
Analysis and description of an open
source janitor project

by

Håkon Løvdal

Master Thesis in
Information and Communication Technology

Agder University College

Grimstad, June 13, 2006

Abstract

The objective of this study is to describe the inside and impact of the Linux Kernel
Janitor Project. To describe and discuss how such janitor activity can be useful for
others is also an objective. The Linux Kernel Janitor Project is a project defined to
perform maintenance of the Linux kernel source, often taking on tasks that nobody
else will be doing. The patches produced by the janitors havebeen analysed and some
of the effects and properties of the work the project has carried out are described.
Analysis show that janitor activity reduces the amount of code while still keeping the
same functionality or improving it. The patches that are produced are kept in a backlog
where typically 10-15% of them are replaced from one releaseto the next release.
The process and rules/guidelines that the project uses for participation are described.
Some of the participants of the Linux Kernel Janitor Projecthave been interviewed.
Comparison with other open source projects that have some janitor activity has been
performed.

Keywords: Linux, kernel, janitor, software maintenance

Preface

This thesis was done as part of the degree Master of Science atAgder University
College, Faculty of Engineering and Science. It was supervised by Mikael Snaprud at
Agder University College, Parastoo Mohagheghi at Norwegian University of Science
and Technology, NTNU and Bruce Perens.

I would like to express my gratefulness for the help I have received from my supervi-
sors, without whom I would have been completely lost. Thanksto all of the janitors
that answered my questions, both on the mailing list and in the interview.

Grimstad, May 2006

Håkon Løvdal

3

Table of Contents

Preface 3

Table of Contents 4

List of Figures 7

List of Tables 8

1 Introduction 9
1.1 Background . 9
1.2 Research questions . 10
1.3 Research methods . 11
1.4 Sources of information . 12
1.5 Limitations of scope of this thesis 12
1.6 Report outline . 12

2 Theoretical Background and History 14
2.1 Programming and software engineering 14

2.1.1 Lehman’s software evolution laws 14
2.1.2 Orders of ignorance . 15
2.1.3 People more important than process 15
2.1.4 The Linux developers take at software development process . 16
2.1.5 Industry standards for software development 17
2.1.6 Classification of maintenance types 19
2.1.7 Existing studies of distribution of maintenance types 20
2.1.8 Mentoring . 20

2.2 Linux kernel development . 21
2.2.1 What is Linux? . 21
2.2.2 Who is developing the kernel? 21
2.2.3 Patches - the heartbeat of the Linux kernel development . . . 22
2.2.4 Linux development branches 23
2.2.5 Version Control System . 26

2.3 The Linux Kernel Janitor Project .27
2.3.1 Origins of the term janitor 27
2.3.2 History . 27

4

TABLE OF CONTENTS

2.3.3 Janitor Patchsets . 28
2.3.4 The Trivial Patch Monkey 29

3 Software development process 30
3.1 Kernel Janitor Process . 30

3.1.1 Linux Kernel Janitor Project mailing list activity 31
3.1.2 Tools used by the Linux Kernel Janitor Project 32

3.2 Wine Development Process . 33
3.3 Asterisk Development Process . 33
3.4 Summary . 34

4 Interviews 36
4.1 Selection of interview participants 36

4.1.1 Probability sampling . 36
4.1.2 Non-probability sampling 37
4.1.3 Criteria for selection . 37

4.2 Interview responses . 39
4.3 Summary . 41

5 Analysis of janitor patches 43
5.1 Possible quantitative aspects that could be analysed 43
5.2 Frequency and size . 44

5.2.1 Frequency . 44
5.2.2 Average size . 46

5.3 Maintenance types . 47
5.3.1 Distribution of maintenance types for janitor patches 47

6 Discussion 51
6.1 Weaknesses and uncertainties in the results 51
6.2 How is janitor work different from normal development? 52
6.3 Starting your own janitor project? 52

6.3.1 Open source projects . 52
6.3.2 Projects developing proprietary software 53

6.4 How do janitor participants compare to other open sourcedevelopers? 54
6.5 What quality mechanisms are used? 54
6.6 Suggestions for improvements . 55

6.6.1 Better feedback on patches for new janitors 56
6.6.2 New logo . 56

7 Conclusion 57
7.1 Results . 57
7.2 Recommendation . 57

Bibliography 58

5

TABLE OF CONTENTS

A Interview Questions 61
A.1 Connection Between Interview Questions and Reseach Questions . . . 61
A.2 Questions . 61

B Criteria used for determination of maintenance types 64
B.1 Example of a corrective patch . 64
B.2 Example of a perfective patch . 64
B.3 Example of a preventive patch . 64
B.4 Example of an adaptive patch . 65
B.5 Example of an invalid patch . 65

C BibTeX entry for this thesis 66

Index 67

6

List of Figures

1.1 Research methods used and areas covered 11

2.1 General structure of an open source community 22
2.2 The classification of open source users and developers 23
2.3 Example of a patch . 23
2.4 Example of discussion of a patch . 24
2.5 Different Linux kernel branches and releases 26
2.6 Earlier and current patchsets .28
2.7 Earlier and current patchset repositories 29

3.1 Process for submitting patches in the Linux Kernel Janitor Project . . 30
3.2 Change of mailing list participants over time 32
3.3 Process for submitting patches in Wine 34
3.4 Process for contributing code in Asterisk 35

5.1 Total number of patches and number of unchanged patches 44
5.2 Added number of patches . 45
5.3 Removed number of patches . 46

A.1 Connection between interview questions and reseach questions 63

7

List of Tables

4.1 Selection criteria and strata distribution 38

5.1 Number of patches in Linux Kernel Janitor Project patchset releases . 48
5.2 Number of files changed in patches 49
5.3 Distribution of maintenance types in patchset release 2.6.12-rc3-kj . . 50

8

Chapter 1

Introduction

1.1 Background

During software evolution preventive maintenance is required to prevent declining
quality and to compensate for increasing complexity according to Lehman’s software
evolution laws (see chapter 2.1.1 on page 14).

One project that in some way does this is the Linux Kernel Janitor Project1 which
states as its mission statement"We go through the Linux kernel sources, doing code
reviews, fixing up unmaintained code and doing other cleanups and API conversion.
It is a good start to kernel hacking". So the Linux Kernel Janitor Project has both a
quality improving purpose and a mentor purpose. This thesishas looked into both the
mentor and quality aspects, although mainly at the quality aspects.

The Linux Kernel Janitor Project was started in 2001 and today, 5 years after the start it
has become a strong and mature project. The concept of organizing janitor projects has
not however spread significantly to other open source projects which is a bit surprising
since I agree with Linux Weekly News’s conclusion2 that many other projects would
likely benefit from it. Perhaps this thesis could inspire to alittle increase.

A few other projects have however defined some tasks as Janitor Tasks. Although
these projects do not have janitor activity as a separate sub-project, this thesis tries
to compare them to the Linux Kernel Janitor Project when thisis relevant. When
searching for such projects at the start of writing this thesis two such was found, Wine3

and Asterisk4.
1Also sometimes referred to just as Kernel Janitors and abbreviated KJ.
2See chapter 2.3.2 on page 27.
3Wine is an open source implementation of the Windows API on top of X11 and Unix.

http://www.winehq.org/
4Asterisk is an open source PBX (Private Branch eXchange).

http://www.asterisk.org/

9

http://www.winehq.org/
http://www.asterisk.org/

1.2. RESEARCH QUESTIONS

1.2 Research questions

The motivation for choosing to describe the Linux Kernel Janitor Project was partly
that this is not done before as far as I can tell, and thus is a undiscovered white spot on
the knowledge map. But also because I believe that this type of activity and organising
could be useful for others, both for other open source project as well as for commercial
development of proprietary products.

This leads to two main objectives, one of generally describing janitor activity and
another of describing how this can be used by others. The research questions where
thus defined to be:

How can a janitor project be characterised in terms of :

• participants
– Who is participating and why?

• process (model)
– How can the process be described?

• impact
– What is the result of the janitor work? (product metrics)

• performance
– What is the effect of the janitor work? (process/project metrics)

• tools used
– What tools are used?
– How important are they for the project?

• frequency of patches
– How often are patches produced?
– How many patches are produced?

• type of patches
– What type of change does the patches represent?

What elements of the janitor project can be reused in other projects :

• Scalability issues
– How large does a project have to be before starting a separatejanitor

subproject? Is it suitable for your hello world project?
• Determine aspects of an other project to evaluate the usefullness of a Janitor

project
– What generalisations can be made?
– Which criteria are there for starting a janitor project?

• Cost benefit analysis
– What are the benefits of janitor projects?
– What are the costs of janitor projects?

• Quality requirements
– What criteria are set for accepting patches in a janitor project?

10

1.3. RESEARCH METHODS

1.3 Research methods

This study have used a combination of both qualitative and quantitative methods to
gather data about the Linux Kernel Janitor Project. The outline is shown in Figure 1.1.

+--------------------+----------------------------- -----+
| Mentor aspects | Quality improvement |

+--------------+--------------------+-------------- --------------------+
	,----------------+------------------------------.	
	/ \	
	(process/method)	
	\ ,-----------------. /	
Qualitative	‘----------/ \----------------’	
	(interview)----------------.	
	\ / tools)	
	‘----+------------’------------------’	
+--------------+--------------------+-------------- --------------------+		
	,----------------+------------------------------.	
	/ \	
	(developer activity)	
	\ /	
	‘----------------+------------------------------’	
Quantitative		
		,------------------------.
		/ frequency and size of \
		(janitor patches relative)
		\ to ordinary patches /
		‘------------------------’
		,------------------.
		/ measure \
		(maintenance type)
		\ distribution /
		‘------------------’
+--------------+--------------------+-------------- --------------------+

Figure 1.1: Research methods used and areas covered

The qualitative methods used included an examination of therecent history of the
mailing list as well as the patches produced by the project inorder to make description
of the process and methods that make up a janitor project. This was done with respect
to both mentor aspects and quality improving aspects. An inspection of the tools that
the janitors used as sources for generating janitor task or to solve them was done. An
interview was performed, asking both current janitor project participants and some
participants that had participated earlier but no longer did. This interview was done to
investigate the janitor process, mentor aspects and tools usage.

The mailing list was also analysed quantitative to get characteristics that could describe
the janitor project. The patches that have been made was examined for properties like
how often they are made and of the size. Changes can be classified in different types
as described in chapter 2.1.6 on page 19, and such a classification of the patches was
done on some of the patches.

11

1.4. SOURCES OF INFORMATION

1.4 Sources of information

The two main sources of information has been the archives of the Linux Kernel Janitor
Project mailing list kernel-janitors@lists.osdl.org athttp://lists.osdl.org/
pipermail/kernel-janitors/ as well as the ftp server storing the kernel jan-
itor patchsets,ftp://coderock.org/kj/ . Interviewing the janitor participants
was also an important source of information.

Mailing list archives for Wine and Asterisk was examined. Inaddition information
was fetched from the home page to the different projects

• http://janitor.kernelnewbies.org/ for the Linux Kernel Janitor
Project.

• http://www.winehq.org/ for Wine.
• http://www.asterisk.org/ for Asterisk.

The Kernel Traffic website,http://www.kerneltraffic.org/ , contains sum-
maries of the discusion on the main Linux kernel mailing list, LKML, and has been
a very valuable source of general information about the Linux kernel development.
Linux Weekly News has a section about the progress and statusof the Linux kernel
development in the weekly editions which has been used as an information source.

1.5 Limitations of scope of this thesis

While both Wine and Asterisk have some janitor activity it has not been very as easy
to extract information about it, at least compared to the Linux Kernel Janitor Project.
When information about Wine or Asterisk janitor activity hard to find, the effort has
been put on the Linux Kernel Janitor Project since the main focus has been on that.

No economical evaluations of in what amount this is applicable for commercial envi-
ronments has been done.

Only the current state has been examined. No attempt has beenmade in looking into
how things were before compared to now.

For some aspects it would clearly have been intersting to compare the janitor activity
with the ordinary development. However I choose to consentrate on only the janitor
activity.

1.6 Report outline

Chapter 2 gives an technical and historical background for the rest of the thesis. Chap-
ter 3 describes software development process in the contextof Linux kernel develop-

12

http://lists.osdl.org/pipermail/kernel-janitors/
http://lists.osdl.org/pipermail/kernel-janitors/
ftp://coderock.org/kj/
http://janitor.kernelnewbies.org/
http://www.winehq.org/
http://www.asterisk.org/
http://www.kerneltraffic.org/

1.6. REPORT OUTLINE

ment and for the Linux Kernel Janitor, Wine and Asterisk projects.

Requirements and criteria used for the interview as well as summary of the responses
are contained int chapter 4. In chapter 5 the results of the quantitative analysis of
the patches produced by the Linux Kernel Janitor Project is presented. Discussion of
the findings of this thesis and possible further work is done in chapter 6. Chapter 7
contains the conclusion.

13

Chapter 2

Theoretical Background and History

2.1 Programming and software engineering

2.1.1 Lehman’s software evolution laws

The following two laws, which are selected from “the laws of software evolution” as
specified by [1], are those that most directly relates to software maintenance.

No. Brief Name Law

II Increasing Complexity An E-type1 system evolves its complexity in-
creases unless work is done to maintain or reduce
it.

VII Declining Quality The quality of E-type systems will appear to be de-
clining unless they are rigorously maintained and
adapted to operational environment changes.

