of Gabor filters is that they are optimally localised in both spatial and spatial
frequency domains [45].” [43, III section B.3] The 2-D CWT is implemented
separably, so that only 1-d convolutions and downsampling are required. “The 2-D
CWT may be thought of as producing a pyramid of complex subimages. At each
level, the coefficients are formed by orientationally selective filtering of overlapping
circular regions. There are six evenly spaced orientational subimages at each

Page 42 of 91

Part 2 Trends in Wavelet-Based Video Compression Research

Page 43 of 91

pyramid level. Note that such directional filters are not obtainable by a separable
DWT using a real filter pair, because its separable filters cannot distinguish between
edge features on opposing diagonals (further explained in section 3.4.2 b)). Complex
coefficients make this selectivity possible.” [43, III section B.2, slightly modified]

6.4.1 The Dual-Tree Implementation
The work with complex wavelets for motion estimation [41, 42, 43] showed that
complex wavelets could provide approximate shift invariance and good directional
selectivity. Unfortunately they were unable to obtain perfect reconstruction and good
frequency characteristics when using short support complex FIR-filters in a single
tree (e.g. Figure 6.12 Tree a). However, Kingsbury et. al. further develop the
complex wavelet transform, and introduce the Dual-Tree implementation of a
Complex Wavelet Transform (DT CWT) in [46-50].

The dual filter tree implementation is based on the idea that it is possible to achieve
approximate shift invariance with a real DWT, by doubling the sampling rate at each
level of the tree (but only if the samples are evenly spaced). The dual filter tree
comprises two trees of real filters, a and b, which produce the real and imaginary
parts of the complex coefficients. The key to successful operation of the DT CWT lies
in the differences between the filters in the two trees. It is crucial that level 1
downsamplers in tree b picks the opposite samples to those in tree a, and at each
level in both trees an additional delay difference is needed to obtain the correct total
delay difference so that optimal shift invariance is achieved [48]. To invert the
transform, perfect reconstruction filters are applied in the usual way to invert each
tree separately and finally average the two results.

In the first form of the DT CWT [46, 47, 48] this was achieved by a simple delay of
one sample between the filters at level 1, and then, for subsequent levels, alternate
odd-length and even-length biorthogonal linear-phase filters were used to achieve
the correct relative signal delays. But later Kingsbury et. al. discovered certain
problems with the odd/even filter approach, and to overcome them, the Q-shift
version of the DT CWT, with improved orthogonality and symmetry properties, was
proposed in [49, 50]. This is seen in Figure 6.12. All the filters beyond level 1 are
even length, but they are no longer strictly linear phase. Figures in brackets indicate
the delay for each filter, where q = ¼ sample periods.

6 Discrete Wavelet-based Transforms

Figure 6.12 Dual tree of real filters for the Q-shift CWT [49]

In the Q-shift version, the filter coefficients are no longer symmetric, which makes it
possible to design the perfect-reconstruction filter sets to be of even-length, shorter
and orthonormal (like Daubechies filters) beyond level 1 so that filters in the two
trees are just the time-reverse of each other, as are the analysis and reconstruction
filters. They are designed with the additional constraint that the filter group delay
should be approximately one quarter of the sample period. All this leads to a
transform, where all filters beyond level 1 are derived from the same orthonormal
prototype set, and in which the two trees are very closely matched and have a more
symmetric sub-sampling structure.

6.4.2 Key features
The key features of the DT CWT [50] may be summarised as:

a) Approximate shift invariance;
b) Good directional selectivity in 2-dimensions (2-D) with Gabor-like filters (also

true for higher dimensionality, m-D)
c) Perfect reconstruction using short linear-phase filters;
d) Limited redundancy, independent of the number of scales, 2:1 for 1-D (2m:1

for m-D)
e) Efficient order-N computation - only twice the simple DWT for 1-D (2m times

for m-D)

a) Approximate shift invariance
(The importance of shift invariance in wavelet-based video CODECs is explained in
section 8.3.1 Shift Dependence.) The good shift invariance of the DT CWT is
demonstrated in Figure 6.13, where it is compared with a standard DWT based on
the (9,7) filters. Wavelet and scaling function components of 16 shifted step
functions (top), for the Q-shift DT CWT (a) and real DWT (b), at levels 1 to 4 is seen.
If there is good shift invariance, all components at a given level should be similar in
shape, as in (a).

Page 44 of 91

Part 2 Trends in Wavelet-Based Video Compression Research

Figure 6.13 Wavelet and scaling function components of 16 shifted step functions for the Q-
shift DT CWT (a) and real DWT (b) [49]

b) Good directional selectivity
Good directional selectivity is believed to be an important feature for many
applications, including motion estimation and compensation, denoising, and edge
enhancement. As an example, as shown in [47], the DT-CWT can outperform
overcomplete real wavelet transforms because the improved directional selectivity
provides better denoising near non-vertical and non-horizontal edges or lines.

In the standard DWT, separable filtering of the rows and columns of an image
produces four subimages at each level, as we saw in <figure x.9, chapter x Wavelet
fundamentals>. The LH and HL subimages can select mainly horizontal or vertical
edges respectively, but the HH subimage contains components from diagonal
features of either orientation. One way of explaining the poor selectivity of the
standard DWT is that horizontal wavelet filters (real high-pass row filters) select both
positive and negative horizontal high frequencies, while vertical wavelet filters (real
high-pass column filters) select both positive and negative vertical high frequencies.
Hence the combined HH filter must have passbands in all four quadrants of the 2-D
frequency plane. On the other hand, a directionally selective filter for diagonal
features with positive gradient must have passbands only in quadrants 2 and 4 of the
frequency plane, while a filter for diagonals with negative gradient must have
passbands only in quadrants 1 and 3. The poor directional properties of real
separable filters make it difficult to generate passbands or directionally selective
algorithms, based on the separable DWT. [51, section 4, slightly modified]

The DT CWT has much better directional resolution than a standard DWT, despite
being implemented separably, as it possesses six directional subbands rather than
three (for images) [52]. This is because the complex filters are able to separate
positive and negative frequencies in 1-D, and hence separate adjacent quadrants in
m-D frequency space.

Another approach both to shift invariance and to directional selectivity was pioneered
by Simoncelli et al. [53], and was based on Laplacian pyramids and steerable filters,
designed in the frequency domain.

Page 45 of 91

6 Discrete Wavelet-based Transforms

Page 46 of 91

c) Perfect reconstrution is critical in compression to reconstruct the signal, as
explained in 4.7.

d) and e) leads to lower algorithm complexity and increased speed. [50]

6.4.3 Applications
“The shift invariant and directionally selective features of the DT CWT are believed to
increase flexibility for spatially adaptive filtering of multidimensional signals without
needing to worry about introduction of undesirable aliasing artifacts”. [50, section 9,
slightly modified]

The DT CWT is used in a variety of applications, such as motion estimation and
compensation [41, 42, 43] (CWT), denoising and deconvolution [54, 55, 56], texture
analysis and synthesis [57, 58, 59], segmentation and classification [60, 61, 62] and
watermarking [63, 64]. Mostly, the main signals are images, but the DT CWT is also
believed to be useful for video sequences and general 3-D datasets, such as medical
scans and geological seismic data [50].

6.5 The Overcomplete Discrete Wavelet Transform (ODWT)
The Overcomplete DWT (ODWT) has a long history of development, and has been
given several names, e.g the “undecimated DWT”, the “redundant DWT” and the
algorithme à trous.

The ODWT removes the downsampling operation from the traditional DWT presented
in <fundamental of wavelet>, to produce an overcomplete representation. It can be
considered as an approximation to the shift invariant continuous wavelet transform.
(The importance of shift invariance in wavelet-based video CODECs is explained in
section 8.3.1 Shift Dependence.) The downsampling and upsampling of coefficients is
eliminated, and at each level, the number of output coefficients doubles that of the
input. The wavelet and scaling filters are upsampled to fit the increasing data length.

The ODWT has been implemented in several ways. [65, section 5.5.2, ---23--- , 66]
presents some classical and direct implementations of the algorithme à trous, where
the filter-upsampling procedure inserts “holes” - “trous” in french - between the filter
taps. The implementation in [66] results in subbands that are exactly the same size
as the original signal. The advantage of this is that each coefficient is located within
its subband in its spatially correct position. By appropriately downsampling each
subband, it is possible to produce exactly the same coefficients as the conventional
DWT. The output coefficients of the ODWT can also be represented in many ways. A
popular scheme is to use a “coefficient tree”. This tree representation is created by
employing filtering and downsampling as in the usual critically sampled DWT;
however, all phases of downsampled coefficients are retained and arranged as
children of the decomposed signal. The process is repeated on the lowpass bands of
all nodes to achieve multiple decomposition scales.

6.5.1 ODWT in video coders
The classical construction of the ODWT is trivial by using for example an “à trous”
algorithm [55] or the LBS algorithm [68, 69]. However, in wavelet-based coding
systems, the CODEC always processes the critically-sampled DWT subbands. Hence,
the inverse DWT has to be performed first in order to reconstruct the input signal,

Part 2 Trends in Wavelet-Based Video Compression Research

and then followed by the ODWT [26] [15]. For example, in the LBS approach [68,
69], phase shifting is implemented by an inverse transform, shifting in the spatial
domain (i.e., with low band) and then performing a forward overcomplete transform.

Andreopoulos et. al., “complete-to-overcomplete DWT (CODWT)” [26] and Xin Li et.
al., “performing phase shifting in the wavelet domain” [] have independently
proposed similar direct solutions, which are much more computational effective than
the conventional approach used of Kim and Park [68, 69]. The main idea behind
these approaches is to produce the ODWT directly from the DWT. Specifically, the
computation of the input signal is not required, and as a result, the minimum
number of downsampling operations is performed and the use of upsampling is
avoided. In addition, Andreopoulos et. al proposes in [26] an efficient scheme for the
transform-calculation of the CODWT, testing both a convolution and a lifting based
implementation.

The possible applications for the techniques briefly presented in this section are i.e.
image- and video coding and compressed domain processing. The shift invariance
and perfect reconstruction properties of the ODWT makes it very interesting for
these applications, and it has recently been utilized by a large number of wavelet-
based image- and video coding systems [1-16].

7 Wavelet-based Spatial Compression
In this chapter we will discuss how to remove spatial redundant data in digital
image- and video signals using wavelet-based algorithms. Given that spatial
compression can be performed by using the same approaches as in still image
compression, we will therefore depict some state of the art wavelet-based still image
algorithms and coders.

