

Internet Telephony in Ubiquitous

Computing Environments

 by

Wen Hu
Yang Wu

Thesis in partial fulfilment of the degree of
Master in Technology in

Information and Communication Technology

Agder University College
Faculty of Engineering and Science

Grimstad
Norway

May 2007

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

II

ABSTRACT

Nowadays VoIP plays an important role in communication, and more and more people
use VoIP instead of traditional telephones because of low cost, accessibility and
improved quality. However, one of disadvantages of VoIP is that users have to receive
the Internet calls by headset and microphone, which are attached to a PC. This way
restricts the users’ mobility and doesn’t meet the need of modern users. An innovative
improvement would be to use some existing wireless technology to impart mobility to
VoIP calls. We propose to use Bluetooth due to its widespread availability in already
ubiquitous mobile phone market.

Bluetooth is a short-range communication protocol intended to replace the cables
connecting portable and /or fixed electronic devices. Bluetooth is one of the most
widespread wireless technologies available in most mobile phones available in the
market today because of its low power consumption, low cost and robustness. This
project aims at using Bluetooth enabled mobile phones as wireless headsets for PCs
that run Internet telephony software in order to induce mobility. The project focuses
on investigation and analysis of Bluetooth and related technology for building such a
solution, such as service discovery, redirection, security and fast handover. From the
research done, this thesis proposes mechanisms and design for a prototype that allows
the connection between PCs and Bluetooth enabled mobile phones. The project also
reviews different available alternatives and compares existing solutions.

We believe that since Bluetooth and VoIP become more and more mature, our project
will be applied in people’s daily life soon. And this ideas proposed in this project
would be a convenient and useful extension to already existing Bluetooth server
available on most mobile phones, providing that extra bit of mobility around a
workstation or PC.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

III

PREFACE

This thesis is the partial fulfilment of the two-year Master of Science program in
Information and Communication Technology (ICT) at Agder University College
(AUC), Faculty of Engineering and Science in Grimstad, Norway. The thesis has been
carried from January to June 2007 and the workload equals to 30 ECTS.

First and foremost, I would like to thank Professor Dr. Frank Reichert and PH.D Ram
Kumar, our supervisors at Agder University College. They have been highly available
and highly supportive throughout the whole project period.

We would also like to thank the following persons for their efforts in providing us
with information and views that has helped us in our research: PH.DAndreas Häber
and English assistants. Finally, I would like to thank Mr. Stein Bergsmark and Mrs.
Sissel Andreassen for their coordination of our studies and daily life in Grimstad.

Grimstad, May 2007

 Wen Hu Yang Wu

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

IV

TABLE OF CONTENT

ABSTRACT..II
PREFACE... III
TABLE OF CONTENT ... IV
TABLE LIST .. VI
FIGURE LIST.. VI
1. INTRODUCTION...1

1.1 Introduction...1
1.2 Problem statement and Technical challenges ..2

1.2.1 Emulating Bluetooth headsets..2
1.2.2 Security ..3
1.2.3 Service Discovery ..4
1.2.4 Redirection ...5
1.2.5 Fast handover ...5

1.3 Report Outline...6
2. STATE OF THE ART ...7

2.1 Emulation of Bluetooth headsets...7
2.1.1 Bluetooth ..7
2.1.2 Bluetooth headset profile ...8
2.1.3 Using WiFi ... 11
2.1.4 Headset emulators ..12

2.2. Security ..13
2.3 Service discovery ..19

2.3.1 Bluetooth Service Discovery Protocol ...19
2.3.2 Konark..20
2.3.3 DNS Service Discovery ...21

2.4 Redirect ...22
2.4.1 Basic approach ...22
2.4.2 Redirection in Mobile IP ..23
2.4.3 Redirection in SIP ..24

2.5 Fast Handover ...25
2.5.1 Handover in WiFi...25
2.5.2 Handover in Bluetooth ...25

3. SYSTEM ARCHITECTURE...27
3.1 Flow Chart...27
3.2 Message Sequence Charts ...28

3.2.1 Device discovery and Connection establishment ...28
3.2.2 Authentication ..29
3.2.3 Location register...30
3.2.4 Monitor...30

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

V

3.2.5 Call connection and disconnection...30
3.3 “4+1” views...33

3.3.1 Process Architecture...33
3.3.2 Physical Architecture ...35
3.3.3 Function Architecture...37

4. IMPLEMENTATION ...39
4.1 Evaluation of existing software...39

4.1.1 Existing software for connecting mobile phone to PC...39
4.1.2 Existing software for connecting Bluetooth Headset to PC39

4.1.2.1 Testing Environments..39
4.1.2.2 Connecting Bluetooth headsets to PCs..40
4.1.2.3 Using headsets answer VoIP calls..41

4.1.3 Possibility of using existing mobile phone or PDA for headset emulation.43
4.1.3.1 T-Mobile MDA..43
4.1.3.2 Mobile Phone: SonyEricsson P900, SonyEricsson P990i, Motorola 768i. .43

4.2 Application design...44
4.3 Developing environment ...45

4.3.1 Developing language..45
4.3.1.1 Independence of Java Bluetooth API ..45
4.3.1.2 Java Bluetooth API is a standardized Bluetooth API45

4.3.2 IDE (Integrated Development Environment) and Smart Phone.............................45
4.3.3 JSR (Java Specification Request) 82..45

4.4 Design details ..47
4.4.1 Add Headset service to Service Record ...47

4.4.1.1 Create service record...48
4.4.1.2 Modify record’s attributes ...49
4.4.1.3 Add the modified service record to SDDB..50

4.4.2 Handle with those commands transferred between PC and mobile phone.............50
4.4.3 Service Discovery ..52

5. DISCUSSION AND EVALUATION..58
5.1 Headset Emulator ..58
5.2 Security ...58
5.3 Service Discovery ...59
5.4 Redirection ..59
5.5 Fast handover ..59
5.6 Prototype’s implementation ..60

6. CONCLUSION AND FURTHER WORK..66
6.1 Conclusion ..66
6.2 Future work ...66

ABBREVIATIONS ...68
REFERENCE..70
APPENDIX A–SERVICE RECORD AND AT COMMAND ..74
APPENDIX B – CODES...76

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

VI

TABLE LIST

Table 1 Bluetooth vs. WiFi..11
Table 2 seven messages [Sha05]………………….…………………………………….................16
Table 3 Test result ...26
Table 4 seven processes’ function ...34
Table 5 four processes’ function..35

FIGURE LIST

Figure 1 Emulate Bluetooth headset ...3
Figure 2 Security...4
Figure 3 Service discovery..4
Figure 4 Redirection..5
Figure 5 Fast handover..6
Figure 6 Bluetooth Protocol Stack [Sch03]...7
Figure 7 Headset Profile protocol model [Blu07] ...8
Figure 8 Incoming audio connection establishment..9
Figure 9 Outgoing audio connection establishment ..9
Figure 10 Audio connection release- AG initiated ..10
Figure 11 Audio connection release – HS initiated ...10
Figure 12 Initialization key [Sha05]……………………………………………………………….13
Figure 13 the link key’s exchange [Sha05] ...14
Figure 14 Authentication...14
Figure 17 usage of public key and private key..16
Figure 18 SVSP security architecture [Car06] ..17
Figure 19 802.1x [Wik07b]...17
Figure 20 a scenario of SHAD [Enr04]...18
Figure 21 Diagram Source [Blu03]...19
Figure 22 Konark Service Discovery Stack [HDL03] ..21
Figure 23 VoIP call forward scenario..22
Figure 24 a scenario of Mobile IP...23
Figure 25 Proxy mode...24
Figure 26 Redirect mode...24
Figure 27 Home domain and Roaming ...27
Figure 28 Device discovery and Connection establishment ...28
Figure 29 Authentication...29
Figure 30 Location register ...30

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

VII

Figure 31 Monitor ...30
Figure 32 Call connection and disconnection (Home domain) ...31
Figure 33 Call connection and disconnection (Roaming) ...32
Figure 34 “4+1” views [Phi95] ...33
Figure 35 PC’s process view...34
Figure 36 Phone’s process view..35
Figure 37 Physical view..36
Figure 38 Phone and PC’s functional view ...37
Figure 39 Main window of IVT BlueSoleil ..41
Figure 40 Windows of Skype and BlueSoleil VoIP...42
Figure 41 JABWT architecture ...46
Figure 42 flow chart ..47
Figure 43 Life cycle of a service record..48
Figure 44 Devices and Service Discovery ..53
Figure 45 main window of Eclipse ...61
Figure 46 JAD file...61
Figure 47 Headset Service Emulator (A) ..62
Figure 48 Headset Service Emulator (B) ..62
Figure 49 Devices Discovery ..64
Figure 50 Service Discovery...64
Figure 51 Service Record Attributes [Hea01] ...74
Figure 52 Commands from HS to AG. [Hea01] ..75
Figure 53 Unsolicited results from AG to HS [Hea01] ...75

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

1

1. INTRODUCTION

1.1 Introduction

Low-cost telephone services have traditionally been difficult to find. Because
compressed voice/data can take up very little bandwidth, researchers have
investigated the Internet as an inexpensive means to route telephone calls.
Voice-over-IP (VoIP) is one result of this effort [MM03]. Nowadays VoIP plays an
important role in communication, and more and more people use VoIP instead of
traditional telephones because of low cost and high communication quality.

However, one of disadvantage of VoIP is that users have to receive the Internet calls
by headset and microphone, which are attached to a PC. Modern people who are used
to using mobile phones are not accustomed to stay beside the PC during the whole
connection. They probably wish to move around and have the ability to do something
else while answering a call. A certain wireless communication technology should be
used here.

Bluetooth is a short-range communication protocol intended to replace the cables
connecting portable and/or fixed electronic devices [How05]. Compared with the
traditional wireless communication technology infrared, Bluetooth doesn’t require
transceivers to be in direct line of sight. Also, its low power consumption, low cost
and robustness have made Bluetooth become the trend in short-range wireless
communication. Bluetooth is one of the most widespread wireless technologies
available in most mobile phones available in the market today. One usage is to use a
Bluetooth headset to answer an incoming call to the cell-phone.

This project aims at using Bluetooth enabled mobile phones as wireless headsets for
PCs that run Internet telephony software. Nowadays VoIP, for example, Skype, is
used by many people because of the low cost and good communication quality.
However, the afore mentioned lack of mobility occurs due to having to use the PC
and headset instead of mobile devices. Therefore, we would like to implement
architecture that would enable users to receive internet calls via PC software on their
mobile phones within a certain domain, approximately within 100 meters of user’s
PC.

There are already some headsets implementing this function inside a Bluetooth
headset. Why do we still want to pursue this solution? The reason why we chose to
implement this architecture in a Bluetooth enabled mobile phone comes down to the
cost assessment. There is no doubt that a Bluetooth headset is much cheaper than a
Bluetooth enabled mobile phone. However, Bluetooth headsets with this function

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

2

normally can only support specific VoIP software. Therefore, the applicability is its
drawback; it is no longer cheaper than a mobile phone if you have to buy many
headsets for different VoIP software.
In our project, our first step will be to make mobile phones act as wireless headsets
for PCs. Users would be able to receive Internet voice calls via their PC software on
their mobile phone as long as they stay within 20-100 meters from their PCs.

After that, we will try to make it possible for users to not only stay within their
computer’s range, but also to roam around and still be able to receive calls via other
PC’s in the area. To achieve the communication, we should specify a functional
architecture and implement prototypes. If there is enough time, we plan to examine
the possibility of moving from one domain to another while holding on to the call.

The motivation behind choosing this topic is that we believe this architecture has a
brilliant future. On one hand, on the technical side, Bluetooth is becoming more and
more popular in the wireless field. We can see that in the increased number of devices
that have Bluetooth profiles implemented nowadays. Bluetooth was initially
developed to eliminate the need for inconvenient cable attachments. Imagine how
inconvenient it is that nowadays we are forced to stay by computes all the time when
receiving Internet calls. Therefore, increasing mobility is our aim for the project. It
will allow users who use Bluetooth to move while communication.

From the economist view this work will also save quite a lot of money. The calls
coming from VoIP will no longer be forwarded by establishing another VoIP call to
the user’s cell phone. The user can just simply answer it via Bluetooth, charging them
nothing. There is potentially a huge amount of money to be saved if we can make this
technology work in a big firm, making this project a very good example of how new
technology benefits people.

1.2 Problem statement and Technical challenges

The aim of our project is to increase mobility in ubiquitous computing environments.
The project will focus on five challenges in order to achieve the goal: emulating
Bluetooth headsets, security, service discovery, redirection and mobility. The project
can be sub-divided into the following sub-problems, which we will focus on
individually.

1.2.1 Emulating Bluetooth headsets
This should be the foundation of the whole project. Issues like security and service
discovery will not be involved here as more than a glimpse. The situation we should
keep in focus is for example when a user in his office uses his Bluetooth mobile
phone to answer VoIP calls via his PC. There is neither the possibility of other
Bluetooth devices within this domain nor that the PC doesn’t provide Internet

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

3

Telephony service.

To achieve the first challenge, we should first establish a Bluetooth link between a PC
and a Bluetooth enabled mobile phone. Then we install VoIP client or software on the
PC to accept the Internet calls, while implementing a headset profile in the mobile
phone. In this way, we could use the Bluetooth mobile phone to act as a headset for
the call incoming on the PC. Since some solutions which implement this scenario
have emerged on the market, we will also analyze each solution for the appropriate
choice.

Figure 1 Emulate Bluetooth headset

1.2.2 Security
Remote control of devices and access to services can expose the infrastructure to
significant risk. For example, we do not want to allow random strangers to connect
PCs and answer Internet calls. So security is of great importance in our project.
The security challenge here can be divided into three sub-problems: authentication,
authorization and privacy.

 Authentication:
This sub-problem deals with who is the one trying to connect to “my” PC. Since
Bluetooth is different from infrared in that it is not blocked by walls, it is very
probable that another Bluetooth device is just next to your office and is trying to
connect to your PC. Therefore, the important issue here is to identify this
Bluetooth user. For example, in the following figure, Bluetooth mobile phone 1
wants to connect to “my” PC. However, my PC denies access due to failure of
identification.

 Authorization:
For those devices we known, the application still needs to check whether they are
permitted before accepting their request. We see that in the following figure both
Bluetooth mobile phone 2 and 3 are authenticated. However, only mobile phone
3 is accepted by the PC since it is allowed whereas mobile phone 2 is not.

 Privacy:
There can be lots of issues here in regards to privacy, which covers both static
information and dynamic information.

 Static information: Information about the user, such as personal details, PIN,
etc

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

4

 Dynamic information: Information like conversation of the call, user’s
current location

All of these types of information should be guaranteed to not leak at anytime.

Figure 2 Security

1.2.3 Service Discovery
Service Discovery in our project’s scope will focus on how to choose the correct PC
with the “Telephony” service provided if there are many PCs in the area. The
situation should be as shown in the figure below. Both PC1 and PC2 are available to
Bluetooth mobile phone, however, only PC1 provides “Telephony” service in its
SDDB (Service Discovery Database). This service is necessary for forwarding calls to
Bluetooth mobile phones. Therefore PC1 is chosen and PC2 is rejected since it
doesn’t provide required service.

Figure 3 Service discovery

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

5

1.2.4 Redirection
When the user moves from his own office to his colleagues’ office, which is out of
range of his personal PC’s Bluetooth (20-100m), how can he still answer the VoIP
calls using his Bluetooth mobile phone? This situation is our fourth challenge.

Since the user moves far away from his personal PC, called A, to which they were
connected before, communication between A and the Bluetooth headset will be
terminated since Bluetooth is a short-range communication system. We will define a
solution that allows A to redirect the Internet calls to a specific PC, allowing the user
to receive calls through the new PC.

Internet calls

Figure 4 Redirection

1.2.5 Fast handover
As mentioned earlier, we will look at the possibility of fast handover during the call.
In other word, fast handover can guarantee that the call will not be interrupted even
though the Bluetooth mobile phone moves from one PC’s Bluetooth range to
another’s. Considering current Bluetooth technology, it is a bit complicated to
achieve the final challenge. Therefore, we would like to make a survey and brief
comparison of the different existing solutions if time allowed. This part will not be
our primary aim.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

6

PC 1 PC 2

Forwarding

Keep moving
& holding
on the call

Keep moving
& holding
on the call

Internet

Internet ca
lls

Figure 5 Fast handover

1.3 Report Outline

This report is structured as followed:

Chapter 1 provides an introduction to the master thesis which is current chapter.