While some studies show that the development of the Linux kernel is quite optimal,
[2]

We have examined the growth of Linux over its six year lifespan using
several metrics, and we have found that at the system level its growth has
been superlinear. This strong growth rate seems surprisinggiven . . .

Other studies show that the problems described by the laws above also are affecting
Linux. In [3] an architectural discovery and repair was performed on the Linux kernel
where the authors achieved the following

The repair actions narrowed the gap between the conceptual architecture
and the concrete architecture from 502 anomalies down to 40.

1E-type software is software that is Embedded in a real-worldenvironment.

14

2.1. PROGRAMMING AND SOFTWARE ENGINEERING

2.1.2 Orders of ignorance

One particular interesting article about software development is The Laws of Software
Process by Phillip G. Armour, [4] which has a telling observation

In some circles, software process is considered to bethe issue that needs
to be resolved to fix “the software crisis.” Improving process has become
an article of faith in some corners, while avoiding it has assumed the status
of guerrilla warfare in others.

The author states that

Perhaps our problem isn’t process, it’s what we are asking process to do,
and when and where we apply it.

He then formulates three laws of software process based on what he defines as “The
Five Orders of Ignorance”

0OI - Lack of Ignorance. You know something.
1OI - Lack of Knowledge. You know that you do not know something.
2OI - Lack of Awareness. You do not know that you do not know something.
3OI - Lack of Process. You have no method of converting 2OI into either 1OI or 0OI.
4OI - Meta Ignorance. You do not know about the Five Orders of Ignorance.

0th Order Ignorance, 0OI, represents when you have the answer and 1OI represents that
you have a well defined question that can be answered. For these two levels detailed,
well defined processes work well. On the other hand, for 2OI a detailed process, based
on some pre-existing knowledge which might or might not be relevant, does not make
sense. The different levels of ignorance must therefore be handled differently.

The challenge is all projects have different quantities of 0OI, 1OI, 2OI,
and even 3OI, and therefore require different types of processes.

2.1.3 People more important than process

Some people argue that people are more important than process. “Peopleware: Pro-
ductive Projects and Teams” by Tom DeMarco and Timothy Lister is a book about
software management, often characterised as a classsic, which has a strong emphasis
on people:

The major problems of our work are not so much technological as socio-
logical in nature.

15

2.1. PROGRAMMING AND SOFTWARE ENGINEERING

DeMarco has also written other books about software development where he expresses
a skepticism over a too strong focus on process:

The danger of standard process is that people will miss chances to take
important shortcuts2. – “Deadline”

Process obsession is the problem. Process obsession is not just an anomaly
that occurs now and again. It is an epidemic. – “Slack”

The Manifesto for Agile Software Development, which is a setof principles signed by
the members of The Agile Alliance, states that“we have come to value . . . Individuals
and interactions over processes and tools”. A literature review made for “Integration
of human factors for user interfaces into the software development life cycle”, [5]
contains a separate chapter “8. People more important than process” which has several
references to relevant literature.

The outermost variant of this view is that only people are important and that the process
is neglectible.

“Hell, there are no rules here – we’re trying to accomplish something.”
– Thomas A. Edison

2.1.4 The Linux developers take at software development process

The Linux kernel developers are typically opposed to using industry standards for
software development. This is not to say that the developersare working without
guidelines or rules, but these are then rather made up by themselves and only when
they feel that there is a need to.

No major software project that has been successful in a general market-
place (as opposed to niches) has ever gone through those nicelifecycles
they tell you about in CompSci classes. – Linus Torvalds

When the suggestion of using CMM came up on the main Linux kernel developer
mailing list, the following was one of the replies:

With SEI CMM level 3 for the kernel, complete testing and documen-
tation, we’d be able to release a new kernel every 5 months, with new

2 Refer toArmour’s observation on software process(in [4]),

What all software developers really want is a rigorous, ironclad, concrete, hidebound,
absolute, total, definitive, and complete set of process rules they can break.

16

2.1. PROGRAMMING AND SOFTWARE ENGINEERING

drivers 2 years after release of the device, and support for new platforms
2-3 years after their availability, as opposed to 1-2 years before (IA-64, for
instance...)

We’d also kill off all the advantages that the bazaar-style development
style actually has, while gaining nothing in particular, except for a slow
machinery of paper-work. No thanks. – David Weinehall

I think this can be viewed as that the kernel developers are taking a bottom-up approach
to defining the software development process while the industry standards are most
certainly using a top-down approach.

2.1.5 Industry standards for software development

A process is a description what to do and how to do it. The IEEE standard 610, IEEE
Standard Computer Dictionary, definesprocessandsoftware development processas

process A sequence of steps performed for a given purpose.

software development processThe process by which user needs are translated into
a software product. The process involves translating user needs into software
requirements, transforming the software requirements into design, implementing
the design in code, testing the code, and sometimes, installing and checking out
the software for operational use.

Software development process is alternatively also calledsoftware engineering pro-
cess, software life cycleor justsoftware process. The IEEE and ISO standards for this
are “IEEE/EIA 12207.0-1997 Standard for Information Technology – Software Life
Cycle Processes” and “ISO/IEC 12207 Information Technology – Software Life-Cycle
Processes”. These standards are quite high level frameworkand has to be accompanied
with more detailed process models or methodologies.

Exactly what constitutes a process/model/methodology/approach/framework/mecha-
nism/recommendation/discipline/practice/method/etc is not a clear cut3 and I will not
try to draw any borders. The following is a brief list of some —well, methodologies or
whatever they are. Many of these are heavily tailored to fit projects whose developers
are full time workers at the same location. This does not coincide very well with the
great diversity in geography, time and stake in the open source development of Linux.
See [6] for an excellent overview and comparison of some of the differences between
various processes and methods.

3For instance the Wikipedia article about Extreme Programming, [7] says that“Extreme Program-
ming (XP) is a software engineering methodology for the development of software projects.”while Ron
Jeffries (one of the creators of XP) does not call it a methodlogy:

17

2.1. PROGRAMMING AND SOFTWARE ENGINEERING

agile development
http://agilealliance.org/ ,
http://en.wikipedia.org/wiki/Agile_software_develop ment

CMM- The Capability Maturity Model
http://www.sei.cmu.edu/cmmi/ ,
http://en.wikipedia.org/wiki/Capability_Maturity_Mo del

Crystal family
http://www.arches.uga.edu/~cjupin/ ,
http://agile.csc.ncsu.edu/crystal.html

DSDM - Dynamic Systems Development Method.
http://www.dsdm.org/ ,
http://en.wikipedia.org/wiki/Dynamic_Systems_Develo pment_Method

iterative development
http://en.wikipedia.org/wiki/Iterative_and_incremen tal_development

PSP - Personal Software Process
http://www.sei.cmu.edu/tsp/ ,
http://en.wikipedia.org/wiki/Personal_Software_Proc ess

RUP- Rational Unified Process
http://www-106.ibm.com/developerworks/rational/libr ary/content/
RationalEdge/jan01/WhatIstheRationalUnifiedProcessJ an01.pdf
http://en.wikipedia.org/wiki/Rational_Unified_Proce ss

TSP - Team Software Process
http://www.sei.cmu.edu/tsp/

waterfall 4

http://en.wikipedia.org/wiki/Waterfall_model

XP- eXtreme Programming
http://en.wikipedia.org/wiki/Extreme_Programming

SCRUM
http://en.wikipedia.org/wiki/Scrum_%28management%29 ,
http://en.wikipedia.org/wiki/Scrum_%28development%2 9,

Yes, except that I wouldn’t even call XP a method or methodology.

XP is a community of software development practice which hasgrown up around a partic-
ular combination of ideas (values, practices, principles)which Kent Beck named Extreme
Programming.

XP is a way of approaching doing software development. It is not a recipe, nor a formula.
It is not a methodology as I understand the word, and frankly I’m not sure what other
things WTH would call methodologies. Neither CMM nor RUP aremethodologies. What
things can we name that are methodologies?

18

http://agilealliance.org/
http://en.wikipedia.org/wiki/Agile_software_development
http://www.sei.cmu.edu/cmmi/
http://en.wikipedia.org/wiki/Capability_Maturity_Model
http://www.arches.uga.edu/~cjupin/
http://agile.csc.ncsu.edu/crystal.html
http://www.dsdm.org/
http://en.wikipedia.org/wiki/Dynamic_Systems_Development_Method
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://www.sei.cmu.edu/tsp/
http://en.wikipedia.org/wiki/Personal_Software_Process
http://www-106.ibm.com/developerworks/rational/library/content/RationalEdge/jan01/WhatIstheRationalUnifiedProcessJan01.pdf
http://www-106.ibm.com/developerworks/rational/library/content/RationalEdge/jan01/WhatIstheRationalUnifiedProcessJan01.pdf
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://www.sei.cmu.edu/tsp/
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Scrum_%28management%29
http://en.wikipedia.org/wiki/Scrum_%28development%29

2.1. PROGRAMMING AND SOFTWARE ENGINEERING

http://www.controlchaos.com/about/

2.1.6 Classification of maintenance types

The ISO standard for software maintenance,ISO/IEC 12207, Information technology
- Software life cycle processes, has the following classification of maintenance types.

• Adaptive
• Corrective
• Perfective
• Preventive

Adaptive maintenanceis maintenance done as a response to environment changes.
This might for instance be a new compiler, a new version of an external library or
updates to the operating system.Corrective maintenancemeans correcting some im-
perfect behavior (also known as fixing bugs). When functionality is added, changed
or removed this is calledperfective maintenance. Preventive maintenanceis non-
functional changes with the purpose of improving later maintenance. For instance
a large function is split into smaller pieces without changing the overall functionality
or a self-made sort routine might be replaced with a standardlibrary sort function.

The IEEE Standard for Software Maintenance, IEEE Std 1219, uses the following
classification of maintenance types:

• Corrective
• Adaptive
• Perfective
• Emergency

The three maintenance types corrective, perfective and adaptive was first described in
[8] by Swanson in 1976. The last type, preventive maintenance was termed in [9] by
Pressman in 19875.

Critics of these classifications includes [11] in that the classification“depends on the
reason for the change, and not on an objective characteristic of the change”. One pro-
posed alternative to the traditional Swanson + Pressman classification is presented in
[12] where the authors keeps corrective and adaptive but then proposes a enhancement
category with several sub-categories.

• corrective
4It is worth noting that the waterfall model in the original paper was presented as a poor model,

one that “is risky and invites failure”. Seehttp://tarmo.fi/blog/2005/09/09/dont-
draw-diagrams-of-wrong-practices-or-why-people-stil l-believe-in-
the-waterfall-model/ for more discussion of why the model nevertheless gained popularity.

5Pressman notes that the preventive maintenance approach was first reported as ”structured retrofit“
by Miller in 1981. See chapter “2.2.5 An explorative definition of software maintenance” in [10] for
more details on the history.

19

http://www.controlchaos.com/about/
http://tarmo.fi/blog/2005/09/09/dont-draw-diagrams-of-wrong-practices-or-why-people-still-believe-in-the-waterfall-model/
http://tarmo.fi/blog/2005/09/09/dont-draw-diagrams-of-wrong-practices-or-why-people-still-believe-in-the-waterfall-model/
http://tarmo.fi/blog/2005/09/09/dont-draw-diagrams-of-wrong-practices-or-why-people-still-believe-in-the-waterfall-model/

2.1. PROGRAMMING AND SOFTWARE ENGINEERING

• adaptive
• enhancement

– Data Handling
– Control flow
– User Interface
– Computation
– Module Interface
– Initialization

2.1.7 Existing studies of distribution of maintenance types

A study of the distribution of maintenance types in the Linuxkernel has been done
before in [13]. However this study did not include preventive maintenance, only the
tree other types.

This study included kernel versions from version 1.0 through version 2.3.51, which is
from a time when the developed was done on two parallel branches. Today the devel-
opment model for the 2.6 kernel is different and uses only onebranch (see chapter 2.2.4
on page 23). This was also done before Linus started using source code control tools
which both has increased productivity and partly changed the way of working. Un-
doubtfully, the development process (as well as many of the developers) is today much
more mature than it was around version 1.0.

So while not certain, these are factors that might change theresults if the same study
had been redone on todays code, and I think that would have been very interesting.
However this will probably be a considerable amount of work,the authors of [13] used
over 9 months classifying 391 versions of the Linux kernel.

2.1.8 Mentoring

The Wikipedia article, [14] has the following description of mentoring: a trusted
friend, counselor or teacher, usually a more experienced person. Some professions
have "mentoring programs" in which newcomers are paired with more experienced
people in order to obtain good examples and advice as they advance, and schools
sometimes have mentoring programs for new students or students who are having dif-
ficulties.

The origin to the modern use of the word is from Greek mythology. Mentor was
a person who was left in charge of the son of a friend that left for war. When the
goddess Athena visited the son, she took form of Mentor and helped the son and gave
him advise.

Mentoring is generally strongly reccomended both in technical and non-technical pro-
fessions, see for instance [15] and [16]. Drawbacks of mentoring is that is can be time

20

2.2. LINUX KERNEL DEVELOPMENT

consuming for the mentor, [17].

2.2 Linux kernel development

2.2.1 What is Linux?

Since the Linux Kernel Janitor Project is a part of development of the Linux kernel
some information about Linux is is appropriate. However thepurpose is not to give a
complete listing of all the benefits or features of the Linux kernel, only a brief descrip-
tion is given.

Linux is an unix-like operating system that Linus Torvalds started writing for his own
amusement and hobby in 1991. Linux is free for anyone to use, modify and distribute.
The development of Linux is open so that anyone can contribute6. The development is
lead by Linus Torvalds.