Figure 7.1 ’Roadmap’ - Architecture of typical image- and video coders

7.1 Prosperity of Wavelet-based Image Coders
Over the past few years, a variety of novel and sophisticated wavelet-based image
coding schemes have been developed. These include EZW[23], SPIHT[22], SFQ[32],
CREW[2], EPWIC[4], EBCOT[25], SR[26], Second Generation Image Coding[11],
Image Coding using Wavelet Packets[8], Wavelet Image Coding using VQ[12], and
Lossless Image Compression using Integer Lifting[5]. This list is by no means
exhaustive and many more such innovative techniques are being developed as this
article is written. We will briefly discuss a few of these interesting algorithms here.>

<Modern embedded image coders are essentially built upon three major
components: a wavelet transform, successive-approximation quantization, and
significance-map encoding. Below, we overview these components and describe how
each are implemented within several prominent algorithms, including the recent

Page 47 of 91

7 Wavelet-based Spatial Compression

JPEG-2000 standard [1; 2]. Technique (SPIHT[4]) and a conditional-coding
technique (JPEG-2000 [1]), as well as three other techniques based on other forms
of significance map coding (WDR [7], SPECK [8; 9], and tarp [10]). All coders use a
5-stage wavelet decomposition with the popular 9-7 wavelet filters from [27].>

7.2 Embedded Zero-tree Wavelet (EZW) Compression
Lewis and Knowles [29] in 1992 were the first to introduce a tree-like data structure
to represent the wavelet coefficients in the <octave-band wavelet decomposition>
subbands. Later, in 1993 Shapiro [28] called this structure ‘zerotree’ of wavelet
coefficients, and presented a elegant algorithm called ‘Embedded Zerotree Wavelet’
(EZW) algorithm.

The EZW is known to be a very simple and computationally effective algorithm [23].
As illustrated in Figure 7.2, every coefficient in the lower frequency band has several
corresponding child coefficients in the higher frequency bands. The idea behind this
approach is that if a parent coefficient is insignificant, then it is very likely that all its
child coefficients are insignificant too. This makes it computationally effective,
because it is not necessary to use a complex verification algorithm to check the
significance of the child coefficients, if the parent coefficient is insignificant, we
simply set it and its children to zero.

Figure 7.2 Relationship between parent-child regions in (2-D) DWT sub bands

Many insignificant coefficients at higher frequency subbands (finer resolutions) can
be discarded, because the tree grows as powers of four. The EZW algorithm encodes
the tree structure so obtained. This results in bits that are generated in order of
importance, producing an embedded bit stream. The main advantage of this coding
is that the encoder can terminate the encoding at any point, thereby allowing a
target bit rate to be met exactly. Similarly, the decoder can also stop decoding at
any point, because the image can be reconstructed before all the bits are
transceived. However, the quality of the image increases as further bits are received,
as illustrated in Figure 7.3.

Page 48 of 91

Part 2 Trends in Wavelet-Based Video Compression Research

Figure 7.3 Non-embedded vs. embedded bit stream

7.3 Set Partitioning In Hierarchical Trees (SPIHT)
Many enhancements have been made to make the EZW algorithm more robust and
efficient. One very popular and improved variation of the EZW is the SPIHT algorithm
introduced by [35] in 1994.

In [35], the principles of EZW are explained in an alternative way, and can be
summarized by the following three key concepts:
• partial ordering by magnitude of the transformed coefficients with a set

partitioning sorting algorithm,
• ordered bitplane transmission of refinement bits,
• and exploitation of self-similarity of the image wavelet transform across different

scales of an image

SPIHT offers a more effective implementation of the modified EZW algorithm based
on set partitioning in hierarchical trees. The way coefficients are divided into subsets
and thereafter partitioned has been improved, so it is even more likely that the most
significant information will be conveyed first. For an image bit stream to be fully
embedded, it is crucial that the most significant information is transferred first, i.e.
the information that reduces the image distortion most, has to be assigned the first
position in the transfer queue. The significance of the information is determined by a
calculation of the mean square error (MSE) distortion measure.

SPIHT also includes a scheme for progressive transmission of the coefficient values
that sorts the bits within each coefficient within each subband by magnitude, so the
most significant bits in the most significant subband are transmitted first. This
implies that even if a coefficient in a subband is more significant than another
coefficient in the same subband, it is not given that all the bits in that coefficient is
more important than every bit in the least significant. As illustrated in
Table 7.1 the most significant bits are transferred first as indicated by the horizontal
arrows. The most significant coefficient in this example is ci, followed by cj, ck, cl,
cm... The bits in each coefficient are ordered after significance vertically. First all the
most significant bits (msb) with significance 5 is transferred, then all the bits with
significance 5, etc. Notice how the most significant bits (msb) in coefficient, ck, are
transferred before the least significant bits (lsb) in coefficient, ci.

Table 7.1 Coefficients ordered by magnitude

Page 49 of 91

7 Wavelet-based Spatial Compression

We will also mention another popular coding scheme Pearlman has been involved
with, Set-Partitioning Embedded block Coder (SPECK), which uses quad-trees instead
of zero-trees in the significance coding process [29][30]. Independent tests [31]
have shown that this scheme offers approximately the same results as SPIHT.

7.4 EBCOT Coder in JPEG2000
JPEG2000 is the latest image compression standard to emerge from the Joint
Photographic Experts Group (JPEG), and is the leading image compression standard
for photografic pictures. JPEG2000 supports both lossy and lossless compression.
Central to this standard is the concept of scalability, which enables image
components to be accessed at the resolution, quality, and spatial region of interest.
An example of ROI coding can be seen in Figure 7.4, notice how the rectangular ROI
in the facial region is well preserved at the expense of the background. [24] All these
features derive from a single wavelet-based algorithm, Embedded Block Coding with
Optimized Truncation (EBCOT) [71]

Figure 7.4 Example of ROI coding at 0.125 b/pixel [24]

The EBCOT algorithm was introduced by Taubman in [71], and is related in various
degrees to earlier work on scalable image compression; including the EZW algorithm,
SPIHT algorithm, and Taubman and Zakhor's LZC (Layered Zero Coding) algorithm
[71]. The key advantage of the EBCOT algorithm is as for SPITH, ‘resolution’ and
‘distortion’ scalability, provided by the multiresolutional wavelet transform and the
embedded block coding. However, the EBCOT algorithm uses a more sophisticated
approach for significance propagation of bits than the SPIHT algorithm. It takes

Page 50 of 91

Part 2 Trends in Wavelet-Based Video Compression Research

advantage of the fact that neighbouring pixels in images tend to be very similar to
each other, by changing insignificant coefficients to be significant, if having at least
one significant neighbouring coefficient.

The wavelet transform used in EBCOT is implemented both convolution-based and
lifting-based. Lifting plays a central role, because it enables both state-of-the-art
lossy compression and near state-of-the-art lossless compression. In EBCOT a
‘reversible’ transform is defined by exploiting an important property of the lifting
structure; lifting filters may be modified in any desired manner without compomising
invertibility. In this transform, the 5/3 integer transform, the output of each filter is
rounded to an integer [75, 76]. In conjunction with the embedded quantization and
coding strategies, this makes it possible to produce an efficient losslessly
compressed representation of the image, which embeds any number of efficient lossy
compressed representations.

It is shown that JPEG2000 perform fairly close to SPIHT and SPECK, with a slight
advantage of rate-distortion performance [31]. However, these other
implementations do not offer the same variety of features as JPEG2000. <tregere
enn baseline JPEG>

7.5 Adaptive Wavelet Coding of Multimedia Images
Contrary to the previous algorithms presented, the algorithms mentioned here
concentrate on the wavelet filter, not quantization and context modeling of the
transform coefficients.

[77] has experimented with a variety of wavelets to compress images of different
types. It states that the performance of lossless coders is image dependent, and that
the wavelet filter should be chosen adaptively depending on the statistical nature of
the image being coded. They argue the importance of using good wavelet filters,
since this may increase performance, even when using sophisticated quantization
algorithms. Their results shows that while some wavelet filters perform better than
others, no specific wavelet filter performs better than others on all images. Similar
results have also been observed in the context of lossless compression using various
integer-to-integer wavelet transforms.

8 Wavelet-based Temporal Compression
In this chapter we investigate research work done in the field of wavelet-based
temporal redundancy removal. Initially we briefly explore the development in this
field, and take a look at some reasons why wavelet-based representation has not
achieved the same success in the area of video coding as for image coding.

Figure 8.1 'Roadmap' - Architecture of a typical wavelet-based video CODEC

8.1 Prosperity of Wavelet-based ME/MC algorithms in Video
Coders

MCP effectively exploits the redundancy in the temporal domain
+
WT effectively exploits the redundancy in the spatial domain

Page 51 of 91

8 Wavelet-based Temporal Compression

=
Consequently, a tantalizing question is how do we put ME/MC and WT together and
make them work for videocoding?

Previous works of wavelet coding:
3D Wavelet-transform Coding (Ohm’ 1994)
3D Subband Coding (Taubman and Zakhor ‘1994)
MC 3D Subband Coding (Choi and Woods ‘1999)
3D-SPIHT (Kim, Xiong and Pearlman ‘2000)
3D-ESCOT (Xu et al ‘2001)
Invertible MC 3D-WT (Hsiang and Woods ‘2001)

8.2 Wavelet-based Motion Estimation and Compensation in
Spatial Domain

Most existing video coding standards (including MPEG and H.26x series) share a
similar structure: motion compensated prediction (MCP) is first performed in the
spatial domain and then motion-compensated residues are compressed by DCT-
based coders. The most straightforward way to replace the DCT with a DWT in a
typical video coder would be to perform ME/MC in the spatial domain and to calculate
a DWT on the resulting residual image, as in [78-80].

Figure 8.2 ME/MC in spatial domain

However, it has been shown (e.g. [73, 74]) that this simple approach has certain
drawbacks. Conventional block-wise motion compensation does not fit to wavelet
transform coding, due to blocking artifacts which are made worse when the DWT is
deployed as is usual as a full-frame transform. It has been proposed [79, 80, 81] to
use overlapped block motion compensation (OBMC) in the spatial domain before the
DWT, to reduce these blocking artifacts.

Moreover, when trying to preserve the multi-resolutional structure of each frame and
obtain the scalability that the wavelet transform provides, another issue become
apparent. It seems that when the decoder operates at a lower resolution, drifting
becomes a serious problem, since motion compensated prediction assumes the
knowledge of the previous frame at the full resolution.