Chapter 2 gives the basic theory about Bluetooth and related technology for the
project, such as Emulating Bluetooth headsets, Security, Service Discovery,
Redirection and Fast handover. This will establish a foundation for understanding the
later proposed solutions.

Chapter 3 proposes the design of the project, including software design, flow charts
and message sequence charts.

Chapter 4 gives a prototype for the project and design details.

Chapter 5 discusses all the results we have achieved in this project.

Chapter 6 gives the conclusion of our project work and point out possible further
work based on this thesis.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

7

2. STATE OF THE ART

2.1 Emulation of Bluetooth headsets

2.1.1 Bluetooth
Bluetooth [QL03], [Did07], a short-distance wireless communication standard,
originally aims at replacing cables when connecting devices like mobile phones,
headsets and computers, and therefore making the world truly wireless.

Bluetooth operates on 79 channels in the 2.4 GHz band with 1 MHz carrier spacing
and each channel divided into 625 ms length time slots. A piconet is a collection of
Bluetooth-enabled devices that are synchronized to the same hopping sequence. Each
piconet has exactly one master and up to seven simultaneous slaves; all other devices
connect to the master. The master who initiates communication decides everything
and the slaves have to follow. A basic Bluetooth connection works as follows: the
master device initially sends out an inquiry packet to find a slave device, and when
one of the slaves responds to the page messages, the master can begin transmitting
voice or data. Two different types of links are used in Bluetooth [Sch03]: a
synchronous connection-oriented link (SCO) and an asynchronous connectionless
link (ACL). A SCO is for voice transmission, so it requires a symmetrical,
circuit-switched, point-to-point connection, while an ACL is used to transmit data.
One Bluetooth link can simultaneously support ACL links and up to three SCO links
[Haa00].

Figure 6 Bluetooth Protocol Stack [Sch03]

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

8

To allow Bluetooth devices from different manufacturers and vendors to operate with
each other, the protocol layers and profile are standardized and defined in the
Bluetooth specification. Figure 6 shows the Bluetooth protocol stack. The Radio layer
is the physical wireless connection. The Baseband layer maintains SCO and ACL.
The LMP (Link Manager Protocol) uses the links set up by the baseband to establish
connections and manage piconets.

The HCI (Host Controller Interface) is the dividing line between software and
hardware. The L2CAP (Logical Link Control and Adaptation Protocol) is responsible
for providing logical links to the upper layer protocols. Quality of Service (QoS)
parameters are exchanged at this layer. The RFCOMM and SDP layer rely on the
L2CAP layer and are unaware of physical communication details [QL03]. The SDP
(Service Discovery Protocol) is used for service discovery on remote Bluetooth
devices.

2.1.2 Bluetooth headset profile
Bluetooth profiles [Kli04] provide a well-defined set of higher layer procedures and
uniform ways of using the lower layers of Bluetooth. The Headset profile [Hea01],
one of the Bluetooth profiles, depends on the Serial Port Profile (SPP), and defines
procedures to support interoperability between a headset and a mobile device. The
mobile device is the audio gateway (AG) that provides both input and output audio to
the headset. The headset is the device acting as the Audio Gateway’s remote audio
input and output mechanism. The project will implement a Bluetooth headset profile
in mobile phones, thus providing the connection between mobile phones and PCs.

Baseband

LMP L2CAP

RFCOMM SDP

Headset Control

Application
(Audio port emulation)

Baseband

LMP L2CAP

RFCOMM SDP

Headset Control

Application
(Audio driver)

Audio Gateway side Headset side

Figure 7 Headset Profile protocol model [Blu07]

The figure 7 [Blu07] shows the protocols and entities used in this profile. Headset
Control is the entity responsible for headset specific control signaling. The audio port
emulation layer is the entity emulating the audio port on the cellular phone or PC, and

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

9

the audio driver is the driver software in the headset [Blu07].

Figure 8 and 9 [Hea01] shows ACL connection establishment is initiated by Audio
gateway and headset, respectively. For Fig. 8, once the connection is established, the
AG will send a RING to alert the user. The RING will repeat until the HS sends the
AT + CKPD command to the AG which indicate that the HS press a button on the
headset. Then the SCO link is setup.

Figure 8 Incoming audio connection establishment

Figure 9 Outgoing audio connection establishment

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

10

Figure 9 presents a headset initiated ACL connection by pressing a button on the
headset. Then the HS sends the AT + CKPD command to the AG. It is worth noting
that the SCO link establishment is always sent by the AG side.

Figure 10 Audio connection release- AG initiated

Figure 11 Audio connection release – HS initiated

A call can be terminated either on the AG or on the HS. The Fig. 10 and 11 [Hea01]
shows the termination. Irrespective of the initiating side, the AG is responsible for
releasing the connection.

All in all, the audio gateway controls the SCO link establishment and release, and the
headset is responsible for connecting (disconnecting) the audio streams upon SCO
link.
In practice, there are Audio gateway and Voice gateway. It is found that smart phones
or PDA are using either Audio gateway or Voice gateway, such as both Sony Ericsson
P900 and T-Mobile MDA Pro use voice gateway, while Sony Ericsson P990i employ
Audio gateway. It is also discovered that the Audio gateway possesses the same

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

11

function with the Voice gateway. The function is that the gateway of the audio and
voice, both for input and output.

AT commands [ATC07] is used in headset profile which have the ability to ring,
answer a call, hang up and adjust the volume. The audio gateway and headset provide
serial port emulation which used to transport the user data from the headset to the AG.
AT commands is included in the user data.

2.1.3 Using WiFi
Currently, there are two dominant short-range wireless standards frequently
incorporated into mobile devices: Bluetooth and WiFi. From Wikipedia [Wif07]:
“WiFi is a brand originally licensed by the Wi-Fi Alliance to describe the underlying
technology of wireless local area networks (WLAN) based on the IEEE 802.11
specifications.” WiFi offers high-bandwidth local-area coverage. Therefore, it gives
rise to a question: what difference does it make if we use WiFi?

The following table 1 [Cho07] summarizes the similarity and differences between the
Bluetooth and WiFi. It is obvious that WiFi has a higher power-consumption than
Bluetooth. Therefore, it is not practical for those smaller devices, such as cell phones,
with limited power budgets. In addition, Bluetooth performs better than WiFi in the
case of interference because Bluetooth employs a frequency hop transceiver. Another
issue, cost, should also be taken into account. Bluetooth is much cheaper than WiFi
and the former is widely available in most of the mobile phones available today. Few
phones on the market support WiFi. Thus we prefer utilizing Bluetooth to achieve the
goals of the project.

 Bluetooth WiFi

Frequency range 2.4GHz 2.4GHz

Range 10 meters 91 meters

Bit rate (Mbps) 1 Mbps 100 Mbps

Immunity to interference High Medium

Voice quality with
interference

Very Good Good

Application network Personal-area
network

Ethernet network

Availability of headsets Yes No
Table 1 Bluetooth vs. WiFi

There is a WiFi phone for Skype currently on the market which does not require a PC
to operate. The WiFi phone [Net07] is able to make free and unlimited phone calls to

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

12

other Skype phones/users anywhere in the world, anytime have WiFi access, without
a PC. Users could easily access their own Skype contact list to place a Skype call just
like on their PCs. The WiFi phone not only allows using the keypad to dial out
traditional numbers, but also redirects the incoming calls to other mobile or static
phones.

It seems that the WiFi phone has resolved the first challenge of our project, which is
to allow for the mobility while receiving Internet calls. However, there is still a
downside when compared with the Bluetooth phone headset. The WiFi phone is
compatible with no other telephony software except for Skype. Thus, it doesn’t meet
the project’s needs, where the objective is that mobile phones be compatible with any
type of telephony software.

2.1.4 Headset emulators
In this project, mobile phones will be used as Bluetooth headsets for PCs; in other
words, the mobile phones could receive the Internet calls via their PC software. With
wireless phone technology developing rapidly, there are some existing Bluetooth
phones on the market now.

SkypeHeadset [Sky07] and Wireless Bluetooth Sky Phone [Blue07] are two hardware
implementations that can receive Skype calls. The Wireless Bluetooth Sky phone is a
produce that makes/receives/continues Skype calls up to a range of approximately 30
meters away from the PC [Blue07]. This kind of phone contains a PC dongle unit, a
headset unit and a Y-USB cable for PC connection. Furthermore, it not only makes
PC-to-PC calls and SkypeOut calls, but also receives SkypeIn calls. It is also
important that the phone can maintain plug-and-play simplicity in installation.

These kinds of products mostly resolve the problem that we addressing here. For
example, users would be able to receive Internet calls via their PC software on their
mobile phones as long as they stay within 20-100 meters from their PCs. Yet they still
have the same problem as the WiFi phone- they only work with Skype. Our objective
in this project is to allow users to avoid considering compatibility issues as they now
must while installing other VoIP technology. Additionally, once the users are far away
from their PCs, the connection will be broken off. This is a limitation of existing
products. The scope of our project also attempts to solve this problem.

In addition to the hardware implementations, some software applications that
seamlessly connect mobile devices to Skype on PCs have also emerged. EpyxMobile
[Epy07] and Skype PTT [Bla07] are two different software applications that connect
mobile phones to Skype on a PC, while Vitaero [Use07] allows connecting a wireless
Bluetooth headset to Skype. These software applications are free to download on PCs
and could reduce users’ mobile phone bills; the mobile phone users can benefit from
these products.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

13

To realize the connection between mobile phones and Skype, what users need are a
Bluetooth-enabled mobile phone and a Bluetooth-enabled PC with an internet
connection running Skype. Take Useful Skype PTT as an example, Useful Skype PTT
[Bla07] from Usefulapps Company is a push to talk client for Skype to be used in
conjunction with a Bluetooth enabled PC. The calls are realized by the connection
between Bluetooth and a PC with a Skpye client. Skype and the Useful server run on
the PC, while the Useful client runs on the mobile phone; in other words, the phone is
regarded as a PTT headset. In addition, one of advantages of Useful Skype PTT is
that it can easily call and show the Skype contacted person on the phone. The calls are
also free.

However, the limitation of the existing applications is that they work only within the
Bluetooth distance of PCs. There are also further limitations. They are very device
specific, which means that they will not work with all devices. Lastly, the existing
software does not seem to be reliable and lacks widespread implementation and
support according to users’ comments.

2.2. Security

As we stated earlier, security challenges here can be divided into three sub-problems:
authentication, authorization and privacy. However, most existing security methods
bind them together. Therefore, we will present them one by one.

First, let’s have a look at the security scheme in Bluetooth. According to Bluetooth
specification Vol 2 Part H [Blu07], the initialization procedures consist of the
following four necessary parts:
• Generation of an initialization key
• Generation of link key
• Link key exchange
• Authentication
After the initialization procedure, the devices can proceed to communicate, or the link
can be disconnected.

The initialization key is only created each
time the unit is initialized, before any link
key has been created and exchanged. It is
derived from the Bluetooth device address
BD_ADDR, a PIN code, the length of the
PIN (in octets), and a random number
IN_RAND. The procedure can be seen in
figure 12 shown to the left. It is worth
noting that for security reason, neither the
initialization key nor the PIN will be Figure 12 Initialization key [Sha05]

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

14

transmitted directly. Instead of that, the IN_RAND will be sent from master to slave.
The link key’s generation and exchange will use the previous link key. If there is no
link key from previous exchanges, the initialization key will be used. After the link
key’s generation, the previous link key or the initialization key will be discarded. The
generation of the link key will use a random number from each device (LK_RANDA
LK_RANDB), BD_ADDR of each device. LK_RAND are encrypted by the previous
key or initialization key, and then sent to each other. Details can be seen below.

Figure 13 the link key’s exchange [Sha05]

After the exchange of link keys, two devices will now mutually authenticate each
other. This will be done by initializing a challenge / response authentication in turn.
We will only reveal the challenge / response mode instead of showing the whole
procedure. The verifier sends a random number while the requester encrypts it and
sends it back. The verifier can then check whether or not it is the same as the local
encrypted number.

Figure 14 Authentication

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

15

Algorithm such as E21, E22 and how to use the link key to encrypt data will not be
explained in this thesis. Details can be found at [Blu07].
Although baseband specification details the
SAFER+ algorithms used for security
procedures, security is still a key issue for
Bluetooth. Just like every wireless
communication system, it’s not hard for an
attacker to eavesdrop on a transmission. As we
mentioned above, there will be at least 7
messages, shown in table 2, transmitted in the
air between two devices in each pairing and

aut
hentication process. If an attacker gets all
of these messages, he can likely calculate
the PIN, the initial key and the link key
using a brute force algorithm. Paper
[Sha05] explains the particulars of this
process. Figure 15 gives the details in a
flow chart. By [Sha05] the author’s
statement, “a 4-digit PIN can be cracked in
less than 0.3 sec on an old Pentium III
450MHz computer, and in 0.06 sec on a
Pentium IV 3Ghz HT computer”. However,
it is interesting to note that when the PIN’s
length is increased to 7, the time consumed
will be 270 sec with their best
implementation version.

Therefore, if we decide to use Bluetooth’s build-in security standard, we should
increase the PIN’s length from 4-digits, which is usually used, to 8-digits or more.
This is also the author’s suggestion to countermeasure this kind of attack.

As we clarified above, Bluetooth’s security architecture
is based on pre-shared keys and a challenge / response
mode. With the method described in [Sha05], it’s not
hard for an attacker to get this shared key and then
listen in on the communication. As an alternative to the
shared key scheme, another widely used method is
public key cryptography, also known as asymmetric
cryptography.

Figure 15 brute force algorithms [Sha05]

Table 1 seven messages [Sha05]

Figure 16 public and private key
[Wik07a]

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

16

Figure 17 usage of public key and private key

As we can see from its name, there is no longer only one key between two devices or
the communication. Instead, there will be two keys for each device: a private key held
by the device itself, and a public key distribute to those who are authenticated and
authorized. Anyone who wishes to talk with a specified device can encrypt using that
device’s public key, and only the device holding the private key can use it to decrypt.
Also, the user can use a private key to encrypt a message; anyone who has the user’s
public key can check the signature using and thereby proving that message’s
authenticity.

However, this kind of mechanism has a central problem with proving that a public
key is authentic. The usual solution to this is using a public key infrastructure (PKI).
Actually, PKI has already been used in many fields like IPsec, TLS and S/MIME for
authentication. There are many articles describing or discussing this topic as well as
some enhancements [Ada99a] [Ada99b] [Cha97] [Ell99]. Since we are not focusing
on security in this thesis, only rough explanation will be given here.

Public Key Infrastructure (PKI) is a general mechanism that allows authentic public
key distribution to be used by large and distributed public key cryptography-based
applications [Alb04]. This is usually implemented by software at a central location
together with other coordinated software at distributed locations. The simplest way is
to use a center-server, which can be connected from any point of the network, to act
as the certificate authority. Whenever a device wants to communicate with another
device, it has to first connect to the center-server. After authentication and
authorization, the center-server will send the public key of the target device as a
certificate to the claimant. With this certificate, this device can communicate with the
target as it wishes. Although there is some criticism in regards to this architecture
[Car00] such as the device’s name issue and the reliability of certificate authority
(CA), PKI is still one of the most popular security solutions.

Paper [Car06] also introduced a protocol called Simple Voice Security Protocol
(SVSP) to merge pre-shared key (PSK) and PKI together. The name of the protocol
promises to be useful for us, and the contents are interesting as well. SVSP uses
Trusted Authentication Authority (TAA) and Global Trusted Authentication Authority
(GTAA) to build up the entire architecture. As figure 18 below shows, PSK is used
for the security between devices and TAA, and PKI is in charge of communication

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

17

between TAA and GTAA. Perhaps we can make use of this at a later time.

Figure 18 SVSP security architecture [Car06]

There is another similar solution to SVSP which has already been used in WiFi:
802.1x [80204]. This standard is based on the Extensible Authentication Protocol
(EAP) which is described in RFC3748 [Abo04]. The purpose of 802.1x is to
authenticate whenever a device wants to connect to the Access Point (AP) or build a
point to point connection. The principle here is simple, whenever a Wireless Node
(WN) connects to an AP, it must be authenticated and authorized before it can gain
access to the internet. It is worth noting that this authentication will work not only for
WN but also for AP. In other word, the Authentication Server (AS) will also provide
information about AP to MN. In effect, this is a mutual-authentication. The following
figure shows how a typical procedure works.

Figure 19 802.1x [Wik07b]

RADIUS here is the abbreviation for Remote Authentication Dial in User Service,
which is an AAA (authentication, authorization and accounting) protocol acting as an
Authentication Server. This Server works as a CA in PKI, which as we mention above,
is in charge of the certification’s distribution. Compared with SVSP, the difference is
SVSP’s GTAA connects to Smart Card via TAA while 802.1x’s RADIUS connects to

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

18

WN directly.