2.2.2 Who is developing the kernel?

In a recent interview, [18], Linus Torvalds said the following about the people he
communicate with.

I actually only work with a few handfuls so I tend to directly interact with
maybe 10 - 20 people and they in turn interact with other people. So
depending on how you count, if you count just the core people,20 -50
people. If you count everybody who’s involved; five thousandpeople –
and you can really put the number anywhere in between... Almost, pretty
much all, real work is done over e-mail so it doesn’t matter where people
are.

One of the studies that have been performed on open source projects is [19], which
provides a model for how the community is divided into different hierarchical groups
as shown in Figure 2.1 on the next page. For Linux it is Linus Torvalds that is the
Project leader, but the division into the other groups are theoretical and there are no
clear borders, illustrated quite clearly by the fact that the project leader himself cannot
give an exact number of how many developers there are.

An similar model is presented in [20] which is shown in Figure2.2 on page 23. This
model has split tasks and users, but overall it is quite similar to the one in Figure 2.1.

6Although there is no guarantee that your changes will be accepted.

21

2.2. LINUX KERNEL DEVELOPMENT

(Figure from [19])

Figure 2.1: General structure of an open source community

2.2.3 Patches - the heartbeat of the Linux kernel development

Since the beginning of the collaborative development of theLinux kernel, private
email/mailinglists/news groups has been the main communication channel between
the developers. Distributing complete source code trees with modifications to share
development effort is not practical, so the way the developers share their work is to
distributechangesto a given base of the source code. Such a change is expressed as a
patch. A patch is typically generated with thediff program, using the unified format.

Figure 2.3 on the next page shows an example of a patch where a hardcoded constant is
replaced with a preprocessor token. Such a patch is easily distributed via email/news.
As an extra feature, if the patch is inserted in-line into thebody of the email/post (i.e.
not as an attachment) it is easy for other developers to discuss the patch and insert
their comments in between the quoted lines or making an extract when replying. See
Figure 2.4 on page 24 for an example of this.

Actually just calling this an extra feature is too weak because this is a very essential
property of a patch. Patches might be rejected on the sole basis of being sent as an
attachment instead of inserted in-line.

Without patches being sent between the Linux developers thedevelopment would stop
completely (and here git (see chapter 2.2.5 on page 26) is just considered to be a special
packaging of patches). So patches are the heartbeat of the Linux kernel development.

22

2.2. LINUX KERNEL DEVELOPMENT

(Figure from [20])

Figure 2.2: The classification of open source users and developers

--- linux-2.6.15-git9/drivers/atm/lanai.c 2006-01-13 1 8:21:22.000000000 +0100
+++ linux-2.6.15-git9_patched/drivers/atm/lanai.c 200 6-01-13 18:24:36.000000000 +0100
@@ -1972,7 +1972,7 @@

"(itf %d): No suitable DMA available.\n", lanai->number);
return -EBUSY;

}
- if (pci_set_consistent_dma_mask(pci, 0xFFFFFFFF) != 0) {
+ if (pci_set_consistent_dma_mask(pci, DMA_32BIT_MASK) != 0) {

printk(KERN_WARNING DEV_LABEL
"(itf %d): No suitable DMA available.\n", lanai->number);

return -EBUSY;

In the unified format the lines prefixed with minus are removedcompared to the origi-
nal, while lines prefixed with plus are added.

Figure 2.3: Example of a patch

2.2.4 Linux development branches

After release 1.0 of the Linux kernel the development was split onto two tracks, or
branches,stableanddevelopment. The development releases was numbered 1.1.x

7

7wherex is a sequence number

23

2.2. LINUX KERNEL DEVELOPMENT

On 2006-01-04 at 18:18:19 +0100, Matthew Wilcox <matthew@w il.cx> wrote:
> On Wed, Jan 04, 2006 at 06:01:19PM +0100, Tobias Klauser wro te:
> > diff -urpN -X dontdiff linux-2.6.15/mm/slab.c linux-2. 6.15~tk/mm/slab.c
> > --- linux-2.6.15/mm/slab.c 2006-01-03 14:41:57.00000 0000 +0100
> > +++ linux-2.6.15~tk/mm/slab.c 2006-01-04 15:52:41.00 0000000 +0100
> > @@ -921,7 +921,6 @@ static int __devinit cpuup_callback(stru
> > down(&cache_chain_sem);
> >
> > list_for_each_entry(cachep, &cache_chain, next) {
> > - struct array_cache * nc;
> > cpumask_t mask;
> >
> > mask = node_to_cpumask(node);
>
> While this does work, it’s quite bad style. Much better to mo ve the
> upper level declaration (line 856) into the block it’s used in (line
> 893). BTW, that function is too big at 133 lines and should be split.

Sure. That makes more sense. I’ll send a new patch.

Thanks, Tobias

Figure 2.4: Example of discussion of a patch

and these was intended to be the playground where the developers could go wild and
work on all their new and exciting features, in support of future world domination8.
The stable releases had release numbers 1.0.x and was meant to be for general use by
“normal” users, where features were frosen and only bugfixesshould be done.

A split between a stable and a development branch is a very common strategy in open
source projects, although some use more9. The release numbers used is then also often
using a odd/even scheme on the forma.b.c wherea is a major release number,
b is even for stable and odd for development andc is a sequence release number
(sometimes an additionald is also used).

The end of the 1.1 development of the Linux kernel resulted ina stable 2.0 branch. This
was since followed by 2.1, 2.2, 2.3, 2.4, 2.5 branches up till2.6. Linus Torvalds de-
cided that he did not want to have a 2.7 development branch, and 2.6 is now working as
a combination of both stable and development. The version number has been extended
to support-stable releasesnumbered 2.6.x.y. From the Documentation/HOWTO file
in the Linux source:

2.6.x.y -stable kernel tree
——————————

Kernels with 4 digit versions are -stable kernels. They contain relatively
small and critical fixes for security problems or significantregressions dis-

8The phrase “world domination” is a self-ironic phrase used in the Linux community.
See [21] for a discussion of the origin.

9For instance, the XEmacs development is split between threebranches: stable, gamma, and beta.
Debian uses experimental, unstable, testing and stable.

24

2.2. LINUX KERNEL DEVELOPMENT

covered in a given 2.6.x kernel.

This is the recommended branch for users who want the most recent sta-
ble kernel and are not interested in helping test development/experimental
versions.

If no 2.6.x.y kernel is available, then the highest numbered2.6.x kernel is
the current stable kernel.

2.6.x.y are maintained by the "stable" team <stable@kernel.org>, are re-
leased almost every week.

The file Documentation/stable_kernel_rules.txt in the kernel tree docu-
ments what kinds of changes are acceptable for the -stable tree, and how
the release process works.

In addition to the official source tree produced by Linus Torvalds, some of the other
kernel developers provide their own variations of the kernel source. These are often
given a suffix with the initials of the developer10, for instance“-ac“ from Alan Cox
11. The currently most important tree of those is the“-mm tree“ which now has
taken over for the previously development branch.

But there needed to be a mechanism for testing new technologies, a place
where they could be revised, updated and even removed beforeactually
getting into the mainline kernel. As such, it was decided that the -mm
tree would be the place where things were tested before they got into the
mainline kernel. – Greg Kroah-Hartman

The -mm patches are a set of patches, released by Andrew Morton, against
the official kernel series. They are frequently more experimental in nature
than the official series. –http://kernel.org/patchtypes/mm.
html

After Linus Torvalds has made a 2.6.x release, there is a two week period where Linus
is open for accepting development patches. After that period he creates the first release
candidate for the next kernel release, 2.6.(x+1)-rc1. After rc1 only bugfixes will be
accepted. A number of following release candidate releasesare made until the kernel is
perceived good enough to make the 2.6.(x+1) release. See Figure 2.5 on the following
page for connection between the kernel branches relevant for this thesis.

10http://www.kernel.org/git/ lists 149 different git repositories with the path linux/ker-
nel/git/. . . .

11For the 2.4 development the -ac tree had a somewhat similar function to the current -mm tree,
being slightly more experimental than the development tree. The Linux Kernel Janitor Project started
submitting some of the patches through the -ac tree.

25

http://kernel.org/patchtypes/mm.html
http://kernel.org/patchtypes/mm.html
http://www.kernel.org/git/

2.2. LINUX KERNEL DEVELOPMENT

2.2.5 Version Control System

Up till 2002 patches was the only way to distribute changes. In January 2002 Linus
Torvalds decided to start using a version control system called BitKeeper [22]. The
move to start using a version control system was not controversial, but the choice of
BitKeeper was since this was a commercial product (which wasmade freely available
for Linux kernel developers).

Despite the opposition Linus decided that he wanted to try. This was after all an op-
tional addition/alternative to the existing development process; patches in mail would
still be acceptable and used. Linus was satisfied with that BitKeeper made him more
effective and kept using it.

BitMover, Inc., the company producing BitKeeper, issued a press release in 200412

claiming that Linus Torvalds had more than doubled his productivity. This claim was
supported with quantitative measurements of the activity before and after Linus Tor-
valds started using BitKeeper. A more in depth coverage of this is present in [23].

In 2005 the usage terms for BitKeeper changed and Linus decided that he wanted to
write his own version control system[24]. He found none of the existing free version
control systems suitable, but after using BitKeeper for three years he knew quite well

12http://www.bitkeeper.com/press/2004-03-17.html

janitor

-mm tree

2.6.x

-stable,
2.6.x.y

2.6.13

2.6.13-mm1 2.6.13-mm2 2.6.13-mm3

2.6.14-rc1

2.6.14-rc1-mm1

2.6.14-rc1-kj

2.6.14-rc2

2.6.14-rc2-mm1

2.6.14-rc3 2.6.14-rc4

2.6.14-rc4-mm1

2.6.14-rc2-kj 2.6.14-rc3-kj 2.6.14-rc4-kj

2.6.13.1

2.6.13.2

2.6.13.3

2.6.13.4

2.6.13.5

The dotted arrows indicate merge from one branch to another,but the exact placement
and number are guesses. The merges are not full merges, only selected parts. So when
Linus Torvalds merges from -mm between 2.6.13 and 2.6.14-rc1 he is likely to accept
janitor patches. After the rc1 release they are not accepted(unless they fix bugs which
in case they might be considered).
(Pay little attention to the time scale in the figure)

Figure 2.5: Different Linux kernel branches and releases

26

2.3. THE LINUX KERNEL JANITOR PROJECT

how he wanted a version control system to be. This was the start of the tool called
git . Since version 2.6.12-rc3 the kernel has been developed anddistributed using git.

2.3 The Linux Kernel Janitor Project

2.3.1 Origins of the term janitor

The Wikipedia article about janitor, [25] has the followingdescription

A janitor is a person who takes care of a building, such as a school, office
building, or apartment block. They are responsible primarily for cleaning,
and often (though not always) some maintenance and security.

and notes that the originis derived from the Latin word ianitor meaning ”doorkeeper“.
A female janitor is called a janitrix, although this term is rarely used.

2.3.2 History

The Linux Kernel Janitor Project was started in 2001 by Arnaldo Carvalho de Melo.
He was maintaining a TODO list for things to fix or clean up. Thelist was available via
HTTP and he noticed in the webserver logs that many people accessed it. He therefore
decided to organize the janitor activity into its own project.

This form of janitor organization appears to be relative new. In the March 29, 2001
edition of Linux Weekly News, the newly started Linux KernelJanitor Project was the
main coverage with the following closing words:

The kernel, meanwhile, is far from the only large development project
in the free software community. No doubt, many other projects should
look at the kernel janitors organization and consider setting up something
similar. The benefits, in terms of improved code and a better supply of
new hackers, could be both large and immediate.

Given the high quality of the content of Linux Weekly News andtheir effort of provid-
ing a complete and full picture in their news coverage this isa strong indication that
no other projects similar to Linux Kernel Janitor Project existed at that time.

The janitor concept was partly inspired from FreeBSD (although this was not orga-
nized as an separate activity or called janitor). In an old irc log, archived at the Linux
Kernel Janitor Project website, Dave Jones said the following:

27

2.3. THE LINUX KERNEL JANITOR PROJECT

An interesting parallel to the kernel janitor project is what happens with
the FreeBSD folks. Regularly, you’ll see on their mailing list “junior ker-
nel hacker tasks”. Simple (but often tedious) cleanups. More experienced
hackers will mentor newcomers to kernel hacking, often pointing them in
the correct direction.

Linux Weekly News also drew parallels to OpenBSD:

And the janitors have noted an important point: an error pattern that is
found in one section of code has a high likelihood of recurring in other
places. Once a particular type of mistake has been found, it makes great
sense to go looking for instances of the same mistake elsewhere. This is
essentially the same approach as that used by the OpenBSD team to root
out security problems before they are exploited.

2.3.3 Janitor Patchsets

The patches from the Linux Kernel Janitor Project are released in patch sets, also called
patchsets. A patchset is a collection of files that each contains a single patch. These
patches have first been posted to the mailing list where they are possibly discussed and
modified. The project leader reviews mailing list patches from time to time and add
those that are accepted to the patchset. This process is described in chapter 3.1 and
also shown in Figure 3.1 on page 30.

The first Linux Kernel Janitor Project patchset was 2.5.70-bk13. Before that the janitor
patches was handled individually by each author. Some of them were sent to and
handled by the Trivial Patch Monkey (see chapter 2.3.4 on thefollowing page).

