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Abstract 
The enormous amount of information available on the Internet makes it difficult to find 
resources with relevant information using regular breadth-first crawlers. Focused crawlers 
seek to exclusively find web pages that are relevant for the user, and avoid downloading 
irrelevant web pages. Ontologies have recently been proposed as a tool for defining the 
target domain for focused crawlers. 
 
In this project we have developed a prototype of an ontology-focused crawler. We have 
accomplished this by developing extra modules to the Java open source crawler Heritrix. In 
one of the modules we have developed, we measure the relevancy of web pages in relation 
to an ontology describing the area of interest. We have also developed a link analysis 
module to determine the importance of web pages. This module uses the link analysis 
component from the open source search engine Nutch. The importance measure is used to 
ensure that the most important web pages are downloaded first.  
 
This thesis also contains an evaluation of several open source crawlers. We found that 
Heritrix was the easiest to extend, and best suited for our purpose. Our prototype is 
therefore built upon Heritrix. 
 
To measure the performance of the prototype several test crawls with different settings has 
been carried out. Focused crawlers are often evaluated by harvest rate, which is the ratio 
between number of relevant and all of the web pages downloaded. The prototype 
performed well in the tests, and in one of them the prototype had a harvest rate of about 
0.55. In a similar unfocused crawl, the harvest rate was only about 0.15. Both the prototype 
and the algorithm are designed to be easily configured. More testing and adjustments of the 
settings could improve the performance of the prototype even further, but we have shown 
that ontologies are a suitable technology for creating focused crawlers. 
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1 Introduction 

1.1 Background 
In January 2000 the Internet had about 72 million hosts advertised in the DNS system. By 
January 2005 this number had risen to more than 317 million [1]. This means that the 
Internet is so huge that even the largest search engines only cover a small fraction of the 
billions of pages estimated to constitute the Internet. Even though the size of the search 
engines is increasing very fast, no search engines manage to follow the growth rate of the 
Internet. The Internet contains more information than ever, and it is difficult to separate the 
relevant information from the less relevant. 
 
The process of finding relevant resources of information is often called resource discovery. 
Searching for relevant resources manually is a very time consuming and expensive task. 
Turning this task into an automated or semi-automated process would be very valuable. 
Different methods can be used to discover resources automatically.  
 
Focused crawlers, as opposed to regular breadth-first crawlers, try to exclusively follow 
links that are relevant to a specific topic. This kind of crawler plays an important part in 
many automatic resource discovery approaches, but different methods for calculating the 
relevancy are used. Some focused crawlers use example documents and machine learning 
to determine the relevancy of web pages. Others use one or more keywords. Using 
keywords would resemble a normal search engine search, except that the relevancy of the 
pages is calculated for each page as they are downloaded, and not in an index that is the 
result of a regular web crawl. Recently, it has been suggested to use ontologies to define 
the target domain for focused crawlers. In this project we have developed a crawler that 
uses ontologies to focus the search on a specific topic. 
 

1.2 Thesis definition 
This is the definition of our thesis as of 4th of February 2005: 
 
“Resource discovery refers to the task of identifying relevant resources e.g. on the Internet. 
One example could be to identify all Internet resources worldwide, which publish news 
about nano-technology. Manually identifying all these resources is very resource 
demanding and the task could and should be automated. One approach to automatic 
resource discovery is to use focused crawlers. As opposed to standard crawlers in use by 
most search engines, which follow each link, typically applying a breadth-first strategy, 
focused crawlers instead try to identify the most promising links to follow by using some 
sort of probability measure. The criteria used in the probability measure are usually based 
on an analysis of hyperlinks, content and structure. Resource discovery is never done 
entirely from scratch – there are always some a-priory known resources, starting-points 
and knowledge about the domain, which could be represented using an ontology. Focused 
crawlers may use such ontologies to guide the identification of promising links. 
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The project will include an evaluation of some existing web crawlers to find out if it is 
possible to use one of them as a basis for an ontology-focused crawler. One or more 
algorithms for using ontologies in focused crawling will then be found or developed. The 
students shall develop a demonstrator in which the search strategies and algorithms could 
be evaluated. The students should also define some test criteria, and metrics for measuring 
the precision of the crawler.” 
 

1.3 Our work 
During the project period an ontology-focused web crawler prototype has been developed. 
It is built as an extension of an already existing Java open source web crawler called 
Heritrix. The decision to extend this specific crawler was made after a brief evaluation of 
some existing open source crawlers written in Java. To be able to do link analysis in our 
prototype we have included a link analysis module from Nutch called WebDB. Nutch is 
one of the other crawlers we have evaluated. 
 
To decide how relevant a web page is, we have developed a relevancy algorithm. Our 
relevancy algorithm uses the TFIDF [2] weighting algorithm and is inspired by the 
relevance computation strategy described in [3]. The prototype has several parameters that 
can be set to calibrate it or adjust its behavior. 
 
We have also found methods to measure the performance of the crawler by reading articles 
about other focused crawlers. The prototype has been tested with different parameters, and 
the results have been logged and evaluated. 
 

1.4 Report outline 
Chapter 1 describes the background of the thesis project, and gives a short introduction to 
resource discovery and web crawling. We also present the thesis definition and a short 
description of our work. In chapter 2 we give an introduction to focused web crawling, and 
to other work related to this topic. Chapter 3 explains what we mean by an ontology and 
gives an introduction to some ontology languages and ontology tools. Our choice of 
ontology language is also explained here. At the end of the chapter we explain the concept 
of ontology-focused crawling. Chapter 4 contains an evaluation of some existing Java open 
source web crawlers, and some possible methods for creating the prototype. In this chapter 
we also explain why we decided to extend an existing crawler, and why we selected 
Heritrix as a basis for our prototype. Chapter 5 describes the structure of Heritrix, and how 
the different parts work. Chapter 6 explains the algorithm used in the prototype as well as 
the algorithms it is based on. Chapter 7 describes how we have built the prototype and how 
it works. Chapter 8 describes different measures that can be used to measure the 
performance of a focused crawler. It also includes a description of the test settings and the 
input ontology we used for the tests. At the end of the chapter we present the results of our 
tests. Chapter 9 contains a discussion of our prototype and the test results. Chapter 10 
contains a conclusion of our project in general. 
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2 Focused web crawling 
The Web might be seen as a social network. Authors of web pages often insert links to 
other pages relevant to their topic of interest. In this way the Web contains a social 
network of pages linking to other on-topic pages. The link structure and the content of the 
pages can be used intelligently to decide which links to follow and which pages to discard. 
This process is called “focused crawling”. 
 

 
Figure 2.1 a) Standard crawling                                   b) Focused crawling 

 
Figure 2.1 shows the difference between standard crawling and focused crawling. 
a) A standard crawler follows each link, typically applying a breadth first strategy. If the 
crawler starts from a document which is i steps from a target document, all the documents 
that are up to i - 1 steps from the starting document must be downloaded before the crawler 
hits the target.  
b) A focused crawler tries to identify the most promising links, and ignores off-topic 
documents. If the crawler starts from a document which is i steps from a target document, 
it downloads a small subset of all the documents that are up to i - 1 steps from the starting 
document. If the search strategy is optimal, the crawler takes only i steps to discover 
the target. [4] 
 

2.1 Related work 
Chakrabarti et al. seem to introduce focused crawling for the first time. In the crawler 
described in their article [5], the user picks a subject from a pool of hierarchically 
structured example documents. The program learns the subjects by studying the examples, 
and generates subject models. These models are used to classify web pages. The link 
structure is also considered by the crawler to discover hubs. Hubs are described by 
Kleinberg [6] as high-quality lists that guide users to recommended authorities, and 
authorities are prominent sources of primary content on a topic. Links from hubs can be 
relevant even though the text on the hub page itself does not appear to be relevant.  
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The focused crawlers described in the literature generally have a similar structure. One 
thing that separates them is the algorithm they use to decide whether a web page is 
relevant. The crawler described by Chakrabarti et al. [5] uses example documents and 
machine learning principles. 
 
Diligenti et al. [7] describe a focused crawler that uses the same methods to determine the 
relevancy as Chakrabarti et al. [5]. One difference with Diligenti’s crawler is that it 
generates a context graph that describes the link structure around all the seed documents. 
This is done to make it easier for the crawler to find relevant documents, hidden behind 
one or more levels of irrelevant web pages. The web page of a university may for example 
have links to the home pages of professors, which may have good links to pages about 
nanotechnology, even though the university web page has no information about 
nanotechnology. 
 
Diligenti’s crawler only focuses on web pages. A user that is interested in finding relevant 
information resources may be more interested in finding relevant web sites than web pages. 
Ester et al. [8] explain how a focused crawler can find relevant web sites instead of web 
pages. Their proposed prototype contains an external and an internal crawler. The internal 
crawler only views the web pages of a single given web site and performs focused 
crawling within that web site. The external crawler has a more abstract view of the web as 
a graph of linked web sites. Its task is to select the web sites to be examined next and to 
invoke internal crawlers on the selected sites. The crawlers use both link structures and text 
classifiers to determine site relevancy. The average number of pages used for classification 
was between 3.2 and 7.4 indicating that web site classification does not require large 
numbers of web pages per site for making more accurate predictions. 
 
Ester’s crawler and other crawlers that use a static initial set of example documents for 
classification, are very dependent on the quality of the initial training data. Sizov et al. [9] 
have built a focused crawler that aims to overcome the limitation of the initial training 
data. It identifies “archetypes” from the documents and uses them for periodically re-
training the classifier. This way the crawler is dynamically adapted based on the most 
significant documents found so far. Two kinds of archetypes are considered: good 
authorities as determined by employing the link analysis algorithm proposed by Kleinberg 
[6], and documents that have been automatically classified with high confidence using a 
linear Support Vector Machine (SVM) classifier. 
 