Another drawback with this approach is that the wavelet basis is not suitable for
representing the predicted residual image [29]. The main benefit of good transform
coding is that the image energy becomes highly compacted, with a large portion of
information represented in the lower frequency areas. But if we have two almost
identical frames, and the one is subtracted from the other, the residue image does
not have the same properties as a normal image. Most of the low frequency
information is gone, and it is therefore hard to say what information to remove in
order to obtain good visual quality. At the same time, significant coefficients are
most likely scattered around, and not concentrated around the top left corner of the
matrix, which makes it hard to perform efficient entropy coding prior to transmission.

Page 52 of 91

Part 2 Trends in Wavelet-Based Video Compression Research

8.3 Motion Estimation and Compensation in Wavelet Domain
An alternative paradigm would be to perform ME/MC after a wavelet transform is
applied to all frames.

Figure 8.3 ME/MC in Wavelet Domain

This concept eliminates the inefficiency due to high-frequency blocking artifacts.
More important, perhaps, is that resolution-scalable coding without drift becomes
possible. However, it has been shown that this approach also leads to inefficient
coding. Due to frequency aliasing effect introduced by the down-sampling operation3
ME/MC in the wavelet domain has been considered complex and inefficient until
recently. This aliasing effect, also commonly known as shift variance, is explored in
the following section.

8.3.1 Shift Dependence
We recall that in compression it is critical that the wavelet algorithm used can be
reconstructed perfectly, as seen in Figure 8.4.
.

Figure 8.4 a) Four level binary wavelet tree. b) The filter bank, used to achieve perfect
reconstruction from an inverse tree

In Figure 8.5, we see that there is a strong similarity between the shapes of the
various wavelets; due to the fact that perfect reconstruction constrains each filter in
Figure 8.4 to be approximately a half-band filter [31]. This causes aliasing and
results in severe shift dependence of the wavelet transform [2, <Andreopolus>, 31].

3 Se chapter x.x and evt. appendix hvis jeg lager det

Page 53 of 91

8 Wavelet-based Temporal Compression

Figure 8.5 Comparison of some common wavelets [20].

Shift variance is a disadvantage of discrete wavelets: the resulting wavelet transform
is no longer shift invariant, which means that the wavelet transforms of a signal and
of a time-shifted version of the same signal are not simply shifted versions of each
other, as demonstrated in Figure 8.6 and Figure 8.7. In the first figure we see a
signal and a one sample shifted version of the signal. A 1-D DWT, using the 9/7 filter
[14], is performed on both, and the resulting coefficients are displayed in Figure 8.7.
It is easy to determine the “motion” of the signal waveform when comparing the
original signal with its shifted version, but in the wavelet domain we can see that
although there is still some correlation between low-band outputs, the high-band
signals are completely dissimilar. Because the signals represented in wavelet domain
suffer from the shift-variant characteristic of the DWT, it is not possible to obtain
accurate motion vectors for ME using either the low-band or high-band signals in the
DWT domain.

Figure 8.6 Original signal and shifted version

Figure 8.7 Wavelet domain representation

So why does this happen? “When we analyse the Fourier spectrum of a signal, it is
expected that the energy in each frequency bin is invariant to any shifts of the input
in time or space. But when using the DWT to analyse signals - even though they
have perfect reconstruction properties, they do not provide energy shift invariance
separately at each level. The energy distribution between the various wavelet levels
depends critically on the position of key features of the signal. Ideally we would like
it to depend on just the features themselves. ” [31, section 2.3, some modifications]

Page 54 of 91

Part 2 Trends in Wavelet-Based Video Compression Research

Figure 8.8 illustrate this significant drawback with another example. In (a) we see
the resulting signal, analysed with a 4-level DWT using Antonini (7,9)-tap filters
assuming that the wavelet coefficients are computed at full input sampling rate. In
practice, the samples are yielded as in (b) (1/16 of the sampling rate). If we time-
shift the input step, we obtain the samples shown in (c), these are the ones
represented as circles in (a). If we compare the total energy of the samples in Figure
8.8 (b) with the total energy of the samples in (c), we see that the energy variation
is considerably larger.

Figure 8.8 Step response of level-4 Antonini wavelet (wavelet domain representation)

Page 55 of 91

Because of this shift dependence, caused by aliasing due to downsampling at each
wavelet level, conventional DWTs are unlikely to give consistent results when used to
detect key features in images, or to obtain accurate motion vectors for ME.

Recently, there have been several successfully attempt to overcome the shift
variance of DWT in motion estimation. In chapter 6.4 and 6.5 we took a glance at
two shift invariant wavelet transforms, the DT CWT and the ODWT, which has been
essential in this development.

8.4 Motion-Compensated Temporal Filtering (MCTF)
Girod identified that even if a three-dimensional transform is used to perform spatial
and temporal compression in natural video sequences, motion compensation is an
essential step for efficient decorrelation of the video information along the temporal
axis [7 i Andreopoulous]. Moreover, without motion compensation, three-
dimensional transforms introduce visually disturbing ghosting artefacts in the low-
pass temporal subband [TAUBMAN-LIMAT]. The challenge therefore lies in finding a
way to effectively exploit motion within the spatio-temporal transform.

A number of pioneering works effectively incorporated motion compensated steps in
the temporal transform [8] [9], leading to a class of algorithms that perform motion-
compensated temporal filtering (MCTF). MCTF is usually performed in the temporal
domain prior to the spatial DWT, quantization and coding [8-11].

Figure 8.9 MCTF incorporated in a three-dimensional wavelet transform

Part 3 Java Prototype – MediaCODEC

9 Foundation

9 Foundation
We have implemented a video compression prototype founded on a DCT- and DWT-
based still-image compression application developed by four engineer students in a
previous project. We have incorporated the DWT-based compression algorithms in
our prototype, by tearing application apart, and reconstructing the interesting parts
inside an adapted Java Media Framework API (JMF API 2.1.1). We have designed a
highly extendable prototype considering the advantages and disadvantages of the
research study presented in Part 2. We carefully planned a stepwise implementation
progress, to help us make sure making the prototype extendable. Having mainly
focused on doing a thorough design work and a literature study, the entire plan has
not been implemented. However, this was never the intention. We wanted to make a
foundation that could be utilized in future studies, both for our one interest and
others.

9.1 The Java Programming Language
We have chosen to implement our prototype in the Java programming language.
Java is not the obvious first choice when building a video CODEC, so in this part we
try to explain our choice. The Java programming language has some evident
strengths and drawbacks. One of its main features is platform independence [1], but
the price is relatively slow execution [2]. Several projects at Agder University College
using Java combined with wavelets for image processing experienced that this
combination resulted in long execution time, including Geir Broms Fløystad, who
worked with [15]. So when having to combine this with the high computational
complexity of a video CODEC application, we where quite concerned about the result.

Our initial choice when we started to plan this CODEC was to use C or C++, but a
few reasons made us change our minds; Firstly, having some experience with an
early version of an additional API for Java, Java Media Framework (JMF) from Sun
[4], made us believe that this API might give us a headstart when building the
different parts of the CODEC. A brief study confirmed that this API had gone trough
major development the last couple of years [5, 6], and it seemed really interesting
for our purpose. Secondly, our mentor, Per H. Hogstad, had access to several
wavelet applications implemented in Java. Some of these applications were
implemented by his students, and they could offer a variety of wavelet filters and
useful functions. Among these applications was a still-image compression application
using DCT and DWT, developed at Agder University College in 2001 by four engineer
students [11]. This project achieved really good results, and we decided to take a
closer look at it.

So, considering these advantages we started leaning towards using Java. But we
where still concerned for the performance of the CODEC. We continued our
investigation and found that a common solution for high-performance JVMs (Java
Virtual Machine) is to use dynamic translation or just-in-time (JIT) compilers. These
generate machine code on the fly for a method if it been called enough times, and
future calls to the method execute the machine code directly. We also found
compilers which can compile Java source code directly to native machine code. As an
example, GNU () has an ongoing project, GCJ (the GNU Compiler for the Java
language), to develop a compiler for the Java programming language. It makes it
possible to compile Java source code directly to native machine code [8].
Unfortunately, the GCJ runtime, libgcj, which among other provides the core class
libraries, does not support all the Java APIs we have need for. In addition we also

Page 58 of 91

Part 3 Java Prototype – MediaCODEC

Page 59 of 91

feel it is too experimental for our project; we would not risk having the kinds of
problems it could give us.

Finally, we found that it is possible to make call to libraries written in another
language inside Java, by declaring some Java methods to be native. This makes it
possible to do ‘low-level performance hacks’ for more efficient coding. In 1997, Sun
released the Java Native Interface (JNI), which is a standard for writing native
methods in either C or C++. The main goal of JNI is portability in the sense that
native methods written for one Java implementation should work with another Java
implementation, without recompiling. [8] claim that JNI is very slow because
everything is done indirectly using a table of functions to ensure JNI's portability. But
studying JMF source code we found that encoding/decoding is done via native
methods, which should indicate that it is fast enough for our purpose.

Finding that there exist several solutions to improve Java’s ‘speed performance’; we
decided to start programming in Java.

9.2 Java Media Framework (JMF)
It is obvious that in order to implement and test a video CODEC it is necessary to be
able to open and play movie clips. This would certainly be a time-consuming task to
implement from the start. From our early experience with JMF 1.1 API, we knew it
enabled us to present movie clips and other time-based media in an easy way. But
we had no idea of how much processing it allowed us to do on the media. Seem to
remember that back in 1999, Sun were working on an extension of the framework,
launching a beta version just around the time when finishing that previous work. We
took a dive into the Java Media Framework API.

The Java Media Framework (JMF) is an extension to the Java 2 APIs, and has to be
installed separately <skriv om dette litt!> [6]. It was released by Sun in 199x, and
made it possible to present multimedia in Java applications and applets. x years
later, a major improvement was released, the JMF 2.0 API, which provides support
for capturing and storing media data, controlling the type of processing that is
performed during playback, and enables custom processing on media streams. [5]

JMF is design so it can decide at runtime what code to use to handle a given format,
multiplex scheme, and encoding. This is done by carefully parcelling out
responsibility for format handling, demultiplexing, decoding, and rendering into
different classes, then using reflection to discover what kinds of handlers are
available.

9.3 The Still-Image Compression Application
In 2001 four engineer students at Agder University College developed a still-image
compression application4 as part of their finishing project to complete a 3-year
college program [11]. The aim of the project was to explore different still-image
compression techniques.

4 We have made an effort to explain the key aspects of the implementation of this application. This is
because we for the time being re-use the DWT compression process (a future goal would be to enhance
these according to our literature study), and therefore the concepts described here also holds for our
prototype. In addition, since [11] is written in Norwegian and may be hard to acquire, we want to provide
the necessary information for possible readers that do not speak Norwegian.