Released by From Date To Date

Randy Dunlap 2.5.70-bk13 2003-06-11 2.6.6-rc2-kj1 2004-04-23

Maximilian Attems 2.6.7-rc1-kjt1 2004-05-24 2.6.10-rc2-kjt1 2004-11-20

Domen Puncer 2.6.10-kj 2004-12-24 2.6.13-rc4-kj 2005-07-29

Alexey Dobriyan 2.6.13-git4-kj1 2005-09-03 . . .

Figure 2.6: Earlier and current patchsets

13It seems thathttp://www.osdl.org/archive/rddunlap/kj-patches/... and
http://developer.osdl.org/rddunlap/kj-patches/... was identical (they are no
longer available). The first patchset release was announcedas using www.osdl.org while all the fol-
lowing releases was using developer.osdl.org.

The internet archive, http://www.archive.org/ has nothing stored ofhttp://
developer.osdl.org/rddunlap/ while the last entry for http://www.osdl.org/
archive/rddunlap/ contains patchsets up till including 2.6.6-rc2-kj1 which was announced
as http://developer.osdl.org/rddunlap/kj-patches/2.6.6 -rc2/2.6.6-rc2-
kj1.patch.bz2 .

28

http://www.osdl.org/archive/rddunlap/kj-patches/...
http://developer.osdl.org/rddunlap/kj-patches/...
http://www.archive.org/
http://developer.osdl.org/rddunlap/
http://developer.osdl.org/rddunlap/
http://www.osdl.org/archive/rddunlap/
http://www.osdl.org/archive/rddunlap/
http://developer.osdl.org/rddunlap/kj-patches/2.6.6-rc2/2.6.6-rc2-kj1.patch.bz2
http://developer.osdl.org/rddunlap/kj-patches/2.6.6-rc2/2.6.6-rc2-kj1.patch.bz2

2.3. THE LINUX KERNEL JANITOR PROJECT

2.3.4 The Trivial Patch Monkey

Although the Trivial Patch Monkey has no direct connection to Linux Kernel Janitor
Project there might be some overlap in the work done, so a brief description is included.
The Trivial Patch Monkey collects and submits patches that are trivial14, taking care
of re-submitting and following up so that the patch will not be lost. It was started by
Rusty Russell which in February 2002 announced

Hi all, trivial@rustcorp.com.au is set up to take trivial patches, ie. one-
liner, documentation, spelling fix, etc. I will acknowledgeyour patch, and
take care of the retransmissions until the patch is either applied, or does
not apply any more.

The aim is to encourage people to submit minor tweaks withoutfear of
them getting lost. Do not expect real time behavior: I am not abot.

Later in May 2002 he wrote the following.

With the recent flurry of inclusions, the trivial@rustcorp.com.au Trivial
Patch Monkey has passed 100 patches which have filtered into the various
kernels . . . With this surprising success (I thought the damnthing would
die after a few days), I will be continuing to provide the service, which
only takes me about an hour a week.

Late 2005 the Trivial Patch Monkey occupation was handed over to another Linux
kernel developer, Adrian Bunk, and the email address is now trivial@kernel.org.

14“If you aren’t sure whether a patch is trivial, it most likelyisn’t...“

Repository From To

http://www.osdl.org/archive/rddunlap/kj-patches/13 2.5.70-bk13 2.6.6-rc2-kj1

http://debian.stro.at/kjt/ 2.6.7-rc1-kjt1 2.6.10-rc2-kjt1

ftp://coderock.org/kj/ 2.6.10-kj . . .

Figure 2.7: Earlier and current patchset repositories

29

Chapter 3

Software development process

3.1 Kernel Janitor Process

work on TODO item
review kernel source

use some tool
...

create and submit patch

kernel-janitors@lists.osdl.org linux-kernel@vger.kernel.org subsystem mailing list/
maintainer

review/test patch

feedback
patch update

accept

1

 2

 3

 4

 5

 6

 7

 8 9

 10 13

 11 12

 14 15

janitor patchset -mm kernel tree official kernel

Figure 3.1: Process for submitting patches in the Linux Kernel Janitor Project

As with the normal Linux kernel development, the way to contribute is by creating
patches. A patch is created either based on one of the TODO items or it is something
the developer creates by his or her own initiative (arrow 1 inFigure 3.1). After creating
the patch it is sent to the Linux Kernel Janitor Project mailing list for review (arrow 2).
If the patch modifies a part of the kernel that has an active maintainer and/or separate
mailing list it is polite to send a copy to them (arrow 13). In that case the maintainer
will often accept the patch, “stealing” it out of the janitorprocess (arrow 14 or 15).

If the patch is special (say improves performance with 200%,has security implications

30

3.1. KERNEL JANITOR PROCESS

or something like that) it might be appropriate to send a copyto LKML 1, which is the
main mailing list for the Linux kernel developers. You mighttry to send to Linus
Torvalds directly as well, although this will have low chance of success.

“Don’t send to Linus” is pretty much the first non-obvious thing I’ve
learned about process. – Alexey Dobriyan

In fact Linus is fairly random at patches at the best of times.Generally,
Linus will cc: it to me because he knows I’ll pick it up. – Andrew Morton

After posted to the mailing list, the other janitors read andpossibly test it. If they have
any feedback (like in Figure 2.4 on page 24) they will post that and the patch creator
will make an updated patch (arrow 5).

After some time the Linux Kernel Janitor Project leader willreview the mailing list
for patches posted (i.e. after the possible discussions have settled), and accept those
that are found acceptable (arrow 6). Those patches are then included in the janitor
patchset (arrow 7). Over time parts of the Linux Kernel Janitor Project patchset will
be included in the -mm tree (arrow 8) and will most likely finally end up in the official
kernel (arrow 9).

3.1.1 Linux Kernel Janitor Project mailing list activity

Figure 3.2 on the next page shows a plot of how persons come andgo as participants
on the Linux Kernel Janitor Project mailing list. For each month two lists of emails
were made, one containing all the email addresses that occurred for the first time that
month, and one list that contained the email addresses that posted for the last time
that month. Counting these list gives quantitative measurements of how the number of
participants on the mailing list change over time.

One evident characteristic of the plot in Figure 3.2 on the following page is the spikes
where in one month there is a steep increase in the number of new mailing list partici-
pants followed by a correspondingly steep decrease the following month or couple of
months. The same pattern is mirrored by the last time posted curve with one month
delay compared to first time posted.

This is caused by mailing list threads that either at some point included other mailing
list or maintainers or that threads elsewhere from started including the Linux Kernel
Janitor Project mailing list. For July 2004 the spike is mostly triggered by threads
about “replace schedule_timeout() with msleep()”, about IO-APIC debug and min/max
macros.

1linux-kernel@vger.kernel.org

31

3.1. KERNEL JANITOR PROCESS

3.1.2 Tools used by the Linux Kernel Janitor Project

In the beginning when defining the thesis and figuring out whatto write about I wanted
to include tools since they are used by the janitors and I think they are important.
However when working with the thesis I found that the effect of the different tools
used, in the context of the process of the Linux Kernel Janitor Project, was only to
contribute to the list of possible work items.

This is not to downplay the importance of tools, but rather anexpression of that the
janitor process is rather independent of the tools used.

Why are tools important?

If a developer reads a source code file from start to end scanning for bugs/improve-
ments this is a one time effort that is valid for that given version of the file only.
Manually reading source code is very time consuming and, depending on what the ob-
jective for the examination is, might require a high degree of technical knowledge and
understanding of the source code.

Tools will of course never be able to replace the overall all-aspects competence of
humans, but tools have the benefit of taking a very short time to run (at least compared
to human effort). So using a tool on all version is normally quite feasible.

A specialised tool might additionally find errors that go undetected by humans. And
they do. Coverity recently ran a project analysing several open source projects, among
others the Linux kernel. The results are available athttp://scan.coverity.

 0

 10

 20

 30

 40

 50

2003-09
2003-10
2003-11
2003-12
2004-01
2004-02
2004-03
2004-04
2004-05
2004-06
2004-07
2004-08
2004-09
2004-10
2004-11
2004-12
2005-01
2005-02
2005-03
2005-04
2005-05
2005-06
2005-07
2005-08
2005-09
2005-10
2005-11
2005-12
2006-01
2006-02

P
er

so
ns

Time

Change of mailing list participants over time

First time post
Last time post

Figure 3.2: Change of mailing list participants over time

32

http://scan.coverity.com/

3.2. WINE DEVELOPMENT PROCESS

com/ and the report from the project is discussed on the front pageof Linux Weekly
News, March 9, 2006 edition2.

Linus Torvalds has also written specific a tool for source code analysis of the kernel,
sparse, which is used to find bugs in the handling of user-space pointers.

3.2 Wine Development Process

The process for Wine is in several ways similar to the one for the Linux Kernel Janitor
Project. A detailed drawing of the different elements are shown in Figure 3.3 on the
next page. The main differences are the following.

• There is no separate handling of janitor patches, they are handled together with
the patches from the normal development.

• There are no different kernel trees, just one common git repository3.
• Wine has one separate mailing list for submitting patches and only that, wine-

patches@winehq.org. If there are any discussion this will take place on the
wine-devel@winehq.org list.

• After a patch is committed in the git repository a message is sent to the read-only
wine-cvs@winehq.org list.

After working on either a janitor task or one of the normal Wine tasks the developer
creates a patch and sends it to the wine-patches mailing list(arrows 1 and 2 in Fig-
ure 3.3 on the following page). This list is read by the Wine developers which review
the patches submitted (arrow 3), and if they have any feedback this will be posted on
the wine-devel mailing list (arrow 4 and 5). The patch creator will then make an update
of the patch (arrow 6) and resend it to the wine-patches list (arrow 7). If the patch is
accepted it will be committed to the git repository (arrow 8 and 9). Accepted patches
will appear in the wine-cvs mailing list (arrow 10).

3.3 Asterisk Development Process

Asterisk turned out to be quite different from both the LinuxKernel Janitor Project and
Wine. Asterisk was created by Mark Spencer which is still theprimary maintainer. He
later founded the company Digium which is an telecommunications supplier and is the
main sponsor of the development of Asterisk4.

2http://lwn.net/Articles/174125/
3Wine started last year using git for source code management,but the code is also available through

CVS, Subversion and SVK repositories which are synchronised with the git repository. Alexandre
Julliard (who is Wine’s project leader) is the only person with commit access to the git repository.

4Not everyone is happy with the strong influence that Digium has over the development of Asterisk
or with the monolithic architecture. In 2005 a fork of the Asterisk code was made and a new project
OpenPBX was started.

33

http://scan.coverity.com/
http://lwn.net/Articles/174125/

3.4. SUMMARY

Wine TODO List
Fun Projects

JanitorialProjects
...

create and submit patch

wine-patches@winehq.org

review/test patchfeedback

accept

1

 2

 3

 4

 5

 6 7

http://source.winehq.org/git/wine.gitwine-cvs@winehq.org

wine-devel@winehq.org update patch

 8

 9

 10

Figure 3.3: Process for submitting patches in Wine

The source code of Asterisk is stored in subversion and the servers are hosted by
Digium. In order to contribute to Asterisk you have to fill outa copyright disclaimer
and send or fax it to Digium. Asterisk is released under dual license scheme using both
GPL 5 and a commercial license which Digium uses in products it sell.

Figure 3.4 on the next page shows the process for how to contribute to Asterisk. As
mentioned in the previous paragraph, a copyright disclaimer is required to start con-
tributing to the development of Asterisk (arrows 1, 2, 3 and 4). After finishing working
with a task the change is committed with subversion (arrow 5)and placed directly in
the subversion repository (arrow 6). The developers will monitor the repository for
new functionality (arrow 7).

3.4 Summary

The largest difference between the Linux Kernel Janitor Project on one side and Wine
and Asterisk on the other side is that the the janitor activity in the Linux Kernel Janitor
Project is active and selfsupporting while for Wine and Asterisk it is more passive and
a lesser part of the normal development. This is not to say that there is no janitor work
done in Wine or Asterisk however.

5GNU General Public License. Seehttp://www.gnu.org/licenses/gpl.html and
http://en.wikipedia.org/wiki/GPL for more information.

34

http://www.gnu.org/licenses/gpl.html
http://en.wikipedia.org/wiki/GPL

3.4. SUMMARY

Issue Tracker
Janitor Projects

...
commit changes using subversion

 5

 6

 7
http://svn.digium.com/svn/asterisk/trunk

Digiumfax or send paper copy to Digium
 2

file disclaimer and
grant svn commit access

 3

 4

fill out one of
http://www.digium.com/disclaim.changes
or http://www.digium.com/disclaimer.txt

1

monitor svn log

Figure 3.4: Process for contributing code in Asterisk

The process for submitting patches is quite similar for Wineand the Linux Kernel
Janitor Project where in both projects patches are first sentto a mailing list for review.
A committer will later merge the patches that are accepted into the projects repository.
This is different from Asterisk which has a steeper entry point for starting contributing
but where it is easier to contribute features or fixes when started.

35

Chapter 4

Interviews

4.1 Selection of interview participants

When examining a population it is usually not feasibly to askevery member. Therefore
a selection is made and this subset of the population membersis then examined. To
obtain valid results this selection should be representative for the whole population.
The representativeness is the key factor here; if this this is weak then the validity of
whole outcome is also weak.

There are several ways of making a selection. Either by usingprobability sampling
or non-probability sampling. In probability sampling there is a probability associated
with the selection of each participant. In non-probabilitysampling there is a subjective
decision involved in selecting each participant.