All of the focused web crawlers mentioned earlier use example documents to determine the 
relevance. Another approach is to use keywords. Chakrabarti et al. [10] describe a focused 
crawler that finds hub- and authority-pages within a subject which is given by a few 
keywords. A hub is a web page that points to many web pages about the subject, while an 
authority-page contains much information about the subject. The crawler evaluates the text 
around the link-tag to decide whether the link seems interesting. 
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3 Ontologies 
In this chapter we will give a short introduction to ontologies and some of the mostly used 
ontology languages. Our choice of ontology language is also explained here. At the end of 
this chapter we explain the concept of ontology-focused crawling. 
 

3.1 Introduction to ontologies 
According to Wikipedia [11] the term ontology is an old term from the field of philosophy, 
where it means the study of being or existence. This term is also used in the field of 
computer science, where it has a slightly different meaning. In the field of computer 
science, an ontology is the result of an attempt to create a rigorous conceptual schema 
about a domain. Typically an ontology is a hierarchical data structure containing relevant 
entities, relationships and rules within a specific domain.  
 
Tom R. Gruber [12] defines an ontology as a specification of a conceptualization. An 
ontology is a formal description of concepts and the relationships between them. 
Definitions associate the names of entities in the ontology with human-readable text that 
describes what the names mean. The ontology can also contain rules that constrain the 
interpretation and use of these terms. 
 
An ontology can be used to define common vocabularies for users who want to share 
knowledge about a domain. It includes definitions of concepts and relations between them, 
and is written in a language that can also be interpreted by a computer. Ontologies can be 
used to share common understanding of the structure of information, enable reuse of 
domain knowledge, separate domain knowledge from operational knowledge and analyze 
domain knowledge. [13] 
 

3.2 Ontology languages 
In order to ensure that a computer understands an ontology, the ontology must be 
represented in a computer-readable language. There exist several different ontology 
languages which can be used for this purpose. In this chapter we will present some of the 
most distinguished ontology languages. 
 

3.2.1 RDF 

RDF (Resource Description Framework) [14] is a standard developed by W3C, intended to 
be a universal format for data on the Web. RDF is based on XML and can be used to 
represent information about resources in the World Wide Web. Particularly it can be used 
to represent metadata about Web resources, like modification date, author, title or 
copyright information. RDF aims to make it easier for agents and applications to exchange 
information by providing interoperability of data. 
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3.2.2 OWL 

OWL (Web Ontology Language) [15] is a W3C recommendation designed for use by 
applications that need to process the content of information instead of just presenting the 
information to humans. OWL makes it easier for computers to interpret Web contents than 
that supported by XML, RDF and RDF Schema. This is done by providing additional 
vocabulary along with formal semantics. OWL has three increasingly expressive 
sublanguages: OWL Lite, OWL DL and OWL Full. 
 

3.2.3 Topic Maps/XTM 

XTM (XML Topic Maps) [16] is created by the TopicMaps.Org Authoring Group (AG), 
formed in 2000 by an independent consortium named TopicMaps.Org. Topic Maps was 
first fully described in the ISO13250 standard which is SGML and HyTime-based, but has 
now been developed into the XML-based XTM 1.0. Topic Maps is designed for describing 
knowledge structures and associate them with information resources. It is well suited for 
knowledge management and provides powerful new ways of navigating large and 
interconnected information resources. [17] Topic Maps tries to solve the findability 
problem of information, i.e. how to find the information you are looking for in a large body 
of information. It can also be used for content management, web portal development, 
enterprise application integration (EAI), and is also described as an enabling technology 
for the semantic web. [18] 
 

3.3 Selected ontology language 
There are several different ontology languages that could have been used in this project, 
but we decided to use Topic Maps. One of the reasons why we selected Topic Maps is that 
InterMedium has much experience with Topic Maps. Another reason is that, as shown in 
Figure 3.1, Topic Maps is well supported by both the commercial and open source 
community. Topic Maps is an established standard that has been used for several years and 
many tools have been developed to support Topic Maps. 
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Figure 3.1 TopQuadrant’s comparison of some ontology languages in 2003.  [19] 

 
In our project we have used several Topic Maps tools in order to develop and use 
ontologies. Some of the tools we have used will be presented in the following chapters. 

3.3.1 TM4J – Topic Maps for Java 

TM4J [20] is an open source tool for creating and presenting topic maps.  The project is 
divided into four sub projects. Two of these sub projects have been used in our project: the 
TM4J Engine and TMNav. 
 
The TM4J Engine is a topic map processing engine. It is the core of the TM4J project and 
provides an API which makes it possible to create and edit topic maps in Java applications. 
It also gives support for importing and exporting topic maps to and from XTM files. Topic 
maps can be saved in memory or persistently stored in an Ozone [21] object-oriented 
database or in a relational database by using Hibernate [22]. 
 
TMNav is a Java application for browsing topic maps. Figure 3.2 shows a screenshot of 
TMNav and how it can display a topic map in tree view and graph view. One problem with 
TMNav is that the graphical topic map representation only shows the selected topic and the 
ones directly connected to it. It is therefore not possible to view the entire topic map at 
once. 
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Figure 3.2 Screenshot from the TMNav application 

 

3.3.2 Ontopia Omnigator 

Ontopia Omnigator is a web-based topic map navigator created by Ontopia [23]. It can be 
used to browse topic maps in both tree view and graph view. Omnigator also has the ability 
to merge topic maps on the fly, search in topic maps and export topic maps. In our project 
we have used Omnigator to view ontologies graphically. Figure 8.2 shows an ontology 
viewed in Omnigator. Omnigator can show all topics in an ontology at the same time, in 
contradiction to TMNav which only shows one topic and the nodes connected directly to it. 
 

3.4 Ontology-focused crawling 
Ontologies can be used in focused crawlers. An ontology-focused crawler uses an ontology 
to describe the area of interest, in the same way as a search in a search engine uses a list of 
keywords to describe the area of interest. A problem with standard keyword based search 
queries is that it is difficult to express advanced search queries. By using ontologies it is 
possible to express richer and more accurate queries. Ehrig et al. [3] discuss how a focused 
crawler can find relevant web pages by letting the user make an instantiated ontology. The 
system has an ontology that describes the area in which the search will be performed, and 
the user enters different parameters to say what should be weighted in the search. Then the 
program scans the web for pages containing text that describes the area given by the 
ontology. 
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4 Evaluation of existing crawlers 
This chapter starts with an evaluation of a few chosen open source Java web crawlers. 
They have been picked as candidates for crawlers that we can use as a basis for our 
prototype. We give a short description of each crawler, and our own opinion about the 
ability to use that crawler for our purpose. The evaluation is based on the knowledge we 
had about the crawlers at the time we tested them. After the individual description and 
evaluation, the difference between developing our own crawler entirely from scratch, and 
extending an existing crawler, is discussed. 
 

4.1 Nutch 
The purpose of Nutch [24] is to promote public access to search technology without 
commercial bias. Nutch is a transparent alternative to commercial web search engines and 
makes it possible for everyone to see how their search algorithms work. 
 
Nutch is primarily a breadth-first crawler. It downloads all the web pages it finds, indexes 
them in a database and provides a web-based user interface for searching the results. The 
relevance-score of the results is calculated using keyword search and link analysis. 
 
Nutch can do both Intranet crawling and whole-web crawling. Each step of the crawling 
procedure must be started manually by the user. First the user must inject some seed URLs. 
Then the user can generate a segment of the URLs and start fetching the pages. When the 
fetching procedure has been completed the user can update the database with the newly 
downloaded pages from the segment. Then the user can run an analysis of the database in 
order to analyze the link structure between the pages. After this the user can generate a 
new segment with the top-scoring pages from the database and do another round of 
fetching and analyzing. 
 
When the user is finished downloading pages, all the segments must be indexed in order to 
make the results searchable. The web application in Nutch can then be used to do keyword-
based search in the indexes. 
 
Positive: 

• Relatively well documented (API, good web page with usage information and a 
developer’s section) 

• Has support for plug-ins. 
 
Negative: 

• When we started testing Nutch we had difficulties making the crawler work. 
• Nutch is quite complex and it is difficult to understand how all the parts work. 
• No stable releases exist yet. 
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4.2 Heritrix 
The Heritrix crawler [25] has a modular design, and is easy to extend. It has a powerful 
web-based user interface where the user can choose which modules to use in his crawl, and 
the settings for the modules and the crawl job in general. By developing and adding our 
own modules, we can make the crawler ontology-focused. Heritrix has had some problems 
with high memory usage, but the developers are working on it, and the latest versions 
allegedly show improvement. It is a living project, and the crawler is still under 
development. 
 
In one of the first tests we ran on Heritrix, the page rate was very low. The first 13 minutes 
had an average of 1.94 pages downloaded per second (i.e. 116.4 pages per minute, 6984 
pages per hour). We had disabled a module to make the crawler work, and we suspected 
that this was the reason for the low download rate. It took 30 seconds to process each URI, 
and this is a long period of time. After the evaluation period was over, we discovered that 
the relatively slow crawling was caused by the disabled module. The module did not work 
due to a bug in the dnsjava [26] library that the module used. This problem, and the 
solution, is described in chapter 9.1.2. 
 
Positive: 

• Heritrix is very modular and extendable. It is designed to make it easy to include 
new modules, and replace existing modules with different ones. 

• It is well documented. In addition to the API, there is a Users Manual and a 
Developers Manual, as well as many forums. 

• The Internet Archive organization [27], which has developed Heritrix, has much 
experience with web crawling. 

• It is has been tested extensively. It is used regularly by Internet Archive [27]. 
• The crawler is highly configurable and is polite towards servers and it obeys the 

robots.txt protocol. 
• The web user-interface is user friendly and easy to understand. 

 
Negative: 

• When we tested Heritrix it was very slow because of the problems with dnsjava. 
• The 1.2.0 version of Heritrix, which was used in the first tests, used quite much 

memory and got OutOfMemoryExceptions when it had run for a little while, but 
the Heritrix developers are working on this and the more recent CVS versions show 
improvement on the memory issues. 