9 Foundation

The image CODEC was based on two different transforms; DCT (Discrete Cosine
Transform) and DWT (Discrete Wavelet Transform). In addition to the transform
algorithms, several other compression algorithms, including Traverse coding, RLE
(Run Length Encoding), and Huffman, was implemented. Some conceptual class-
diagram constructed to get better understanding of the program was made and has
been provided in Figure 9.2 and Figure 9.3.

In this section we will take a brief walk-through of the processes and algorithms
which are essential to us. As we are concentrating on wavelets in this thesis, we will
only implement the DWT transform. Figure 9.1 shows a schematic representation of
the encoding process. To decode an image compressed by this application, this
process is reversed. In the still-image compression application, all the separate
processes, except the DWT, are optional.

Figure 9.1 DWT from file to file [11]

Figure 9.4 is a conceptualized sequence diagram, showing the most important
classes, methods and messages when the encoding process represented in Figure
9.1 is executed. This process is started when the user click the ’Kompress’ button in
the DWT-option dialog in the still-image application, making call to the
DWTCodec.Compress(...) method.

9.3.1 Converting colour space from RGB to YCbCr
The conversion from RGB to YCbCr is done by going through every pixel in the
image, and converting the three elements between R, G and B; and Y, Cb and Cr, by
using the following equations:
<sjekk at formlene er riktige, s. 79>
From RGB to YcbCr:
Y = 0.301 * R + 0.586 * G + 0.113 * B
Cb = -0.172 * R – 0.340f * G + 0.512 * B +128
Cr = 0.512f * R – 0.430 * G – 0.08 * B + 128

From YcbCr to RGB:

Page 60 of 91

Part 3 Java Prototype – MediaCODEC

Page 61 of 91

R = Y+ 1.371 * (Cr -128)
G = Y – 0.698 * (Cr -128) – 0.336f *(Cb-128)
B = Y + 1.732 * (Cb-128)

In the application, the colour space conversion is implemented in the static methods
Codec.RGB2YCbCr and Codec.YCbCr2RGB.

9 Foundation

Figure 9.2 Conceptual Classdiagram of the still-image application

Page 62 of 91

Part 3 Java Prototype – MediaCODEC

Page 63 of 91

Figure 9.3 Conceptual Classdiagram of the still-image application

Page 64 of 91

9 Foundation

Figure 9.4 Sequence diagram: Compressing an image and writing to file

Part 3 Java Prototype – MediaCODEC

9.3.2 Transforming and quantizing the image
The transformation is separable and uses a 1-D DWT, first one step for all the rows
and then one step for all the columns. The function performing the actual DWT,
DWTCodec.fdwt_2d(...), is based on the equations <xx> and <yy>, and uses
periodic convolution, and padding with the second last value when transforming an
odd number of values. The result is divided into four tables, containing the frequency
bands LL, HL, LH and HH. The method, idwt_2d, which is performing the inverse
transform joins these tables and removes any padding.
<sett inn formlene på side 83>

As seen in Figure 9.4 the call to DWTCodec.fdwt_2d(...) is executed from the
DWTCodec.RecurCompStep(...) method. The main purpose of RecurCompStep is to
make sure that the transformation is performed using the selected decomposition.
The only decomposition implemented in this application, is ‘mallat’, seen in Figure
9.5. The decomposition is represented by a class called ’Dekomp’, which contains a
vector, with a ’DekompEntry’ for each subband. The ’DekompEntry’ class has to
attributes, one containing the subband which is represented, and one relative
quantization coefficient. It is the ’Dekomp’ class which is used to control the
RecurCompStep. In addition, this class has a method for controlling how many levels
to transform the subbands, and how the subbands should be quantified.

Figure 9.5 Mallat decomposition – from JPEG2000

After the image has been transformed, all the images coefficients are quantified by
multiplying each coefficient by a quantizing factor, and then rounded to an integer.
The quantizing factors can vary for each colour components, and can be set by the
user. When decoding the image, all the coefficients are scaled with the same factors.
The quantization and scaling are performed by the DWTCodec.Kvantiser(...) and
DWTCodec.Scale(...)

Page 65 of 91

9 Foundation

9.3.3 Entropy encoding
Three types of lossless coding are implemented in this application; Traverse coding
using sign bit, RLE 8/16 and Huffman.

After transformation the values are represented by integers (4 bytes), even though
most values are small enough to be represented by one byte the largest values are
not. In later processes, it is easier to deal with single bytes, so tables with integers
are therefore converted to four times as large tables containing bytes. The usual way
to do this, is to read one and one integer into four and four bytes, but since most
values only uses one byte, a lot of them will have three consecutive zeroes followed
by a non-zero value. 3 bytes is not enough to get significant profit from RLE. But in
the traverse coding, which was developed by the programmers [11] by studying the
data structure during the compression process, structures the values by first reading
the least significant byte, then the second least significant, etc. Then at the end of
the byte table, we get long sequences with consecutive zeros, only interrupted by
values so large that they have to use the most significant bytes. For negative values
a sign bit is used, because negative values are coded with twos complement (-1 is
coded as FF FF FF FF). Not by using the most significant bit, as most usually, but by
using the least significant bit to indicate negativity when sat to 1.

The traverse coding is followed by RLE 8/16 (if it is selected by the user). This
implementation uses 8 or 8/16 bit to store the sequences, and it is adjusted to this
application, only compressing sequences of consecutive zeroes, because that is
almost the only consecutive sequences that exists in our data. Zero is therefore used
as escape character, so after a zero, a value telling how many subsequent zeroes
there are.

The last step in the encoding process is the Huffman coding. This implementation is
quite similar to the one used in JPEG, and we will only briefly explain it. The Huffman
coding is generated from the length of the codes. First we generate a frequency table
for the data to be coded. Then the code lengths are calculated from the frequency
table. The huffman codes are generated from these code lengths, and finally the data
is coded with the generated huffman codes.

The traverse and RLE coding are executed in the class ‘CompOutFile’, if selected by
the user. The RLE is implemented by two wrappers, RLEOutputStream and
RLEInputStream. The RLEOutputStream are wrapped around a Java OutputStream
during the initialize of the CompOutFile, seen in Figure 9.4. The traverse coding are
executed in CompOutFile.WriteTable(...). The Huffman coding is executed in
CompOutFile.close(...), and all the methods regarding this can be found in the
class ’HuffmanEn’.

10 Prototype Design
We have chosen a programming language, found a framework, and some quite
important procedures for our CODEC, and hopefully this will give us the head start
we need. But where shall we go from here? How do we handle audio? How do we
structure our file format? How do we estimate motion? Before implementing our
prototype we sat down and tried to structure questions, open issues, thoughts and
ideas. In this chapter we present some of the plans, design models, and diagrams
developed during this stage.

Page 66 of 91

Part 3 Java Prototype – MediaCODEC

Page 67 of 91

We start by looking at the goal of this prototype; what are we supposed to
accomplish? In our thesis definition we state that if time permits, we should develop
a software video CODEC prototype based on wavelet, and that this prototype should
consider advantages and disadvantages of our literature study. The definition gives
room for different approaches, so we decide to divide the programming task into
several stages, where each stage is a partial goal and joint together they make an
adequate video CODEC application. After sketching, modelling, remodelling, and re-
remodelling, our design phase results in The Programming Progression Plan. Even
though it is our goal, we do not think it is realistic to believe that we can implement
this entire plan; we probably should be satisfied if we are able to develop the intra-
frame CODEC in step a) to f). The purpose of this list is to make a structured,
extendable application, where the different algorithms are easy to improve or
exchange. In addition, after each step the functionality of the prototype is enhanced,
we can stop programming, having a half-finished application, but we will still have
something that works. This is a quite important quality for us since the <priority> of
the prototype is “if time permits”.

To handle digital video, our prototype has to know how to handle the following:
• Format — how the contents are arranged in a file or network stream.
• Multiplexing — how multiple media streams are put mixed together into a single

byte-stream. While it might be convenient to write all the video data to a file and
then all the audio, the resulting file could be difficult or impossible to play at a
consistent speed, so you "multiplex," or interleave, the streams together, putting
the pieces of each stream that represent the same time close to one another.

• Encoding — how the media is encoded and compressed.
• Rendering — how to present the decoded/decompressed data to the screen,

speakers, etc.

We use the RGB space as output to the renderer, so JMF can handle the rendering,
but we have to specify the MDWT format and implement a multiplexer, demultiplexer
(parser), encoder, and decoder that can handle this format.

10.1 A coarse CODEC sketch
We name the CODECs:
• Intra-frame CODEC: MDWT – Motion Discrete Wavelet Transform
• Inter-frame CODEC: MEWT – Motion Estimation Wavelet Transform
Both CODECs will use the same file format, but we give them different file
extensions, MDWT will have *.mdw, and MEWT have *.mew. <Er det nødvendig?>

We start by making a course sketch, as seen in
Figure 10.1, to figure out how to handle different type of input and output. If the
input is a file with extension *.mdw or *.mew the prototype will decode it with the
appropriate decoder and render it to the screen. If the input is of another file type or
captured from e.g. a web camera, the user have to decide what compression scheme
to use and if it shall be stored to file or rendered to screen. We also want to support
rendering files and capture direct to screen using JMF player built-in functionality.
This feature will enable the user to play video<media hvis audio kan fungere>files of
the file formats supported by JMF, like an ordinary media player, or to show capture
from a web camera. We will refine the sketch in the following sections; MDWT
(Motion Discrete Wavelet Transform) CODEC and MEWT (Motion Estimation Wavelet
Transform) CODEC.

10 Prototype Design

Figure 10.1 Coarse sketch of how to handle different type of input and output

10.2 Layout and User Interaction
After designing some basic functionality for the prototype, we sketch the user
interaction for compressing, displaying, or storing digital media. A UML Use Case
inspired diagram is seen in Figure 10.2.

Figure 10.2 User interaction for compressing, displaying, and storing a movie clip

Page 68 of 91

Part 3 Java Prototype – MediaCODEC
To solve the encoding options necessary, we make several layout sketches by using
the graphic interface in VB (Visual Basic) editor; the last version is seen in Figure
10.3. We choose to put all options in one modal dialog window, and enable/disable
them based on earlier selections.
Table 10.1 gives an overview over what is enabled/disabled and when. For more
information about the different options, see section 10.4, 10.5, and the User Guide.
All encoding options for the DWT and the entropy encoding are derived from the still
image compression application.