One particular, important non-probability factor isself-selection. If the sample is made
out of population members that themselves decides to participate, this will introduce
a bias (for instance are people with strong opinions more likely to participate). Self-
selection is best avoided.

But even if the participants are carefully chosen one way or another, the response rate
will normally be lower than 100%. This introduces a self-selection factor in that some
people chose not answer.

4.1.1 Probability sampling

Simple random samplingwhich is a method where each member in the population
has an equal chance of being selected. Basically this corresponds to making a list of
the population and randomly select a number of members from that list. One of the
problems with simple random sampling is that there is a risk of missing out participants
of smaller population groups. Therefore it typically requires a relatively large sample
to be valid.

36

4.1. SELECTION OF INTERVIEW PARTICIPANTS

Cluster samplingis when selecting a whole group instead of just several individuals
like in simple random sampling. An example could be examining one class in a school.
This method is usually used for practical reasons since it might be less expensive or
difficult than using a sample of individuals.

In stratified samplingthe population is divided into groups called strata. The propor-
tion between the different strata groups is then decided. For instance you might decide
that the sample should be consist of 50% males and 50% females. This might be done
in order to ensure that sub-groups of the population is included in the sample or in-
cluded in the right proportion. It might also be used if certain groups are to be given
more or less weight.

4.1.2 Non-probability sampling

In non-probability samplingthe selection made out of some other criteria. This will
normally make the sample likely to be in some degree different from average, so it
might be not possible to use non-probability samples to generalize conclusions for the
whole population.

Convenience samplingis when the sample is made out of participants that are easy to
get. For instance you might only select people you already know.

When the researchers selects participants based on their own judgment of who they
think might be appropriate to include, this is calledPurposive samplingor Judgment
Sampling. For instance if you are planning a new payroll system and seeking require-
ments, it would probably be more useful to select one of the secretaries than 10 random
workers.

Quota Samplingis similar to stratified sampling in that the population is divided into
groups. But in quota sampling the members are chosen freely (and not with a certain
probability) as long as the quota is met (say that 25% are 50 years or older).

4.1.3 Criteria for selection

I could have just sent an open post to the mailing lists askingfor anyone to participate.
But that would have been self-selection, so that was not an option.

Only persons which have posted on the Linux Kernel Janitor Project mailing list have
been asked. This is sort of a cluster sampling, however sinceneither wine nor Asterisk
have a separate janitor organization the effect of including them would probably be
marginal.

In this study there is no point in finding an exact average of the janitors’ viewpoints.
So I will not use simple random sampling. Instead I will selecting some groups/strata
of people that I think will give perhaps different but important answers.

37

4.1. SELECTION OF INTERVIEW PARTICIPANTS

Arguably the most active developers are the most important members of the janitor
project, so I will give most attention to them. However, recruitment is also very im-
portant for the long term stability of the project. Just as some new people are joining
in others will have left, so I will also ask some of those who nolonger are actively
participating in the janitor project. Table 4.1 shows the details.

Strata Sample Size Selection Criteria

The most active developers 50% Top posters between

2005-03-01 and 2006-02-28

Newcomers/just started 25% First time posted between

2005-11-01 and 2006-02-28

No longer active 25% Last time posted between

2004-07-01 and 2005-06-30

Table 4.1: Selection criteria and strata distribution

After deciding what groups to ask and their internal distribution, I had to decide on
how many persons to ask. When doing quantitative studies it is very important that
the sample is not to small, in order to be reasonable representative. It is possible to
calculate the required size of the sample given aconfidence interval[26] andconfidence
level.

confidence interval gives a range of values for the measured variable. For instance
when flipping a coin, you might state that the confidence interval for getting
heads is between 45% and 55%1.

confidence levelof say 95% means that if the study is repeated many times, the true
value of the variable measured will lie within the confidenceinterval 95% of the
times.

These factors are not so critical for a qualitative study like this, but they should at least
to some be degree relevant. Therefore some on-line sample size calculators ([28], [29]
and [30]) were used to estimate a sample size. A population of100, confidence interval
of ±10% and confidence level of 90% was used as input. They gave 36,40 and 41 as
answers. 40 persons was chosen as sample size, which then gives 20 Top posters, 10
First time posters and 10 Last time posters.

To find the top posters the mboxstats tool[31] was used. This tool produces various
statistics when fed with a mailing list saved in mbox format2. So this was quite simple
and straight forward.

1The probability is in fact not exactly 50%. It depends on which side that starts lying up[27]
2It was primarily used for analyzing the main Linux kernel mailing list (LKML) by Kernel Traffic,

http://www.kerneltraffic.org/ (Kernel Traffic has provided summaries of the discussions

38

http://www.kerneltraffic.org/

4.2. INTERVIEW RESPONSES

To find persons that posted for the first time to the Linux Kernel Janitor Project mailing
list between 2005-11-01 and 2006-02-28 I wrote some perl scripts to find all emails
before a given time and then compare with this emails in postsafter that. Finding last
time posted between 2004-07-01 and 2005-06-30 was more or less the reverse of this.

The result was then two lists from which 10 names were randomly extracted from
each. However the lists was manually “washed” afterwords, replacing a few entries
with new ones in order to make sure that the person had not justchanged mail address
as well as discarding persons that I determined had posted tothreads that started out
on a different mailing list and that one some point had been cc’ed to the janitor mailing
list if that person did not appear to othervise be an active janitor.

This was however quite difficult because the mailing list archive had stripped out al-
most all headers from the original posts (notably bothTo: andCc: 3). and a couple of
“why did you ask me“ responses were received from people thatreceived the interview
questions that ideally should have been washed out.

One of the selected persons was both part of the top posters group as well as newly
started. I consider this OK since I assume he will represent both groups (quota sam-
pling). 39 persons was therefore asked to participate. The questions asked are listed in
appendix A on page 61.

4.2 Interview responses

The response rate was much lower than I had expected. I sent anemail with the
questions Saturday 8th April 2006. The intention was to giveone week response time,
however I noticed later (on Sunday 16th April) that I had madean error and written
Saturday 9th April. Since some of the receivers then probably interpreted that to be
only one day response time and because of the very low response I therefore resent the
questions with a new response period to those that had not answered. Only 5 persons
answered in the first round and 2 persons answered in the second round.

See appendix A on page 61 for the full sett of complete questions.

on LKML for many years, but is currently on a break). A modification of mboxstats was necessary
because out of the box it crashed when processing the janitormailing list. The janitor mailing list
archive is processed by pipermail which strips out most of the mail headers and mboxstats was not
happy with that. It was however not a big problem to comment out the code that crashed (report of most
busy day of the week).

3As of writing this today, exactly one week before the finish deadline, I noticed that the headers are
not stripped out in the complete all-time archive, only in the monthly archives which I happened to use
excursively. . .

39

4.2. INTERVIEW RESPONSES

Q1, using Linux less than one year, 3, 3.5, 4, 10, 11, 12 years

Q2, programming 3, 3.5, 4-5, 9, 14, 15, 18 years

Q3, when involved 2 persons 3 months ago, 1 person 2 years ago

3 persons 3 years ago and one 3-4 years ago

Q4a, more/less involved 3 less, 2 more and 1 unchanged

Q5, other open source projects 2 no, the others varied from most effort

in KJ to most effort elsewhere

Q7, manual code reviews 1 seldom, 3 sometimes, 2 often, 1 always

Q8, post corrections everyone had done this

Q9, coding style knowledge 2 basic, 2 between basic and solid, 3 solid

Q10, start time estimate estimates from 1-2 weeks up till 1-2 months

Q11, Detailed knowledge about

submitted patch handling 2 no, 2 mostly, 3 yes

Q12, number of submitted 0-10: 3

patches (through KJ) 20-30: 1

40-50: 1

ca 100: 1

ca 200: 1

Q13a, accepted notification 1 always, 2 sometimes, 1 often, 1 don’t know

Q13b, rejected notification 2 always, 2 sometimes, 1 seldom, 1 don’t know

Q15, age 20 years: 1

23 years: 2

28 years: 1

29 years: 1

32 years: 1

Q16, male/female all male

Q17, nationality mostly from Europe, everyone

from different countries

Q18, educational degree 3 of approximately high school

1 of Bachelor

3 of Master (finished or studying)

Q19 working as a programmer 3 months, 9 and 10 years

40

4.3. SUMMARY

Q3, why involved in KJ Not everyone answered on why they got involved,
but the answers were a combination of personal in-
terest in learning (programming, operating system
etc) and that it was a way to contribute back to the
community.

Q4b, why more/less involvedFor those less involved than before lack of time
was common. For those more active this was trig-
gered by being more confortable with contributing.

Q6, tools used It was very common to use the normal build sys-
tem and look into warning from the compiler or
use specific make targets (likerandconfig or
namespacecheck). Some used various scripts
and unix utilities (find, sed, awk, etc). Also
looking into the result produced by other external
projects (like ICC4 and Coverity) was done.

Q14, improve KJ Common here was a wish for clearer TODO list
(perhaps with some more details on the work
items) and better feedback on patches.

When working with the responses one person from the top 20 group was noticed to also
be in the list of persons newly started. The email entries hadbeen slightly different and
therefore not detected before. The 7 replies fell into the following strata: 1 no longer
active, 3 newly started and 5 from top 20.

4.3 Summary

With just 7 answers it is difficult to draw any statistical significant conclusions but
some characteristics can be made. The results from the interviews are discussed more
in chapter 6 on page 51.

• The age ranged from 20 to 32. Some of them was working with programming as
a profession (for as long as 9-10 years) but others were not. The education was
spread from high school equivalent up till Master.

• The persons was mainly from Europe.
• The experience with Linux was widely spread, ranging from under one year up

till twelve years.
• Everyone started programming before they started using Linux, or at the same

time.
• The participation in other open source projects was spread,ranging from not

participating in other projects to being a core developer inanother project (larger

4Intel C Compiler

41

4.3. SUMMARY

than the janitor project).
• The number of patches submitted through the Linux Kernel Janitor Project var-

ied as well, ranging from a one digit number to a couple of hundreds. One note-
worthy fact however was that some the participants had submitted patches to the
kernel in other ways (for instance via the -mm tree) and had mainly contributed
that way (with estimates of up till around 1000 patches).

42

Chapter 5

Analysis of janitor patches

As mentioned in chapter 2.2.3 on page 22, patches are an essential part of the develop-
ment. In this chapter I will look into some quantitative properties of the patches that
are produced by the Linux Kernel Janitor Project.

5.1 Possible quantitative aspects that could be analysed

The following is a list of quantitative properties that could be investigated. With the
limited time I have available I will of course not look into all of those.

• Frequency of patches, added/removed/total over time.
• Average size of patches in terms of lines and of number of affected files.
• Classify type of change and show distribution of corrective/adaptive/perfective/-

preventive change.
• Time from a patch is

– posted to it is included in the kernel janitor patchset.
– included in the kernel janitor patchset to it is included in the -mm tree.
– included in the -mm tree to it is included in the official Linus’ tree.

(these points corresponds to arrows 6 + 7, 8 and 9 in Figure 3.1on page 30)
• How many patches are reworked and posted in an updated version.
• How many patches are rejected.
• Which parts of the kernel the janitor patches modify.
• Frequency of releases.
• Dependencies between patches,

– Sequential dependency.
– Functional dependency.

I will focus the analysis in this chapter to only look at the evolution of the janitor
patchset, and not the interaction with the main kernel. Thisis because I want to focus
on the work done by the janitors.

43

5.2. FREQUENCY AND SIZE

For some of the properties it would probably be insterestingto not just look at the
janitor patches in isolation but to also compare with the corresponding numbers from
the ordinary kernel development as well. Unfortunately I will not have time for that.

5.2 Frequency and size

Each patchset release is stored in a correspondingly subdirectory at the ftp server. The
patches are available as both one combined file as well as all the individual patches in
a separate file. These were downloaded and different analysis was made.

5.2.1 Frequency

Table 5.1 on page 48 gives a full list of the number of added andremoved patches,
the total number of patches as well as the number patches not changed in each release.
These numbers are also drawn graphically over time in Figure5.1 which shows total
and unchanged, Figure 5.2 on the following page which shows added and Figure 5.3
on page 46 which shows the number of removed patches.

 0

 50

 100

 150

 200

 250

 300

 350

 400
2.6.10-kj
2.6.10-bk13-kj

2.6.11-rc2-kj
2.6.11-kj
2.6.12-rc1-kj
2.6.12-rc2-kj
2.6.12-rc3-kj
2.6.12-rc4-kj
2.6.12-rc5-kj
2.6.12-kj
2.6.13-rc1-kj

2.6.13-rc2-kj

2.6.13-rc3-kj
2.6.13-rc4-kj
2.6.13-git4-kj1

2.6.14-rc1-kj1

2.6.14-rc2-kj1

2.6.14-rc3-kj1

2.6.14-rc4-kj1
2.6.14-kj1

2.6.15-rc5-kj1

2.6.16-rc1-kj1

N
um

be
r

of
 p

at
ch

es

Releases

Number of patches in Linux kernel janitor patchsets

20
04

-1
2-

01
20

05
-0

1-
01

20
05

-0
2-

01
20

05
-0

3-
01

20
05

-0
4-

01
20

05
-0

5-
01

20
05

-0
6-

01
20

05
-0

7-
01

20
05

-0
8-

01
20

05
-0

9-
01

20
05

-1
0-

01
20

05
-1

1-
01

20
05

-1
2-

01
20

06
-0

1-
01

20
06

-0
2-

01

Total number of patches
Unchanged patches

Figure 5.1: Total number of patches and number of unchanged patches

There are two spikes in the graphs. The first one at release 2.6.11-kj is caused by the
fact that this release just had a large amount of patches added. The second one, at
release 2.6.13-git4-kj1, is triggered by a renaming of all the patch files. From the an-
nouncement to that release:I cleaned up changelogs and subject lines. Minor tweaking

44

5.2. FREQUENCY AND SIZE

and collapsing of patches into bigger ones was also made. Therefore all the previous
existing patches appears to be removed and the new total appears as all just added in
this release.