 

4.3 Weblech 
Weblech seems to be a program mainly for downloading or mirroring a web site, but 
according to the project web site [28] it is possible to configure it to ‘spider the Whole 
Web’. Still it will probably take a lot of work to turn this crawler into something we can 
use in our project. The Weblech project is also in a pre-alpha state, with a latest release 
version of 0.0.3, so it is not at all finished. The project web site states that the main features 
work, but that the GUI has not been developed. The latest news posted on the page informs 
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us that version 0.0.4, which will include the GUI, is being developed, but this post is from 
June 12th 2004, so it is almost a year old. 
 
Positive: 

• The crawler is multithreaded, written in Java and open source, but so are most of 
the other crawlers we have evaluated. 

 
Negative: 

• This crawler seems to be specialized on a different task than what we need in our 
project. 

• The project is in a pre-alpha state (version 0.0.3). 
 

4.4 WebSPHINX 
WebSPHINX consists of two parts: A crawler workbench and a class library that provides 
support for writing web crawlers in Java. The workbench can show a graphical 
representation of web sites and links found, save pages to disk for offline browsing, 
show/print different pages in a single document, extract text matching a pattern from a 
collection of pages, and develop a custom crawler that processes pages the way you want. 
[29] 
 
The WebSPHINX class library offers several features [29]: 

• Multithreaded Web page retrieval in a simple application framework 
• An object model that explicitly represents pages and links 
• Support for reusable page content classifiers 
• Tolerant HTML parsing 
• Support for the robot exclusion standard 
• Pattern matching, including regular expressions, UNIX shell wildcards, and HTML 

tag expressions. Regular expressions are provided by the Apache jakarta-regexp 
regular expression library 

• Common HTML transformations, such as concatenating pages, saving pages to 
disk, and renaming links 

 
If we are going to use this crawler as a basis, we would probably have to use the class 
library part of WebSPHINX. The workbench alone does not seem to be powerful enough, 
but the features of the class library look promising. We would have to write a Java web 
crawler that utilizes the class library to get the standard crawler functions done, like 
fetching web pages, parsing HTML, honoring the robot exclusion standard, and so on. The 
part of the crawler that parse the ontology and focus the crawl according to it would then 
have to be created in addition. 
 
Positive: 

• WebSPHINX includes a Java library that gives support for developing a web 
crawler in Java. This could be useful if we decide to develop a crawler from 
scratch, and parts could also maybe be used if we decide to extend a different 
crawler. 
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Negative: 

• The WebSPHINX crawler does not seem to be powerful enough for our project. 
 

4.5 J-Spider 
J-Spider [30] is a configurable and customizable web spider engine. J-Spider is primarily 
designed for crawling a single web site and has a text based UI. 
 
It can be used: 

• to check a site for errors (internal server errors, ...)  
• for outgoing and/or internal link checking  
• to analyze a site structure (creating a site map, ...)  
• to download complete web sites  

 
Positive: 

• It is modular and extensible using plug-ins 
• Well documented. 121 pages in user manual. 

 
Negative: 

• Designed for crawling single web sites 
• Under development. No stable releases 
• Only text based UI 

 

4.6 HyperSpider 
HyperSpider [31] is designed to evaluate the link structure of a web site. It can 
import/export to/from databases and CSV-files. It has a GUI which can be used to analyze 
the link structure of a web site. HyperSpider can also export the link structure to several 
formats, e.g. HTML, XML Topic Maps (XTM) and RDF. 
 
Positive: 

• Graphical user interface 
• Graphical presentation of link structures 
• Good support for analyzing link structures 
• Good support for exporting link structures to different formats, e.g. XTM and RDF 

 
Negative: 

• Only designed for evaluating the link structure of single web sites 
• Low modularity and extensibility 
• Little or no documentation 
• No development activity since 29.08.2003 
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4.7 Arale 
Arale [32] is a Java based web crawler primarily designed for downloading files from a 
single web site. It can also be used to render dynamic pages into static pages. The crawler 
has a text based UI. 
 
Arale is a very simple crawler, and consumes a lot of memory while crawling pages. 
Apparently the software has some issues concerning memory usage. 
 
Positive: 

• Simple and easy to use 
• Can be filtered to download certain file types 

 
Negative: 

• Designed for crawling single web sites 
• Very simple code, low extensibility 
• No development activity since 2001 

 

4.8 Extending an existing crawler or developing a new crawler 
In this chapter we will discuss the positive and negative aspects of extending an existing 
web crawler, and developing a new crawler from scratch. 
 

4.8.1 Extending an existing web crawler 

By extending an existing web crawler, we mean to build extra modules, or alter existing 
parts of an already existing rather complete web crawler. 
 
One of the main advantages of extending an existing crawler is that we have to do less 
programming. There are a lot of more or less basic features that are necessary to make the 
crawler work, that are not actually a part of the relevance algorithms. We could save a lot 
of time by reusing this functionality from an existing crawler instead of implementing it 
ourselves. This time could be used to improve the parts of the crawler that are more 
relevant to our thesis. The basic features reused from an existing crawler will most likely 
also be better than equivalent features implemented by us. This means that extending an 
existing crawler will lead to a more robust and polite prototype. 
 
On the other hand, to be able to build extensions for a crawler, it is necessary to understand 
how the crawler is designed, how it works and how we can extend it. Some of the time 
saved by reusing code, will be used to gain this understanding. Still, if the extendable 
crawler is reasonably well documented, getting the necessary understanding will be less 
time consuming than developing a crawler from scratch. The crawler to extend will most 
likely have been designed with a different or more generic area of application in mind. 
This means that an extended crawler will have lower performance than a web crawler 
developed from scratch solely for the purpose of doing ontology-focused crawling. 
 



Semi-automatic web resource discovery using ontology-focused crawling 

 21 

4.8.2 Developing a web crawler from scratch 

When we talk about developing a web crawler from scratch, we mean that instead of 
building an extension to an existing complete web crawler, we could design our own web 
crawler using class libraries, modules from other crawlers, and modules implemented by 
ourselves. Developing a web crawler from scratch does not mean that we must write all the 
code ourselves. 
 
If we choose this approach, we will have a lot of freedom to design the crawler to make it 
best fit our needs. We would not be limited by a crawler that someone else has made for a 
different purpose. 
 
But, as mentioned before, developing our own crawler will take more time, and be more 
difficult. The crawler would probably have to be made as simple as possible to let us 
complete our project in time. This could cause the crawler to be more unstable and less 
polite than an extended crawler. 
 

4.9 Evaluation 
We decided to extend an existing crawler. One of the reasons was that the crawler is only 
used to test algorithms and principles, and it is therefore desirable to use as little time as 
possible on developing the crawler itself. Time is also always a scarce resource. Spending 
less time on developing a crawler will free time that can be used to choose and develop 
algorithms on how the crawler can use ontologies to become focused. Another important 
factor was that it seemed feasible actually extending the most promising crawler, named 
Heritrix. 
 
After we had decided to extend an existing crawler, we chose to extend Heritrix. The 
evaluation had led us to believe that Heritrix and Nutch were the most promising 
alternatives. Because of this we spent more time testing these crawlers than the rest. After 
these tests, Heritrix seemed to be easiest to extend, easiest to use, and it also seemed to be 
best documented. These are the main reasons why we selected Heritrix. 
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5 Description of Heritrix 
It is stated in the Heritrix developer documentation [33] that the Heritrix Web Crawler is 
designed to be modular. Adding a new module with extra functionality is easy, and it is 
possible to choose which modules to use at runtime in the web user interface. Figure 5.1 
shows an overview of the most important parts of the Heritrix crawler. The parts shown in 
the figure will be explained in this chapter. Most of the information in the following 
subchapters is fetched from the Heritrix developer documentation [33] and An Introduction 
to Heritrix [34], and these documents are recommended if a more detailed presentation of 
Heritrix is required. 
 

 
Figure 5.1 Overview of Heritrix. [33] 

 

5.1 Frontier 
The Frontier maintains the state of the crawl. Among other things it contains the queue of 
URIs that have not yet been downloaded and a list of visited URIs to prevent the crawler 
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from downloading pages unnecessarily. When a ToeThread finishes processing an URI, it 
delivers discovered links to the Frontier, and then asks the Frontier for another URI. The 
politeness is also controlled by the Frontier. The Frontier has a queue for each domain to 
distribute the load on different servers. 
 

5.2 ToeThreads 
The Heritrix Web Crawler is multithreaded in order to be more effective. The threads that 
do the real work are called ToeThreads. It is possible to configure how many of these a 
crawl should have. The ToeThreads ask the Frontier for a new URI, and sequentially run it 
through the processors the crawler is configured to use. 
 

5.3 CrawlURI and CandidateURI 
All the URIs are represented by a CrawlURI instance. The ToeThreads get a CrawlURI 
object from the Frontier, and this object contains the URI. The different processors use this 
object to move information to the succeeding processors. The FetchHTTP processor 
downloads the web page, and stores the downloaded 
data in the CrawlURI instance. When the same 
CrawlURI-object enters the ExtractorHTML processor 
the downloaded data is fetched from the CrawlURI-
object. A CandidateURI is created when a new URI is 
discovered. If it is accepted in the Frontier the 
CandidateURI is turned into a CrawlURI. 
 

5.4 CrawlScope 
A CrawlScope defines which URIs are allowed to be 
scheduled into the Frontier. Basically it is a filter which 
looks at the information in a CrawlURI or a 
CandidateURI and decides whether it should be 
crawled or not. 
 

5.5 Processor chains 
The processors are organized into different processor 
chains according to their functionality. For instance all 
link extraction processors are part of the Extractor 
processing chain. A processor chain is the same as a 
processing chain. The Heritrix documentation is a bit 
inconsistent and alternates between these two terms. 
 
 

Figure 5.2 Processor chains. [33] 
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6 Focusing algorithm and search strategy 
This chapter explains the algorithms used in our prototype and some other relevant 
algorithms. 