In the article [Enr04], the author introduces a user-centered authentication and
authorization architecture for ubiquitous computing environments. The security
schemes we introduced above, such as SVSP and 802.1x, use an authentication and
authorization server which can be connected from all of the entities in ubiquitous
computing environment. There are many varieties of this mechanism, but the
emphasis is the same: all units inside a ubiquitous environment must use this server to
identify users. However, this also leads to the drawback of this kind of architecture.
“What would then happen when two users meet at a remote isolated place?” is the
question given by the author. This is also the major advantage of a user-centered
authentication and authorization architecture. A user-centered design will probably fit
the following situation shown below:

Figure 20 a scenario of SHAD [Enr04]

In this scenario, Nemo’s Pocket PC and Eva’s laptop are equipped with both
Bluetooth and Wi-Fi technologies. Nemo needs to use the 17” display of Eva’s laptop
to show her a high resolution video stored in his Pocket PC. A security architecture
that depends on centralized entities could not face this situation. In contrast, SHAD
fits well into this scenario: Nemo’s PCM and Eva’s PCM can negotiate tickets to
allow Nemo’s Pocket PC to make contact with Eva’s laptop [Enr04].

There is no doubt that the advantage is outstanding if some of the devices are isolated.
In our case, the mobile phone in our case can be competent as a PCM (Personal
Command Module) [Lea04] which represents the users. However, in our project we
assume that all PCs used to forward internet calls are connected to the internet. In
other words, it is almost impossible for a failure to occur while connecting to the
center-server, if there is one. Therefore, SHAD will not serve to be considered in our
work.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

19

2.3 Service discovery

Service Discovery Protocol (SDP) [Gry01] enables network devices, applications,
and services to seek out and find other complementary network devices, applications,
and services needed to properly complete specified tasks. SDP is especially important
in our project, where mobile phones could automatically select the most appropriate
PC among many available PCs. Currently, there are several service discovery
protocols being existing and in use. The most well known ones are: Service
Location Protocol (SLP), Jini, Bluetooth’s Service Discovery Protocol (SDP) [Gry01],
Universal Plug and Play (UPnP) and Konark [HDL03]. These protocols, with the
exception of Bluetooth SDP and Konark, are not intended for use in a wireless
environment.

2.3.1 Bluetooth Service Discovery Protocol
Bluetooth’s Service Discovery Protocol [Gry01] provides a standard means for a
Bluetooth device to query and discover services supported by a peer Bluetooth device.
SDP is a client-server protocol and relies on L2CAP links being established between
the SDP client and server. Once a L2CAP link has been established, it can be used to
find out about services and how to connect to them. A service may be implemented as
software, hardware, or a combination of hardware and software. The server maintains
all of the information about a service within a single service record, which consists
entirely of a list of attributes. The client may retrieve information from a service
record by sending out a SDP request.

SDP follows a request/response model [Blu03] where each transaction consists of one
request protocol data unit (PDU) and one response PDU. SDP runs over L2CAP. As
shown in the figure 21, a SDP client must receive a response PDU for each request
PDU on the L2CAP connection. The Universally Unique Identifier (UUID) is the data
type used for identifying services, protocols, profiles etc. Each record has a UUID
attribute. A UUID is a 128-bit identifier that is generated once at the time a service is
defined.

Figure 21 Diagram Source [Blu03]

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

20

There are two search options supported in SDP [Sdp07]: searching and browsing for
services. The former allows a client to query the SDP service for specific service
attributes if the client knows the UUID of the service. Alternatively, service browsing
is used when a client has no knowledge about services of interest in the client’s
vicinity. The client is then able to browse and select from the list of available services
and the server responds to services that match the request.

The service search transaction allows a client to look for a specific service. The client
uses an SDP_ServiceSearchRequest which contains a service search pattern. A
service search pattern is used to locate the desired service and a list of UUIDs which
the server uses to look for in its database. The server responds with an
SDP_ServiceSearchResponse containing information about any service records which
match the service search pattern as shown in Figure 21[Sdp07].

Compared with the searching method, browsing means looking to see what services
are actually being offered. The mechanism for browsing is based on an attribute
shared by all service classes. This attribute is called the BrowseGroupList attribute
and the service classes are used to identify services. The value of the
BrowseGroupList is a list of the UUIDs of all the browser groups associated with the
service. Services are arranged in a tree structured hierarchy which can be browsed.
Clients start to examine the root of the hierarchy by creating a service search pattern
containing the UUID, allowing all services to be browsed.

2.3.2 Konark
“Konark is a service discovery and delivery protocol designed specifically for ad hoc,
peer-to-peer networks, and targeted toward device-independent services in general
and m-commerce oriented software services in particular”[HDL03]. It has two major
aspects: service discovery and service delivery. Here we only focus on service
discovery.

Figure 22 [HDL03] shows the Konark service discovery protocol stack. Konark SDP
Manager is of importance in the service discovery mechanism. Each device in the
Konark community has a Konark SDP Manager that discovers the required services
on behalf of Konark applications. Its main function is to interact with the messaging
layer to send and receive the discovery and advertisement messages. The messaging
layer is applied above the transport layer.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

21

Figure 22 Konark Service Discovery Stack [HDL03]

Konark also uses the request/response model. A client sends out a discovery message
which contains either the path from the service tree or a keyword, and then the server
that provides the service responds. There are two modes supported by Konark for
discovering services. In active pull, a client sends a query to all of the nodes to find
the service location. In passive push, a server advertises the service information to
the entire network periodically. In addition, Konark utilizes caching of service
information on each node to improve service discovery efficiency [YTO06].
Unfortunately, Konark does not consider energy consumption or delay.

What the interest of Konark is the wireless link layer. We can use an IP level
connectivity between the devices over any wireless link like IEEE 802.11 or
Bluetooth.

2.3.3 DNS Service Discovery
DNS Service Discovery [Har03] is a way of using existing DNS Resource Records to
locate services. From [CK06]:Given a type of service that a client is looking for, and
a domain in which the client is looking for that service, this convention allows clients
to discover a list of named instances of a that desired service, using only standard
DNS queries. In short, this is referred to as DNS-based Service Discovery, or
DNS-SD. DNS Service Discovery uses a combination of PTR, SRV (Service resource
record) and TXT records to locate services and their attributes.

The SRV packet was originally designed to locate a particular type of service over the
open Internet. TXT records are used to convey attribute information, while PTR
records are normally associated with reverse lookups (that is, given an IP address,
PTR allows you to determine the name associated with that address). PTR records
enable service discovery by mapping the type of the service to a list of names of
specific instances of that type of service.

However, DNS-SD is not reachable for our project, since the presupposition of
DNS-SD is that all nodes must be in network. For our project, we can not guarantee
that the mobile phone is connected to a network. In fact, in most cases it will probably
be an isolated device.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

22

2.4 Redirect

When the mobile phone moves to another place which is no longer within its original
PC’s Bluetooth range, the incoming VOIP call will be redirected to the new PC with
which this mobile phone now connects to. Thus, it is useful to have a look at the
existing aspects regarding “redirection.”

2.4.1 Basic approach

Figure 23 VoIP call forward scenario

According to [Her05], the VoIP call forward scenario is just like the figure shown
above. This procedure derives from the traditional PSTN call forwarding
implementation. As we can see, softswitch2 (SSW2) and endpoint B are responsible
for managing the call forward. This is to be done by initiating a new call to the
redirected-to party, in this case C, managed by SSW3. After this call is initialized, B
can inform both A and C to build their own connection.

Later during this connection, if A wants to connect to C directly, without B’s help, it
can operate according to the call transfer implementation. In this procedure, B first
notifies C about this. After C agrees to send the call ID (maybe its address), B asks A
to transfer the call. Then, A sets up connection with C, and at same time, B releases
the call between itself and C. Finally, when C connects to A successfully, A releases
the call between itself and B.

We can see that in IP telephony’s basic solution, two primary approaches are used:
proxy mode which uses a middleman between two end-users, and redirect mode
which use a middleman to get the other party’s call ID.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

23

2.4.2 Redirection in Mobile IP
According to [Dou06], Mobile Computing refers to a system that allows computers to
move from one location to another.

In [Dou06], the author gives an overview of Mobile IP operation. “The biggest
challenge for mobility lies in allowing a host to retain its address without requiring
routers to learn host-specific routes. Mobile IP solves the problem by allowing a
single computer to hold two addresses simultaneously: a permanent and fixed primary
address that applications use, and a secondary address that is temporary. The
temporary address is only valid while the computer visits a given location.”[Dou06]

“A mobile host’s primary address is assigned on the host’s home network. After it
moves to a foreign network and obtains a secondary address, the mobile host must
send the secondary address to a home agent, usually a router located on the home
network. The agent agrees to intercept datagram sent to the mobile’s primary address,
and uses IP-in-IP encapsulation to tunnel each datagram to the secondary
address.”[Dou06]

So, since a mobile uses its home address to identify itself whenever communicating
with an arbitrary destination, all replies will be sent to its home network, where the
home agent will take care of forwarding those packages to the foreign agent which
the mobile is now using.

Figure 24 a scenario of Mobile IP

In our scenario, we can let the user’s own office PC act as a home agent, and let the
PC know that a mobile phone is connected which acts as a foreign agent. In that case,
the redirection problem can be solved.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

24

2.4.3 Redirection in SIP
As we know, SIP also can operate in two modes: Proxy mode and Redirect mode
which are illustrated in Figure 25 and Figure 26. However, there is an important step
before any of these two modes can be executed: the mobile user must first register to
a SIP server about its current location, in this case, IP 131.161.1.112.

Figure 25 Proxy mode

Figure 26 Redirect mode

The difference here is that in redirect mode, Proxy will tell the caller about the
callee’s address while in Proxy mode, Proxy will act as a mid-ware by calling the
callee directly.

We can consider the caller in this mode as the VOIP caller in our project; the callee as
the PC which the end-user’s mobile phone now connects with and the Proxy as the
user’s original PC. If we implement our task as such, we will let the user’s PC tell the
VOIP caller the new PC address of the mobile phone, instead of forwarding. This can
be a solution, too.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

25

2.5 Fast Handover

In our project’s second phase, the aim is to achieve the possibility of moving from
one PC’s Bluetooth range to another while keeping the call connected via a Bluetooth
headset. Handover occurs when the headset moves from one PC’s Bluetooth range to
another. Certainly, we don’t want the call to be interrupted because of walking to a
new piconet. Therefore, handover is important. In this section, we will examine the
existing research about handover WiFi and Bluetooth. However, the usability of these
handover methods in our application is yet to be discussed.

2.5.1 Handover in WiFi
WiFi, known as IEEE 802.11, denotes a set of Wireless LAN/WLAN standards
developed by working group 11 of the IEEE LAN/MAN Standards Committee (IEEE
802). Since Bluetooth is IEEE 802.15.1, both of them belong to IEEE 802. WiFi is
also the most widely used technology in WLAN so maybe we can use some aspects
of it.

Indeed, the basic idea of handover in WiFi is a little different compared with what we
want. In a normal case, handover in WiFi is disconnecting from the current AP,
scanning for a new AP and then trying to connect to a newly found AP. There are
many solutions intended to handle handover in WiFi. The basic strategy is the same-
to divide this procedure into 3 parts: detection, selection and execution. Still, this
procedure will definitely lead to a halt during voice transmission, which is something
we want to avoid.

Recently, however, there is a draft called 802.11r which intends to solve this
time-delay problem and especially fits VoIP and other QoS applications’ requirements.
The reason that hundreds of milliseconds appear during handover is mainly because
of the 802.1x security scheme, which we have presented briefly before. According to
[San06], this delay will cost 525ms for average roaming, while on the other hand,
802.11r will only take 42ms in average. The core idea of 802.11r is that it allows the
mobile user to use the current access point (AP) for the procedure of authentication
with the next AP that it will probably connect to. In the normal way, authentication
and authorization between the mobile user and new AP will occur after the current
connection is disconnected. With 802.11r this will be operated via the current AP. The
user can start to authenticate and authorize the new AP while keeping the current
connection, which reduces time-cost efficiency during handover.

2.5.2 Handover in Bluetooth
Although the situation with Bluetooth is the same as WiFi, there are several research
papers trying to solve or make improvement on this problem. We chose one of them
which we thought should benefit our work.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

26

In [Geo02], the author provided three handover proposals both in the theoretical
description and the testing result.

Method 1:

BT periodically looks for a new Base Station, and keeps the information on the
Base Station in a stack. When the RSSI of the link between the BT device and the
current Base Station falls below the threshold level, the Base Station informs the
BT device to page another Base Station, whose address is kept in the stack of the
BT device.

Method 2:
When RSSI falls below the threshold level, the Base Station sends the
information on the BT device and the request to page the BT device to all nearby
Base Stations through the wired network.

Method 3:
The BT device keeps a backup link with another Base Station all the time. Once
the quality of the current link falls below the criterion, BT uses the backup link.
The poorer quality link is disconnected. To build the backup link, the BT device
goes into periodic inquiry mode to connect the new Base Station.

Although there is another algorithm introduced by [Min05] which claims that it works
better, we think that it is only a similar version with exiguous change to [Geo02]’s
method 3 (by increasing the backup link from 2 to 3). Therefore, we will take
[Geo02]’s method 3 as the formal one.

[Geo02] Also provide the test results as follows:

Handover
Technique

Handover Timing
(Range)(ms)

Handover Timing
(Average)(ms)

Method 1 220-241 231.2
Method 2 170-190 172
Method 3 Almost Instantaneous Almost Instantaneous
Table 2 Test result

Comparing these algorithms’ results, we can see that method 3 is the most appropriate
one to our work.

However, Bluetooth specification is not very suitable for issues like handover
[Baa00]. The methods we mentioned above need periodical scanning for accessible
Bluetooth devices, and this will block all current Bluetooth traffic. In other words, if
we use the methods above, the halt will not occur during handover; instead, it will
occur regularly, even if you are not moving. That’s absolutely ridiculous.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

27

3. SYSTEM ARCHITECTURE

3.1 Flow Chart

As we mentioned earlier, there are two scenarios of our project. The first phase is
where a callee stays within the local PC’s range before the call is connected, while the
other one is where the callee is roaming. According to the two different scenarios, we
present the following two flow charts. It is obvious that the first scenario consists of
six core phases: Device discovery, Connection establishment, Authentication, Monitor,
Call establishment, and Call termination. The second one is almost the same as the
first, with the exception of adding a Location register after Authentication. We
describe each block in detail below.

Figure 27 Home domain and Roaming

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

28

3.2 Message Sequence Charts

3.2.1 Device discovery and Connection establishment
Figure 28 shows the message flow for Device discovery and setting up a Connection.
When a user who holds a Bluetooth enabled mobile phone comes into a room which
has a PC, the phone will automatically initiate an inquiry to find out what access
points are within its range. The PC in the visited room responds with its address and
the phone picks. Then the mobile phone will invoke a baseband procedure called
paging. It synchronizes the device with the access point.

After the Device discovery, a connection between the PC and the mobile phone is set
up. The Link Manager Protocol establishes a link with the PC. Then the LMP will use
the Service Discovery Protocol (SDP) to find out what services are available from the
PC. For our project, what we need is Telephony service. After answering the L2CAP
and RFCOMM connection requests properly, a virtual link is established between the
two devices.

Figure 28 Device discovery and Connection establishment

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

29

3.2.2 Authentication
After the connection between the two devices is set up, the next step is Authentication.
Authentication is used for identifying and validating users. During this procedure,
challenge/response mode will be used. The AAA server will first ask the PC and
mobile user to present their IDs. Then, it uses each ID’s public key to encrypt a
message, and sends it respectively. When the mobile user or PC gets this message,
they decrypt it and encrypt a reply with their private keys. After the AAA server
receives these replies, it checks whether they can be decrypted by each ID’s public
key, which was used to encrypt message earlier. If everything is OK, then the AAA
will inform both the mobile phone and PC that they can trust each other.

The Authentication_done message will not only contain a message saying “OK”.
Instead, AAA will send the mobile user’s public key to the PC while using the PC’s
public as the encryption key, and does the corresponding procedure to the mobile user.
The reason for doing that is to guarantee that no information will be leaked during
further message exchanging. Each device will use the other device’s public key to
encode the message, so only that device will know what the message is.

Figure 29 Authentication

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

30

3.2.3 Location register
The Location register is utilized when the user moves to another visited room and
stays within a foreign PC’s range. The messages exchanged here are quite simple. The
foreign PC simply notifies the Home PC that the mobile phone is now inside its scope.
Then, the Home PC answers with an “accept” message.