Figure 10.3 Layout sketch for compression options

Table 10.1 Compression options
Category Action command Enabled Enables
 OK/Cancel Always
Destination, default Render to screen Always All other options are

disabled
Destination Compress and render to

screen
Always CODEC and DWT

options are always
enabled

Destination Compress and store to file Always CODEC and DWT
options are always
enabled

CODEC MDWT (intra-frame) Depending on destination MEC options are

Page 69 of 91

10 Prototype Design

disabled
CODEC, default MEWT (with MEC) Depending on destination MEC options are

enabled
MEC algorithm Real Motion Detection Depending on CODEC
MEC algorithm, default MEC in Wavelet Domain Depending on CODEC
MEC agorithm, default
search algorithm depends
on chosen MEC algorithm

Choose search algorithm Depending on CODEC.
Alternatives in the first
combo box depend on
the selected MEC
algorithm.

Alternatives in second
combo box depends
on selection in the first
combo box

DWT and Encoding,
Colormodel, default RGB

Grayscale, RGB, YCrCb Depending on destination Quantising textfields
and labels

DWT and Encoding,
Quantising,
Default: 16R, 32G, 32B

 Depending on destination
and colormodel

DWT and Encoding,
Encoding options, all are
default checked

Traverse, RLE/RLE16 and
Huffman

Depending on destination We do not support
optional choices for
Huffman. Huffman is
always checked and
disabled.

The compression option dialog window is the only layout design we do for our
prototype. To display and play the video, we decide to use standard JMF control
panel. For the superior GUI-framework we want to use a MDI <(multiple...)> frame,
which can contain several child frames and a standard menu (we develop the
MDIframe derived from [11]), and we choose to use the systems look and feel. Look
and feel is how Java defines the appearance of an application, like if you run a
Windows OS (operating system) your application will look like a standard Windows
applications, and if you run on Sun Solaris you application will look like a Sun Solaris
application.
Table 10.2 contains the menu items:

Table 10.2 Menu Items
File Menu View Menu Window Menu
Open Image Derived from

[11]
Image Options Derived from

[11]
Arrange All Derived from

[11]
Open Video Select a video

file. The
compression
option dialog is
displayed.

Video Options Select some
options
regarding the
video
compression,
e.g to show a
debug/message
window

Split Derived from
[11]

Capture Capture video
from a web
camera (and
audio from
microphone).
The compression
option dialog is
displayed

Exit Derived from
[11]

10.3 File Format
We wanted to make the file format as easy as possible. We studied the QUICKTIME
[13] and AVI [14] to find out how it can be done.

Page 70 of 91

Part 3 Java Prototype – MediaCODEC

10.4 MDWT (Motion Discrete Wavelet Transform) CODEC
The MDWT CODEC codes a video sequence as a series of DWT5 images, each
corresponding to one frame of video (i.e. a series of intra-coded frames). No attempt
is made to exploit the inherent temporal redundancy in the moving video sequence
and so the compression performance will be poor compared with inter-frame
CODECs. The reason why we design and implement this CODEC is to get the
framework up and running. All the parts (file opening, multiplexer, encoder, decoder,
file writer, etc.) implemented in this stages, are with some adjustments reusable in
an inter-frame CODEC. In Figure 10.4 we give a coarse overview over the processes
in the MDWT CODEC.

Figure 10.4 Coarse overview of the processes in the MDWT CODEC

Figure 10.5 gives a bit more details of what happens in the encoder/decoder. All the
compression algorithms used in this figure are the same as developed in [11]. We
plan to separate the “pieces” of the still image application, and set them together in
our architecture, using the JMF 2.1.1.

5 DWT is the fileformat used in [11]

Page 71 of 91

10 Prototype Design

Page 72 of 91

Figure 10.5 Overview of the intra-frame encoder and decoder

Part 3 Java Prototype – MediaCODEC

Page 73 of 91

Figure 10.6 Sequence diagram: Preparing the Processor for playback

10 Prototype Design

10.5 MEWT (Motion Estimation Wavelet Transform) CODEC
The MEWT CODEC codes a video sequence as a series of DWT images, each
corresponding to one frame of video (i.e. a series of intra-coded frames). No attempt
is made to exploit the inherent temporal redundancy in the moving video sequence
and so the compression performance will be poor compared with inter-frame
CODECs. The reason why we design and implement this CODEC is to get the
framework up and running. All the parts (file opening, multiplexer, encoder, decoder,
file writer, etc.) implemented in this stages, are with some adjustments reusable in
an inter-frame CODEC.

10.6 The Programming Progression Plan
We want to develop our prototype step-by-step. Each stage adds some functionality
to the prototype and joint together all steps make an adequate video CODEC. The
purpose of this plan is to make a structured and extendable prototype.

a) Implement a UI (User Interface) framework based on JMF, including methods
for opening and playing movie clips

b) Extend this framework and get access to each frame in the playing movie clip
c) Implement the intra-frame encoder and decoder, based on the compression

algorithms from [11]. The result should be rendered directly to screen, so we
do not have to handle demultiplexing, multiplexing, file writing, and file
format

d) Implement a file format, and handle storing to a file
e) Implement handling for demultiplexing and multiplexing
f) Implement UI for selecting compression options. Clean up the code and get

rid of all hard coded variables/constants

By this stage we hope to have a working intra-frame CODEC. In the next steps we
want to improve the prototype by implementing an inter-frame CODEC. The main
difference between an intra- and inter-frame CODEC is that in an inter-frame CODEC
we do temporal redundant removal. In the first attempt to remove temporal
redundant data we implement the simplest form of motion estimation.

g) Implement the reusable parts of the intra-frame CODEC for the inter-frame
CODEC (we want to keep the intra-frame CODEC).

h) Extend the encoder; Implement an algorithm to find a residual frame by
detecting real motion, for now we use the compression algorithms from [11]
to encode the residual frame

i) Extend the decoder; Implement an algorithm to calculate the current frame
from a reference frame and a residual frame

We should have a working inter-frame CODEC, but the MEC algorithm is in its
simplest form. Now is the time to start working on a real MEC algorithm, and take
into consideration advantages and disadvantages of our literature study.

j) Improve the motion detection algorithm by <using the original frame as the
reference frame every xth frame to reduce problem with drifting>

k) Implement a loop to choose whether to use intra- or inter-coded frame from a
calculated SNR (Signal-to-Noise-ratio) value

Page 74 of 91

Part 3 Java Prototype – MediaCODEC

Page 75 of 91

l) Implement a real Motion Estimation and Compensation (MEC) algorithm. This
MEC algorithm should take place after the DWT has been performed (so-
called in-band prediction or MEC in the wavelet domain)

When this work is done, we can try to improve the transform and encoding parts of
the CODEC according to the literature study.

m) Implement biorthogonal wavelet filters to use for DWT
n) Implement static Huffman tables, instead of generating them during encoding
o) Implement an improved DWT based on SPITH or SPECK
p) Improve the entropy encoding; traverse, RLE and Huffman. <Motion vectors,

residual frame and reference (intra) frame> should be encoded differently.

11 Implementation and Development
The current implementation contains a framework with support for opening and
playing video sequences of those content types supported by the JMF API, including
quicktime (*.mov) and msvideo (*.avi). Capturing video clips from a web camera is
also supported, the captured sequence can either be rendered direct to screen, or
stored to a ‘quicktime’ or ‘avi’ file. Our implementation does not currently support
encoding the captured video directly with our encoder; it has to be intermediately
stored to a file. We have implemented a so-called intra-frame CODEC (no attempt is
done to remove temporal redundancy), the MDWT (Motion DWT) CODEC. It includes
a MDWT encoder and decoder; this is where the DWT compression algorithms have
been exploited. In addition, we have implemented a MDWT file format and a
multiplexer/demultiplexer to handle writing and reading this format. Initially we
implemented support for sound tracks in this multiplexer/demultiplexer, but this was
removed in order to more correctly estimate the real compression performance of
our CODEC.

Experimental testing has showed that our MDWT CODEC can yield a compression
rate of 13:1 in a small resolution video clip, with good visual quality on single
frames. The major problem of our CODEC is as initially concerned, the
computationally complexity. Small-resolution video becomes very jerky, while larger-
resolution video clips are considerably worse, maybe able to show one frames pr
second. This is due to the combination of the computationally complexity of the
implemented DWT and the CODEC, the ‘slow nature’ of the Java programming
language, and most-likely and inefficient method used to draw and represent the
frames.

Figure 10.6 is a sequence diagram, showing the most important classes, methods
and messages when a user activates the menu item: File -> Open Video... The Menu
item File -> Capture... is almost the same, the main difference is that instead of
creating a FileChooser and selecting a file, the user must select capture device and
some capture options. The sequence diagram mainly shows how the processor is
being prepared for playback. (The processor has to reach a state (be prefetched and
realized) before it can be played). Sequences during playback, file writing and
building the GUI-frame is not included in this diagram.

So what happens after the processor is ready and the video clip can be played? After
playback of the media is started (e.g. by a user clicking the play button), the
following takes place (conceptual description, se også Figure 10.4 and <i JMF
section>):

12 User Guide

• The DataSource reads a chunk of data (a frame) from a media source
• The MediaProcessor separates the tracks and get information from the data by

using an appropriate Multiplexer plug-in (the Multiplexer has been selected by a
handler (TrackControl), using a ContentDescriptor). The Multiplexer receives a
frame-worth of data and separates the track, frame by frame.

• The frame (of the videoTrack) is decoded/encoded using the appropriate CODEC
(the CODEC-plug-in was set in setCodecChain)

The videoTrack is rendered using a RENDER plug-in, selected by a handler, using the
output format of the CODEC, or if the user has chosen to store to a file, the data is
demultiplexed and written to file using a DataSink (chosen by the Manager using the
DataSource (a Processor can be a DataSource...)).

12 User Guide
In this part we will give a brief introduction on how to use the MediaCODEC
application.

When you start the program, you should see an empty MDI () window with a menu
containing File, View, and Window, as in
.

Figure 12.1 MDI window with menu

12.1 The File Menu
Open Image...

Displays a selected image and allow you to compress it with the algorithms
developed in [11]. This is the original image compression application
presented in section 9.3, we have not done any changes that affect this
compression process (and that also explain why most of the prompts for this

Page 76 of 91

Part 3 Java Prototype – MediaCODEC
menu item are in Norwegian). If you like information beyond what we have
provided, take a look at [11].

When you choose “Open Image” a standard “open file” dialog box is
displayed.
• Select the image you want to compress and click Open. Now you should

see the selected image.
• Click the “Compress” button in the toolbar below the image, marked with

red in Figure 12.2. A dialog window is displayed.
• Choose your compression scheme, and mark your options
• If you like to compress the image right away click the “Komprimer”

button, marked with green in Figure 12.2. Otherwise you can click Ok, and
your options will be saved for later.

• When the “Komprimer” button in the dialog window is clicked the
compression process is carried out, and finally the compressed image and
an information window is displayed.