6.1 Ontology based comparison of documents 
The algorithm in [35] has been developed by Vladimir Oleshchuk and Asle Pedersen. Its 
purpose is to measure similarity between documents. The idea is that the degree of 
similarity depends on the context and the existing knowledge of the agent performing the 
comparison. The context/knowledge is represented ontologically. Instead of comparing the 
document contents, the linkage between ontology concepts and document contents is 
compared. 
 
The algorithm consists of two parts. The first part aims to generate an ontological 
“footprint” of a document. The footprint is a subontology of the main ontology, describing 
the linkage between the document contents and the ontology. 
 
The second part is used to compare two footprints of two different documents. The 
algorithm can determine on which abstraction level the two documents are similar. 
 
In the beginning of our project, some ideas from this algorithm were used as a starting 
point when we developed our relevance algorithm. 
 

6.2 Our relevance algorithm 
One of the ideas behind an ontology-focused web crawler is that the user often has some 
initial knowledge about the area of interest. The prototype developed in this project can 
take this knowledge in the form of a topic map. The goal of the relevance algorithm used in 
the prototype is to determine how relevant a web page is in relation to the topic map. The 
algorithm is inspired by the relevance computation algorithm described in [3]. 
 
The names of all the topics in the ontology are extracted, and these words are the basis for 
the relevance calculation. The user has the possibility to select one or more focal topics in 
the topic map. These topics will get a higher weight, and if they are found on a web page 
they will affect the relevancy of the page more than words with lower weights. There are 
four different weight classes, and the weight of these can be set by the user in the web 
administrative console. The first class includes the focal topics themselves, and the default 
weight is 1.0. The second group includes all the topics directly related to one or more focal 
topics through a Superclass-Subclass association.  This group has a default weight of 0.8. 
The next class embraces all the topics directly related to one or more of the focal topics 
through any other association than a Superclass-Subclass association. The default weight is 
0.5. Topics that are not directly connected to the focal topics constitute the last weight 
class. These topics get a weight of 0.1 as default. The weight of all the topics in the 
ontology is calculated once for each crawl job, so changing the weights for the different 
weight classes during a crawl will not have any effect. If a topic should belong to more 
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than one of these weight classes, it will get its weight assigned from the class with the 
highest weight. 
 

Toyota

CorollaAvensis

Superclass-SubclassSubclass-Superclass

Toyota Motor 
Manufacturing, 

Inc. 
Product-Producer

Japanese car

Superclass-Subclass

Corolla Verso

Superclass-Subclass

Kiichiro Toyoda

Founder-Company

 
Figure 6.1 A very simple TM about Toyota. 

 
Figure 6.1 shows a very simple example of a topic map about Toyota. It shows that Toyota 
is a subclass of Japanese car, and the superclass of Avensis and Corolla. The topic map 
states that TMM Inc. produces Toyotas, and that Kiichiro Toyoda was the founder of 
TMM Inc. Although simple, this TM contains enough different types of associations to 
show how the weights of the topics are calculated in the prototype. The table below shows 
the weights of the topics, given that the default weights are used. The values in the center 
column presuppose that Toyota is chosen as focal topic, while the rightmost column shows 
the values as they would be if TMM Inc. and Corolla were set as focal topics. 
 
Topic Weight (Focus: Toyota) Weight (Focus: TMM Inc. and Corolla) 
Japanese car 0.8 0.1 
Kiichiri Toyoda 0.1 0.5 
TMM Inc. 0.5 1.0 
Toyota 1.0 0.8 
Avensis 0.8 0.1 
Corolla 0.8 1.0 
Corolla Verso 0.1 0.8 
Table 6.1 Weights of the topics from the topic map in Figure 6.1 

 
The weights in Table 6.1 are only used to dictate which part of the topic map is most 
important. They say nothing about the relevancy. The RelevanceCalculator processor uses 
a version of the TFIDF (Term Frequency Inverse Document Frequency) [2] algorithm to 
calculate the relevance of a web page.  
 
The classical TFIDF algorithm [2] can be described with the following equation: 
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where fdω  is the weight of the feature (term) f in document d, fdtf  the raw frequency of 

feature f in document d, D the total number of documents in the training set, and fdf  is the 

number of documents containing the feature f. The original TFIDF is explained in detail in 
[36]. 
 
The TFIDF values are found by multiplying Term Frequency with Inverse Document 
Frequency. TF is the number of occurrences of a specific term in a particular document. 
The IDF part is found by dividing the total number of documents by the number of 
documents containing the term, and it increases the TFIDF value for more rare terms. A 
term that only occurs in 2 % of the documents gets a higher IDF value than a term that 
occurs in for instance 95 % of the documents. 
 
In the prototype described in this thesis a maximum normalized version of TFIDF has been 
used, that can be described by the following equation: 
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Here, fdmnω  is the weight of the feature (term) f in document (web page) d, fdtf  the number 

of times the feature f occurs in document d, fdTF the number of occurrences for the feature 

that occurs most frequently in this document, D the total number of processed web pages, 
and fdf  is the number of web pages containing the feature f. 

 
A TFIDF value is calculated for each term in the topic map that occurs in the document.  
 
Because the crawler is focused, the relevancy of the web page is needed to decide whether 
to follow the links on the page or not. This means that it is not possible to do the relevance 
calculation after all web pages have been downloaded.  The calculation has to be done 
during the crawl, so the IDF values will be based on different document sets. 
 
To get an overall relevancy of a web page, the maximum normalized TFIDF values of the 
terms found on the page needs to be combined. In the algorithm described in [3] the scores 
of the terms from the ontology are simply summarized to get a final relevance for the 
document. In our prototype this is achieved in a similar way, according to the following 
equation: 
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where drelevancy  is the overall relevancy of the web page d, fdω  is the TFIDF value of the 

term f in web page d, and fw  is the weight of the term f. Note that fw  is not the TFIDF 

weight, but the weight used for defining the focus of the topic map. The maximum 
normalized TFIDF values are multiplied by the ontology weights. This is done for all the 
different terms in the document that occurs in the topic map, and the results are 
summarized. We normalize by dividing by the sum of the ontology weights of all the 
topics in the topic map. This sum is the theoretical maximum value of the dividend, and so 
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the highest possible relevance value for a document is 1. It is this normalization part that 
differs from the algorithm in [3]. 
 

6.3 Link analysis 
Pages on the Web are heavily interconnected and contain a lot of cross-references. 
Analysis of the link patterns on the Web can be done with link analysis algorithms. Several 
link analysis algorithms have been successfully used to discover authoritative information 
resources on the Web. One well-known algorithm is the Kleinberg HITS algorithm [6]. 
This algorithm gives a page a high “authority” weight if it is linked to by many pages with 
high “hub” weight, and gives a page a high hub weight if it links to many authoritative 
pages. Another popular algorithm is the PageRank [37] used in the Google search engine. 
PageRank is one of the methods used by Google to determine a page’s relevance or 
importance. 
 
In order to ensure that our prototype only follows links that are considered important, we 
have included a link analysis module from Nutch, called WebDB. The WebDB module is a 
web database that can save and analyze the graph structure of web pages. According to 
Khare et al. [38] the link analysis algorithm used in Nutch is similar to the PageRank 
algorithm. The WebDB database contains one table called “Page” and one table called 
“Link”. The Page table contains information about all the web pages the crawler has 
discovered, while the Link table contains information about the link connections between 
the pages. When the link analysis is started, Nutch uses the link structure to calculate a 
score for each page in the database. The page score gives an indication of the importance 
or authoritativeness of the web page.  
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7 The prototype 
Our prototype is based on the Heritrix web crawler. Link analysis functionality is achieved 
through the WebDB module from the Nutch crawler. The prototype takes an ontology and 
a list of URLs as input. The ontology delimits the area of interest, and the URLs are used 
as seeds (starting URLs). Each downloaded URI is passed in turn to the processors defined 
to be used in the crawl. Each downloaded web page is parsed with the NekoHTMLParser 
processor, and the RelevanceCalculator analyzes the contents extracted by the parser and 
determines a relevance value of the page in relation to the input ontology. 
 

CrawlController

Frontier

next(CrawlURI)

ToeThreads

Finished(CrawlURI)

URI Work 
Queues

Already 
Included URIs

ServerCache

Scope

Web Administrative Console Crawl Order

Prefetch chain

Preselector

Precondition-
Enforcer

Fetch chain

DNSFetcher

FetchHTTP

Extractor chain

Relevance-
Calculator

Extractors

HTMLParser

Postprocessor 
chain

WebDB-
Postselector

CrawlState-
Updater

Schedule(URI)

WebDB

TopicMapLoader

TfIdfCalculator

 
Figure 7.1 Overview of Heritrix. The emphasized modules are the modules we have added. 
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Figure 7.1 shows an overview of the modules in Heritrix and how they are connected. The 
emphasized parts are the modules we had to add to Heritrix in order to turn it into an 
ontology-focused crawler. In the following chapters we will explain how these modules 
work and how we have created the prototype. 
 
 Name Function 

Preselector 
Offers an opportunity to reject previously scheduled URIs 
not of interest. 

P
re

fe
tc

h 

PreconditionEnforcer 
Ensures that any URIs which are preconditions for the 
current URI are scheduled beforehand. 

FetchDNS Performs DNS lookups, for URIs of the “dns:” scheme. 

F
et

ch
 

FetchHTTP 
Performs HTTP retrievals, for URIs of the “http:” and 
“https:” schemes. 

NekoHTMLParser Parses the content from the current URI. 

RelevanceCalculator 
Calculates the relevance of the web page in relation to the 
ontology. 

ExtractorHTTP Discovers URIs in the HTTP header. 

ExtractorHTML Discovers URIs inside HTML resources. 

ExtractorCSS Discovers URIs inside Cascading Style Sheet resources. 

ExtractorJS Discovers likely URIs inside Javascript resources. 

