
 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen

Resource discovery and Security in Distributed systems

by
Line Larsen

Thesis is partial fulfilment of the degree of
Master in Technology in

Information and Communication Technology

Agder University College
Faculty of Engineering and Science

Grimstad
Norway

May 2007

1

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
2

Abstract

To be able to access our files at any time and any where, we need a system or service which is
free, has enough storage space and is secure. A centralized system can handle these
challenges today, but does not have transparency, openness and scalability like a peer to peer
network has.

A hybrid system with characteristics from both distributed and centralized topologies is the
ideal choice. In this paper I have gone through the basic theory of network topology,
protocols and security and explained “search engine”, “Middleware”, “Distributed Hash
Table” and the JXTA protocol. I then have briefly examined three existing peer to peer
architectures which are “Efficient and Secure Information Sharing in Distributed,
collaborative Environments” based on Sandbox and transitive delegation from 1999, pStore:
A Secure Peer–to-Peer backup System” based on versioning and file blocks from 2001 and
iDIBS from 2006, which is an improved versions of the SourceForge project Distributed
Internet Backup System (DIBS) using Luby Transform codes instead of Reed-Solomon codes
for error correction when reconstructing data.

I have also looked into the security aspects related to using distributed systems for resource
discovery and I have suggested a design of a resource discovery architecture which will use
JXTA for backup of personal data using Super-peer nodes in a peer to peer architecture.

Keywords

Resource discovery, DHT, transitive delegation, middleware, heterogeneous networks,
network security, hybrid architecture, peer to peer

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
3

Preface

This thesis concludes the two-year Master of Science program in Information and
Communication Technology (ICT) at Agder University College (AUC), Faculty of
Engineering and Science in Grimstad, Norway. The workload of this thesis equals 30 ECTS
and the project has been carried out from January to end of May 2007.

I would like to thank, post Doc Ulf C. Carlsen, my supervisor at Agder University College,
for excellent supervision and guidance throughout the project period. I appreciate that you
came up with an Idea for a thesis when I did not like any of those that were originally
proposed. Also I appreciate that you had not planned to be a supervisor at all this year and
then you suddenly had two groups to supervise.

Grimstad, May 2007

 Line Larsen

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
4

Table of contents

Abstract .. 2
Keywords ... 2
Preface.. 3
Table of contents .. 4
Figure list.. 6

1 INTRODUCTION.. 7
1.1 Background .. 7
1.2 Thesis definition... 8
1.3 Problem statement .. 9
1.4 Importance of study.. 11
1.5 Report outline... 11

2 THEORY AND STATE OF THE ART... 12
2.1 Theory .. 12

2.1.1 Topology .. 12
2.1.2 Algorithm and Protocols .. 16

2.1.2.1 Communication protocol.. 16
2.1.2.2 Routing algorithms... 17
2.1.2.3 Resource discovery (look-up service) algorithms.. 18

2.1.3 Security... 20
2.1.3.1 The CIA of computer security.. 20
2.1.3.2 Secure data transmission .. 21
2.1.3.3 Software security.. 23
2.1.3.4 Secure access.. 24
2.1.3.5 Secure storage of data on hardware.. 26

2.2 Discovery services in use ... 27
2.2.1 Search engine ... 27
2.2.2 Middleware... 28
2.2.3 Distributed Hash Table (DHT) algorithm .. 30
2.2.4 JXTA protocol.. 31

2.3 Requirements for a centralized system... 32
2.4 Requirements for a distributed system ... 33
2.5 Centralized versus Distributed ... 34
2.6 “Resource discovery and Security” literature review .. 35

3 SURVEY ON DIFFERENT CURRENT P2P ARCHITECTURES................................ 35
3.1 Peer to Peer systems... 35
3.2 Efficient and Secure Information Sharing in Distributed, collaborative Environment
 .. 37
3.3 pStore: A Secure Peer To Peer Backup system.. 38
3.4 iDIBS: An Improved Distributed Backup System .. 38

4 SECURITY REQUIREMENTS OF A SYSTEM.. 39
4.1 Security policy.. 39
4.2 Anonymity and Trustworthiness .. 40
4.3 Physical security... 41

5 DESIGN OF HYBRID ARCHITECTURE ... 42
5.1 Topology .. 42
5.2 Protocols and algorithms.. 42
5.3 Security... 44

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
5

6 DISCUSSION .. 46
6.1 The 3 backup systems .. 46

6.1.1 Efficient and Secure information sharing... 46
6.1.2 pStore ... 46
6.1.3 iDIBS.. 47

6.2 Security requirements of a system ... 47
6.2.1 Topology .. 47
6.2.2 Algorithms and protocols ... 47

6.3 Design of new system .. 48
6.3.1 Topology .. 48
6.3.2 Algorithms and protocols ... 48

7 CONCLUSIONS AND FURTHER WORK.. 48
7.1 Conclusions .. 48
7.2 Future work .. 50

ABBREVIATIONS.. 51
REFERENCES... 53

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
6

Figure list

Figure 1 At the restaurant.. 10
Figure 2 Centralized systems .. 13
Figure 4 Possible way of making a hybrid network system?.. 14
Figure 5 Centralized and distributed system [14] Figure 6 Hybrid architecture [15]
.. 15
Figure 7 CIA in security.. 20
Figure 8 ISO standard 7498 .. 22
Figure 9 Middleware [2] ... 29
Figure 10 Web services [26] ... 29
Figure 11 Reference Monitor .. 40
Figure 12 Transitive Delegation.. 45
Figure 13 Internet with a peer to peer overlay network .. 43