Figure 30 Location register

3.2.4 Monitor
To ensure the connection, the PC has to monitor the phone periodically every few
seconds to confirm that the phone is still within its range. If the phone is out of range,
the connection will be terminated. As shown in Figure 31, the phone will respond to
the corresponding PC to indicate that it is in range now.

Figure 31 Monitor

3.2.5 Call connection and disconnection
After the above components are implemented, an “invite” command is sent from a
caller to the callee and the callee responds with the “accept” command, indicating that

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

31

the incoming call is adopted. Finally, the PC initializes the SCO link that contains the
speech signal, and the connection process is complete. At the end of the call, the
caller sends a “hangup” command to the callee and the callee responds; then they
terminate the call.

Figure 32 and 33 presents the Call connection and disconnection of two phases,
respectively. The latter phase is more complicated than phase1, because the local and
foreign PCs have to exchange voice data via LAN in phase 2.

PC

Internet

CallerCallee

Invite
Invite

Request

Accept
Accept

Accept

Voice connection

Request SCO link

Accept

Voice data
over Bluetooth

Voice data over
ineternet

Hangup
Hangup

Accept
Accept

Terminate connection

Figure 32 Call connection and disconnection (Home domain)

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

32

Local PC
Internet

CallerCallee

Invite
Invite

Request

Accept
Accept Accept

Voice data
over Bluetooth

Voice data
over LAN

Foreign PC

Request

Accept

Voice connection

Voice data
over ineternet

Request SCO link

Accept

Hangup
Hangup

Hangup

Accept
Accept Accept

Terminate connection

Figure 33 Call connection and disconnection (Roaming)

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

33

3.3 “4+1” views

According to [Phi95], five views should be presented to describe software architecture,
especially when dealing with a large and challenging architecture. Figure 34
illustrates which five views should be presented.

Figure 34 “4+1” views [Phi95]

Considering our project, scenario parts have already been introduced in previous
chapters. Among the remains of these views, logical view cares more about details
such as which class should be used and what’s the connection between these classes;
development view gives us a layered overview of the whole project; process view
focuses on message exchange between different blocks; physical view reveals how
devices are physically connected. Therefore, at this point we’ll discuss most of these
views except the logical view.

3.3.1 Process Architecture
Process will give us information about the connection between blocks inside each
application. As we mentioned before, there are two different applications, which are
the PC and Phone’s view, according to different devices, respectively.

As shown in Fig.35, there are eight processes in the PC’s process view. The core
process is Link management process which is composed of Connection, Controller
and Service discovery. The Controller receives events from and sends control
commands to the other seven parts. The Connection part’s task is connection
establishment and the Service discovery part uses Bluetooth’s SDP to find out what
services are available from the PC.

The following table 4 describes the function of the rest of the seven processes, except

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

34

the Link management process which is depicted above.

 Function
Security process Identify PC to AAA server

 Forwarding mobile phone’s
authentication messages.

Call management process Manage calls’ connection and termination
from PC

VoIP interface process Forwarding voice data from VoIP software
to application on PC

User interface process Interact with the user
LAN Data process Forwarding voice data from home PC to

foreign one.
Monitoring process Monitor if phone is within the PC’s range
Location register process Locate a phone when it moves to a foreign

PC’s range
Table 3 seven processes’ function

Figure 35 PC’s process view

For the phone’s process view, the core process, Link management process, adds a
Search part. The Search part is for finding a PC to connect to. It sends inquiry and
paging message to corresponding PCs and responded by PC’s controller. The

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

35

functions of the other three parts of the Link management process are almost the same
as the PC’s, except that for the Link management process, we find Security, Call
management, User interface, and Monitoring. Their functions are shown in the
following table, respectively.

 Function
Security process Sending authentication messages to AAA

server via PC
Call management process Manage calls’ connection and termination

from mobile phones
User interface process Interact with the user
Monitoring Monitor if phone is within the PC’s range

Table 4 four processes’ function

Figure 36 Phone’s process view

3.3.2 Physical Architecture
Figure 37 presents the Physical view of our project. The physical architecture is to
map the software into the hardware. According to our project design, we come up
with the following physical architecture figure. Four hardware are needed in our
project such as AAA server, Home and Foreign PCs and a Bluetooth-enabled mobile
phone.

 The function of AAA server is a server which handles request from clients and

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

36

provides certification to Bluetooth devices. The architecture of AAA sever is
beyond scope of our project and we just concern its function to distribute
certifications to Bluetooth devices.

 Home and Foreign PCs that install telephony software are used for forwarding
Internet calls to mobile phones.

 In the project, the function of a Bluetooth-enabled mobile phone is used as a
Bluetooth headset for PCs that run Internet telephony software.

Figure 37 Physical view

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

37

3.3.3 Function Architecture

Figure 38 Phone and PC’s functional view

In this part we come up with the other architecture, the function views or development
view, to comprehensively understand our project design. The function views are
shown from two different parts: Phone and PC.

The phone’s function view consists of six components which are Security, HSP, SD,
Controller, GUI and Mobility.

 Controller: the main component in the phone’s function view. It manages the
other five components and also plays a role of connection between different
components.

 Security: sending authentication messages to AAA server via PC.
 HSP (Headset profile): implement HSP in mobile phones to act as Bluetooth

headsets.
 SD (Service discovery): find corresponding service which we need.
 GUI (Graphical User Interface): Interact with the users.
 Mobility: the component is for roaming when phones are moving from one

domain to another.

The PC’s function view consists of seven components which are Controller, Security,
SD, Mobility, GUI, Redirection and Audio/Voice gateway.

 Controller: the main component in the PC’s function view. It manages the other
six components and also plays a role of connection between different
components.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

38

 Security: identify PC to AAA server.
 SD (Service discovery): response the service from the mobile phone.
 Mobility: monitor if the phone is within Bluetooth range.
 GUI (Graphical User Interface): Interact with the user.
 Redirection: the component is for connection between home PC and foreign PC.
 Audio/Voice gateway: gateway of the audio and voice, both for input and output.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

39

4. IMPLEMENTATION

4.1 Evaluation of existing software

4.1.1 Existing software for connecting mobile phone to PC
As we mention in chapter 2, both EpyxMobile and Skype PTT are used for connecting
mobile phone to PC, so it will be helpful if we can use any of them in our project.

However, the current version of Skype PTT no longer uses Bluetooth and we failed to
get the previous version. Instead, it now uses WLAN to make connection and call
forwarding work, so it seems EpyxMobile is our only choice.

When we try to run Epyx on our mobile phone according to its instruction, we find
that Epyx’s working principle doesn’t look like what we want. According to its user
guide page 4th step 1st, “Take your primary mobile phone and dial your secondary
mobile phone number (the one next to your computer).” In other words; the user
needs to first call his secondary mobile phone through GPRS network (or maybe 3G
later), and then the secondary mobile phone forwards this call to Skype. It’s quite
different in regards to our requirement: 1.We need to utilize Headset Profile and
Audio Gateway Profile. But Epyx doesn’t involve those aspects. 2. We don’t want to
use any existing mobile phone’s network like GPRS; we want our design to be
“stand-alone” except when using Bluetooth. Epyx uses GPRS for call forwarding and
even consists of two mobile phones during this procedure. That’s not what we want.

So in general, we can not use any existing software for headset emulation in mobile
phones.

4.1.2 Existing software for connecting Bluetooth Headset to PC
To achieve the goal of this project, we have to let mobile phones act as wireless
headsets from the PCs’ view. In other words, when a mobile phone is connected with
a Bluetooth enabled PC, the PC regards the phone as a headset instead of a phone. As
a result, the first task is to implement the connection between a Bluetooth enabled PC
and a Bluetooth headset. In this part, we will employ various Bluetooth headsets, USB
Bluetooth dongles, VoIP and Bluetooth software to test the communication between
Bluetooth headsets and PCs.

4.1.2.1 Testing Environments
Here we use two Bluetooth headsets from different companies: the CARDO
scala-500™ headset [CAR07] and Motorola HS 801.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

40

Cardo scala-500™ headset

 Fits all BT mobile phones
 Embedded wind blocking technology
 Exchangeable ear-loop and eye/sunglasses

attachment
 9 hours talk-time/1 week standby
 Only .58 oz (16.8g)
 All advanced functions: mute, reject, transfer, etc.

Motorola HS 801 headset

 Fits all BT mobile phones
 Only 20 grams.
 3.5 hours talk time from a single charge.
 Functions: place, receive or end a call with the

push of a button.

We have four Bluetooth USB dongles from different corporations: EPoX DGI01,
EPoX BT-DG03, TBW-102UB and Trust dongles.

Except for the USB dongles, we still have to install Bluetooth software on the PCs,
such as IVT BlueSoleil [IVT2007] and Bluetooth Widcomm (BTW) [BCM07], which
are based on the USB adapters. IVT BlueSoleil is a Bluetooth Application Profile
implementation on the Windows operating system and can be downloaded for free
from BlueSoleil.com. Yet, if the Bluetooth device is not licensed with this version,
BlueSoleil will be in evaluation mode and only 5MB data can be transferred.

Bluetooth Widcomm (BTW) [BCM07] from Broadcom Corporation is a
communications software solution for adding Bluetooth wireless technology to
Windows operating system platforms. Widcomm is one of the most popular Bluetooth
drivers because of its concise user interface, easy operation and reliable system.
Compared with BlueSoleil, the advantage of Widcomm is it has no limitation of 5MB
data communication.

The versions of these two Bluetooth drivers used in the test are IVT BlueSoleil 2.3
VoIP and Widcomm 5.0.1.801.

The VoIP software used in the project is Skype and Voipstunt.

4.1.2.2 Connecting Bluetooth headsets to PCs
After successful installation of the IVT BlueSoleil on a PC, the main window of IVT

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

41

BlueSoleil will appear. Then the next step is to pair the headset with the PC. If pairing
is completed, then we can use the scala-500™ headset as the PC’s wireless headset
within a 10m range. Figure 39 presents the main window of IVT BlueSoleil when the
connection between the headset and the PC is completed.

Figure 39 Main window of IVT BlueSoleil

Both the two Bluetooth headsets could be used as wireless headsets on the PC within
100 meters. It has been discovered that all three USB dongles are compatible with
IVT BlueSoleil except the Trust dongles. All the dongles, however, are not licensed;
the IVT BlueSoleil is in evaluation mode and is used only for a few minutes before it
stops working automatically.

After installing the Widcomm software and plug in the Bluetooth dongles, it is found
that three dongles, which are EPoX DGI01, EPoX BT-DG03 and Trust dongles, are
compatible with it; also, the Bluetooth icon turns to blue-white which means the
Bluetooth is available. However, we were unable to discover any nearby available
Bluetooth devices by Trust dongles, while the other two could. Therefore, EPoX
DGI01 and EPoX BT-DG03 exist for the purpose of being used as wireless headsets
for PCs. Both headsets can work in the test.

4.1.2.3 Using headsets answer VoIP calls
As stated in the State-of-the-art chapter, the headset profile uses AT commands to
control the voice connection. Therefore, if we want to use headsets answering VoIP

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

42

calls, we must have an interface between VoIP software and the Bluetooth headset.
This interface can recognize AT commands and control the VoIP software according to
these commands.

Fortunately, we found a software called VoIP plug-in for BlueSoleil. IVT BlueSoleil
2.3 VoIP [BBV07] is specially designed for Skype. Users can answer, but cannot call,
a Skype call at anytime and anywhere, even when they are listening to music via a
normal Bluetooth headset.

After installation, we can use this version’s BlueSoleil for answering Skype incoming
calls. When an incoming VoIP call arrives, the VoIP software rings. Meanwhile,
BlueSoleil auto-connects to the headset or handsfree. Users can hear the beep in the
earpiece that indicates the incoming call. When pressing the answer/call key on
Bluetooth headset, the ring sound stops and the call is started. It is of importance to
point out that users have to manually configure the Audio-Input and Audio-Output
settings of Skype Software to Bluetooth AV Audio. After all is done, users can
answer the Skype call via a Bluetooth headset within 100 meters. The following
figure 40 presents the windows of Skype and BlueSoleil VoIP when the connection
between the Skype and the headset is setup successfully.

However, the drawback of this version’s BlueSoleil is that all the USB adapters we’ve
used are not authorized. So the data communication is limited to 5MB. The
disadvantage is not only the limited data rate, but also the fact that BlueSoleil VoIP
restarts after several minutes due to lack of license.

Figure 40 Windows of Skype and BlueSoleil VoIP

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

43

The two headsets and the three dongles, except the Trust dongles, can work with
Skype. It is worth noting that the headsets are able to not only end an incoming call,
but also ring the previous call number by pressing a button.

For the other VoIP software, Voipstunt, we cannot just push the headset button to
receive an incoming call; the reason is that IVT BlueSoleil 2.3 VoIP is specially
designed for Skype. Despite this, we can still use headsets to chat with the caller
through Voipstunt. One of the things that are interesting is that in this case we have to
manually configure the Audio-Input and Audio-Output settings of Voipstunt Software
to Bluetooth SCO Audio, instead of Bluetooth AV audio in Skype.

Because Widcomm is not designed for VoIP, the headsets are unable to answer or
terminate incoming calls by pushing their button in this test. The usage of the
Bluetooth headsets in this test, are as wireless PC headsets and chatting with other
VoIP users within 100 meters.

4.1.3 Possibility of using existing mobile phone or PDA for headset

emulation.
4.1.3.1 T-Mobile MDA
Goal: Try to install similar software like Widcomm / Blue Soleil which provide
Headset Profiles within the software.

At first, we’ve tried to install BlueSoleil for CE version 2.0. We did it according to
instructions, step by step. However, at the end of the installation, an error occurred,
which stated: “unknown OS version”. Afterwards the installation aborted.

Then we tried to install Widcomm Bluetooth 1.6.0. But the installation on the PDA
failed too.

Finally, we used a modified version of the Widcomm Bluetooth stack from [Wid07]
and it worked fine. However, this stack doesn’t contain its own headset profile.
Searching the services on the PC, we can’t see “Headset service” in its provided
service list.

Conclusion: we can not use existing software of Bluetooth stack to emulate the
Headset Profile on a PDA.

4.1.3.2 Mobile Phone: SonyEricsson P900, SonyEricsson P990i, Motorola 768i.

Goal: Testing whether these mobile phones come with their own Headset Profiles
already inside.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

44

According to their instructions, both P900 and P990i should “support”
Headset/Handsfree Profile. However, both BlueSoleil and Widcomm can not find
“Headset service” in their provided service lists. On the other hand, both HS801 and
scala-500 can work with those mobile phone well.

Conclusion: “Support” does not mean “Implement”. There is no existing mobile
phone implement Headset Profile as far as we can see.

4.2 Application design

As we have shown above, we can not use any existing software for our first step –
headset emulator. To achieve the goal of the project, we originally planned to
implement two small programs on both the PC and mobile phone sides in order to
make the PC be regarded as a Bluetooth server and phone as a Bluetooth client, and
then establish a connection between the server and client. However, time is too
limited for us to implement all these features. Therefore, we now plan to focus first on
finishing the “Headset Emulator” part. If time allows, we’ll try to consider other
features.

Since we have successfully tested the connection between Bluetooth headsets and PCs
as stated in section 4.1, and there is no existing software that does this “Headset
Emulator” work, we plan to use IVT BlueSoleil in the PC side and also make a
program on the mobile phone side.

In section 4.1 we have tested IVT BlueSoleil to search for nearby headset devices and
saw that the Bluetooth headset has the ability to work as the wireless headset of the
PCs within the Bluetooth range. The key for a successful connection is that the
Audio/Voice gateway provided by IVT BlueSoleil is able to realize the function of the
headset service which is already implemented in a Bluetooth headset. For this reason,
we can hear the sound from the PC via this headset. Since our project is to establish a
connection between the PC and mobile phones, if we make the mobile phone work as
the Bluetooth headset, then the connection would be setup. However, normal mobile
phones don’t implement the headset profile. If we install IVT BlueSoleil on the PC
side, our task is to implement the headset profile in a mobile phone in order to make
the phone own the ability of a headset and finally realize the connection with IVT
BlueSoleil.