E
xt

ra
ct

or
s 

ExtractorSWF Discovers URIs inside Shockwave/Flash resources. 

CrawlStateUpdater 
Updates crawler-internal caches with new information 
retrieved by earlier processors. 

P
os

tP
ro

ce
ss

or
s 

WebDBPostSelector 

Adds the links extracted from the current URI to the 
WebDB, and if the queue in the Frontier is too small, it 
runs link analysis on the WebDB contents, extracts the 
URIs with highest page score and schedules them into the 
Frontier. 

Table 7.1 The processors in Heritrix grouped by processor chain. The emphasized rows describe the 

modules we have added. 

 

7.1 NekoHTMLParser 
The processor called NekoHTMLParser uses the NekoHTML [39] parser to extract the 
web page content from the downloaded HTML code. The NekoHTML parser is also used 
by the Nutch crawler. It is easy to configure the parser, by telling it what to do with the 
different tags. The parser can either keep the tag, remove the tag, or remove the start and 
end tag as well as everything between them. The last feature is especially effective to 
remove all scripts and styles from HTML code. The default is to just remove the tags. 
 

7.2 RelevanceCalculator 
The RelevanceCalculator’s job is to determine the relevance of the downloaded web pages 
in relation to the ontology defining the area of interest. It is dependant on the 
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NekoHTMLParserProcessor. If the parser has not extracted the web page contents from the 
HTML code, the RelevanceCalculator can not evaluate the relevancy of the page.  
 

7.2.1 initialTasks() 

The initialTasks method of a processor is called when a crawl is started. In the 
RelevanceCalculator this initiation includes the following tasks. 
 
First the topic map is loaded from a XTM file with TM4J. In our crawler TM4J uses a 
hibernate backend with a MySQL database in the bottom to keep the topic map. The name 
of the XTM file is given by the topicmap-filename attribute. After this task has been 
completed, all the base names of the topics are extracted from the loaded topic map. The 
next thing that happens is that the list of focal topics (focal-topic attribute) and the defined 
weights of the weight classes (focus-weight, taxrel-weight, otherrel-weight and rest-weight 
attributes) are read from the crawl order. These attributes are then used to assign a weight 
to each of the topics. For more detailed information on the relevancy algorithm see chapter 
6.2. Finally, all the extracted base names are stemmed using the Snowball module from the 
open source full text indexing engine Lucene [40]. We have configured the Snowball 
module to use the Porter stemming algorithm. 
 

Start

Load the topic 
map from the file 

given by 
TM_FILENAME, 

using TM4J

Extract all the 
base names from 

the topic map

Assign a weight to 
all topics in the 

topic map based 
on the list of focal 

topics, and 
predefined weight 

classes 

Stem the base 
names using 

Snowball and the 
Porter algorithm

End

 
Figure 7.2 Flowchart for initialTasks() in RelevanceCalculator. 

 

7.2.2 innerProcess() 

The innerProcess method is called for each downloaded web page. Error pages, robots.txt’s 
and URLs that are not http or https are filtered away in the first part of the method. Then 
the text content of the web page is fetched from the variable where the 
NekoHTMLParserProcessor stored it. The words in the content are stemmed using the 
same algorithm as the one used on the base names in the initialization. After this the 
TFIDF value is calculated for all the topic map base names that occur in the content of the 
web page. All the TFIDF values are then combined to get an overall relevancy of the web 
page. For more information about the TFIDF algorithm used see chapter 6.2. 
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Figure 7.3 Flowchart for innerProcess() in RelevanceCalculator. 

 
The following attributes can be altered to configure how the RelevanceCalculator works. 
 

• topicmap-filename 
This attribute holds the filename of the XTM-file that contains the topic map 
defining the area of interest. The crawler will look for this file in the topicmaps 
folder in the Heritrix root folder. 

• focal-topics 
This is a comma separated list with the id(s) of the focal topics in the topic map. 
These topics will get a higher weight when deciding the relevancy of a web page. 
The weights are defined in the next four attributes. All the weights are declared as 
doubles, and their value should not be less than 0 or more than 1. 

• focus-weight 
In this attribute the weights of the focal topics are defined. 
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• taxrel-weight 
This attribute holds the weight of the topics directly related to the focal topics 
through a taxonomical association. This means that it is possible to get to this topic 
from one of the focal topics by traversing only one association of the type 
Superclass-Subclass. 

• otherrel-weight 
This attribute holds the weight that should be assigned to all the topics directly 
connected to the focal topics through any other association type than Superclass-
Subclass. 

• rest-weight 
This attribute defines the weight of all the topics that are neither a focal topic nor 
directly connected to one. 

• relevancy-limit 
A web page is not necessarily relevant just because the relevancy value is higher 
than zero. This just means that one of the words from the topic map occurs in the 
web page. The relevancy-limit attribute is used to decide the border between 
relevant and irrelevant pages. Its value should be between 0 and 1. If set to 0, all 
web pages will be considered relevant, if set to 1, all web pages will be considered 
irrelevant. 

• focused-crawl 
This Boolean attribute denotes whether this should be a focused crawl or not. If this 
value is true, the crawler will only extract links from web pages that are considered 
relevant by the RelevanceCalculator (i.e. the relevancy of the page is higher than 
the relevancy-limit). If the attribute is set to false, the crawler will function more 
like a breadth-first crawler, and extract links from all the web pages. 

• harvestrate-logfile 
This attribute contains the filename of the file that will be used to write harvest rate 
samples. 

• harvest-samplerate 
This attribute defines the minimal time between each harvest rate sample, in 
seconds. 

 

7.3 WebDBPostselector 

7.3.1 Description of WebDBPostselector 

The purpose of the standard Postselector in Heritrix is to determine which extracted links 
and other related information that get fed back to the Frontier. Instead of using the standard 
Postselector, we have developed our own Postselector called WebDBPostselector. The 
purpose of WebDBPostselector is to focus the crawler by using link analysis. This module 
uses link analysis to determine the importance of discovered links, and then follows the 
most important links first. WebDBPostselector is configurable through module attributes. 
The module can be configured to add e.g. the 500 most important links. In order to do link 
analysis WebDBPostselector uses a module from Nutch called WebDB. The database in 
the WebDB module contains a web graph with all known pages and the links that connect 
them. 
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Figure 7.4 Flowchart for innerProcess() in WebDBPostselector 

 
The WebDBPostselector is part of the post-processing chain in Heritrix. When a page has 
been fetched by a ToeThread the CrawlURI object is sent through all the processing chains 
and at the end to the WebDBPostselector. The WebDBPostselector receives the CrawlURI 
through the innerProcess() method. Figure 7.4 shows the flowchart for innerProcess() in 
WebDBPostselector. 
 
When the CrawlURI is received the WebDBPostselector checks the CrawlURI to see if it 
contains new links. If it contains new links, they are all added to the WebDB database. 
After that, the WebDBPostselector checks the size of the Frontier queue to see if it is less 
than the defined minimum size. If the Frontier size is not less than minimum, the 
WebDBPostselector is finished and the control returns to the ToeThread. If the Frontier 
size is less than minimum, then the WebDBPostselector closes the WebDB so that the new 
pages and links are written to WebDB. After this, a defined number of link analysis 
iterations are run in order to calculate a page score for all the pages in WebDB. All the 
pages are then sorted and the pages with the highest score are extracted from WebDB. 
These pages are then scheduled into the Frontier and the WebDBPostselector is then 
finished. 
 
As mentioned earlier, the WebDBPostselector is based on the standard Postselector module 
in Heritrix. In addition to the standard attributes from the Postselector, we have added the 
following module attributes in order to make the WebDBPostselector more configurable: 
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• linkanalysis-iterations 

Number of iterations to run link analysis 
• linkanalysis-topsize 

This is the number of top pages that will be extracted from the WebDB module and 
scheduled into the Frontier. The top pages will be the pages with highest page 
score. 

• minimum-frontiersize 
This is the minimum number of URLs that should be in the Frontier queue. When 
the size of the Frontier queue is lower than this minimum value, the 
WebDBPostselector will start running link analysis and schedule new pages into 
the Frontier. 

• maximum-hostqueuesize 
Maximum number of URLs in each host queue. New pages are not added to the 
Frontier if the host queue already contains the specified maximum number of 
URLs. This is done to ensure that all the ToeThreads are active and have URLs in 
their host queues. 

 

7.3.2 ModifiedBdbFrontier 

To be able to test whether the size of a host queue is less than the defined maximum-
hostqueuesize, we had to modify the Frontier. The ModifiedBdbFrontier extends the 
standard BdbFrontier with a method called getHostQueueSize(). This method returns the 
number of URLs in one specific host queue. We created a test in order to ensure that all the 
ToeThreads are active and have URLs in their host queues at all times. Without this test 
some of the host queues sometimes became very large and contained many URLs. This 
resulted in very few active ToeThreads and therefore an ineffective crawler. 
 

7.3.3 Modified Page class in Nutch 

In our project we have used the WebDB module in Nutch to store information about 
discovered links and pages. Each new relevant page discovered by Heritrix is inserted as a 
new row in the page table in WebDB. To be able to extract pages from WebDB and insert 
them into the Frontier in Heritrix, we had to add some attributes to the Page class in Nutch. 
The page extracted from WebDB must be transformed into a CandidateURI which can be 
scheduled into the Frontier. To be able to create the CandidateURI object these extra 
attributes from the Page object are necessary. Table 7.2 below shows the original attributes 
in the Page class, plus the attributes we have added. 
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Type Name Description 
byte VERSION A byte indicating the version of this entry. 
UTF8 URL The URL of a page.  This is the primary key. 
128bit ID The MD5 hash of the contents of the page. 
64bit DATE The date this page should be refetched. 
byte RETRIES The number of times we've failed to fetch this page. 
byte INTERVAL Frequency, in days, this page should be refreshed. 
float SCORE Multiplied into the score for hits on this page. 
float NEXTSCORE Multiplied into the score for hits on this page. 
   