Ignoring the two releases 2.6.10-kj and 2.6.13-git4-kj1 inTable 5.1 on page 48 gives
arithmetic mean average of 35.8, 34.2 and 209.05 for added, removed and total number
of patches. The median is 21.5, 15 and 196.5 respectively. Soa typical Linux Kernel
Janitor Project patchset release consists of around 200 patches and typically 10-15%
of the patches are replaced from release to release.

When patches are removed from one patchset release to the next this might be due to
different reasons. The most important reasons are given in the following list. No effort
has been spent on determining the exact reason for any of the individual patches.

• integrated into the -mm tree.
• rejected for some reason.
• the target that a patch modifies has changed so that the patch does not

– apply cleanly (possibly sent back to the creator for an update).
– make sense any longer (for instance if the function modified is removed).

• the same modification is already done elsewhere independently.

 0

 50

 100

 150

 200

 250
2.6.10-kj
2.6.10-bk13-kj

2.6.11-rc2-kj
2.6.11-kj
2.6.12-rc1-kj
2.6.12-rc2-kj
2.6.12-rc3-kj
2.6.12-rc4-kj
2.6.12-rc5-kj
2.6.12-kj
2.6.13-rc1-kj

2.6.13-rc2-kj

2.6.13-rc3-kj
2.6.13-rc4-kj
2.6.13-git4-kj1

2.6.14-rc1-kj1

2.6.14-rc2-kj1

2.6.14-rc3-kj1

2.6.14-rc4-kj1
2.6.14-kj1

2.6.15-rc5-kj1

2.6.16-rc1-kj1

N
um

be
r

of
 p

at
ch

es

Releases

Number of patches in Linux kernel janitor patchsets

Added patches

Figure 5.2: Added number of patches

45

5.2. FREQUENCY AND SIZE

5.2.2 Average size

Summing all the added patches numbers from Table 5.1 on page 48 plus the initial 211
gives a total of 1165 unique patches. However when counting the unique number of
filenames from the combined series1 files2 I only got 1162. These files were also the
basis for generating Table 5.1 on page 48 so I suppose that this means that a very few
filenames have been reused.

The vast majority (90%) of the patches did only modify one single file. A complete
overview is given in Table 5.2 on page 49. The most intrusive patch which modifies
255 files isspace_before_n_removal.patch , but this is quite exceptional.
The second most intrusive patch is down to “just“ 43 files. The0 files entry in the table
is 2.6.11-rc2-kj/split/msleep-drivers_telephony_ixj.pa tch
which is corrupt and does not contain a patch.

A particular interesting finding was the following. The accumulated number of lines
added in the unique set of patches is 29200 lines. The corresponding number of deleted
lines is 50561. So this means that the net contribution from the Linux Kernel Janitor
Project to the kernel quite clearly is a reduction of code.

Looking at the individual distribution of lines added/removed reveals that 405 (35%)

1A seriesfile is a file containing a list of all the patches in a patchset which is created and needed
when using the tool quilt,http://savannah.nongnu.org/projects/quilt .

2I had to manually correct a few of the series files. In some cases quilt had missed including some
files while for one release the series file listed non-existing files.

 0

 50

 100

 150

 200

 250

2.6.10-kj
2.6.10-bk13-kj

2.6.11-rc2-kj
2.6.11-kj
2.6.12-rc1-kj
2.6.12-rc2-kj
2.6.12-rc3-kj
2.6.12-rc4-kj
2.6.12-rc5-kj
2.6.12-kj
2.6.13-rc1-kj

2.6.13-rc2-kj

2.6.13-rc3-kj
2.6.13-rc4-kj
2.6.13-git4-kj1

2.6.14-rc1-kj1

2.6.14-rc2-kj1

2.6.14-rc3-kj1

2.6.14-rc4-kj1
2.6.14-kj1

2.6.15-rc5-kj1

2.6.16-rc1-kj1

N
um

be
r

of
 p

at
ch

es

Releases

Number of patches in Linux kernel janitor patchsets

Removed patches

Figure 5.3: Removed number of patches

46

http://savannah.nongnu.org/projects/quilt

5.3. MAINTENANCE TYPES

of the patches removes more lines than they add while 432 (37%) of the patches does
not change the number of lines.

5.3 Maintenance types

5.3.1 Distribution of maintenance types for janitor patches

Due to time constraints I did not have time to classify all the1162 Linux Kernel Janitor
Project patches. I selected one of the patchset releases, 2.6.12-rc3-kj, which contained
197 patches and analysed those. There was no specific reason for choosing this partic-
ular release other than when looking at Figure 5.1 on page 44 this release looks rather
average and is not near the edges.

The results of the analysis of release 2.6.12-rc3-kj are given in Table 5.3 on page 50.
This is a little weak result since it is not that many patches that was examined, but still
I think the trends are representative. Since the purpose of the Linux Kernel Janitor
Project isfixing up unmaintained code and doing other cleanupsa high degree of
corrective and preventive maintenance is to be expected.

The original Lientz, Swanson and Tompkins study in 1978 found that 17.4% of main-
tenance effort was categorized as corrective, 18.2% as adaptive, 60.3% as perfective
while 4.1% was categorized as other. In [13] these figures areshown to be quite inac-
curate and the numbers are found to be in the following range for the Linux kernel:

perfective 20-55%

adaptive <1%

corrective 40-80%

Since this study does not include perfective maintenance the results are not directly
comparable. Still, comparing the result from the Linux Kernel Janitor Project patches
reveals that the project has much less perfective maintenance, but this should not come
as a surprise since the main focus of the Linux Kernel JanitorProject is not develop-
ment of new functionality.

Note that my definition of correction does not necessarily match that study. See ap-
pendix B on page 64 for which criteria I used.

47

5.3. MAINTENANCE TYPES

Release Date Added Removed Unchanged Total

Patches Patches Patches Patches

2.6.10-kj 2004-12-24 0 0 0 211

2.6.10-bk13-kj 2005-01-10 26 65 146 172

2.6.11-rc2-kj 2005-01-22 66 42 130 196

2.6.11-kj 2005-03-02 183 24 172 355

2.6.12-rc1-kj 2005-03-18 53 201 154 207

2.6.12-rc2-kj 2005-04-05 23 44 163 186

2.6.12-rc3-kj 2005-04-24 14 3 183 197

2.6.12-rc4-kj 2005-05-13 10 11 186 196

2.6.12-rc5-kj 2005-05-26 20 4 192 212

2.6.12-kj 2005-06-19 11 6 206 217

2.6.13-rc1-kj 2005-06-29 24 69 148 172

2.6.13-rc2-kj 2005-07-06 17 5 167 184

2.6.13-rc3-kj 2005-07-13 70 14 170 240

2.6.13-rc4-kj 2005-07-29 17 16 224 241

2.6.13-git4-kj1 2005-09-03 238 241 0 238

2.6.14-rc1-kj1 2005-09-13 4 51 187 191

2.6.14-rc2-kj1 2005-09-21 2 9 182 184

2.6.14-rc3-kj1 2005-10-01 2 3 181 183

2.6.14-rc4-kj1 2005-10-11 12 4 179 191

2.6.14-kj1 2005-10-28 24 2 189 213

2.6.15-rc5-kj1 2005-12-05 78 87 126 204

2.6.16-rc1-kj1 2006-01-18 60 24 180 240

Table 5.1: Number of patches in Linux Kernel Janitor Projectpatchset releases

Table explanation: Release 2.6.10-kj contains 211 patches. Release 2.6.10-bk13-kj
has a total of 172 patches, where 26 of those are new compared to 2.6.10-kj. The
difference are those removed, i.e.211 + 26 − 65 = 172

48

5.3. MAINTENANCE TYPES

Number of files modified Number of patches

by a given patch with this property

0 1

1 1042

2 49

3 18

4 12

5 7

6 3

7 5

8 1

10 1

12 1

13 6

15 1

16 1

18 4

21 1

24 1

25 1

31 1

33 1

34 1

35 1

40 1

43 1

255 1

Table 5.2: Number of files changed in patches

49

5.3. MAINTENANCE TYPES

Type Number of times

invalid 1 (0.5%)

preventive 91 (46%)

perfective 1 (0.5%)

adaptive 1 (0.5%)

corrective 102 (52%)

See appendix B on page 64 for criterias used for classification.

Table 5.3: Distribution of maintenance types in patchset release 2.6.12-rc3-kj

50

Chapter 6

Discussion

6.1 Weaknesses and uncertainties in the results

With so few answers to the interview the information extracted from the answers is
statistically weak.

The result that 90% of the patches only modify one file might besomewhat skewed
in that in that a large change affecting many files might have been split into several
patches. In fact if the janitors perform correction of errorpatterns, which they do, this
will have a tendency to create patches that modify many files.When so many files are
single file patches this is most likely because such many-files-patches are split up.

This makes it difficult to compare patches without knowing ifa patch is

• a stand alone patch
• part of a series of patches but can be considered individually (typically API

conversion)
• part of a set of patches which are dependent on each other

No effort in determining dependencies between patches has been made for this thesis.

Since there is much “guest” traffic on the Linux Kernel Janitor Project mailing list it
was very difficult to try to guess which persons that were janitors. The best solution
had been if historical mailing list subscriber informationhad been available.

51

6.2. HOW IS JANITOR WORK DIFFERENT FROM NORMAL
DEVELOPMENT?

6.2 How is janitor work different from normal devel-
opment?

In contrast to normal development which is about adding features (to adapt to Lehman’s
first law of software evolution,“E-type systems must be continually adapted else they
become progressively less satisfactory”), maintenance is about preserving features.
While traditional maintenance perhaps has been focused on fixing thing that has bro-
ken and “if it aint broke, don’t fix it”, janitor maintenance is more about pro-active
actions with a “fix it before it breaks” attitude.

6.3 Starting your own janitor project?

A project that works in parallel with normal development reducing the code size1 while
still keeping the same functionality or even improving it, that ought to sound attractive
from a management perspective. The attraction will be a little for open source and
proprietary software, so these will be covered separately in the following sections.

If the developers have time to do the janitorial cleanup themselves there will be no
need for a janitor project. This is hardly the case normally,so almost any project
would benefit from the assistance of some janitors. The size of a project will probably
have to be above small in order to maintain a longterm janitoractivity.

If a project have say just one or two developers, then if an additional person joins the
project offering to do janitor tasks he or she is likely to endup as a co-developer more
than as a janitor pretty fast. The janitors will need mentorship and partial participation
from at least some of the developers, and if the project is small this will then probably
include most of the developers.

On the janitor side I do not think that there is a lower limit. I.e. a medium sized project
would probably work well and benefit even with just one personworking as a janitor.

6.3.1 Open source projects

For open source projects the cost involved in adding janitors to the project will proba-
bly only be a small management overhead. The main project will most likely already
have a mailing list and website so adding that for the janitors should be simple, or

1There is of course a theoretical possibility that the reduced code is more complex and thus harder
to maintain, but this is not very likely since

• The janitors are doing only maintenance and they would do themselves a disfavor by changing
code to be less maintainable.

• The developers would be reluctant to accepting patches fromthe janitors that they would con-
sider reduced the maintainability.

52

6.3. STARTING YOUR OWN JANITOR PROJECT?

in any case the janitors could create their own project on sourceforge or similar. The
initial investment should therefore be neglectible. The continuously running costs will
be the following

• maintain2 or help maintaining a list of janitor tasks.
• Answer questions from the janitors.
• Integrate patches.
• Provide feedback for patches integrated or rejected.

but the benefits from the janitor work will most likely be valueable enough that this
will be a good investment. I think the following list will be asufficient checklist for
starting a janitor sub-project in open source projects:

2 The size of the project is medium or large.
2 Someone is willing to be janitors.

For small projects it will very likely be beneficial to set up alist with janitor tasks to
attract new developers. But it will not make sense to run the janitor activity separately.

6.3.2 Projects developing proprietary software

This study has been of the Linux kernel, a large open source project for which janitor
activity obviously is beneficial, the more the better. Whilejanitor activity obviously
will be good for the quality for development of closed, proprietary source code as well,
it is not clear in what amount this will be most profitable. Will allocating 1% of the
resources to do janitor work be the optimal effort? Or 5%? Or 10%? This will be
highly dependent on both the current quality status and the given quality requirements.

Open source projects typically have a”It’s ready when it’s ready“philosophy or more
specifically, given the old saying”Time, Quality, Cost – Pick any two“the developers
might choose to pick only one – quality3 – and let both time and cost4 slide.

This is in contrast with most proprietary projects where thequality should be just ”good
enough“ (this is discussed in [32]) and time to market often is essential. The cost of
being delayed can easily exceed the cost of development at the end of the project.

So for a commercially developed project any activity like source code janitor activity
is an upfront investment that must have an expected return ofvalue in increased sales
and/or reduced maintenance cost.

2The janitors could very well maintain the list themselves but will at least require input and co-
operation from the main project.