Figure 12.2 Menu item: File->Open Image...

Open Video...

Displays or stores a selected video clip. See section 12.2 The Open Video
Menu Item for further information.

Capture...

Page 77 of 91

12 User Guide

Capturing video clips from a web camera is also supported, the captured
sequence can either be rendered direct to screen, or stored to a ‘quicktime’ or
‘avi’ file (note that the MDWT choice in the dialog box can not be used). Our
implementation does not currently support encoding the captured video
directly with our encoder; it has to be intermediately stored to a file.
Detecting capture device can be done as shown in Figure 12.3.

Figure 12.3 JMF Registry Editor: Detect Capture Devices

JMF Registry Editor...

Opens the JMF Registry Editor, which is an application developed by Sun6
which can be used to configure JMF. We included the JMF Registry Editor in
our application for convenience during implementation and testing. If you
want a user guide on JMF Registry Editor or download the source code, see
[12].

Exit

Closes the MDI window and all its containing frames

12.2 The Open Video Menu Item
When you choose “Open Video” a standard “open file” dialog box is displayed, as
seen in Figure 12.4. In the “Files of type:” drop down list you can see the file types
supported by our prototype7. The file type MotionDWT, with the extension “.mdw”, is
the format which uses the compression scheme developed in this prototype.

6 This menu item request that jmapps library are in the classpath, it was included in the JMF version we
installed, jmf-2_1_1e-windows-i586.exe. (It was a part of jmf.jar)
7 The file types supported are the same as supported by JMF, and all restrictions regarding file type
support in JMF also applies to our prototype.

Page 78 of 91

Part 3 Java Prototype – MediaCODEC

Figure 12.4 Open file dialog

• Select the video clip you want to process and click Open.
• If you selected a file with the extension “*.mdw”, you should see a window

containing the video clip, as in Figure 12.5. Click the button to start the video
clip.

Figure 12.5 Video panel with presentation controls

• If you selected another video file type, a dialog window, like Figure 12.6, is

displayed.

Page 79 of 91

12 User Guide

Figure 12.6 Video encoding options dialog

• If you select “Render to screen” as the destination, the file is played using the
compression scheme specified in the format. <If the file is raw>

• If you select “Export to File” as the destination, you are now able to set options

which will be used during compression.
o Colour model
o Quantizising
o Filter
o Decomposition
o Traverse
o RLE/RLE16

• When you have marked all your options, click OK to start the process

• Be prepared, this can take a while, a message box appears when the process is

finished.

12.3 The View Menu
Image Options...

Display options for the compressed still image, belongs to the Image
Compression program. This menu item has no effect on video clips.

12.4 The Window Menu
Arrange All

Arranges all child-windows, which are not minimized, from top to bottom
inside the MDIFrame

Split

Splits the space inside the MDIFrame evenly among all open (not minimized)
child-windows

Page 80 of 91

Part 4 Conclusion

Error! Reference source not found. Error! Reference source not found.

13 Experimental Testing and Comparisons

13.1 Testing of Image- and Video CODEC algorithms in VcDemo
Here we will show a visual (subjective) and numerical (objective) comparison of
SPIHT, EZW, JPEG2000 and Baseline JPEG, all with a resolution level of 0.5 bits per
pixel (bpp), or a compression ratio of 48:1. SPIHT, EZW and JPEG2000 are all
compressed with 6 decomposition levels.

Figure 13.1 Original (256x256)

Figure 13.2 SPIHT

Figure 13.3 EZW

Figure 13.4 JPEG2000

Page 82 of 91

Part 4 Conclusion

Figure 13.5 JPEG

We used a software image compression learning tool called VcDemo, developed by
the Information and Communication Theory Group at Delft University of Technology,
and the software including test images can be downloaded from [1]. This program is
not been optimized for ultimately comparing of PSNR, visual, or encoding/decoding
time performance, but it gives a good indication of how different compression
aspects affect an image. This experimentation is therefore intended to illustrate the
visual and numerical similarity between the image coders mentioned. We will present
the values we got to show how little the PSNR values differ between each image
coder, and given that this is not an optimized comparison test, we have only
compressed the Lena image, and the results we got are shown in Figure 13.2.

Table 13.1 PSNR Performance at 0.5 bpp and 48:1 compression ratio

This shows that JPEG2000 and SPIHT are very similar in that of visual quality and
PSNR values, and as expected, the visual quality of EZW is hardly noticeable, but
slightly inferior compared to SPIHT at this bit rate. JPEG performs the worst, but
even at 0.5 (bpp) it still shows quite good visual quality. Usually JPEG2000 performs
slightly better than SPIHT, and the reason for why it does not this time is probably
due to the software implementation of the algorithm, and we believe that not all of
the quality enhancing mechanisms in the JPEG2000 standard is implemented here.

We have also used VcDemo to provide an illustration of a motion estimation of a
video clip. Here we show one frame of the “Carphone” video clip.

Page 83 of 91

14 Conclusion

a) Current frame b) Motion Compensated Prediction

c) Frame Difference d) Motion Compensated Frame Difference

Figure a) is the current frame.

Figure b) is a motion compensated prediction frame, which is how the encoder thinks
the next frame will look like.

Figure c) is the difference between the current and the previous frame, and we
clearly see that this frame has more energy or image data in it than figure d)

Figure d) is the difference between a motion compensated frame and the current
frame, and the better the encoder estimates the next frame, the less energy will the
motion compensated frame difference consist of. This frame can be transferred
instead of the original frame, or the frame difference to save bandwidth and
transmission time.

13.2 Comparison of Phase-Correlated and Block-based Motion
Estimation

Phase-correlation ME is very computationally efficient and it produces much
smoother motion field with low entropy than the BM method does. Phase-correlation
works better than the block-based method in the case of large scale translational
motion, while BM is more suitable for predicting regular and small scale motion and
multiple-object movement.

It is also found that the block size greatly affects the ME performance. The blocks
should be large enough to group pixels with similar motion, but should be small
enough to separate pixels with different motion and multiple-object movement.
[42,71]

Page 84 of 91

Part 4 Conclusion

Page 85 of 91

14 Conclusion
Even though wavelet-based video compression has been an area of research for
more than a decade, it has been considered complex and inefficient until recently.

During our thorough investigation of existing research work we have found that by
using a lifting-based three-dimensional wavelet transform with motion compensated
temporal filtering; effective and highly scalable coding can be achieved, while
additionally minimizing the well-known problem with visually disturbing ghosting
artifacts in the low-pass band. Further, when combining this technique with a
complex motion model, like for example a deformable triangle mesh, improved PSNR
performance and visual quality can be gained.

If performing motion compensated temporal filtering in the wavelet domain, by using
a shift-invariant wavelet transform, it additionally permits the independent temporal
filtering of each resolution of the input signal. This enables many potential
developments for multi-resolution decoding and can be a viable approach for fully
scalable video compression.

It has also been found, that coding efficiency of both spatial-domain and wavelet-
band motion compensated temporal filtering can be improved by using an optimized
multihypothesis motion estimation algorithm.

Further combination with other type of optimised algorithms, like improved error
resilience, can be done to improve an even better system, but it is important to
consider the trade-off between computational complexity and compression
performance.

Experimental testing in several independent research work has shown that systems
employing shift invariant MCTF for many sequences is comparable or superior in
terms of mean PSNR to the highly-optimized DCT-based MPEG-4 AVC, over a large
range of bit-rates. While at the same time, offer the advantage of fully-embedded
coding.

It is difficult to give a single conclusion whether wavelet-transforms are ready to
replace the DCT in video CODECs, but what we can say is that from our point of
view, it seems that the fundamental problem with wavelet-based temporal removal
while obtaining the properties of multiresolution structure, has been solved, and that
wavelet-based video CODECs now can compete with DCT-based video CODERS.

Since scalable representations are important for efficient utilization of limited channel
capacity, wavelet-based video CODERs has applications in many areas including
simulcast, videoconferencing and remote video browsing.

14.1 Further Development of the Prototype
The CODEC is implemented in its most primitive form, and has a lot of potential for
further development.

Foremost we would strongly emphasize to improve the efficiency of the video
CODEC, there is several ways to attack this problem; the most interesting seen from
a wavelet-perspective is to improve the implementation of the DWT transform using
a lifting based scheme, but a faster and even more effective computational saving

14 Conclusion

Page 86 of 91

could be gained by changing the Huffman coding algorithm to uses pre-generated
statistic tables. We would also strongly suggest implementing the actual CODEC
classes in C++ and using native interfaces, like the SUN’s JMF API usually does for
its incorporated VIDEO CODECs. When gaining an acceptable computationally
efficiency, we would suggest to continue to develop the proposed programming plan
in section 10.6 in order to improve the compression efficiency.