Attributes added by us: 
UTF8 FROMURL The URL of the page where the link to this page was 

found. 
UTF8 PATH Letters describing the path from the seed to this page. 
UTF8 VIACONTEXT Context of URI's discovery, as per the 'context' in Link. 
byte DIRECTIVE The type of link this page was discovered via. 
boolean SEED Whether this page is a seed or not. 
Table 7.2 Attributes in the modified Page class in Nutch 

 
The attribute called FROMURL might be considered redundant, because the same 
information is also stored in the Link table in WebDB. The Link table contains information 
about which pages are linking to which. The reason why we also put this information in the 
Page object was to ease the task of extracting this information when creating the 
CandidateURI object. 
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8 Prototype tests 
This chapter describes different measures that can be used when evaluating the 
performance of a focused crawler. It also describes the tests and the input ontology used in 
the tests. Towards the end of the chapter we present the results of our tests. 
 
All the tests were run on a computer with an AMD Athlon 800 MHz processor and 512 
MB RAM, running MandrakeLinux 10.1. The average download speed in the tests was 
around 500 kb/s. This means that the Internet connection was not a bottleneck. 
 

8.1 Performance measures 
This chapter presents some performance measures for focused crawlers. The measures 
have been collected from different articles about other focused crawlers, and are meant to 
be a list over possible performance measures to use when testing our prototype. Some of 
the measures also say a lot about the structure of the scanned domain of the Internet. 
 
Chakrabarti et al. [5] use several measures when evaluating their crawler: 
 

• Harvest rate 
Harvest rate is a common measure on how well a focused crawler performs. It is 
the number of relevant pages per downloaded page, and shows how well the 
crawler avoids the irrelevant web pages. This is a good measure because the 
definition of a focused crawler is to try to avoid irrelevant pages. 

p

r
hr =  

hr is the harvest rate, r is the number of relevant pages found and p is the number 
of pages downloaded. Preferably, it would be best to let humans evaluate the 
relevancy of the discovered pages. This is an unrealistic approach, due to the large 
amount of web pages crawled. Instead we count the number of pages considered 
relevant by the prototype itself, and use this number to compute the harvest rate. In 
[5] the same approach has been used. Chapter 4.2 in [5] describes the harvest rate 
measure in more detail. 
 

• Crawl robustness  
Two different crawls that focus on the same topic are started with two different 
seed sets. The overlapping of the web pages found by the two crawls is monitored 
as the number of downloads increase. The crawl robustness is the number of pages 
overlapping divided by the total number of pages downloaded. This measure will 
also depend on the topic the crawl is focused on. The tests done in [5] indicate that 
crawls done on competitive domains like investing and mutual funds  overlap less 
than crawls focusing on more co-operative topics like cycling. 
 

• Fraction of acquired pages vs. relevance  
This measure shows how the pages are distributed on different relevance values, 
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and is therefore dependent on how the relevancy is calculated. 
 

• Minimum distance from crawl seed 
Some graphs in [5] show how the 100 most relevant pages found in a crawl are 
distributed on distance in number of links from the closest seed document. This 
measure can say something about the characteristics of the domain of Internet that 
concerns the topic the crawler is focusing on. 

 
The measures used in [4] consist of some sort of harvest rate, and in addition the 
following: 
 

• Average relevance  
This graph shows how the average relevance value of the downloaded web pages 
changes as number of downloads increase. 

 
In [8] it is described how it is possible to crawl for web sites instead of web pages. This 
leads to some different measures. Harvest rate is used in this crawler also. 
 

• Pages per relevant site rate  
This measure is only relevant in crawlers that aim to discover web sites. It is the 
number of downloaded pages divided by the number of relevant web sites found. 

 
Harvest rate seems to be the most used measure when it comes to rating the performance of 
a focused crawler.  
 

8.2 Test settings 

8.2.1 Scope filter 

In order to ensure that our crawler only downloads files with textual content, and not 
irrelevant files like images and video, we have added a filter when performing the tests. 
The filter is shown in Figure 8.1 and contains a list of file endings for all the file types we 
do not want the crawler to download. The filter uses regular expressions to decide which 
links the crawler should not follow and is based on a filter found at [41]. 
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^.*(?i)\.(a|ai|aif|aifc|aiff|asc|au|avi|bcpio|bin|bmp|bz2|c|cab|cdf|cgi|c

gm|class|cpio|cpp?|cpt|csh|css|cxx|dcr|dif|dir|djv|djvu|dll|dmg|dms|doc|d

td|dv|dvi|dxr|eps|etx|exe|ez|gif|gram|grxml|gtar|h|hdf|hqx|ice|ico|ics|ie

f|ifb|iges|igs|iso|jar|jnlp|jp2|jpe|jpeg|jpg|js|kar|latex|lha|lzh|m3u|mac

|man|mathml|me|mesh|mid|midi|mif|mov|movie|mp2|mp3|mp4|mpe|mpeg|mpg|mpga|

ms|msh|mxu|nc|o|oda|ogg|pbm|pct|pdb|pdf|pgm|pgn|pic|pict|pl|png|pnm|pnt|p

ntg|ppm|ppt|ps|py|qt|qti|qtif|ra|ram|ras|rdf|rgb|rm|roff|rpm|rtf|rtx|s|sg

m|sgml|sh|shar|silo|sit|skd|skm|skp|skt|smi|smil|snd|so|spl|src|srpm|sv4c

pio|sv4crc|svg|swf|t|tar|tcl|tex|texi|texinfo|tgz|tif|tiff|tr|tsv|ustar|v

cd|vrml|vxml|wav|wbmp|wbxml|wml|wmlc|wmls|wmlsc|wrl|xbm|xht|xhtml|xls|xml

|xpm|xsl|xslt|xwd|xyz|z|zip)$ 

Figure 8.1 Scope filter which removes irrelevant file types 

 
This URL filter is used to ignore irrelevant file types before they are actually downloaded. 
Files that are not removed by this filter are downloaded by the crawler. In order to ensure 
that the files that actually get downloaded only contain textual content, we have also added 
a filter that ensures that the content type is html or xhtml. 
 

8.2.2 Seed URLs 

In the tests we have focused our crawler to find pages within the field of “it-security”. The 
seed pages we have used to start the crawler with, is listed below. These URLs have been 
handpicked from the category Computers/Security [42] in the Open Directory Project. 
 
http://www.w3.org/Security/  
http://netsecurity.about.com/  
http://www.rsasecurity.com/  
http://www.unisys.com/  
http://www.us-cert.gov/  
http://www.sans.org/  
http://www.gocsi.com/  
http://www.cisecurity.org/  
http://www.icsa.net/  
http://www.securezone.com/  
http://www.securitysolutions.com/  
http://www2.csl.sri.com/jcs/  
http://www.securitymagazine.com/  
http://www.openssh.org/  
 

8.2.3 Input Ontology 

The ontology that was used as input in the test crawls is based on a small selection of the 
security taxonomy found on [43]. This taxonomy consists of a collection of terms and 
associations from several web sites and RFCs. For a complete list of sources, see [43]. The 
input ontology was built up around the term Security. Figure 8.2 shows how the test 
ontology is presented in Omnigator. Omnigator was the only topic map viewer of the ones 
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we found, that could show the entire topic map at the same time. The pink connections 
represent Superclass-Subclass associations, and the purple ones represent Related 
associations. Unfortunately Omnigator only shows the roles of the associations when the 
mouse is moved over the association. Because of this the figure is less informative in this 
report than it is in Omnigator. 
 

 
Figure 8.2 The input ontology used in the tests. Pink connections annotate Superclass-Subclass 

associations, while all other types of relations are purple. 

 
 

8.3 Test results 
All the diagrams in this chapter, except the last one, have three graphs. The ‘Avg over 50’-
graph shows harvest rate for the last 50 downloaded pages, ‘Avg over 500’ shows harvest 
rate for the last 500 pages and ‘Total avg’ indicates the development of the harvest rate for 
all downloaded pages so far. The harvest rate sample rate can be configured in the web 
interface, and it was set to 50 in all the test crawls. This means that when the 
RelevancyCalculator has processed 50 web pages, the harvest rate of these 50 pages, and 
the harvest rate of all processed pages is calculated and added to a log file. A timestamp 
and the number of processed pages are also written to the file. The ‘Avg over 500’ values 
are calculated after the crawl is finished based on the ‘Avg over 50’ values. The name of 
the log file can be configured in the web interface. 
 
Figure 8.3 shows the development of harvest rate on one of the focused test crawls. The 
relevancy limit of the crawl was set to 0.01. This means that web pages with a relevancy 
value less than 0.01 were considered irrelevant. Because it was a focused crawl, no links 
found on the irrelevant pages were followed. The graph shows a slight rise in the harvest 
rate, and the total harvest rate ends at about 0.6 after 29 000 processed pages. Notice that 
the x-axis shows the number of processed pages, and not downloaded pages. This is 
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because the downloaded pages number in Heritrix includes DNS lookups and robots.txt’s. 
The processed pages only includes the URIs that are actually processed by the 
RelevanceCalculator, and therefore DNS lookups, robots.txt’s, error pages (e.g. 404’s) and 
pages that do not belong to the http or https scheme are not counted in this number. 
Pictures, text/plain and other non-HTML URIs that are not stopped by the scope filter 
described in chapter 8.2.1, will however be counted, even though none of these URIs ever 
can become relevant. These URIs constitute about 5 % of the URIs processed by the 
RelevanceCalculator. 
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Figure 8.3 Harvest rate of focused crawl with relevancy limit 0.01 

 
In Table 8.1 we present the most relevant web pages found by the focused crawl that 
generated the harvest rate shown in Figure 8.3. 
 