When IVT BlueSoleil connects with the mobile phone’s headset profile, IVT
BlueSoleil, which acts as AG, will send the AT command RING to alert the mobile
phone side after the ACL is established. The RING may be repeated for as long as the
connection establishment is pending. The SCO link establishment can take place after
the mobile phone user accepts the call by pressing a button on the phone.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

45

4.3 Developing environment

4.3.1 Developing language
When we try to make this headset emulator, there are two languages we can choose:
C/C++ or Java. After deep consideration, we decide to use Java. There are two main
reasons for that [BFJ03]:

 Java Bluetooth API is independent of the stack and radio;
 Java Bluetooth API is a standardized Bluetooth API.

4.3.1.1 Independence of Java Bluetooth API
There are two key advantages to using the Java Bluetooth API. The first one is that the
API is independent of the stack and the Bluetooth hardware. It is known that Java
code can be run on basically any hardware platform and on any operation system with
little or no modification. So the Java Bluetooth API gives the users the ability to write
applications without any knowledge of the underlying Bluetooth hardware or stack.

4.3.1.2 Java Bluetooth API is a standardized Bluetooth API
The second advantage is that it is the only standardized Bluetooth API. There is no
standard for a C/C++-based Bluetooth SDK. Take “Service record” as an example;
vendor A may name it as sddb.add (), while vendor B may write sddb.insert (). The
two names for the same function are different. Therefore, it is necessary to rewrite the
Bluetooth application and/or change its functionality because of it. JSR-82 is the
official Java API for Bluetooth; all vendors who implement the standard must include
a core set of layer and profiles in their Bluetooth SDK. In other words, if a vendor
tries to modify the Service record, it has to use sddb.insert (). In this way, the names
of functions are unified and the Java code can be re-used under different
environments.

4.3.2 IDE (Integrated Development Environment) and Smart Phone.
During this project, we use Eclipse 3.2 with EclipseME plug in for developing J2ME
application. To test our application on a PC, we use Sun WTK 2.2. To test our
application on a mobile phone, we use Sony Ericsson P900.

4.3.3 JSR (Java Specification Request) 82
JABWT was defined by a Java Community Process expert group JSR-82 [JSR82].
The JSR-82 is the Java API for Bluetooth wireless technology. The specification
standardizes a set of Java APIs to allow Java-enabled devices to integrate into a
Bluetooth environment. The following application function could be implemented by
JSR-82:

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

46

 Estimate and detect attribute of Bluetooth device
 Discover nearby Bluetooth device within Bluetooth range
 Search service in remote Bluetooth device
 Establish the connection between remote Bluetooth server and Bluetooth client
 Provide service in Bluetooth server for request from Bluetooth client

There are two packages for JSR-82: javax.bluetooth and javax.obex. And during our
implementation, only javax.bluetooth will be used.

However, since we mentioned before, JSR82 doesn’t provide an API for the lowest
two layers: baseband and radio. Also, according to Figure 6 in chapter 2, audio
connection is established directly on baseband layer, which is unlike other
connections, established on L2CAP. And according to [BAP04], “JABWT (Java APIs
for Bluetooth Wireless Technologies) does not provide APIs for Audio/Voice
transmissions over voice channel,” as shown in the figure below:

Figure 41 JABWT architecture

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

47

So it’s obvious that the most painful work lies in how to make an Audio connection
using JABWT.

4.4 Design details

Fortunately, we know that the communication between the headset profile and the
audio gateway profile is a Serial Port based connection. This Serial Port profile is
covered in JABWT. What is more important is that according to [Hea01], we know
that the commands used between HSP and A/VGP are AT commands. So if we can
establish a SP connection, and catch the AT command sent by A/V GP, we should be
able to reply those command in AT format too, which will probably makes A/V GP
believe it is talking with a normal HSP.

There are three major difficulties here:
1. Convince A/VGP that mobile phone has a HSP and provide Headset service.
2. Handle with those commands transferred between PC and mobile phone.
3. Use mobile phone to discovery A/VGP service.

And the flow chart should be like this:

Figure 42 flow chart

4.4.1 Add Headset service to Service Record
According to figure below [BAP04], this process should have 3 steps:
1. Create service record.
2. Modify service record attributes.
3. Add it to SDDB.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

48

Figure 43 Life cycle of a service record

4.4.1.1 Create service record
First of all, we need to specify a new service. This service can be any kind of service
because we will modify those attributes to meet Headset Profile’s requirements after
all. So right now, we just need an object that can be modified. In JABWT, this is done
by first declaring a StreamConnectionNotifier object. We simply use
Connector.open() to create the object called “notifier”. And after that, to get
access to this notifier’s service record, we need get access to LocalDevice and use
this class’s function “getRecord(notifier)” to retrieve this ServiceRecord
object “record”. Once we get that object, we can do what ever we want to modify
record attributes.

Codes are described below:
notifier = (StreamConnectionNotifier)

Connector.open("btspp://"+"localhost:123456789ABCDE;name=Headset");

LocalDevice local = LocalDevice.getLocalDevice();

ServiceRecord record = local.getRecord(notifier);

btspp:// localhost:123456789ABCDE means this is an Serial Port based service,

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

49

which is already specified in Bluetooth Specification. The number string here,
“123456789ABCDE”, means nothing. We will modify that later.

4.4.1.2 Modify record’s attributes
The service record for Headset is shown in Figure 51 in Appendix A. It is worth
noting that in [Hea01], it says “This profile defines the following service records for
the headset and the audio gateway respectively.” However, only this headset part’s
service record should be our concern.

The value of the Item, like “ServiceClassIDList”, “L2CAP”, should be present
in UUID format. Those values can be found in [BAN01]. Most of the value store in
object called “DataElement”.

After we store those values into the corresponding DataElement object, we need to
insert them into the service record “record”. There is an existing method in class
“ServiceRecord” called setAttributeValue() which can do this job.

Codes here are:
DataElement ServiceClassIDList = new DataElement(DataElement.DATSEQ);

DataElement ServiceClass0 = new DataElement(DataElement.UUID,new

UUID(0x1108));

DataElement ServiceClass1 = new DataElement(DataElement.UUID,new

UUID(0x1203));

ServiceClassIDList.insertElementAt(ServiceClass1, 0);

ServiceClassIDList.insertElementAt(ServiceClass0, 0);

record.setAttributeValue(0x0001, ServiceClassIDList);

Codes above for the ServiceClassIDList modification. 0x1108 indicates it’s “Headset”;
0x1203 indicates it’s “Generic Audio”. And then, insert these two data into Service
Class ID List one by one. Finally, insert the new “ServiceClassIDList” object to,
0x0001, where it belongs.

DataElement BluetoothProfileDescriptorList = new

DataElement(DataElement.DATSEQ);

DataElement Profile0 = new DataElement(DataElement.DATSEQ);

DataElement HSP = new DataElement(DataElement.UUID,new UUID(0x1108));

DataElement Param0 = new DataElement(DataElement.U_INT_1,1);

Profile0.insertElementAt(Param0, 0);

Profile0.insertElementAt(HSP, 0);

BluetoothProfileDescriptorList.insertElementAt(Profile0, 0);

record.setAttributeValue(0x0009, BluetoothProfileDescriptorList);

Codes above are used for BluetoothProfileDescriptorList. Although the codes look
similar to the upper one, what’s going on under these codes are different. The

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

50

“dummy” object we created before does not have this BluetoothProfileDescriptorList
item. Function “setAttributeValue” here will create a new item and places it at
“0x0009”, where in Bluetooth Specification, is for Bluetooth profile’s description.
The different data type: “DATSEQ, UUID, U_INT_1” are used also according to the
specification.

Also things to mention here are we did not modify all the attributes according to
Service Record Attributes in Appendix. Item “ProtocolDescriptorList” are already
existed in the service we created (btspp:// localhost:123456789ABCDE) and the
contents are also same. Item “ServiceName” and “Remote audio volume control” is
optional item. Therefore, we would like firstly ignore them and maybe add them on
later work.

4.4.1.3 Add the modified service record to SDDB
Just like what we’ve shown in figure 43, this record can be add to SDDB only after
StreamConnectionNotifier ‘s method “acceptAndOpen()” is called.
According to JSR82’s specification, this action will be automatically executed once
that method is called. However, there is another optional way can achieve the same
effect. A method called “updateRecord()” in class LocalDevice is used to
make those changed be effected on the SDDB side. But according to JSR82, this
method only affects items which already exist in the old record. So in other words, if
there is no “BluetoothProfileDiscriptorList” item in the old service record, we cannot
add it to SDDB using “updateRecord()”. That is to say, the first time we run this
application, we have to wait for “acceptAndOpen()” to be executed in order to
add this modified record to SDDB.

However, the code line we actually used here is still:
local.updateRecord(record);
details of this can be found in discussion part.

After all these three steps have been done, the mobile phone now should appear as
and provide headset service as a normal headset.

4.4.2 Handle with those commands transferred between PC and

mobile phone
Once we create a service record in SDDB which provides headset service, it’s time for
us to use this headset service from the PC side. The so-called “use” is actually to
implement the function specified in [Hea01]. There are 4 types of formats for
commands, which are shown below:

 Command from HS to AG. This kind of command must have a “AT” prefix
initially:
AT <cmd> = <value> <cr>

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

51

 Command from AG to HS as reply “success”:
<cr> <lf> OK <cr> <lf>

 Command from AG to HS as reply “fail”:
<cr> <lf> ERROR <cr> <lf>

 Unsolicited command from AG to HS:
<cr> <lf> <result code> <cr> <lf>

The “cmd” in the first type are sown in Figure 52 in Appendix A.

So if we want to express a “headset button pressed” action, the command send to AG
should be AT +CKPD = 200 <cr>.

The “result code” in the last type of command is presented in Figure 53 in Appendix
A.

It is worth noting that there is another unsolicited result code that can be used in the
command from AG to HS: “RING”. The usage of this one is to indicate the incoming
calls.

So for example, if AG wants to gain the speaker of HS, command “<cr> <lf> +VGM
= 13 <cr> <lf>” is sent. If AG wants to inform HS that there is an incoming call,
command “<cr> <lf> RING <cr> <lf>” is sent.

In the mobile phone’s application, we need to add methods for sending those
commands to different “Command” object’s “commandAction()” so that each
time this command object is selected, corresponding AT commands will be sent.

Also, commands are not only sent from HS but should also be received from AG. We
need to handle those incoming commands. As [Hea01] specified, only “RING” is
mandatory, and we are not sure about how to implement those volume adjusting parts.
Therefore, we plan to skip handling these commands right now. Maybe this work can
be done in future.

To retrieve this “RING” command, we plan to use an InputStream object. By
using this class’s read() method, we can get the data sending from AG to HS, and
then, convert it to String or other format to see whether it’s “RING”. Once this
“RING” is detected, we can inform the user by showing a message or via other ways,
and consequently let him or her to make a decision.

Actually, when we try to get the AT commands, we’ve tried 4 different ways:
A: conn = (CommConnection) notifier.acceptAndOpen();

InputStream in = conn.openInputStream();

B: conn = (CommConnection) notifier.acceptAndOpen();

DataInputStream in = conn.openDataInputStream();

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

52

C: conn = (StreamConnection) notifier.acceptAndOpen();

InputStream in = conn.openInputStream();

D: conn = (StreamConnection) notifier.acceptAndOpen();

DataInputStream in = conn.openDataInputStream();

In type C and D, the connection type we used is StreamConnection, which is the
default type of JSR82’s typical connection. In type A and B, the connection type we
used is CommConnection, which is the inherited from StreamConnection and is the
specified type for serial port’s connection. The reason we use this one is that the audio
link should be established upon serial port connection according to Bluetooth Headset
Profile’s specification.

In type A and C, we use default input stream type while in type B and D, we use the
other input stream for MIDP: DataInputStream. The reason we choose these two type
of input is that there are the only supported input stream in MIDP for
StreamConnection and CommConnection.

4.4.3 Service Discovery
When the first two steps are finished, it should be possible for the user to use the PC
to find our headset service-provided mobile phone and make a connection. However,
that is not what we want in our architecture. In our design, this service discovery
process should be initiated by the mobile phone because it should be mobile phone’s
function to find out which PC provide A/V gateway service and consequently connect
to it. Device discovery and service discovery should be covered in our application.

There is no doubt that service discovery should be executed before device discovery.
We plan to use following procedure for this.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

53

Figure 44 Devices and Service Discovery

This process is typically managed by a DiscoveryAgent object, and this object
should also implement the DiscoveryListener interface. We will just present
three major methods there. The details for other functions we have used can be
found in [JSR82].

 startInquiry():searches for devices with the specified inquiry access code.
 searchServices():searches for certain service on a specified remote

Bluetooth device.
 selectService():selects a service that contains uuid in its service record.

Codes detail:

 Compare with Figure 44, the codes for “Retrieve cached devices” block are:
private void addDevice(){

 RemoteDevice[] list =

agent.retrieveDevices(DiscoveryAgent.PREKNOWN);

 if(list!=null){

 for(int i = 0; i<list.length; i++){

 String address = list[i].getBluetoothAddress();

 deviceList.insert(0,address,null);

 deviceVector.insertElementAt(list[i], 0);

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

54

 }

 }

 list = agent.retrieveDevices(DiscoveryAgent.CACHED);

 if(list!=null){

 for(int i = 0; i<list.length; i++){

 String address = list[i].getBluetoothAddress();

 deviceList.insert(0,address,null);

 deviceVector.insertElementAt(list[i], 0);

 }

 }

 }

 Codes for “Start inquiry” block are: (build-in function. GIAC means general
inquiry access control, so this device can find other device and in the meanwhile,
it can be found by other device as well.)

agent.startInquiry(DiscoveryAgent.GIAC, this);

 Codes for “Process discovered devices” block are: (retrieve remote/discovered

device’s friendly name first, and the try to find out what kind of device it is.
Function “getFriendlyName” is a build-in function. But function
“getDeviceClasss” is writen by me. However, since codes for the latter function
are too long, we didn’t present it here.)

public void deviceDiscovered(RemoteDevice device, DeviceClass cod) {

 // TODO Auto-generated method stub

 try {

 String friendlyName = device.getFriendlyName(false);

 deviceList.insert(0, friendlyName+";"+getDeviceClass(cod),

null);

 Display.getDisplay(infoM).setCurrent(deviceList);

 deviceVector.insertElementAt(device, 0);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 infoM.getForm().append(e.getMessage());

 Display.getDisplay(infoM).setCurrent(infoM.getForm());

 }

 }

 Codes for “Process inquiry completed” block are: (Different re-action according

to different type returned.)
public void inquiryCompleted(int type) {

 // TODO Auto-generated method stub

 Alert alert = null;

 isInInquiry = false;

 if(type != DiscoveryListener.INQUIRY_ERROR){//NB! this is only

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

55

for P900, normally it should be "type !=

DiscoveryListener.INQUIRY_COMPLETED"

 if (type == DiscoveryListener.INQUIRY_TERMINATED) {

 startServiceSearch();

 return;

 }

 else{

 alert = new Alert("Bluetooth error", "The inquiry didn't

complete:", null, AlertType.ERROR);

 deviceList.removeCommand(abort);

 deviceList.addCommand(scan);

 }

 }

 else{

 alert = new Alert("Inquiry completed", "Inquiry completed",

null, AlertType.INFO);

 deviceList.removeCommand(abort);

 deviceList.addCommand(scan);

 }

 alert.setTimeout(Alert.FOREVER);

 Display.getDisplay(infoM).setCurrent(alert);

 }

 Codes for “Discover service” block are: (UUID 0x100 indicates that the service

we’re interested in must have L2CAP protocol item in its service record since
most of Bluetooth services are built upon this; Attributes 0x0009 and 0x0100
indicate we want to retrieve BluetoothProfileDescriptorList and ServiceName for
the found services. 0x100, 0x0009 and 0x0100 are also used according to
Bluetooth sepecification)

private void startServiceSearch(){

 serviceRecordVector = new Vector();

 try{

 UUID[] uuidList = new UUID[1];

 uuidList[0] = new UUID(0x100);

 int[] attrList = new int[2];

 attrList[0] = 0x0009;

 attrList[1] = 0x0100;

 int index = deviceList.getSelectedIndex();

 RemoteDevice remoto =

(RemoteDevice)deviceVector.elementAt(index);

 transID = agent.searchServices(attrList, uuidList, remoto,

this);

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

56

 }catch (BluetoothStateException e){

 Alert error = new Alert("Error","Unable to start the service

serarch("+e.getMessage()+")",null,AlertType.ERROR);

 error.setTimeout(Alert.FOREVER);

 Display.getDisplay(infoM).setCurrent(error, deviceList);

 }

 }

 Codes for “Process discovered services” block are: (retrieve name element, which

is “0x100” according to Bluetooth specification, and print it on screen.)
public void servicesDiscovered(int transID, ServiceRecord[] record) {