3”Nobody knows when a kernel will be released, because it’s released according to perceived bug
status, not according to a preconceived timeline.“– Andrew Morton

4Even though many open source projects are done for free by volunteers in their spare time, the
effort invested is certainly a cost.

53

6.4. HOW DO JANITOR PARTICIPANTS COMPARE TO OTHER OPEN
SOURCE DEVELOPERS?

The initial investment will be neglectible, the main cost inthis case will be the work
effort of the janitors. The question will be more about the degree of janitor work than
yes/no.

2 The expected return value of such and such amount of janitor work
will be greater than the cost.

6.4 How do janitor participants compare to other open
source developers?

The developers that answered the interview questions in this study had among others
the following properties:

• age between 20 and 32 years
• all male
• none were from the same country
• 3 of 7 working as programmers (0.25, 9 and 10 years)

Other studies of open source developers have been made, one of them is the Boston
Consulting Group/OSTG Hacker Survey, [33] which surveyed 684 hackers participat-
ing on software projects on SourceForge.net. The results from this thesis are almost
an exact match with the results from that survey:

• 70% between 22 and 37 years
• 98% male
• "open source is a global enterprise"
• 45% working as programmers, with 11 years average experience

So this means that the kernel janitor participants are not very different from other open
source developers. While this discovery might be describedas non-shocking, it implies
that there is nothing particular about source code janitor activity that is limited to some
subset of developers and that janitor activity should be possible to practice universally
by people working with software development.

6.5 What quality mechanisms are used?

How does Linux developers decide on what patches to accept and what to reject? As
usual for open source projects, this is highly informal. In the article ”Release criteria
for the Linux kernel“, [34] the author states that

Analysis of the release criteria for the Linux kernels showsa process
which is dynamic and whose nature depends on the developer incharge of
the administration of a particular version.

54

6.6. SUGGESTIONS FOR IMPROVEMENTS

One of the criteria that are used for accepting patches is that the patch should only do
one thing. Patches which contains several different changes will almost automatically
be rejected. Not everyone finds it easy to work this way but thekernel developers are
unlikely to loosen this requirement. See [35] for a summary of the discussion that
arose around attempts to submit large IrDA changes.

Another mechanism is to pass all changes through one committer. In Wine, all patches
will pass through Alexandre Julliard. In the case of Linux everything passes through
Linus Torvalds but most of the patches will even have passed through one or several
of the other kernel developers on their way to the official kernel.

The article ”Teaching the Old Dog, a lesson in code review from the open source
community“, ([36]) tells a story of a team that started working with Wine and had to
deal with adjusting into doing things like they were done in Wine.

But we hadn’t worked on any Open Source projects before. I hadn’t ex-
pected an Open Source project to be quite so rigidly controlled: I’d imag-
ined the exact opposite. Unadulterated chaos. I’d picturedmyself having
to wade through reams of crap code trying to identify useful features, like
separating a bowl of party mix into its core components.

Instead, I – and my team – had encountered a concrete system asmature
as any I’d ever seen.

There is nowhere to hide when all patches are submitted publicly and everyone has a
chance of reviewing and make comments. If your patch has weaknesses others will
point them out. Maybe even in a non-diplomatic way; ”crap“ isa term that sometimes
is used to describe other peoples code on the LKML (but this isnot used on the mailing
list of the Linux Kernel Janitor Project).

For janitor patches the patches will first be posted for public review on the mailing list,
then the Linux Kernel Janitor Project leader acts like a single committer when accept-
ing patches into the janitor patchset. The patches then mustpass Andrew Morton’s
acceptance in order to slip into the -mm tree. And finally the patch must be accepted
by Linus Torvalds in order to get into the official kernel.

6.6 Suggestions for improvements

While the Linux Kernel Janitor Project is working quite well, there is always room for
improvement.

55

6.6. SUGGESTIONS FOR IMPROVEMENTS

6.6.1 Better feedback on patches for new janitors

Several of the janitors interviewed expressed that the feedback on patches submitted
could be improved. To improve this I would suggest that new janitors always receive
an accept/reject email for patches until X patches have beenaccepted. This could be
implemented by adding a new tag to the patch

JanitorPatchID: Some.Janitor@example.com 001 v0

where the patch numbers are specific to each author which keeps track his or her own
numbers. This will then also have a positive bonus effect in that most newcomers then
would have as a goal to reach at least X patches accepted.

6.6.2 New logo

To create more publicity about the Linux Kernel Janitor Project, perhaps a contest for
creating a logo could be made? Currently the janitor websitehas the following picture

which is just a standard tux5 with a small broom added. A specific logo could perhaps
strengthen the identity and increase the publicity of the Linux Kernel Janitor Project.

5 Tux is the “official” Linux mascot, picture created by Larry Ewing,
http://www.isc.tamu.edu/~lewing/linux/ .

56

http://www.isc.tamu.edu/~lewing/linux/

Chapter 7

Conclusion

7.1 Results

The most important result from this study was perhaps the discovery that janitor activ-
ity reduces the amount of code while keeping or improving thefunctionality.

A summary of the most important items are that janitor activity

• has a net contribution of reduction of code
• improves quality
• corrects bugs
• recruits developers to normal development
• has a process that is independent of tools

The product produced by the Linux Kernel Janitor Project is aset of patches which are
maintained as a patchset release consists of around 200 patches where± 10-15% are
replaced from one release to the next release.

The high level of guest traffic on the Linux Kernel Janitor Project mailing list (as
seen in Figure 3.2 on page 32) indicates that the Linux KernelJanitor Project is very
cooperative and not just some outside part of the development.

7.2 Recommendation

To make the initial period a better experience for newcomersI suggest that they are
always given feedback on patches they submit until a certainlevel of skills is achieved.

The findings in this report indicate that additional projects can benefit from including a
Janitor activity, both for maintaining the software and formaintaining the programmers
skills in the organisation.

57

Bibliography

[1] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W.M. Turski, “Metrics and laws of
software evolution - the nineties view,”metrics, vol. 00, p. 20, 1997.

[2] M. W. Godfrey and Q. Tu, “Evolution in open source software: A case study,” inICSM ’00:
Proceedings of the International Conference on Software Maintenance (ICSM’00). Washington,
DC, USA: IEEE Computer Society, 2000, p. 131.

[3] J. Tran, M. Godfrey, E. Lee, and R. Holt, “Architectural repair of open source software,” 2000.
[Online]. Available: citeseer.ist.psu.edu/tran00architectural.html

[4] P. G. Armour, “The business of software: the laws of software process,”Communications of the
ACM, vol. 44, no. 1, pp. 15–17, 2001.

[5] C. Hayne, “Software engineering for usability,” prepared for General DataComm’s Multimedia
R&D Centre, Sept. 1996. [Online]. Available: http://hayne.net/HCI/Seu/SE_for_usability.html

[6] S. W. Ambler. (2006, Apr.) Choose the right software method for the job. [Online]. Available:
http://www.agiledata.org/essays/differentStrategies.html

[7] Wikipedia, “Extreme programming – wikipedia, the free encyclopedia,” 2006, [Online;
accessed 21-May-2006]. [Online]. Available: http://en.wikipedia.org/w/index.php?title=Extreme_
Programming&oldid=54064678

[8] E. B. Swanson, “The dimensions of maintenance,” inICSE ’76: Proceedings of the 2nd interna-
tional conference on Software engineering. Los Alamitos, CA, USA: IEEE Computer Society
Press, 1976, pp. 492–497.

[9] R. S. Pressman,Software Engineering - A Practitioner’s Approach, ser. Computer Science Series.
McGraw-Hill International Editions, 1987.

[10] E. Tryggeseth, “Support for understanding in softwaremaintenance,” 1996. [Online]. Available:
citeseer.ist.psu.edu/tryggeseth97support.html

[11] B. A. Kitchenham, G. H. Travassos, A. von Mayrhauser, F.Niessink, N. F. Schneidewind,
J. Singer, S. Takada, R. Vehvilainen, and H. Yang, “Towards an ontology of software mainte-
nance,”Journal of Software Maintenance, vol. 11, no. 6, pp. 365–389, 1999.

[12] E. J. Barry, C. F. Kemerer, and S. A. Slaughter, “Toward adetailed classification scheme for
software maintenance activities,” inProceedings Of the 5th Americas Conference on Information
Systems, Aug. 1999.

[13] S. R. Schach, B. Jin, L. Yu, G. Z. Heller, and J. Offutt, “Determining the distribution of mainte-
nance categories: Survey versus measurement,”Empirical Softw. Engg., vol. 8, no. 4, pp. 351–365,
2003.

[14] Wikipedia, “Mentor — wikipedia, the free encyclopedia,” 2006, [Online; accessed 10-May-2006].
[Online]. Available: http://en.wikipedia.org/w/index.php?title=Mentor&oldid=51291039

58

citeseer.ist.psu.edu/tran00architectural.html
http://hayne.net/HCI/Seu/SE_for_usability.html
http://www.agiledata.org/essays/differentStrategies.html
http://en.wikipedia.org/w/index.php?title=Extreme_Programming&oldid=54064678
http://en.wikipedia.org/w/index.php?title=Extreme_Programming&oldid=54064678
citeseer.ist.psu.edu/tryggeseth97support.html
http://en.wikipedia.org/w/index.php?title=Mentor&oldid=51291039

BIBLIOGRAPHY

[15] C. King. Mentoring and being mentored on the technologytrack. [Online]. Available: http://
developers.sun.com/toolkits/articles/mentor.html

[16] J. H. Holloway. The benefits of mentoring. [Online]. Available: http://www.nea.org/mentoring/
resbene050603.html

[17] S. E. Sim and R. C. Holt, “The ramp-up problem in softwareprojects: A case study of how
software immigrants naturalize,” inInternational Conference on Software Engineering, 1998, pp.
361–370. [Online]. Available: citeseer.ist.psu.edu/5440.html

[18] K. L. Stout, “Reclusive linux founder opens up,”Cable News Network, may 2006. [Online].
Available: http://edition.cnn.com/2006/BUSINESS/05/18/global.office.linustorvalds/

[19] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, andY. Ye, “Evolution patterns of
open-source software systems and communities,” inProceedings of the International Workshop
on Principles of Software Evolution, ser. session 4. New York, NY, USA: ACM Press, May
2002, pp. 76–85. [Online]. Available: http://portal.acm.org/citation.cfm?id=512055&jmp=cit&
dl=portal&dl=ACM

[20] C. Gacek and B. Arief, “The many meanings of open source,” IEEE Software, vol. 21, no. 1, pp.
34–40, 2004.

[21] J. Barr, “Perceptions of world domination,” http://www.linuxworld.com/linuxworld/lw-2000-
03/lw-03-vcontrol_4.html, Mar. 2000, also avaliable at http://xent.com/pipermail/fork/2002-
January/008429.html. [Online]. Available: http://web.archive.org/web/*/http://www.linuxworld.
com/linuxworld/lw-2000-03/lw-03-vcontrol_4.html

[22] Linus gives bitkeeper a test run. [Online]. Available:http://www.kerneltraffic.org/kernel-traffic/
kt20020211_153_print.html#9

[23] (2004, May) Bitkeeper after the storm - part 1. [Online]. Available: http://software.newsforge.
com/software/04/05/10/1235236.shtml?tid=151&tid=2&tid=82&tid=94

[24] Linus no longer using bitkeeper; creates ’git’ replacement. [Online]. Available: http://www.
kerneltraffic.org/kernel-traffic/kt20050426_307.html#5

[25] Wikipedia, “Janitor – wikipedia, the free encyclopedia,” 2006, [Online; accessed 19-May-2006].
[Online]. Available: http://en.wikipedia.org/w/index.php?title=Janitor&oldid=53078581

[26] ——, “Confidence interval – wikipedia, the free encyclopedia,” 2006, [accessed 18-April-
2006]. [Online]. Available: http://en.wikipedia.org/w/index.php?title=Confidence_interval&
oldid=48268729

[27] E. Klarreich, “Toss out the toss-up: Bias in heads-or-tails,” Science News, vol. 165, no. 9, p. 131,
2004. [Online]. Available: http://www.sciencenews.org/articles/20040228/fob2.asp

[28] Sample size calculator. [Online]. Available: http://www.dxresearch.net/index.cfm?fa=resources.
sample

[29] Sample size calculator. [Online]. Available: http://www.gensurvey.com/resources05.asp

[30] Sample size calculator. [Online]. Available: http://www.macorr.com/ss_calculator.htm

[31] mboxstats. [Online]. Available: http://www.vanheusden.com/mboxstats/

[32] J. Bach, “The challenge of "good enough" software,” 2003,
http://citeseer.ist.psu.edu/639234.html. [Online]. Available: http://www.satisfice.com/articles/
gooden2.pdf

[33] The boston consulting group/ostg hacker survey. Http://www.ostg.com/bcg/. [Online]. Available:
http://www.ostg.com/bcg/BCGHACKERSURVEY-0.73.pdf

[34] D. G. Glance, “Release criteria for the linux kernel,”First Monday, vol. volume 9, no. number 4,
Apr. 2004. [Online]. Available: http://firstmonday.org/issues/issue9_4/glance/index.html