Relevancy URI 
0.297761427 http://securitysoftwaresolutions.com/contact.htm 
0.286573388 http://securitysoftwaresolutions.com/_vti_bin/shtml.dll/contact.htm 
0.230789408 http://abanet.org/scitech/ec/isc/home.html 
0.219206044 http://visa-asia.com/secured/flash_index.html 
0.195066032 http://engarde.com/software/ipwatcher/risks/  
0.193771758 http://safenet-inc.com/  
0.179166089 https://redsiren.com/infosecu/samplecontent.html 
0.177217099 http://anchortechnologies.com/prod_svcs.htm 
0.175182722 http://cisecurity.org/software_cert.html 
0.172648746 http://networkassociates.com/us/audience/enterprise_home.asp 
Table 8.1 Top 10 web pages found by focused crawl with relevancy limit 0.01. 
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Figure 8.4 shows the harvest rate of an unfocused crawl with relevancy limit at 0.01. When 
the prototype is configured to crawl unfocused, all links are followed, but only the pages 
with relevance value above the limit will be considered relevant and added to the input 
topic map. The harvest rate starts off quite high, but then it keeps going lower as the crawl 
goes on. 
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Figure 8.4 Harvest rate of unfocused crawl with relevancy limit 0.01 

 
The crawl that generated the graph in Figure 8.5 was unfocused and it was started with 
irrelevant seeds. This test was run because we wanted to see how much effect the seeds 
had on the crawl and harvest rate. The harvest rate here actually increases slightly as more 
pages are downloaded. 
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Harvest rate, unfocused crawl, limit 0.01, irreleva nt seeds
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Figure 8.5 Harvest rate of unfocused crawl with relevancy limit 0.01 and irrelevant seeds 

 
Figure 8.6 and Figure 8.7 show how the harvest rate turned out when the relevancy limit 
was raised to 0.02. The motivation for raising the limit was that we felt that the harvest rate 
in the unfocused crawls with limit 0.01 was suspiciously high. 
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Figure 8.6 Harvest rate of focused crawl with relevancy limit 0.02 
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Harvest rate, unfocused crawl, limit 0.02
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Figure 8.7 Harvest rate of unfocused crawl with relevancy limit 0.02 
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Figure 8.8 Harvest rate of unfocused crawl with relevancy limit 0.02 and irrelevant seeds 

 
Figure 8.8 shows how the harvest rate develops in an unfocused crawl with irrelevant seed 
URLs and a relevance limit of 0.02. The graph starts off at about 5 % and rises slowly to 
around 10 % after 40 000 processed pages. 
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Harvest rate, with and without link analysis
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Figure 8.9 Harvest rate of equal crawls with and without link analysis 

 
Figure 8.9 shows the harvest rates of one crawl with link analysis and one without link 
analysis. The crawl with link analysis achieves a harvest rate that is slightly higher than the 
harvest rate of the crawl without link analysis. 
 
Robustness of acquisition 
The robustness of acquisition measure described in chapter 4.3 in [5] has also been used to 
describe our prototype. This was done by splitting the top 100 URIs returned when 
searching for the word security in the Computer/Security directory on dmoz.org, in half. 
These two subsets were then assigned as start URIs to two different test crawls with 
otherwise equal settings. When the crawls had been running for about 24 hours we 
compared the results. It turned out that of the 20 761 first relevant web pages found by the 
crawls, 10 322 were found by both. This gives a crawl robustness of 0.497. Because of 
limited time in the project, we were not able to investigate how the robustness of 
acquisition developed over time. 
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9 Discussion 
By using ontologies to guide a focused crawl it is possible to provide the crawler with 
more knowledge about the target domain. Information like synonyms to the terms, and 
different types of relations between the terms can be used to make the crawler more 
capable of finding pages that are relevant.  
 
Heritrix was easy to extend, and it has worked well as a basis for our prototype. The 
developers have succeeded in making an intuitive and modular crawler. By extending 
Heritrix we have reduced the time used on coding, but quite some time has been spent 
reading documentation and gaining understanding of the crawler. The solutions and 
strategies chosen in Heritrix have in some cases made it more complicated to implement 
solutions the way we wanted. Including Nutch’ link analysis module in our Heritrix based 
prototype was complicated. Because Nutch and Heritrix have so different structures, we 
had to do several adjustments to both Heritrix and the link analysis module to make it 
work. 
 

9.1 The prototype 
The prototype reads the input topic map from a XTM-file during the initiation of each 
crawl. At first we tried to make the crawler add information about the relevant web pages it 
found to this topic map, and then write the topic map to a XTM-file again when the crawl 
was terminated or finished. This turned out to be difficult. The process of writing the topic 
map to a file was very demanding. Crawls that had downloaded around 50 000 URIs kept 
writing to the file for hours, and were still not done. It is obvious that this is not acceptable. 
Another problem was that at this point, the topic map was kept in the RAM. That means 
that the memory usage increased as more web pages were downloaded, and the 
OutOfMemoryException was unavoidable. TM4J supports different backends for 
containing the topic maps. In addition to the default InMemory backend, there is a 
Hibernate-backend that utilizes a traditional relational database, and an Ozone-backend 
that uses the Ozone object oriented database to persist the topic maps. We changed to the 
Hibernate-backend with a MySQL database, and this solved the memory problem. The 
Hibernate-backend also led to our solution of the problem of writing the topic map to file. 
The TMNav is a subproject of TM4J and therefore it can present topic maps from all 
backends supported by TM4J as well as topic maps from XTM-files. It turned out to take a 
lot less time to load the topic map directly from the Hibernate backend using TMNav, than 
to first write it to an XTM-file and then load the topic map from the file. The time 
consumption was reduced from several hours to a couple of minutes. 
 
In addition we reduced the amount of information that was added to the topic map. In the 
earlier versions of our prototype, each of the topics that was found in a web page got an 
occurrence pointing to the URI, and all these occurrences were reified to be able to add 
TFIDF values for these occurrences. There was also added a topic representing the web 
page where the relevancy value was stored. This means that a web page mentioning 10 of 
the topics in the topic map will cause 10 occurrences, and 11 topics to be added to the topic 
map. The final version of the prototype only adds one topic and two occurrences for each 
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relevant web page that is found. This topic contains the relevance value of the web page, 
and the URI. We did this to keep the topic map as small as possible. 
 
It was a bit difficult to find information on how to load topic maps from Hibernate 
backends in TMNav. In the comments in the configuration file of TMNav there was an 
example on how to add a Hibernate backend. By changing this example we managed to get 
things working, but there are some exceptions occurring when loading the topic map. We 
searched in search engines and relevant forums on the Internet, but we found very little 
information about using Hibernate backend with TMNav. 
 
While testing our prototype we discovered that when the crawler has been running for 
some time, the WebDBPostselector uses quite a lot of time to do link analysis. In one of 
the tests we did, the crawler used 7 minutes to do link analysis when the crawler had been 
running for 20 hours. The link analysis started approximately every 20 minutes, so this part 
of the application used very much of the cpu-time. Calculating the score of all the links in 
the link database (WebDB) is a heavy task, and this task takes more time to complete when 
there are more links in the database. When the crawler has been running for some time the 
link database contains several thousand links, and because the computer we used when 
testing the prototype had a slow 800 MHz cpu, running the link analysis was also slow. 
 

9.1.1 Problems running Nutch on Windows 

A lot of time was used in order to get the WebDB module from Nutch working in Heritrix. 
We discovered some problems while using Nutch on Windows XP. When running link 
analysis on the WebDB, Nutch returned error messages saying that the file 
”db\webdb.new\pagesByURL” already existed. This problem occurred because the file was 
not deleted the last time the link analysis was run. When running the dbWriter.close() 
method the “webdb.new” directory is copied to “webdb” and the “webdb.new” should be 
deleted. When running Nutch on Windows XP the “webdb.new” directory was not deleted 
and the next time link analysis was started, Nutch stopped because the “webdb.new” 
directory already existed. 
 
To be able to delete files and directories, Nutch uses the class LocalFileSystem from the 
package net.nutch.fs. The method used to delete files or directories is listed below in 
Figure 9.1. 
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    private boolean fullyDelete(File dir) throws IOException { 

        File contents[] = dir.listFiles(); 

        if (contents != null) { 

            for (int i = 0; i < contents.length; i++) { 

                if (contents[i].isFile()) { 

                    if (! contents[i].delete()) { 

                        return false; 

                    } 

                } else { 

                    if (! fullyDelete(contents[i])) { 

                        return false; 

                    } 

                } 

            } 

        } 

        return dir.delete(); 

    } 

Figure 9.1 Code from net.nutch.LocalFileSystem.java 

 
This is a recursive method that deletes a directory and all its subdirectories and files. For 
some reason this method was not able to delete the file ”db\webdb.new\pagesByURL” 
when running Nutch on Windows XP. We were not even able to delete this file manually 
using Windows Explorer. It seemed like the file was still in use by Nutch and therefore 
could not be deleted. 
 
After a lot of testing and debugging of Nutch running on Windows XP, we tried to run 
Nutch on Linux. We discovered that the problem with the “webdb.new” directory did not 
occur on Linux. Because of this we switched and used Linux when running tests with our 
focused crawler. 
 
As stated on the homepage of Nutch [24] Linux is preferred, but Nutch is developed using 
Java and should therefore have been platform independent. 
 

9.1.2 Problems with DNS lookup in Heritrix 

The earliest tests of Heritrix were run on a computer running Norwegian Microsoft 
Windows XP Professional. In these tests the crawler only worked when we disabled the 
PreconditionEnforcer processor, and it was very slow, only two pages downloaded per 
second. After some debugging we found out that the library Heritrix used to do DNS 
lookup (dnsjava-1.6.2) only worked on English Windows XP. The reason for this was 
simply that dnsjava used the ipconfig command to get the IP addresses of the DNS servers. 
The output from the ipconfig command was then parsed to find the correct line. The 
program searched for the line starting with “DNS-servers:”, but could not find it because 
the Norwegian version of ipconfig prints out “DNS-servere:”. We changed the source code 
to look for the Norwegian text, compiled the Java file and replaced the class file in the 
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dnsjava jar file. After having done this, the DNSLookup in Heritrix worked again, and the 
speed increased to between 20 and 30 pages per second. The crawler finds DNS servers 
differently on Linux, so when it was moved to the Linux server the fix in the dnsjava 
library was not needed anymore. 
 