 // TODO Auto-generated method stub

 for (int i = 0; i<record.length; i++){

 DataElement nameElement =

(DataElement)record[i].getAttributeValue(0x100);

 if((nameElement!=null)&nameElement.getDataType()==DataElement.STR

ING){

 String name = (String)nameElement.getValue();

 serviceList.insert(0, name, null);

 serviceRecordVector.insertElementAt(record[i], 0);

 }

 }

 Display.getDisplay(infoM).setCurrent(serviceList);

 }

 Codes for “Process service search complete” block are: (Similar to “Process

devices search complete” block. Different re-action according to different type
returned by system.)

public void serviceSearchCompleted(int transID, int type) {

 // TODO Auto-generated method stub

 Alert dialog = null;

 if (type != DiscoveryListener.SERVICE_SEARCH_COMPLETED){

 dialog = new Alert("Bluetooth Error","the service search

failed to complete normally"+type,null,AlertType.ERROR);

 }

 else{

 dialog = new Alert("Service serach completed","the service

search complete normally",null,AlertType.INFO);

 }

 dialog.setTimeout(Alert.FOREVER);

 Display.getDisplay(infoM).setCurrent(dialog);

 }

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

57

 Codes for “Consume service” block are: (Once I got the service I selected, firstly
we will get the corresponding service record, and then, get its ServiceClassIDList.
After that, we’ll try to get the service descript in this ServiceClassIDList.
Hopefully it should be a Headset Audio Gateway. Finally, use selectService()
function to select this service and got the connection string as returned result.)

private Connection connectToService(){

 int index = serviceList.getSelectedIndex();

 ServiceRecord sr =

(ServiceRecord)serviceRecordVector.elementAt(index);

 Enumeration em = null;

 DataElement de = null;

 String conn = null;

 try{//get ServiceClassIDList

 em = (Enumeration)sr.getAttributeValue(0x0001).getValue();

 }catch (ClassCastException e){

 serviceList.append("em"+e.getMessage(),null);

 }

 try{//get Headset Audio Gateway

 de = (DataElement)em.nextElement();

 }catch (ClassCastException e){

 serviceList.append("de"+e.getMessage(),null);

 }

 UUID AGuuid = (UUID)de.getValue();

 serviceList.append(AGuuid.toString(), null);

 try {

 conn = agent.selectService(AGuuid,

ServiceRecord.AUTHENTICATE_NOENCRYPT, true);

 serviceList.append(conn, null);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 serviceList.append("Can not get connection URL", null);

 }

 if (conn != null){

 try {

 return Connector.open(conn);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 serviceList.append("Unable to connect to AudioGateway

Server", null);

 }

 }

 return null;

 }

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

58

5. DISCUSSION AND EVALUATION

5.1 Headset Emulator

There are some existing software and hardware solutions for the headset emulator,
which are stated in Chapter 2. By using these products, users would be able to receive
Internet calls via their PC Skype software on their mobile phones as long as they stay
within 20-100 meters from their PCs. However, all these solutions are only designed
for Skype and users have to be concerned with compatibility issues when they use this
kind of product. Additionally, the existing software products seem to be unstable and
lack widespread implementation. Though the hardware products, such as Bluetooth
Sky Phone, are able to connect with Skype calls within the Bluetooth range, they are
not suitable for modern users because this kind of phone has only a few functions in
comparison to smart phones. There are also further limitations. Once the users are far
away from their PCs, the connection will be terminated.

Consequently, the existing software and hardware solutions don’t meet the needs of
our project. We designed a prototype that is compatible with any type of telephony
software and embedded in any kind of mobile phone.

5.2 Security

In chapter 2, we firstly presented an in-depth research about Bluetooth’s built-in
security scheme. The shortcoming is obviously – it is vulnerable to eavesdropping.
We’ve also given a reference about how to crack a Bluetooth PIN. After presenting
Bluetooth’s build-in PSK security solution, we began to introduce the PKI solution.
Finally, we chose one of the PKI solutions for our architecture.

The reason Bluetooth uses PSK as its build-in security scheme is due to its Ad-hoc
nature in most circumstances. However, in our project, the PCs are already connected
to a fixed infrastructure. The situation here is similar to WLAN, so we can use PKI to
improve security performance.

The advantages of using PKI compare with Bluetooth build-in security scheme are: 1.
easy to manage and distribute Key/Certification. 2. User manfully configuration in PC
side is not necessary.

So far as we can see, the only drawback for using PKI in our design is the cost factor.
To get a new Authentication Server for only this “Internet Telephony in Ubiquitous
Computing Environments” usage is definitely a waste. However, we assume that
maybe we can try to utilize WLAN’s existing RADIUS server. Anyway, we have to

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

59

clarify that details about this Authentication Server should not be our project’s
concern.

5.3 Service Discovery

In this project, we finally used Bluetooth SDP to implement service discovery. The
drawback of Bluetooth SDP is the device cannot use the built-in Bluetooth SDP when
it is pairing; Konark and DNS-SD are also options for service discovery which
discussed in Chapter 2. They are independent of the Bluetooth stack, so if we use
these for service discovery, the above problem will be solved.

But DNS-SD is not reachable for our project. All nodes must have network access for
DNS-SD; nonetheless, in our project we cannot guarantee the mobile phone is
connected to a network. And about Konark, we don’t think it is a competitive solution
compare with Bluetooth SDP. Because it also involved with Bluetooth traffic during
service discovery, which as we explained before, is unable while Bluetooth headset
profile and Bluetooth audio gateway profile are working.

5.4 Redirection

There are two different methods of solving Redirection problem, which are just like
the two modes we introduced in chapter 2.4.4: tell the calling party about target’s
address or work as a middleware and help forward the calls.

We believe that the second one is better because on one hand, the user’s office PC and
the one mobile now connected can handle all the details without bothering the calling
party; the transparency is good. On the other hand, since we don’t have more
requirements about the architecture of the call’s source, compatibility of our design
can be guaranteed. As a result of this, we used the second one to handle the
Redirection.

5.5 Fast handover

In chapter 2, we explained the existing state of art solution to Bluetooth handover. In
the architecture design part, we didn’t mention anything about this because we don’t
think we can give a complete architecture regarding with this fast handover issue due
to this problem’s complexity. Although we didn’t discuss this problem in our
architecture chapter, we can still propose a direction to those whom this may concern:

In general, there are two major factor can cause the delay during a handover
procedure: service discovery and security issue. So far as we can see, there is no
existing complete solution that can solve this problem in Bluetooth perfectly.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

60

However, according to the methods introduced in chapter 2, we have a suggestion for
fast-handover in Bluetooth: use some location-aware mechanism so that the current
PC with which the user is connected to can predict the next PC the user intends/has to
connect to. After that, this PC sends all information necessary for build up of a
Bluetooth connection with that PC to the users. This would probably be the service’s
UUID, which is the primary parameter for building Bluetooth connection. In that case,
service discovery problem can be solved.

About the other problem, security issues, the WLAN solution, especially 802.11r, can
be used for dealing with security issues. If PKI is used, the authentication between
mobile phone and the next PC can be done following the procedure we are given in
chapter 3.2.2. The mobile phone still identifies itself via the current PC to
Authentication Server, and the next PC identifies itself to the Authentication Server
directly. After both devices are authorized, the mobile phone and the next PC can have
each other’s public key.

In that case, the necessary information for build up next connection and public key for
encrypted communication can be gained while the mobile phone is still connected to
the current PC. Therefore, we believe that it can solve, or at least be helpful in solving,
this fast handover problem.

5.6 Prototype’s implementation

Before actually make my codes can be run in the mobile phone, we have to export
them out and copy them in to mobile phone.

To achieve this, right click the project in Eclipse and select J2ME->Create Package.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

61

Figure 45 main window of Eclipse

Then, there will be two file in the “deployed” folder in the corresponding folder under
the Eclipse work space. However, after many time’s failure, we found that copy these
to file directly to mobile phone is not correct, though many books don’t mention it. we
have to manually add one more line, “MIDlet-1:
BTDeviceInfoMIDlet,,no.hia.wen.BTDeviceInfoMIDlet” in JAD file which likes
picture blew.

Figure 46 JAD file

Only in that case, we can install my application on mobile phone successfully by
sending these JAD and JAR files to it and run JAD file after that.

During chapter 4, we’ve introduced three parts of our prototype, which covers our
sub-problem 1, headset emulator, and sub-problem 2, service discovery. Sub-problem
5, fast handover is not inside of our concern due to the reason we’ve outlined above.
Sub-problem 3 and 4 are not included in our prototype due to time reason.

To evaluate our prototype, let’s first have a look at the headset emulation part. We’ve

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

62

successfully added the headset service to SDDB which means, PC can find “headset
service” provide by mobile phone after our application is executed. Figures blew
illustrate the situation before (A) and after (B) our application being executed.

Figure 47 Headset Service Emulator (A)

Figure 48 Headset Service Emulator (B)

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

63

So in general, the result of our prototype’s first part is very good.

Then, about the second part – to handle the AT commands send from PC to mobile
phone. What we planned is to get those commands by IOstream. And then, response
will be given respectively. However, things are not going as we expected. We’ve tried
many kind of input stream listed as A,B,C and D in chapter 4.4.2, but none of them
can retrieve the any single bit of data. So we try to find out whether the
acceptAndOpen() method is called. Therefore, we’ve added a simple line of code to
detect this:
conn = (StreamConnection) notifier.acceptAndOpen();

msgForm.append("AGP tries to connect...");

However, the result is that this string output is never shown on the screen. We can
only suspect that once Audio Gateway profile tries to connect to mobile phone, it does
not use normal connection way like typical JSR-82 program. In other word, it does
not notify “StreamConnectionNotifier”. Therefore, we can not response to AGP’s
connection request and consequently, can not deal with AT commands.

Although we didn’t make this AT commands part to work, we did have another
discovery. In chapter 4, we state that only acceptAndOpen() can be used for update
service record. But since we didn’t make it to be executed, how can this headset
service be added into SDDB?

We find that in fact, updateRecord() can be capable for this updating service record
task. It can work for the first-time-run or creation of new service though JSR82 claims
it can not. We think that is an important find to those who will keep on working
following our direction.

Finally, the last part of our prototype is service discovery. This procedure requires
devices discovery firstly. During our Implementation part, we mainly focused on
service discovery. But when start to run our code, we find that device discovery is as
important as service discovery. Only presenting the name or the address of a found
Bluetooth device is not enough. Because in our user scenario, mobile user will only be
interested in devices whose type is PC or laptop.

Therefore, what we’ve actually implemented is firstly search devices and present their
types, then search services for a selected device. Pictures blew show that our code
running as successful as we expected.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

64

Figure 49 Devices Discovery

Figure 50 Service Discovery

In general, our approach was to use software based on Java to realize the prototype.
However, it found that Java is not suitable to fully solve this problem. To achieve

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

65

things like AT commands part, some native language like C is more appropriate for
this issue.

Another problem for using Java is the debug part. Since the application must be run
on the mobile phone, it’s hard for us to debug. Each time we found a slight error, we
have to go back to PC and change the code. After that, re-generate the JAR and JAD
file and transfer them to mobile phone and finally install and run it again. It’s quite
inefficiency

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

66

6. CONCLUSION AND FURTHER WORK

6.1 Conclusion

In this thesis we proposed and evaluated a possible solution by using Bluetooth to
enhance the mobility of Internet telephony in Ubiquitous computing environments.
Bluetooth is a popular technology for this kind of application owing to its widespread
and low cost availability. Range and complicated handover techniques along with
non-conformance with WAN are the disadvantages.

The existing solutions, both software and hardware, are rudimentary and are only
designed for Skype and users have to be concerned with the compatibility issue when
they use this kind of product. The solution we proposed for the project not only is
compatible with any type of telephony software, but also enables a user to receive and
make VoIP calls from a Bluetooth enabled phone providing limited but useful
mobility in ubiquitous environments. In addition, our solution can be modified to
incorporate outgoing VoIP calls by providing dial-pad functionality at the headset
part.

We began with researching “state-of-the-art” technology related to our project. We
described the part from five sub-problems, which are Emulation of Bluetooth headsets,
Security, Service discovery, Redirection and Fast handover. Finally, we’ve tried to
define a possible prototype for the project.

We provided system architecture of the prototype which is described from the
following points: flow chart, message sequence charts of different functions and
“4+1” software architectures.

By further research, we also evaluated some existing software and provided
developing environment and design details to implement the prototype.

Due to time reason, we only focused on headset emulator and service discovery in our
implementation. In general, these two parts work as we expected. However, since
JSR-82, the language we’ve chosen, is not so suitable for fully solve the problem, the
AT commands part hasn’t be handled successfully.

6.2 Future work

This project provides a possibility to integrate BT technology as apart of the wider
internet telephony space. However, due to limited time available for research and
implementation, some functionality has been prioritized as future work.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

67

An interesting extension would be the implementation of roaming with in a given
domain and wider mobility. However, this is outside the scope of such a time and
resource limited implementation. But we’ve discussed a lot in our thesis, and in
chapter 5.5, we gave some suggestion also. We believe that this would definitely be
helpful in future work.

Another extension would be to add compatibility to other VoIP clients. However,
since most of the VoIP applications use non-standard/proprietary APIs,
implementation would have to be a self standing application in PC (server) and
mobile (client) which would require some time consuming low level programming
and device driver implementation, which again, is outside the scope of our project.

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

68

ABBREVIATIONS

A/V Gateway Audio/Voice Gateway
A/V GP Audio/Voice Gateway Protocol
AAA authentication, authorization and accounting
ACL Asynchronous connectionless link
AG Audio gateway
AP Access point
API Application Programming Interface
AS Authentication server
AT ATtention
BT Bluetooth
BTW Bluetooth Widcomm
CA Certificate authority
DNS-SD Domain Name System – Service Discovery
EAP Extensible Authentication Protocol
GPRS General Packet Radio Service
GUI Graphical User Interface
GTAA Global Trusted Authentication Authority
HS Headset
HSP Headset Profile
IDE Integrated Development Environment
IEEE Institute of Electronic and Electrical Engineers
IPsec Internet Protocol security
J2ME Java™ Platform, Micro Edition
JABWT Java APIs for Bluetooth Wireless Technologies
JSR Java Specification Request
LAN Local Area Networks
L2CAP Logical link control and adaptation protocol
LMP Link manager protocol
OS Operating System
PC Personal Computer
PCM Personal Command Module
PDA Personal Digital Assistant
PDU Protocol Data Unit
PIN Personal Identification Number
PKI Public Key Infrastructure
PSK pre-shared key
PSTN Public Switched Telephone Network
PTT Push To Talk
QoS Quality of Service

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

69

RADIUS Remote Authentication Dial in User Service
RFCOMM Protocol for RS-232 serial cable emulation
SCO Synchronous connection-oriented link
SD Service Discovery
SDDB Service Discovery Database
SDP Service Discovery Protocol
SIP Session Initial protocol
SLP Service Location Protocol
SPP Serial Port Profile
SRV Service resource record
SSW Soft switch
SVSP Simple Voice Security Protocol
TAA Trusted Authentication Authority
TLS Transport Layer Security
UPnP Universal Plug and Play
USB Universal Serial Bus
UUID Universally unique identifier
VoIP Voice-over-Internet Protocol
WLAN Wireless local area networks
WN Wireless node

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

70

REFERENCE

[80204] 802.1x, avaiable from http://standards.ieee.org/getieee802/download/
802.1X-2004.pdf, 2004

[Abo04] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz,
Extensible Authentication Protocol (EAP), IETF RFC 3748, June 2004;
http://www.rfc-editor.org/rfc/rfc3748.txt.

[Ada99a] Adams, C. and Farrell, S. 1999. Internet X.509 Public Key Infrastructure
Certificate Management Protocols, RFC 2510.

[Ada99b] Adams, C. and S. Lloyd, S. 1999. Understanding Public Key
Infrastructures. New Riders Publishing.

[Alb04] Albert Levi, M. Ufuk Caglayan, and Cetin K. Koc, “Use of nested
certificates for efficient, dynamic, and trust preserving public key
infrastructure”, ACM Transactions on Information and System Security
(TISSEC), vol. 7 issue 1, February 2004.

[ATC07] “AT Commands”, http://en.wikipedia.org/wiki/Hayes_command_set.
April, 2007

[Baa00] S. Baatz, M. Frank, R. G¨opffarth, D. Kassatkine, P. Martini, M.
Schetelig, and A. Vilavaara. Handoff support for mobility with IP over
Bluetooth. In 25th Annual Conference on Local Computer Networks,
pages 143.154, November 2000.