Part 4 Conclusion

Page 87 of 91

References
[1] B. Bhatt, D. Birks and D. Hermreck, “About digital video compression,” IEEE
Spectrum Magazine, vol. 34, no. 10, pp. 22-23, October 1997.
[2] http://www.qualcomm.com
[3] http://www.nttdocomo.com/
[4] M. Budagavi, W. R. Heinzelman, J.Webb and R. Talluri, “WirelessMPEG-4 Video
Communication on DSP Chips,” IEEE Signal Processing Magazine, vol.17, no. 1, pp.
36-53, January 2000.
[5] Compression for Great Digital Video – Ben Waggoner, August 2002
[6] Video Codec Design, Developing Image and Video Compression Systems – Ian E.
G. Richardson, April 2002
[7] Video compression demystified – Peter Symes, December 2000
[8] Elements of wavelets for engineers and scientists, Dwight F. Mix, 2003
[9] Z. Xiong, K. Ramchandran, M. T. Orchard and Y.-Q. Zhang, “A Comparative
Study of DCT- and Wavelet-Based Image Coding,” IEEE Trans. Circuits Syst. Video
Technol., vol. 9, pp. 692-695, Aug. 1999
 [12] D. A. Huffman, “A Method for the Construction of Minimum
Redundancy Codes,'' Proceedings of the IRE, Vol. 40, pp. 1098-1101, 1952
[13] I. H. Witten, R. M. Neal & J. G. Cleary, “Arithmetic Coding for Data
Compression,” Comm. ACM 30 (June 1987), 520-540.
[14] Wavelet Image and Video Compression, Pankaj N. Topiwala, Kluwer Academic
Publishers
[15] http://fag.grm.hia.no/fagstoff/perhh/htm/fag/matem/datwwww/wavelet.htm
[16] Howard L. Resnikoff, Raymond O. Wells, Jr., ”Wavelet Analysis, The Scalable
Structure of Information”, Springer-Verlag New York, Inc., 1998.
[17] Stèphane Jaffard, Yves Meyer, Robert D. Ryan, “Wavelets, Tools for Science &
Technology”, Society for Industrial and Applied Mathematics (SIAM), 2001.
[18] http://www.beyonddiscovery.org/content/view.article.asp?a=1952
[19] http://perso.wanadoo.fr/polyvalens/clemens/wavelets/wavelets.html
[20] http://www-sigproc.eng.cam.ac.uk/~ngk (Complex Wavelet Design Package:
http://www-sigproc.eng.cam.ac.uk/publications/ngk/qshiftgen.zip)
[21] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using
wavelet transform,” IEEE Transactions on Image Processing, vol. 1, no. 2, pp.
205–220, April 1992.
[22] N G Kingsbury:
"Image Processing with Complex Wavelets",
Phil. Trans. Royal Society London A, September 1999, on a Discussion Meeting on
"Wavelets: the key to intermittent information?", London, February 24-25, 1999.
[23] M. D. Adams, “The JPEG-2000 still image compression standard—
Tech. Rep. distributed with the JasPer JPEG-2000 software,”,[Online]. Available:
http://www.ece.ubc.ca/~mdadams/jasper, Tech.Rep. N2412, ISO/IEC
JTC1/SC29/WG1, Sept. 2001.
[24] D. S. Taubman and M. W. Marcellin, JPEG2000: Image Compression
Fundamentals, Standards and Practice. Boston: Kluwer Academic Publishers, 2002.
[25] Y. Andreopoulos, A. Munteanu, G. Van der Auwera, J. Cornelis and P.
Schelkens, "Complete-to-overcomplete discrete wavelet transforms: theory and
applications," IEEE Trans. on Signal Processing, to appear. 2004
[26] Y. Andreopoulos, A. Munteanu, J. Barbarien, M. Van der Schaar, J. Cornelis and
P. Schelkens, "In-band motion compensated temporal filtering," Signal Processing:
Image Communication (special issue on "Interframe Wavelet Video Coding"), to
appear

http://www-sigproc.eng.cam.ac.uk/~ngk
http://www-sigproc.eng.cam.ac.uk/publications/ngk/qshiftgen.zip

14 Conclusion

Page 88 of 91

[27] L. Luo, F. Wu, S. Li, Z. Zhuang, ”Layer-correlated Motion Estimation and Motion
Vector Coding for the 3D-Wavelet Video Coding”, IEEE, pp. 791-794, 2003
[28] Shapiro, J. M. Embedded Image Coding Using Zerotrees of Wavelet Coefficients,
IEEE Trans. SP, vol. 41, no. 12, Dec. 1993, pp. 3445-3462.
[29] A. Islam and W. Pearlman. “An embedded and efficient low-complexity
hierarchical image coder,” in Visual Communications and Image Processing,
K. Aizawa, R. Stevenson, and Y. Zhang, Eds., San Jose, CA, Jan. 1999, Proc. SPIE
3653, pp. 294–305.
[30] W. Pearlman, A. Islam, N. Nagaraj, and A. Said. “Efficient, low-complexity
image coding with a set-partitioning embedded block coder,” IEEE Trans. on Circuits
and Systems for Video Technology, 2003.
[31] J. E. Fowler, Embedded Wavelet-Based Image Compression: State of the Art,
Information Technology 45, Oldenburg Verlag, 2003
[32] Cohen, A.,Daubechies, I., Feauveau, J., “Bi-orthogonal bases of compactly
supported wavelets”; Comm. Pure Appl. Math., 45 (1992), 485{560.
[33] W. Sweldens, “The lifting scheme: a custom-design construction of biorthogonal
wavelets,” Applied and Computational Harmonic Analysis, vol. 3, no. 2, pp. 186–200,
April 1996.
[34] Daubechies, I. and W. Sweldens. FACTORING WAVELET TRANSFORMS INTO
LIFTING STEPS. J. Fourier Anal. Appl., Vol. 4, Nr. 3, 1998, preprint.
[35] B.-J. Kim and W. A. Pearlman. ”An embedded wavelet video coder using three-
dimensional set partitioning in hierarchical trees (SPIHT),” in Proc. IEEE DCC’97,
1997, pp. 251-260.
[36] R. Kutil and Andreas Uhl. “Hardware and Software Aspects for 3-D Wavelet
Decomposition on Shared Memory MIMD Computers,” in Proceedings of
ACPC’99, volume 1557 of Lecture Notes on Computer Science, pp. 347-356,
Springer-Verlag, 1999.
[37] C.I. Podilchuk, N.S. Jayant, and N. Farvardin, “Three-Dimensional Subband
Coding of Video,” IEEE Transactions on Image Processing, vol. 4, no.2, February
1995.
[38] A. Secker and D. Taubman, “Lifting-based invertible motion adaptive transform
(LIMAT) framework for highly scalable video compression,” submitted to IEEE Trans.
Image Proc.,2002.
[39] D. S. Taubman and A. Zakhor, “Multi-rate 3-D subband coding of video,” IEEE
Trans. Image Processing, vol. 3, pp. 572–588, Sept. 1994.
[40] [J. Ohm, “Three dimensional subband coding with motion compensation,”
IEEE Trans. Image Proc., vol. 3, pp. 559–571, Sep 1994.
[41] J.F.A. Magarey and N.G. Kingsbury, “Motion estimation using complex
wavelets,” Tech. Rep. CUED/F-INFENG/TR.226, Cambridge University Engineering
Department, Aug. 1995.
[42] J.F.A. Magarey, Motion estimation using complex wavelets, Ph.D. thesis,
Cambridge University Department of Engineering, 1997.
[43] J.F.A Magarey and N.G. Kingsbury, “Motion estimation using a complex-valued
wavelet transform,” IEEE Trans. on Signal Processing, special issue on wavelets and
filter banks, vol. 46, no. 4, pp. 1069-84, April 1998.
[44] D.J. Fleet and A.D. Jepson, “Computation of component image velocity from
local phase information,” Intern. J. Comput. Vis., vol. 5, pp.77-104, 1990.
[45] J.G. Daugman, “Uncertainty relation for resolution in space, spatial frequency,
and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Am.
A, vol. 2, no. 7, pp. 1160-1169, July 1985.
[46] N G Kingsbury, “The dual-tree complex wavelet transform: a new technique for
shift invariance and directional filters”, Proc. 8th IEEE DSP Workshop, Bryce Canyon,
Aug 1998.

Part 4 Conclusion

Page 89 of 91

[47] N G Kingsbury, “The dual-tree complex wavelet transform: a new efficient tool
for image restoration and enhancement”, Proc. EUSIPCO 98, Sept 1998.
[48] N G Kingsbury, “Shift invariant properties of the Dual-Tree Complex Wavelet
Transform”, Proc. ICASSP 99, Phoenix, AZ, paper SPTM 3.6, March 16-19, 1999.
[49] N G Kingsbury, "A Dual-Tree Complex Wavelet Transform with improved
orthogonality and symmetry properties", Proc. IEEE Conf. on Image Processing,
Vancouver, September 11-13, 2000, paper 1429.

[50] N G Kingsbury, "Complex wavelets for shift invariant analysis and filtering of
signals", Journal of Applied and Computational Harmonic Analysis, vol 10, no 3, May
2001, pp. 234-253.
[51] N G Kingsbury and J F A Magarey, ”Wavelet Transforms in Image Processing”,
Proc. First European Conference on Signal Analysis and Prediction, Prague, June 24-
27, 1997, pp 23-34. (Invited paper.)
[52] C W Shaffrey, N G Kingsbury and I H Jermyn, ”Unsupervised Image
Segmentation via Markov Trees and Complex Wavelets”, Proc. IEEE Conf. on Image
Processing, Rochester NY, Sept 23-25, 2002, paper 2324.
[53] E P Simoncelli, W T Freeman, E H Adelson and D J Heeger, ”Shiftable multiscale
transforms”, IEEE Trans. on Information Theory, 38(2), pp 587-607, March 1992.
[54] A. Jalobeanu, N. Kingsbury, J. Zerubia, "Image deconvolution using Hidden
Markov Tree modeling of complex wavelet packets", Proc. IEEE Conf. on Image
Processing, Greece, Oct 8-10, 2001.
[55] P F C de Rivaz and N G Kingsbury, ”Bayesian Image Deconvolution and
Denoising using Complex Wavelets”, Proc. IEEE Conf. on Image Processing, Greece,
Oct 8-10, 2001, paper 2639.
[56] A Jalobeanu, L Blanc-Feraud and J Zerubia; “Satellite image deconvolution using
complex wavelet packets”, Proc. ICIP 2000, Vancouver, Sept 2000.
[57] S Hatipoglu, S K Mitra and N G Kingsbury, “Texture Classification using Dual-
Tree Complex Wavelet Transform”, Proc. 7th International IEEE Conference on Image
Processing and Its Applications, Manchester, England, July 12-15, 1999, pp 344-347.
[58] P F C de Rivaz and N G Kingsbury, “Complex wavelet features for fast texture
image retrival”, Proc. IEEE Conf. on Image Proc., Kobe, Japan, October 25-28, 1999.
[59] P Hill and D Bull, “Rotationally Invariant Texture Features using the Dual-Tree
Complex Wavelet Transform”, Proc. ICIP 2000, Vancouver, Sept 2000.
[60] A H Kam, T T Ng, N G Kingsbury and W J Fitzgerald, “Content based image
retrieval through object extraction and querying”, Proc. IEEE Workshop on Content-
based Access of Image and Video Libraries (CBAIVL-2000), Hilton Head, South
Carolina, June 12, 2000.
[61] J Romberg, H Choi, R Baraniuk and N G Kingsbury, ”Multiscale classification
using complex wavelets”, Proc, ICIP 2000, Vancouver, Sept 2000.
[62] P F C de Rivaz and N G Kingsbury, ”Fast segmentation using level set curves of
complex wavelet surfaces”, Proc. ICIP 2000, Vancouver, Sept 2000.
[63] P Loo and N G Kingsbury, “Digital watermarking using complex wavelets”, Proc.
ICIP 2000, Vancouver, Sept 2000.
[63] P Loo and N G Kingsbury, ”Motion estimation based registration of geometrically
distorted images for watermark recovery”, Proc SPIE Conference on Security and
Watermarking of Multimedia Contents III, San Diego, January 2001, paper 4314-68
[65] S G Mallat, “A Wavelet Tour of Signal Processing, Academic Press, 1998.
[---23---] H. Sari-Sarraf and D. Brzakovic, “A shift-invariant discrete wavelet
transform,” IEEE Trans. Signal Processing, vol. 45, no. 10, pp. 2621-2626, Oct.
1997.
[66] P. Dutilleux, “An implementation of the algorithme à trous to compute the
wavelet transform,” inWavelets: Time-FrequencyMethods and Phase Space, J.-M.