9.2 Test results 
We believe that the harvest rate values from the unfocused test crawls are too high 
compared to the focused crawls with the same relevancy limit. The implementation of the 
IDF calculation makes it difficult to compare the TFIDF values from a focused and an 
unfocused crawl. IDF is calculated like this: 









=

t
t df

D
logidf  

where tdf  is number of documents containing token t, and D is total number of documents. 

 
 Unfocused crawl Focused crawl 
Processed documents (D) 50 000 50 000 
Documents containing a relevant term t (tdf ) 6 000 25 000 

IDF value for term t 0.921 0.301 
Table 9.1 IDF values for the same term in a typical focused and unfocused crawl 

 
The problem is that in our implementation the D includes all processed web pages, 
including the irrelevant documents. An unfocused crawl will have a higher percentage of 
irrelevant pages, and therefore also a lower share of documents containing relevant terms. 
This could be demonstrated with an example. Let us say we have a focused and an 
unfocused crawl with otherwise equal settings that each has processed 50 000 web pages. 
The relevant term t could typically occur in 6 000 of the documents found in the unfocused 
crawl, and in 25 000 documents in the focused crawl. These numbers would result in IDF 
values for the unfocused and focused crawls at respectively 0.921 and 0.301. This is in a 
way correct, because the relevant term is rarer in the unfocused crawl, and hence should 
get a higher IDF. But it could result in the same web page getting a higher relevancy in an 
unfocused crawl than in a focused crawl, even though the content of the page has not 
changed. Table 9.2 shows a list of URIs with relevancy value from a focused and an 
unfocused crawl with otherwise equal settings. 
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URI Focused Unfocused 
http://symantec.com/techsupp/enterprise/products/sesa/files.html  0.19329686 0.35987031 
http://engarde.com/software/ipwatcher/risks/  0.15190832 0.17930799 
http://cve.mitre.org/press/releases.html 0.12576312 0.24291519 
http://gocsi.com/netsec/pre_post.jhtml 0.12397279 0.18799698 
http://forum.sans.org/discus/messages/729/729.html?1091641275  0.11474685 0.27941003 
http://engarde.com/software/manualintrusion.php 0.10932691 0.12981179 
http://altaassociates.com/announcements/index.asp 0.10772106 0.22833505 
http://engarde.com/aboutus/contact.php 0.107067 0.10144658 
http://redsiren.com/abouti4.htm 0.10223937 0.26713874 
http://engarde.com/software/ipwatcher/paper.php 0.09855605 0.12443033 
http://engarde.com/software/ipwatcher/info.php 0.09566358 0.12175935 
http://redsiren.com/  0.09517584 0.19776214 
http://engarde.com/software/ipwatcher/thanks.php 0.09467553 0.14540123 
http://redsiren.com/soc.htm 0.09459465 0.25206705 
http://gocsi.com/training/  0.09411774 0.12418727 
Table 9.2 Relevancy of some web pages in a focused and an unfocused crawl with equal settings 

 
 This means that if the relevancy limit of a focused and an unfocused crawl is set to the 
same value, for example 0.02, and all other settings are the same, many pages will be 
considered relevant by the unfocused crawl that are considered irrelevant in the focused 
crawl. When we compared the relevancy values of some web pages processed in a focused 
and an unfocused crawl, we found that these web pages on average got 125 % higher 
relevance values in the unfocused crawl. This means that the relevance limit of the 
unfocused crawl should be set 125 % higher than the limit of the focused crawl. The 
unfocused crawl in Figure 8.7 should therefore have a limit of 0.045 to be comparable to 
the focused crawl with relevance limit at 0.02 (Figure 8.6). Only half of the pages found to 
be relevant by the unfocused crawl with relevancy limit 0.02 have a relevancy above 
0.045.  This means that the harvest rate shown in Figure 8.7 and Figure 8.4 should have 
been about 50 % lower. 
 
The harvest rate of the focused crawl with relevancy limit at 0.01 (Figure 8.3) was 
promising, but the fact that the harvest rate is quite high for the unfocused crawl (Figure 
8.4) also, indicates that a relevancy limit of 0.01 might be too low. This is why we 
increased it to 0.02 in the next tests. By raising the limit, fewer web pages are considered 
relevant, and the harvest rate in the unfocused crawls will be lowered. 
 
We also did a few unfocused test crawls with irrelevant seed URLs, to see how much the 
seeds affected the focusing and the harvest rate. The harvest rate of the unfocused crawls 
with relevant seeds started quite high, but got lower and lower as the crawl went on (see 
Figure 8.4 and Figure 8.7). In the unfocused crawls with irrelevant seeds, the harvest rate 
was more constant (see Figure 8.5), and it was about 10 % in the crawl with relevancy 
limit 0.01. The harvest rate of the test with relevant seeds is above 20 % even after more 
than 65 000 web pages has been processed. This means that the seeds also play an 
important part in the focusing. 
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In one of the tests we tried to measure the effect of the link analysis module. This was done 
by running two test crawls, one with link analysis and one without link analysis. All of the 
other settings were equal. The harvest rate of these test crawls are shown in Figure 8.9. The 
result shows that using link analysis only gives a slight increase in the harvest rate. This 
indicates that the prototype does not find many more relevant pages when using link 
analysis, but it may be that the content of the pages are better, because the link analysis can 
find more authoritative pages. Harvest rate is not the best way to measure the effect of link 
analysis, so more testing with other types of measures could therefore be done to further 
evaluate the link analysis module. Link analysis might not be as useful as we thought. In an 
interview with Doug Cutting [44], the primary developer of Nutch, Cutting says that the 
value of link analysis is somewhat overrated. 
 
In all of our tests we have used our prototype to crawl pages directly on the Web. Since the 
tests have not been performed at the exact same time, the contents of some pages might 
have changed between each test. In our project we have not considered this to be a 
significant problem, but it is obvious that the modified pages might have participated in 
causing the differences in the test results. To prevent changing pages from affecting the 
test results, it could have been possible to test the prototype on a fixed set of pages. One 
way of doing this is to use a web proxy server and configure it to not download pages that 
have already been downloaded. In this way our prototype would only have crawled the 
pages that already existed in the proxy server’s cache. Because of limited time in our 
project we did not pursue this possibility. 
 

9.3 Further work 
There are several ideas and methods that could be further explored in our prototype. Our 
prototype and algorithm contains several attributes which can be adjusted, and it is fairly 
easy to extend with more sophisticated algorithms. More testing of the prototype can 
therefore easily be done. 
 
One thing that should be tested more thoroughly is how the weight class values affect the 
results. Will a higher value on the more peripheral topics (in relation to the focal topics), 
lead to fewer web pages about security in general (not computer security) being considered 
relevant? 
 
Implementing a best-first frontier could have been an interesting approach. A best-first 
frontier could make sure that the links found on the most relevant pages are downloaded 
first. As of now, our prototype uses a kind of best-first strategy based on the link scores, 
but it would have been interesting to also take into account the text relevancy of the pages 
where the links were found. The frontier queue could in this way be sorted to download the 
most prominent pages first. 
 
Enabling the crawler to find web sites instead of web pages is another interesting approach 
that could be examined. Ester et al. [8] proposes a method which uses an internal crawler 
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to view the web pages of a single web site, and an external crawler that has a more abstract 
view of the web as a graph of linked web sites. 
 
One possible area of application for our prototype is to use it to create a portal focused on a 
specific domain or subject. In the current state, our prototype does not save the content of 
the crawled pages. If we add an indexing module and a search interface, it would be 
possible to create a search portal or search engine where users can search in a database that 
only contains pages relevant to a certain subject. For example researchers and others 
interested in it-security could then create their own web portal which crawls the Web for 
pages about it-security. Users in that community could then read the latest pages about it-
security or search in a database that only contains pages within the domain it-security. One 
advantage of this is that the database is smaller and therefore easier to maintain and keep 
up-to-date, compared to a standard search engine which tries to crawl the entire Web. Each 
community could then have their own focused search engine. The task of finding relevant 
pages on the Web could thereby be distributed to several specialized search engines in 
different communities. If each of these communities had their own focused search engines, 
based on the same system, it might also be possible to create a common front-end for all 
the search engines. Users could then use this common front-end to search in all of the 
specialized distributed search engines at the same time. 
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10 Conclusion 
In our project we have developed a prototype that uses an ontology to perform focused 
crawling. The prototype uses the structured information in the ontology to guide the 
crawler in its search for web pages that are relevant to the topic specified in the ontology. 
Our relevance algorithm is inspired by the relevance computation strategy proposed by 
Ehrig et al. [3]. Their algorithm tries to map the content of a web page against an ontology 
to gain an overall relevance-score. 
 
In this thesis we have evaluated several Java-based open source crawlers, but Heritrix 
stands out as the most extensible and best suited crawler for our purpose. Our prototype is 
therefore built upon the Heritrix open source crawler. Even though we experienced some 
minor problems with Heritrix, we feel that Heritrix is a stable and powerful crawler, and it 
is well suited for developing extensions. 
 
In addition to using an ontology to measure the relevancy of web pages, we have also used 
link analysis to determine the importance of a link before it is downloaded. In our 
prototype, link analysis is achieved by using the WebDB module from the open source 
search engine Nutch. The test results show that the use of link analysis in our prototype 
gives a slight increase in the harvest rate, but it did not give as much improvement as we 
had hoped. 
 
When we started working on this project, we did not have much experience with 
ontologies, but throughout this thesis we have shown that ontologies are a suitable 
technology for creating focused crawlers. In the tests we have performed our prototype 
shows good results, but there are still several adjustments that could be done on the settings 
of the prototype and on the relevance algorithm itself. More testing could also be done in 
order to evaluate how well the prototype works when it is set to focus on other topics. 
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