[BAN01] Bluetooth Assigned Numbers, available at www.bluetooth.org/
assigned-numbers/, 2001.

[BAP04] K.C. Bala, K.J. Paul and T.J. Timothy, Bluetooth Application
Programming with the Java APIs, Morgan Kaufmann publishers, 2004

[BBV07] “BlueSoleil™-BlueSoleil VoIP”, http://www.bluesoleil.com/products/
index.asp?topic=bluesoleil_voip, April, 2007

[BCM07] “BCM1000-BTW Bluetooth® Communications Software for Windows”
http://www.broadcom.com/products/Bluetooth/Bluetooth-RF-Silicon-and
-Software-Solutions, April, 2007

[BFJ03] H. Bruce and A. Ranjith, Bluetooth for Java, Apress, 2003.
[Bla07] Rafe Blandford, “ Skype PTT client for Series 60 2.0+,”

http://www.allaboutsymbian.com/news/item/
Skype_PTT_client_for_Series_60_20.php, Feb, 2007

[Blu03] Specification of the Bluetooth System Core, V.1.2. Core specification,
available from http://www.bluetooth.org/spec, 2003

[Blu07] “Specification of the Bluetooth system, v.2.0. Core specification,”
 http://www.bluetooth.com/Bluetooth/Learn/Technology/Specifications/
Default.htm, Feb 2007

[Blue07] “Bluetooth Skype Phones,” http://www.skypestyle.com/
bluetooth_skype_phones.htm. Feb 2007

[Car00] E. Carl and S. Bruce, “Ten Risks of PKI: What You’re not Being Told

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

71

about Public Key Infrastructure”, Computer Securtiy Jouranl, vol. 16,
no.1, 2000.

[Car06] Carole Bassil, Ahmed Serhrouchni, and Nicolas Rouhana, “Simple voice
security protocol”, Proc. the 2006 Int’l Conf. on Comm. and mobile
computing (IWCMC '06), ACM Press, 2006, pp. 367-372.

[CAR07] “CARDO headsets”, http://www.cardowireless.com/scalaproducts.php,
April, 2007

[Cha97] Chadwick, D.W., Young A. J., and Cicovic, N. K. 1997. Merging and
extending the PGP and PEM trust models—The ICE-TEL trust model.
IEEE Network 11, 3 (May/June), 16–24.

[Cho07] “Choosing the air interface for fixed mobile convergence”
http://www.commil.com/bluetooth_vs.htm. 2007

[CK06] Stuart Cheshire and Marc Krochmal. DNS-Based Service Discovery
http://tools.ietf.org/html/draft-cheshire-dnsext-dns-sd-04#ref-mDNS.
Aug 2006

[Did07] Myra Dideles, “Bluetooth: A Technical Overview,” Feb 2007
http://delivery.acm.org/10.1145/910000/904083/p11-dideles.htm?key1=
904083&key2=2884631711&coll=ACM&dl=ACM&CFID=10813144&
CFTOKEN=12475962

[Dou06] Douglas Comer, Internetworking With TCP/IP Volume 1: Principles
Protocols, and Architecture, 5th edition, Prentice Hall, 2006

[Ell99] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., and Ylonen,
T. 1999. SPKI Certificate Theory, RFC 2693.

[Enr04] Enrique Soriano Salvador. SHAD: A Human Centered Security
Architecture for Partitionable, Dynamic and Heterogeneous Distributed
Systems. ACM International Conference Proceeding Series; Vol. 79
Proceedings of the 1st international doctoral symposium on Middleware,
2004, Pages: 294 – 298.

[Epy07] “EpyxMobile,” http://www.epyxmobile.com/ . Feb 2007
[Geo02] George, M.L. Kallidukil, L.J. and Jong-Moon Chung “Bluetooth

handover control for roaming system applications” Circuits and
Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium
on.

[Gry01] Eugene A Gryazin. Service Discovery in Bluetooth. http://www.cs.hut.fi/
~gryazin/SD_in_Bluetooth.pdf, 2001

[Haa00] J.C. Haartsen, “The Bluetooth radio system,” IEEE Personal
Communications, pp. 28-36, Feb. 2000.

[Har03] Brad Hards. Service Location or Discovery
http://zeroconf.sourceforge.net/zeroconf-lca2003/x103.html. 2003

[Hea01] “Headset Profile,” http://www.bluetooth.com/NR/rdonlyres/
5C0DEE05-84CD-4D79-BD52-7ECA283430A0/981/
HSP_SPEC_V11.pdf, 22-Feb-2001

[HDL03] Sumi Helal, Nitin Desai and Choonhwa Lee. Konark – A Service
Discovery and Delivery Protocol for Ad-Hoc Networks, IEEE

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

72

Transactions on Systems, 2003
[Her05] O. Hersent, J.P. Petit and D. Gurle, IP Telephony, John Wiley & Sons,

Inc., Mar 2005.
[How05] “How Bluetooth Technology Works”, http://www.bluetooth.com/

Bluetooth/Learn/Works/, July 2005
[IVT07] “IVT BlueSoleil”, http://bluesoleil.com/, April, 2007
[JSR82] “JSR 82: JavaTM APIs for Bluetooth”, available at

http://www.jcp.org/en/jsr/detail?id=82, May, 2006
[Kli04] A. N. Klingsheim, “J2ME Bluetooth Programming,” M.S. thesis,

University of Bergen, 30th June 2004
[Lea04] K. Leal, F. J. Ballesteros, G. Guardiola, and E. Soriano. Plan B's personal

command module. comanding user activities in ubiquitous environments.
Submitted for publication, also in http://lsub.org/ls/, 2004.

[Min05] Mingchiao Chen, Jiannliang Chen and Peichun Yao; “Efficient handoff
algorithm for Bluetooth networks”, IEEE International Conference,
Volume 4, Oct 2005.

[MM03] C. McKay and F. Masuda, “Empirical Studies of Wireless VoIP Speech
Quality in the Presence of Bluetooth Interference”, IEEE, Volume 1,
18-22 Aug. 2003

[Net07] “NETGEAR WiFi Phone for Skype,”
http://us.accessories.skype.com/direct/skypeusa/itemdetl.jsp?prod=3059.
Feb 2007

[Phi95] Philippe Kruchten, “Architectural Blueprints—The “4+1” View Model
of Software Architecture”, Paper published in IEEE Software 12 (6),
November 1995, pp. 42-50

[QL03] H.F. Qian, P.C. Loizou, “A Phone-Assistive Device Based on Bluetooth
Technology for Cochlear Implant Users”, IEEE Trans. Rehab. Eng., pp
282-286, 2003

[San06] Sangeetha Bangolae, Carol Bell and Emily Qi, “Performance Study of
Fast BSS Transition using IEEE 802.11r”, IWCMC’06, July 3–6, 2006,
Vancouver, British Columbia, Canada, Copyright 2006 ACM
1-59593-306-9/06/0007.

[Sch03] J.Schiller, “Mobile Communication”, pp. 269-279, Feb 2003
[Sdp07] SDP Layer Tutorial. http://www.palowireless.com/infotooth/tutorial/

sdp.asp#SDP%20Protocol%20Setup, 2007
[Sha05] Y. Shaked and A. Wool. Cracking the Bluetooth PIN. In Proceedings of

3rd USENIX/ACM Conference of Mobile Systems, Applications and
Services (MOBISYS), June 2005.

[Sky07] “SkypeHeadset: Make Skype calls with your Bluetooth headset,”
http://www.engadget.com/2005/09/06/
skypeheadset-make-skype-calls-with-your-bluetooth-headset/. Feb 2007

[Use07] “Use your Bluetooth headset with Skype,” http://www.vitaero.com/. Feb
2007

[Wid07] Widcomm for TDA, available at http://forum.xda-developers.com/

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

73

showthread.php?t=291639&highlight=widcomm, January, 2007
[Wif07] Wikipedia, “Wi-Fi,” http://en.wikipedia.org/wiki/Wifi. Feb 2007
[Wik07a] Wikipedia, Public-key cryptography, available from

http://en.wikipedia.org/wiki/Public-key_cryptography, images used are
on the right of the text.

[Wik07b] Wikipedia, IEEE 802.1x, available from http://en.wikipedia.org/wiki/
802.1x, image used is on the right of the text.

[YTO06] Kun Yang, Chris Todd and Shumao Ou. Model-based Service Discovery for
Future Generation Mobile Systems. ACM . pages 973-975. 2006

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

74

APPENDIX A–SERVICE RECORD AND AT

COMMAND

This profile defines following service records for the headset and the audio gateway
respectively.

Figure 51 Service Record Attributes [Hea01]

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

75

The AT capabilities are indicated in Figure 52 and 53 may be supported.

Figure 52 Commands from HS to AG. [Hea01]

Figure 53 Unsolicited results from AG to HS [Hea01]

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

76

APPENDIX B – CODES

BluetoothMIDlet.java
package no.hia.yang;

import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Displayable;
import javax.microedition.midlet.MIDlet;
import javax.microedition.midlet.MIDletStateChangeException;

public abstract class BluetoothMIDlet extends MIDlet implements Runnable,
 CommandListener {

 protected void destroyApp(boolean arg0) throws

MIDletStateChangeException {
 // TODO Auto-generated method stub

 }

 protected void pauseApp() {
 // TODO Auto-generated method stub

 }

 protected void startApp() throws MIDletStateChangeException {
 // TODO Auto-generated method stub
 new Thread(this).start();
 }

 public void commandAction(Command arg0, Displayable arg1) {
 // TODO Auto-generated method stub
 notifyDestroyed();
 }

}

HSPServer.java
package no.hia.yang;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

77

import java.io.DataInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import javax.bluetooth.*;
import javax.microedition.io.CommConnection;
import javax.microedition.io.Connector;
import javax.microedition.io.StreamConnection;
import javax.microedition.io.StreamConnectionNotifier;
import javax.microedition.lcdui.*;

public class HSPServer extends BluetoothMIDlet implements CommandListener {

// private CommConnection conn = null;
 private StreamConnection conn = null;
 private StreamConnectionNotifier notifier = null;

 public void commandAction(Command c, Displayable d){
 if(c.getLabel()=="Exit"){
 try {
 notifier.close();
 notifyDestroyed();
 } catch (IOException e) {
 System.out.println(e.getMessage());// TODO

Auto-generated catch block
 }

 }
 }

 public void run(){
 Form msgForm = new Form("HSP Server");
 msgForm.addCommand(new Command("Exit",Command.EXIT,1));
 msgForm.setCommandListener(this);
 Display.getDisplay(this).setCurrent(msgForm);

 try{
 notifier = (StreamConnectionNotifier)

Connector.open("btspp://"+"localhost:123456789ABCDE;name=Headse
t");

 //
 LocalDevice local = LocalDevice.getLocalDevice();
 ServiceRecord record = local.getRecord(notifier);

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

78

 DataElement ServiceClassIDList = new

DataElement(DataElement.DATSEQ);
 DataElement ServiceClass0 = new

DataElement(DataElement.UUID,new UUID(0x1108));
 DataElement ServiceClass1 = new

DataElement(DataElement.UUID,new UUID(0x1203));
 ServiceClassIDList.insertElementAt(ServiceClass1, 0);
 ServiceClassIDList.insertElementAt(ServiceClass0, 0);
 record.setAttributeValue(0x0001, ServiceClassIDList);

 DataElement BluetoothProfileDescriptorList = new

DataElement(DataElement.DATSEQ);
 DataElement Profile0 = new

DataElement(DataElement.DATSEQ);
 DataElement HSP = new DataElement(DataElement.UUID,new

UUID(0x1108));
 DataElement Param0 = new

DataElement(DataElement.U_INT_1,1);
 Profile0.insertElementAt(Param0, 0);
 Profile0.insertElementAt(HSP, 0);
 BluetoothProfileDescriptorList.insertElementAt(Profile0, 0);
 record.setAttributeValue(0x0009,

BluetoothProfileDescriptorList);

 local.updateRecord(record);
 displayConnectionString(msgForm, notifier);

 for(;;){
 try{
// conn = (CommConnection) notifier.acceptAndOpen();
 conn = (StreamConnection) notifier.acceptAndOpen();
 msgForm.append("blablabla");
 }catch (ServiceRegistrationException e){
 msgForm.append("exception:"+e.getMessage());
 }

 if(conn!=null){
 InputStream in = conn.openInputStream();
// DataInputStream in = conn.openDataInputStream();
 ByteArrayOutputStream out = new

ByteArrayOutputStream();
 msgForm.append("client connected...");
 int data=0;

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

79

 msgForm.append("available"+in.available());
 while ((data = in.read()) != -1){
 msgForm.append("msg receieved:"+data);
 out.write(data);
 }

 msgForm.append(out.toString());

 out.close();
 in.close();
 conn.close();
 }

 }
 }catch (IOException e){
 msgForm.append("IOExcepiton:"+e.getMessage());
 }
 }

 private void displayConnectionString(Form f, StreamConnectionNotifier

notifier){
 try{
 LocalDevice local = LocalDevice.getLocalDevice();
 ServiceRecord record = local.getRecord(notifier);
 String connString =

record.getConnectionURL(ServiceRecord.NOAUTHENTICATE_NOEN
CRYPT, false);

 int index = connString.indexOf(";");
 connString = connString.substring(0, index);

 f.append("Headset Service Emulation started.");
 f.append("connection string:\n");
 f.append(connString);
 f.append("\n");
 }catch (Exception e){
 f.append("BluetoothStateException:"+e.getMessage());
 }
 }
}

BTDeviceInfoMIDlet.java
package no.hia.yang;

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

80

import java.io.IOException;

import javax.bluetooth.*;
import javax.microedition.lcdui.*;

public class BTDeviceInfoMIDlet extends BluetoothMIDlet {

 private Form infoForm;
 private Command scan;
 private List deviceList;
 private Command exit;

 Form getForm(){
 return infoForm;
 }
 List getList(){
 return deviceList;
 }
 public void startApp() {
 Display currentDisplay = Display.getDisplay(this);
 infoForm = new Form("Device Info");
 scan = new Command("Scan",Command.OK,1);
 exit = new Command("Exit",Command.EXIT,1);
 currentDisplay.setCurrent(infoForm);
 deviceList = new List("List of Devices",List.IMPLICIT);
 getBluetoothInfo(infoForm);
 infoForm.addCommand(exit);
 infoForm.addCommand(scan);
 infoForm.setCommandListener(this);
 }

 public void run(){
 }
 public void commandAction(Command c, Displayable d){
 if(c.getLabel()=="Scan"){

 BTDeviceAndServiceSearch search = new

BTDeviceAndServiceSearch(this);
 deviceList.removeCommand(search.scan);
 }
 else if(c.getLabel()=="Exit"){
 notifyDestroyed();
 }
 }

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

81

 private void getBluetoothInfo(Form f){
 LocalDevice local = null;
 try{
 local = LocalDevice.getLocalDevice();
 }catch (BluetoothStateException e){
 f.append("Failed to retrieve the local

device("+e.getMessage()+")");
 return;
 }

 f.append("BTAddress:"+local.getBluetoothAddress()+"\n");
 String name = local.getFriendlyName();
 if(name==null){
 f.append("Failed to retrieve Friendly Name");
 }
 else{
 f.append("FriendlyName:"+name+"\n");
 }

 int mode = local.getDiscoverable();
 StringBuffer text = new StringBuffer("Discoverable Mode:");
 switch(mode){
 case DiscoveryAgent.NOT_DISCOVERABLE:
 text.append("Not Discoverable");
 break;
 case DiscoveryAgent.GIAC:
 text.append("General");
 break;
 case DiscoveryAgent.LIAC:
 text.append("Limited");
 break;
 default:
 text.append("0x");
 text.append(Integer.toString(mode, 16));
 break;
 }
 f.append(text.toString()+"\n");

 f.append("API

Version:"+local.getProperty("bluetooth.api.version")+"\n");
 f.append("Master

Switch:"+local.getProperty("bluetooth.master.switch")+"\n");
 f.append("Max Connected

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

82

Device:"+local.getProperty("bluetooth.connected.devices.max")+"\n");
 f.append("Max Recieve

MTU:"+local.getProperty("bluetooth.l2cap.receiveMTU.max")+"\n");
 f.append("Max Service Discovery

Transactions:"+local.getProperty("bluetooth.sd.trans.max")+"\n");
 f.append("Inquiry Scan

Supported:"+local.getProperty("bluetooth.connected.inquiry.scan")+"\n")
;

 f.append("Page Scan
Supported:"+local.getProperty("bluetooth.connected.page.scan")+"\n");

 f.append("Inquiry
Supported:"+local.getProperty("bluetooth.connected.inquiry")+"\n");

 f.append("Page
Supported:"+local.getProperty("bluetooth.connected.page")+"\n");