14 Conclusion

Page 90 of 91

Combes, A. Grossman, and P. Tchamichian, Eds., pp. 298–304. Springer-Verlag,
Berlin, Germany, 1989, Proceedings of the International Conference, Marseille,
France, December 14–18, 1987.
[67] Andreopoulous et al_IMBCTF_www.pdf
[68] H. W. Park and H. S. Kim, “Motion estimation using low-band-shift method for
wavelet-based moving picture coding”, IEEE Trans. on Image Processing, Vol.9,
No.4, pp.577-587, April 2000.
[69] H. S. Kim and H. W. Park, “Wavelet-based moving-picture coding using shift-
invariant motion estimation in wavelet domain,” Signal Processing: Image
Communication, vol. 16, no.7, pp 669-679, April 2001.
[70] same as [24]
[71] D. Taubman, “High performance scalable image compression with EBCOT,” IEEE
Trans. Image Processing, vol. 9, pp. 1158–1170, 2000
[72] X. Li, “High Performance scalable coding based on motion compensated
prediction of wavelet coefficients”, submitted to VCIP’2001, San Jose, Jan. 2001
[73] F. Dufaux, F. Moscheni, and M. Shutz, “Motion compensated wavelet transform
coding,” in Proceedings of the International Picture Coding Symposium, Sacramento,
CA 1994
[74] Van der Auwera, A. Munteanu, G. Lafruit, and J. Cornelis, “Video coding based
on motion estimation in the wavelet detail images,” in Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing, Seattle, WA,
May 1998, vol. 5, pp. 2801-2804
[75] R. Calderbank, I. Daubechies, W. Sweldens, and B. Yeo, “Wavelet transforms
that map integers to integers,” Appl. Comput. Harmon. Anal., vol. 5, pp. 332–369,
July 1998.
[76] M. Adams and F. Kossentini, “Reversible integer-to-integer wavelet transforms
for image compression: Performance evaluation and anaylsis,” IEEE Trans. Image
Processing, vol. 9, pp. 1010–1024, June 2000.
[77] Saha, S. and Vemuri, R. Adaptive Wavelet Coding of Multimedia Images, Proc.
ACM Multimedia Conference, Nov. 1999
[78] M. Ohta and S. Nogaki, “Hybrid Picture Coding with Wavelet Transform and
Overlapped Motion-Compensated Interframe Prediction Coding,” IEEE Trans. Signal
Proc., vol. 41, pp 3416-3424, Dec.1993. 58
[79] K. Shen and E. J. Delp, “Wavelet Based Rate Scalable Video Compression,” IEEE
Trans. Circuits Syst. Video Technol., vol. 9, pp. 109-122, Feb. 1999.
[80] D. Marpe and H. L. Cycon, “Very Low Bit-Rate Video Coding Using
Wavelet-Based Techniques,” IEEE Trans. Circuits Syst. Video Technol., vol. 9,
pp. 85-94, Feb. 1999
[81] S. A. Martucci, I. Sodagar, T. Chiang, and Y.-Q. Zhang, “A zerotree wavelet
video coder,” IEEE Transactions on Circuits and Systems for Video Technology, vol.
7, no. 1, pp. 109–118, February 1997.
[Cal96] Calderbank, A. R. and I. Daubechies, W. Sweldens, B.-L. Yeo WAVELET
TRANSFORMS THAT MAP INTEGERS TO INTEGERS. Proceedings of the IEEE
Conference on Image Processing. Preprint, 1996. IEEE Press, 1997. To appear.
[Che95] Chen, W.-K., editor. THE CIRCUITS AND FILTERS HANDBOOK. Boca Raton,
Fl (USA): CRC Press, 1995. The Electrical Engineering Handbook Series.
[Cla97] Claypoole, R. and G. Davis, W. Sweldens, R. Baraniuk. NONLINEAR WAVELET
TRANSFORMS FOR IMAGE CODING. Asilomar Conference on Signals, Systems, and
Computers. Preprint, 1997. To appear.
[Dau97] Daubechies, I. and W. Sweldens. FACTORING WAVELET TRANSFORMS INTO
LIFTING STEPS. J. Fourier Anal. Appl., Vol. 4, Nr. 3, 1998, preprint.

Part 4 Conclusion

Page 91 of 91

[Kov97] Kovacevic, J. and W. Sweldens WAVELET FAMILIES OF INCREASING ORDER
IN ARBITRARY DIMENSIONS. To appear in IEEE Transactions on Image Processing.
Preprint 1997.
[Mor82] Morlet, J. and G. Arens, I. Fourgeau, D. Giard. WAVE PROPAGATION AND
SAMPLING THEORY. Geophysics, Vol. 47 (1982), p. 203-236.
[Sto98] Stoffel, A. REMARKS ON THE UNSUBSAMPLED WAVELET TRANSFORM AND
THE LIFTING SCHEME.
Elsevier Science. Preprint, 1998.
[Swe96a] Sweldens, W. THE LIFTING SCHEME: A CONSTRUCTION OF SECOND
GENERATION WAVELETS. Siam J. Math. Anal, Vol. 29, No. 2 (1997). Preprint, 1996.
[Swe96b] Sweldens, W. BUILDING YOUR OWN WAVELETS AT HOME. In: Wavelets in
Computer Graphics. ACM SIGGRAPH Course Notes, 1996.
[Uyt97a] Uytterhoeven, G. and A. Bultheel. THE RED-BLACK WAVELET TRANSFORM.
Technical report TW271, Department of Computer Science. Leuven: Katholieke
Universiteit Leuven, 1997.
[Uyt97b] Uytterhoeven G. and F. Van Wulpen, M. Jansen, D. Roose, A. Bultheel.
WAILI: WAVELETS WITH INTEGER LIFTING. Technical report TW262, Department of
Computer Science. Leuven: Katholieke Universiteit Leuven, 1997.
[Uyt97c] Uytterhoeven G. and D. Roose, A. Bultheel. WAVELET TRANSFORMS USING
THE LIFTING SCHEME. Report ITA-Wavelets-WP1.1, Department of Computer
Science. Leuven: Katholieke Universiteit Leuven, 1997.
[Wei94] Weiss, L. G. WAVELETS AND WIDEBAND CORRELATION PROCESSING. IEEE
Signal Processing Magazine, January (1994), p. 13-32.

References to Part PROTOTYPE:
[1] http://java.sun.com - Java Sun web sider
[6] http://java.sun.com/jmf - Java Sun’s JMF web sider
[11] Kjetil Haslum, Terje Gjøsæter, Rolf Bjerke, Bjørn-Atle Wiik -
Bildekomprimeringsmetoder, Hovedprosjekt for ingeniørutdanningen, Avdeling for
teknologi, Grimstad, 25.05.2001
[8] http://gcc.gnu.org/java - GNU - GCJ
[13] Quicktime File Format
[14] AVI File Format
[12] JMFRegistry User's Guide – Java Sun’s web sites

http://java.sun.com/
http://java.sun.com/jmf
http://gcc.gnu.org/java

	List of Figures
	List of Tables
	List of Equations
	Part 1 Fundamentals – Background material
	Introduction
	Problem Definition and Motivation
	Preliminary Survey of Previous Work
	Prototype

	Methodology
	Literature References
	Test Methods
	Other issues

	Fundamentals of Video Compression
	Introduction
	Digital Video
	What is a Video CODEC?
	Removal of Spectral Redundancy
	Removal of Spatial Redundancy
	Transform Coding
	The Discrete Cosine Transform (DCT)
	Quantization

	Removal of Temporal Redundancy
	Three-dimensional tranform coding
	Motion Estimation (ME) and Compensation (MC)
	Block matching algorithm (BMA)
	Phase Correlation
	Enhancements to the motion model

	Removal of Statistical Redundancy
	Entropy Encoding
	Run-Length Encoding (RLE)
	Huffman Coding

	Video Coding Standards

	Fundamentals of Wavelets
	Introduction
	Wavelets from a Historical Perspective
	‘Fourier vs. Wavelet
	Wavelets Concept
	Wavelets as Filters
	The Wavelet Transform in Two Dimensions
	Inverting the Wavelet Transform

	Part 2 Trends in Wavelet-Based Video Compression Research
	Introduction
	Existing Wavelet-Based Video CODECs
	Who Does What with Wavelet
	What to Look for

	Discrete Wavelet-based Transforms
	The Wavelet Domain
	The Fast Lifting Wavelet Transform (The Lifting Scheme)
	Constructing wavelets with the lifting scheme

	Three-Dimensional Wavelet Transform (3-D DWT)
	3-D SPIHT (Set Partitioning In Hierarchical Trees)
	Lifting-based Invertible Motion Adaptive Transform (LIMAT)

	The Dual-Tree Complex Wavelet Transform (DT CWT)
	The Dual-Tree Implementation
	Key features
	Applications

	The Overcomplete Discrete Wavelet Transform (ODWT)
	ODWT in video coders

	Wavelet-based Spatial Compression
	Prosperity of Wavelet-based Image Coders
	Embedded Zero-tree Wavelet (EZW) Compression
	Set Partitioning In Hierarchical Trees (SPIHT)
	EBCOT Coder in JPEG2000
	Adaptive Wavelet Coding of Multimedia Images

	Wavelet-based Temporal Compression
	Prosperity of Wavelet-based ME/MC algorithms in Video Coders
	Wavelet-based Motion Estimation and Compensation in Spatial
	Motion Estimation and Compensation in Wavelet Domain
	Shift Dependence

	Motion-Compensated Temporal Filtering (MCTF)

	Part 3 Java Prototype – MediaCODEC
	Foundation
	The Java Programming Language
	Java Media Framework (JMF)
	The Still-Image Compression Application
	Converting colour space from RGB to YCbCr
	Transforming and quantizing the image
	Entropy encoding

	Prototype Design
	A coarse CODEC sketch
	Layout and User Interaction
	File Format
	MDWT (Motion Discrete Wavelet Transform) CODEC
	MEWT (Motion Estimation Wavelet Transform) CODEC
	The Programming Progression Plan

	Implementation and Development
	User Guide
	The File Menu
	The Open Video Menu Item
	The View Menu
	The Window Menu

	Part 4 Conclusion
	Experimental Testing and Comparisons
	Testing of Image- and Video CODEC algorithms in VcDemo
	Comparison of Phase-Correlated and Block-based Motion Estima

	Conclusion
	Further Development of the Prototype

	References