59

http://developers.sun.com/toolkits/articles/mentor.html
http://developers.sun.com/toolkits/articles/mentor.html
http://www.nea.org/mentoring/resbene050603.html
http://www.nea.org/mentoring/resbene050603.html
citeseer.ist.psu.edu/5440.html
http://edition.cnn.com/2006/BUSINESS/05/18/global.office.linustorvalds/
http://portal.acm.org/citation.cfm?id=512055&jmp=cit&dl=portal&dl=ACM
http://portal.acm.org/citation.cfm?id=512055&jmp=cit&dl=portal&dl=ACM
http://web.archive.org/web/*/http://www.linuxworld.com/linuxworld/lw-2000-03/lw-03-vcontrol_4.html
http://web.archive.org/web/*/http://www.linuxworld.com/linuxworld/lw-2000-03/lw-03-vcontrol_4.html
http://www.kerneltraffic.org/kernel-traffic/kt20020211_153_print.html#9
http://www.kerneltraffic.org/kernel-traffic/kt20020211_153_print.html#9
http://software.newsforge.com/software/04/05/10/1235236.shtml?tid=151&tid=2&tid=82&tid=94
http://software.newsforge.com/software/04/05/10/1235236.shtml?tid=151&tid=2&tid=82&tid=94
http://www.kerneltraffic.org/kernel-traffic/kt20050426_307.html#5
http://www.kerneltraffic.org/kernel-traffic/kt20050426_307.html#5
http://en.wikipedia.org/w/index.php?title=Janitor&oldid=53078581
http://en.wikipedia.org/w/index.php?title=Confidence_interval&oldid=48268729
http://en.wikipedia.org/w/index.php?title=Confidence_interval&oldid=48268729
http://www.sciencenews.org/articles/20040228/fob2.asp
http://www.dxresearch.net/index.cfm?fa=resources.sample
http://www.dxresearch.net/index.cfm?fa=resources.sample
http://www.gensurvey.com/resources05.asp
http://www.macorr.com/ss_calculator.htm
http://www.vanheusden.com/mboxstats/
http://www.satisfice.com/articles/gooden2.pdf
http://www.satisfice.com/articles/gooden2.pdf
http://www.ostg.com/bcg/BCGHACKERSURVEY-0.73.pdf
http://firstmonday.org/issues/issue9_4/glance/index.html

BIBLIOGRAPHY

[35] Big irda changes accepted into 2.4; linus on patch submissions. [Online]. Available:http://www.
kerneltraffic.org/kernel-traffic/kt20001120_94.html#9

[36] S. Lussier, “Teaching the old dog, a lesson in code review from the open source community,”
Software Quality, vol. Volume 1, no. No. 1, pp. 14–18, 2004. [Online]. Available: http://www.
osqa.org/documents/sq_1_1.pdf

[37] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,Refactoring: Improving the Design of
Existing Code. Addison-Wesley Professional, June 1999, iSBN: 0201485672.

[38] P. Weaver,Success in Your Project: A Guide to Student System Development Projects. FT Prentice
Hall, Dec. FT Prentice Hall, iSBN: 0273678094.

[39] The linux kernel janitor project home page. [Online]. Available: http://janitor.kernelnewbies.org/

[40] The research process. [Online]. Available: http://www.ryerson.ca/~mjoppe/ResearchProcess/

[41] (2005) The boston consulting group/ostg hacker survey.
Http://www.ostg.com/bcg/BCGHACKERSURVEY-0.73.pdf. [Online]. Available: http://
www.ostg.com/bcg/

[42] Wikipedia, “Andrew morton – wikipedia, the free encyclopedia,” 2006, [Online; accessed
4-May-2006]. [Online]. Available: http://en.wikipedia.org/w/index.php?title=Andrew_Morton_
%28computer_p%rogrammer%29&oldid=48607334

[43] ——, “Linus torvalds – wikipedia, the free encyclopedia,” 2006, [Online; accessed 4-May-2006].
[Online]. Available: http://en.wikipedia.org/w/index.php?title=Linus_Torvalds&oldid=51135601

[44] ——, “List of tools for static code analysis – wikipedia,the free encyclopedia,” 2006, [Online;
accessed 17-May-2006]. [Online]. Available: http://en.wikipedia.org/w/index.php?title=List_of_
tools_for_static_code_analysis&oldid=53704047

[45] H. Løvdal, “Analysis and description of open source janitor projects,” Master’s thesis, Agder
University College, May 2006. [Online]. Available: http://student.grm.hia.no/master/ikt06/ikt590/
g33/

60

http://www.kerneltraffic.org/kernel-traffic/kt20001120_94.html#9
http://www.kerneltraffic.org/kernel-traffic/kt20001120_94.html#9
http://www.osqa.org/documents/sq_1_1.pdf
http://www.osqa.org/documents/sq_1_1.pdf
http://janitor.kernelnewbies.org/
http://www.ryerson.ca/~mjoppe/ResearchProcess/
http://www.ostg.com/bcg/
http://www.ostg.com/bcg/
http://en.wikipedia.org/w/index.php?title=Andrew_Morton_%28computer_p% rogrammer%29&oldid=48607334
http://en.wikipedia.org/w/index.php?title=Andrew_Morton_%28computer_p% rogrammer%29&oldid=48607334
http://en.wikipedia.org/w/index.php?title=Linus_Torvalds&oldid=51135601
http://en.wikipedia.org/w/index.php?title=List_of_tools_for_static_code_analysis&oldid=53704047
http://en.wikipedia.org/w/index.php?title=List_of_tools_for_static_code_analysis&oldid=53704047
http://student.grm.hia.no/master/ikt06/ikt590/g33/
http://student.grm.hia.no/master/ikt06/ikt590/g33/

Appendix A

Interview Questions

A.1 Connection Between Interview Questions and Re-
seach Questions

The mapping between the questions asked in the interview andthe reseach questions
are shown in Figure A.1 on page 63.

A.2 Questions

1. How long have you been using Linux?

2. How long have you been programming?

3. Why and when did you get involved in the Linux kernel janitor project?

4. (a) Are you more or less involved in kernel janitor activity now than before?

(b) If so, what are the cause(s) of the change?

5. Are you contributing to any other open source projects?

6. What tools are you using when doing janitor work?

I am not thinking of basic tools like shell/editor/distribution etc, but are you look-
ing into warnings from the normal build system, compiling with a special com-
piler, using a source code analyser like lint, have you written your own scripts
for searching for certain things, etc.

7. Are you doing manual code reviews by just reading code?

never/seldom/sometimes/often/always

61

A.2. QUESTIONS

8. Do you post corrections to incomplete or improper patchesfrom other develop-
ers?

9. How confident are you with coding style, how to properly submit a patch and
how the patch should be formated?

not at all/a little/basic knowledge/solid knowledge

10. How long time did you use or do you estimate the ramp-up time for beginners
to be educated about the process of participating in the janitor project?

11. Do you know in detail about what happens to the patch afterit is sent to the
mailing list?

12. Take a guess (a range is fine) about how many patches you have submitted.

13. (a) When patches was accepted did you receive a notification about it?

(b) When patches was rejected did you receive a notification about it?

not applicable/don’t know/never/seldom/sometimes/often/always

14. How do you think the janitor project can be improved?

15. What is your age?

16. Are you male/female?

17. What is your nationality?

18. What is your highest educational degree?

19. (a) Are you working as a programmer (i.e. employed or running your own
firm)?

(b) If so for how long?

20. Anything else?

62

A.2. QUESTIONS

Figure A.1: Connection between interview questions and reseach questions

63

Appendix B

Criteria used for determination of
maintenance types

A quite strict interpretation of the classification preventive was used, only when there
was no change in functionality. If the change did something that could be interpreted
as a correction of any kind, including spell corrections in comments, it was classified
as corrective.

B.1 Example of a corrective patch

The description of the patch2.6.12-rc3-kj/all-patches/int_sleep_on-
drivers_net_tokenring_ibmtr.patch contains “The patch also fixes a po-
tentially racy conditional in tok_open” and this patch was therefore classified as cor-
rective.

B.2 Example of a perfective patch

The patch2.6.12-rc3-kj/all-patches/add_module_version-driver s_
net_8139cp.patch adds a lineMODULE_VERSION(DRV_VERSION);which
is a “new feature” and was therefore classified as perfective.

B.3 Example of a preventive patch

The patch2.6.12-rc3-kj/all-patches/lib-parser-fs_devpts_inod e.
patch replaces awhile loop test with afor_each_pci_dev macro instead. No

64

2.6.12-rc3-kj/all-patches/int_sleep_on-drivers_net_tokenring_ibmtr.patch
2.6.12-rc3-kj/all-patches/int_sleep_on-drivers_net_tokenring_ibmtr.patch
2.6.12-rc3-kj/all-patches/add_module_version-drivers_net_8139cp.patch
2.6.12-rc3-kj/all-patches/add_module_version-drivers_net_8139cp.patch
2.6.12-rc3-kj/all-patches/lib-parser-fs_devpts_inode.patch
2.6.12-rc3-kj/all-patches/lib-parser-fs_devpts_inode.patch

B.4. EXAMPLE OF AN ADAPTIVE PATCH

change in functionality, but the code has become easier to understand and maintain.
Classified as preventive.

B.4 Example of an adaptive patch

The patch2.6.12-rc3-kj/all-patches/function-string-arch-mips .
patch changes to that the__FUNCTION__macro is not string concatenated. This
had to do with the gcc compiler.

B.5 Example of an invalid patch

2.6.12-rc3-kj/all-patches/kj_tag does not contain any patch.

65

2.6.12-rc3-kj/all-patches/function-string-arch-mips.patch
2.6.12-rc3-kj/all-patches/function-string-arch-mips.patch
2.6.12-rc3-kj/all-patches/kj_tag

Appendix C

BibTeX entry for this thesis

If you want to cite this this thesis you can use the BibTeX entry in appendix C in [45].

@mastersthesis{ masterthesis:janitor-project,
author = {H\aa{}kon L\o{}vdal},
title = {Analysis and description of an open source

janitor project},
school = {Agder University College},
year = {2006},
month = may,
url = "http://student.grm.hia.no/master/ikt06/ikt590/ g33/",
keywords = {linux, kernel, janitor, software maintenance} ,

}

Note that the college is in the process of becomming a university. The current domain
is .hia.no (Høgskolen i Agder) but as university it will be.au.no (as of writing
this, www.au.no is the same IP address as www.hia.no).

66

.hia.no
.au.no

Index

-mm tree, 25

Adrian Bunk, 29
Alan Cox, 25
Alexandre Julliard, 33, 55
Alexey Dobriyan, 31
Andrew Morton, 25, 31, 53, 55
Arnaldo Carvalho de Melo, 27
Asterisk, 9, 12, 13, 33–35

BitKeeper, 26
BitMover, Inc., 26

CMM, The Capability Maturity Model, 16, 18
Coverity, 32, 41

Dave Jones, 27
David Weinehall, 17
Debian, 24
diff, 22
Donald Duck, 67

FreeBSD, 27, 28

git, 25, 27, 33
GPL (GNU General Public License), 34

IEEE, 17, 19
ISO (The International Organization for Standard-

ization), 17

Larry Ewing, 56
Lehman, 9, 14
Linus Torvalds, 16, 21, 24–26, 31, 33, 55
Linux, 1, 9–14, 16, 17, 20–35, 37–48, 51, 53–57,

61
Linux Weekly News, 9, 12, 27, 28, 33

Mark Spencer, 33

Open Source, 1, 9, 17, 21, 22, 24, 32, 40, 52–54
OpenBSD, 28
OpenPBX, 33

patchset, 12, 28, 44

quilt, 46

Ron Jeffries, 17
RUP, Rational Unified Process, 18
Rusty Russell, 29

sourceforge.net, 53

Thomas A. Edison, 16
Trivial Patch Monkey, 28, 29

Wine, 9, 12, 13, 33–35, 55

XEmacs, 24
XP, Extreme Programming, 17, 18

67

	Preface
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Research questions
	Research methods
	Sources of information
	Limitations of scope of this thesis
	Report outline

	Theoretical Background and History
	Programming and software engineering
	Lehman's software evolution laws
	Orders of ignorance
	People more important than process
	The Linux developers take at software development process
	Industry standards for software development
	Classification of maintenance types
	Existing studies of distribution of maintenance types
	Mentoring

	Linux kernel development
	What is Linux?
	Who is developing the kernel?
	Patches - the heartbeat of the Linux kernel development
	Linux development branches
	Version Control System

	The Linux Kernel Janitor Project
	Origins of the term janitor
	History
	Janitor Patchsets
	The Trivial Patch Monkey

	Software development process
	Kernel Janitor Process
	Linux Kernel Janitor Project mailing list activity
	Tools used by the Linux Kernel Janitor Project

	Wine Development Process
	Asterisk Development Process
	Summary

	Interviews
	Selection of interview participants
	Probability sampling
	Non-probability sampling
	Criteria for selection

	Interview responses
	Summary

	Analysis of janitor patches
	Possible quantitative aspects that could be analysed
	Frequency and size
	Frequency
	Average size

	Maintenance types
	Distribution of maintenance types for janitor patches

	Discussion
	Weaknesses and uncertainties in the results
	How is janitor work different from normal development?
	Starting your own janitor project?
	Open source projects
	Projects developing proprietary software

	How do janitor participants compare to other open source developers?
	What quality mechanisms are used?
	Suggestions for improvements
	Better feedback on patches for new janitors
	New logo

	Conclusion
	Results
	Recommendation

	Bibliography
	Interview Questions
	Connection Between Interview Questions and Reseach Questions
	Questions

	Criteria used for determination of maintenance types
	Example of a corrective patch
	Example of a perfective patch
	Example of a preventive patch
	Example of an adaptive patch
	Example of an invalid patch

	BibTeX entry for this thesis
	Index