 }

}

BTDeviceAndServiceSearch.java
package no.hia.yang;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.Enumeration;
import java.util.Vector;

import javax.bluetooth.*;
import javax.microedition.io.Connection;
import javax.microedition.io.Connector;
import javax.microedition.io.StreamConnection;
import javax.microedition.lcdui.*;

public class BTDeviceAndServiceSearch implements DiscoveryListener,

CommandListener {

 private DiscoveryAgent agent;
 private Vector deviceVector;
 private Vector serviceRecordVector;
 private boolean isInInquiry;
 private Command abort;
 private Command exit;
 private Command back;
 Command scan;

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

83

 private List deviceList;
 private List serviceList;
 private BTDeviceInfoMIDlet infoM;
 private int transID;

 public BTDeviceAndServiceSearch(BTDeviceInfoMIDlet info){
 // TODO Auto-generated method stub
 isInInquiry = false;
 infoM = info;
 abort = new Command ("Abort",Command.ITEM,1);
 scan = new Command ("Scan",Command.ITEM,1);
 exit = new Command ("Exit",Command.EXIT,2);
 back = new Command ("Back",Command.ITEM,2);
 deviceList = infoM.getList();
 deviceList.addCommand(exit);
 deviceList.addCommand(abort);
 deviceList.addCommand(back);
 deviceList.setCommandListener(this);
 Display.getDisplay(infoM).setCurrent(deviceList);

 try{
 LocalDevice local = LocalDevice.getLocalDevice();
 agent = local.getDiscoveryAgent();
 }catch(BluetoothStateException e){
 infoM.getForm().append("Unable to retrieve local Bluetooth

device");
 Display.getDisplay(infoM).setCurrent(infoM.getForm());
 }
 deviceVector = new Vector();
 addDevice();
 try{
 agent.startInquiry(DiscoveryAgent.GIAC, this);
 }catch (BluetoothStateException e){
 infoM.getForm().append("Unable to start inquiry");
 Display.getDisplay(infoM).setCurrent(infoM.getForm());
 }
 isInInquiry = true;
 }

 public void commandAction(Command c, Displayable d){
 if(c.getLabel()=="Exit"){
 if(isInInquiry)
 agent.cancelInquiry(this);
 infoM.notifyDestroyed();

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

84

 }
 else if(c == List.SELECT_COMMAND){
 if(d == deviceList){
 serviceList = new List("Service Found",List.IMPLICIT);
 serviceList.addCommand(exit);
 serviceList.setCommandListener(this);

 Alert splash = null;
 if(isInInquiry){
 agent.cancelInquiry(this);
 splash = new Alert("cancel Inquiry","Ending the

inquiry and starting the service search",null,AlertType.INFO);
 }
 else{
 splash = new Alert("Starting Search","Starting the

service search",null,AlertType.INFO);

 startServiceSearch();
 }

 splash.setTimeout(2000);
 Display.getDisplay(infoM).setCurrent(splash,serviceList);
 }
 else {
 //function here to get the connection String for service

selected
 StreamConnection sc =

(StreamConnection)connectToService();
 getATCommand(sc);
 }
 }
 else if(c.getLabel()=="Abort"){
 agent.cancelInquiry(this);
// deviceList.removeCommand(exit);
 deviceList.removeCommand(abort);
 deviceList.addCommand(scan);
 }
 else if(c.getLabel()=="Back"){
 agent.cancelInquiry(this);
 deviceList.removeCommand(abort);
 deviceList.removeCommand(back);
 deviceList.removeCommand(exit);
 deviceList.removeCommand(scan);
 Display.getDisplay(infoM).setCurrent(infoM.getForm());

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

85

 }
 else if(c.getLabel()=="Scan"){
 try {
 deviceList.deleteAll();
 agent.startInquiry(DiscoveryAgent.GIAC, this);
 deviceList.removeCommand(scan);
 deviceList.addCommand(abort);
 deviceList.addCommand(exit);
 deviceList.addCommand(back);
 } catch (BluetoothStateException e) {
 infoM.getForm().append("Unable to start inquiry");
 Display.getDisplay(infoM).setCurrent(infoM.getForm());
 }
 }
 }

 private Connection connectToService(){
 int index = serviceList.getSelectedIndex();
 ServiceRecord sr =

(ServiceRecord)serviceRecordVector.elementAt(index);
 Enumeration em = null;
 DataElement de = null;
 String conn = null;
 try{//get ServiceClassIDList
 em = (Enumeration)sr.getAttributeValue(0x0001).getValue();
 }catch (ClassCastException e){
 serviceList.append("em"+e.getMessage(),null);
 }
 try{//get Headset Audio Gateway
 de = (DataElement)em.nextElement();
 }catch (ClassCastException e){
 serviceList.append("de"+e.getMessage(),null);
 }
 UUID AGuuid = (UUID)de.getValue();
 serviceList.append(AGuuid.toString(), null);
 try {
 conn = agent.selectService(AGuuid,

ServiceRecord.AUTHENTICATE_NOENCRYPT, true);
 serviceList.append(conn, null);
 } catch (Exception e) {
 // TODO Auto-generated catch block
 serviceList.append("Can not get connection URL", null);
 }
 if (conn != null){

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

86

 try {
 return Connector.open(conn);
 } catch (IOException e) {
 // TODO Auto-generated catch block
 serviceList.append("Unable to connect to AudioGateway

Server", null);
 }
 }
 return null;
 }

 private void getATCommand(StreamConnection sc){
 if (sc==null){
 serviceList.append("Wrong StreamConnection", null);
 }else{
 try {
 OutputStream out = sc.openOutputStream();
 InputStream in = sc.openInputStream();
 byte[] data = new byte [10];
 int length = 0;
 while ((length = in.read(data)) != -1){
 serviceList.append(new String(data,0,length),null);
 out.write(data, 0, length);
 }
 } catch (IOException e) {
 // TODO Auto-generated catch block
 serviceList.append(e.getMessage(), null);
 }
 }

 }

 private void startServiceSearch(){
 serviceRecordVector = new Vector();
 try{
 UUID[] uuidList = new UUID[1];
 uuidList[0] = new UUID(0x100);
 int[] attrList = new int[2];
 attrList[0] = 0x0009;
 attrList[1] = 0x0100;

 int index = deviceList.getSelectedIndex();
 RemoteDevice remoto =

(RemoteDevice)deviceVector.elementAt(index);

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

87

 transID = agent.searchServices(attrList, uuidList, remoto, this);

 }catch (BluetoothStateException e){
 Alert error = new Alert("Error","Unable to start the service

serarch("+e.getMessage()+")",null,AlertType.ERROR);
 error.setTimeout(Alert.FOREVER);
 Display.getDisplay(infoM).setCurrent(error, deviceList);
 }
 }

 private void addDevice(){
 RemoteDevice[] list =

agent.retrieveDevices(DiscoveryAgent.PREKNOWN);
 if(list!=null){
 for(int i = 0; i<list.length; i++){
 String address = list[i].getBluetoothAddress();
 deviceList.insert(0,address,null);
 deviceVector.insertElementAt(list[i], 0);
 }
 }
 list = agent.retrieveDevices(DiscoveryAgent.CACHED);
 if(list!=null){
 for(int i = 0; i<list.length; i++){
 String address = list[i].getBluetoothAddress();
 deviceList.insert(0,address,null);
 deviceVector.insertElementAt(list[i], 0);
 }
 }
 }

 public void deviceDiscovered(RemoteDevice device, DeviceClass cod) {
 // TODO Auto-generated method stub
 try {
 String friendlyName = device.getFriendlyName(false);
 deviceList.insert(0, friendlyName+";"+getDeviceClass(cod),

null);
 Display.getDisplay(infoM).setCurrent(deviceList);
 deviceVector.insertElementAt(device, 0);
 } catch (IOException e) {
 // TODO Auto-generated catch block
 infoM.getForm().append(e.getMessage());
 Display.getDisplay(infoM).setCurrent(infoM.getForm());
 }

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

88

 }

 private String getDeviceClass(DeviceClass cod){
 String ClassOfDevice = null;
 switch (cod.getMajorDeviceClass()){
 case 0x100: //Computer major class
 switch (cod.getMinorDeviceClass()){
 case 0x04: //Desktop workstation
 ClassOfDevice = "Desktop workstation";
 break;
 case 0x08: //Server-class computer
 ClassOfDevice = "Server-class computer";
 break;
 case 0x0c: //Laptop
 ClassOfDevice = "Laptop";
 break;
 case 0x10: //Handheld PC/PDA (clam shell)
 ClassOfDevice = "Handheld PC/PDA (clam

shell)";
 break;
 case 0x14: //Palm sized PC/PDA
 ClassOfDevice = "Palm sized PC/PDA";
 break;
 case 0x18: //Wearable computer (Watch sized)
 ClassOfDevice = "Wearable computer (Watch

sized)";
 break;
 default:
 ClassOfDevice="Unknown Device Type!";
 break;
 }
 break;
 case 0x200: //Phone major class
 switch (cod.getMinorDeviceClass()){
 case 0x04: //Cellular
 ClassOfDevice = "Cellular";
 break;
 case 0x08: //Cordless
 ClassOfDevice = "Cordless";
 break;
 case 0x0c: //Smart phone
 ClassOfDevice = "Smart phone";
 break;
 case 0x10: //Wired modem or voice gateway

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

89

 ClassOfDevice = "Wired modem or voice
gateway";

 break;
 case 0x14: //Common ISDN Access
 ClassOfDevice = "Common ISDN Access";
 break;
 default:
 ClassOfDevice="Unknown Device Type!";
 break;
 }
 break;
 case 0x300: //LAN/Access Point major class
 ClassOfDevice="LAN/Access Point";
 break;
 case 0x400: //Audio/Video major class
 switch (cod.getMinorDeviceClass()){
 case 0x04: //Wearable Headset Device
 ClassOfDevice = "Wearable Headset Device";
 break;
 case 0x08: //Hands-free Device
 ClassOfDevice = "Hands-free Device";
 break;
 case 0x10: //Microphone
 ClassOfDevice = "Microphone";
 break;
 case 0x14: //Loudspeaker
 ClassOfDevice = "Loudspeaker";
 break;
 case 0x18: //Headphones
 ClassOfDevice = "Headphones";
 break;
 case 0x1c: //Portable Audio
 ClassOfDevice = "Portable Audio";
 break;
 case 0x20: //Car audio
 ClassOfDevice = "Car audio";
 break;
 case 0x24: //Set-top box
 ClassOfDevice = "Set-top box";
 break;
 case 0x28: //HiFi Audio Device
 ClassOfDevice = "HiFi Audio Device";
 break;
 case 0x2c: //VCR

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

90

 ClassOfDevice = "VCR";
 break;
 case 0x30: //Video Camera
 ClassOfDevice = "Video Camera";
 break;
 case 0x34: //Camcorder
 ClassOfDevice = "Camcorder";
 break;
 case 0x38: //Video Monitor
 ClassOfDevice = "Video Monitor";
 break;
 case 0x3c: //Video Display and Loudspeaker
 ClassOfDevice = "Video Display and

Loudspeaker";
 break;
 case 0x40: //Video Conferencing
 ClassOfDevice = "Video Conferencing";
 break;
 case 0x48: //Gaming/Toy
 ClassOfDevice = "Gaming/Toy ";
 break;
 default:
 ClassOfDevice="Unknown Device Type!";
 break;
 }
 break;
 case 0x500: //Peripheral major class
 ClassOfDevice="keyboard/pointing device";
 break;
 case 0x600: //Imaging major class
 ClassOfDevice="Display/Camera/Scanner/Printer";
 break;
 default:// Unknown
 ClassOfDevice="Unknown Device Type!";
 break;
 }
 return ClassOfDevice;
 }

 public void inquiryCompleted(int type) {
 // TODO Auto-generated method stub
 Alert alert = null;
 isInInquiry = false;
 if(type != DiscoveryListener.INQUIRY_ERROR){//NB! this is only

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

91

for P900, normally it should be "type !=
DiscoveryListener.INQUIRY_COMPLETED"

 if (type == DiscoveryListener.INQUIRY_TERMINATED) {
 startServiceSearch();
 return;
 }
 else{
 alert = new Alert("Bluetooth error", "The inquiry didn't

complete:", null, AlertType.ERROR);
 deviceList.removeCommand(abort);
 deviceList.addCommand(scan);
 }
 }
 else{
 alert = new Alert("Inquiry completed", "Inquiry completed", null,

AlertType.INFO);
 deviceList.removeCommand(abort);
 deviceList.addCommand(scan);
 }
 alert.setTimeout(Alert.FOREVER);
 Display.getDisplay(infoM).setCurrent(alert);
 }

 public void serviceSearchCompleted(int transID, int type) {
 // TODO Auto-generated method stub
 Alert dialog = null;
 if (type != DiscoveryListener.SERVICE_SEARCH_COMPLETED){
 dialog = new Alert("Bluetooth Error","the service search failed to

complete normally"+type,null,AlertType.ERROR);
 }
 else{
 dialog = new Alert("Service serach completed","the service search

complete normally",null,AlertType.INFO);
 }
 dialog.setTimeout(Alert.FOREVER);
 Display.getDisplay(infoM).setCurrent(dialog);
 }

 public void servicesDiscovered(int transID, ServiceRecord[] record) {
 // TODO Auto-generated method stub
 for (int i = 0; i<record.length; i++){
 DataElement nameElement =

(DataElement)record[i].getAttributeValue(0x100);

Internet Telephony in Ubiquitous Computing Environments

© May 2007 – Wen Hu & Yang Wu

92

 if((nameElement!=null)&nameElement.getDataType()==DataElement.S
TRING){

 String name = (String)nameElement.getValue();
 serviceList.insert(0, name, null);
 serviceRecordVector.insertElementAt(record[i], 0);
 }
 }
 Display.getDisplay(infoM).setCurrent(serviceList);
 }

}

	ABSTRACT
	PREFACE
	TABLE OF CONTENT
	TABLE LIST
	FIGURE LIST
	1. INTRODUCTION
	1.1 Introduction
	1.2 Problem statement and Technical challenges
	1.2.1 Emulating Bluetooth headsets
	1.2.2 Security
	1.2.3 Service Discovery
	1.2.4 Redirection
	1.2.5 Fast handover

	1.3 Report Outline

	2. STATE OF THE ART
	2.1 Emulation of Bluetooth headsets
	2.1.1 Bluetooth
	2.1.2 Bluetooth headset profile
	2.1.3 Using WiFi
	2.1.4 Headset emulators

	2.2. Security
	2.3 Service discovery
	2.3.1 Bluetooth Service Discovery Protocol
	2.3.2 Konark
	2.3.3 DNS Service Discovery

	2.4 Redirect
	2.4.1 Basic approach
	2.4.2 Redirection in Mobile IP
	2.4.3 Redirection in SIP

	2.5 Fast Handover
	2.5.1 Handover in WiFi
	2.5.2 Handover in Bluetooth

	3. SYSTEM ARCHITECTURE
	3.1 Flow Chart
	3.2 Message Sequence Charts
	3.2.1 Device discovery and Connection establishment
	3.2.2 Authentication
	3.2.3 Location register
	3.2.4 Monitor
	3.2.5 Call connection and disconnection

	3.3 “4+1” views
	3.3.1 Process Architecture
	3.3.2 Physical Architecture
	3.3.3 Function Architecture

	4. IMPLEMENTATION
	4.1 Evaluation of existing software
	4.1.1 Existing software for connecting mobile phone to PC
	4.1.2 Existing software for connecting Bluetooth Headset to PC
	4.1.3 Possibility of using existing mobile phone or PDA for headset emulation.

	4.2 Application design
	4.3 Developing environment
	4.3.1 Developing language
	4.3.2 IDE (Integrated Development Environment) and Smart Phone.
	4.3.3 JSR (Java Specification Request) 82

	4.4 Design details
	4.4.1 Add Headset service to Service Record
	4.4.2 Handle with those commands transferred between PC and mobile phone
	4.4.3 Service Discovery

	5. DISCUSSION AND EVALUATION
	5.1 Headset Emulator
	5.2 Security
	5.3 Service Discovery
	5.4 Redirection
	5.5 Fast handover
	5.6 Prototype’s implementation

	6. CONCLUSION AND FURTHER WORK
	6.1 Conclusion
	6.2 Future work

	ABBREVIATIONS
	REFERENCE
	APPENDIX A–SERVICE RECORD AND AT COMMAND
	APPENDIX B – CODES