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
7

1 INTRODUCTION

1.1 Background

Computers come in a variety of devices [1] and they can hook up to the internet almost
anywhere. This is why distributed systems way of functioning has become so popular the last
10 years. A distributed system like a peer to peer network is perfect for storing and retrieving
of data that you or others want to share, but it is not suited today for storing files you do not
want others to read. The amount of distinct files that need to be stored in the peer to peer
network will be large and only centralized systems are normally built for this kind of task.
As a user I would prefer to be able to use a peer to peer network which is open, transparent
and free. The individual storage space in the peer to peer network is smaller than the
individually fully grown centralized system so if I want to mirror my data onto the free
internet, I will have to store the same amount of data from some other persons` mirrored files
also. Will I need to buy a larger storing unit for myself or is there a way of using peer to peer
distributed network as it is today, possibly only adding a central unit unto it making it a
hybrid network?

The definition of a distributed system is that it is a collection of independent computers that
appears to its users as a single coherent system [2]. It is possible with a distributed system to
use a mobile phone with the feel of being connected to a fully infrastructure based network.
To build a hybrid network the hardware is already there, but the communication protocols
need to be different and we need to look in to the security aspects.

The USA`s country wide radars were networked together in the 1950`s, which an idea of
universal networking. A study from the US Air Force recommended packet switching and in
1969 the ARPANET went live. The rest of the world collaborated on an international packet
switched network coming out in 1978. In 1983 the university wide area network became
operational and two years later the network was opened to commercial interests. The internet
with all its separate networks connected to it paved the way for distributed systems. Peer to
peer systems lack dedicated centralized infrastructure, but the internet has shown that it is
possible to use internet as the network and just overlay a network of nodes that share the same
interest like sharing music files. The free software movement is one such network sharing an
interest using the internet as their backbone and using a versioning control system for the
versions of different software as GNU with Linux kernel and OpenOffice. Decentralization
of information has shown that a decentralized network can manage highly reliable computing
due to its openness and autonomous self administered way [74]. Peer to peer systems like
Napster, Gnutella, KaZaA and BitTorrent show that excess resources available at the peer
hosts can be utilized to support world wide resource sharing. Attaching mobile phones to the
internet will allow them in on the file sharing overlay networks also. There seem to be no
limit to what we can do; the only limit is the imagination. These peer to peer networks prove
also that wide-scale services can be created without relying on any infrastructure, other than
the internet itself. From a fault-tolerance viewpoint, peer to peer systems provide a high
diversity of nodes with independent failure modes [3].

There has been little interest from companies to adopt the peer to peer design even though a
client/server configuration provides a simple architecture and guaranteed performance. They

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
8

have not seen the use of it maybe because the peer to peer networks only share resources. It
may also be because it seems impossible to earn money on a completely decentralized system.
If the industry like music, movie and mobile companies had been a bit foreseen, mobile ad-
hoc networks with the services they can provides, might have been an integrated part of peer
to peer networks today [4]. Skype peer to peer phoning has been a success and now they are
onto peer to peer/internet television.

Peer to peer networks are more scalable, fault tolerant, self-governed and cost effective
compared with centralized systems. Efficient query routing is still a challenge and the query
routing in peer to peer systems is based on techniques like centralized indexing using a server,
flooding, “random walk” or swamping [5]. Structured overlays over the internet peers such as
CAN and Chord that are based on Distributed Hash Table (DHT) are effective since there is a
structure to the query. They just allow retrieval of a key and value pairs though and are not
suitable for full text search. Peer to peer systems are being used to build large-scale
information retrieval systems, but current peer to peer systems need metadata such as
filename or keywords to perform a successful search. To help with the query, peers with the
same interests can form a cluster overlay. This will help so a query can be routed or
forwarded to semantically related peers [6]. Another type is a logical overlay network like
pSearch which uses dimension reduction (reducing the number of variables) techniques to
reduce search cost. pSearch must not be confused with the backup system pStore.

1.2 Thesis definition

The research project will investigate the possibility of designing a hybrid network using the
benefits of both distributed and centralized networks.

The final thesis definition is formulated like this:
“Distributed systems have become widely popular over the last decade. A Distributed system
is well suited for storage and retrieval of data/content shared by multiple peers, but is not so
well-adapted to scenarios where the number of distinct files stored in the network is much
bigger than the number of peers. In such scenarios, a centralised solution risks to become
very large and expensive, while a distributed system probably will not be able to guarantee
reliable resource lookup.

There is a security aspect in using a Distributed System for storing your personal files;
confidentiality, integrity and availability need to be taken into account.

As part of this project, a survey should be made of different current architectures for resource
discovery in large scale systems, such as in popular p2p systems. If time allows the group
should also investigate / design a hybrid architecture which achieve reliable resource
discovery with minimal centralized server requirements, i.e. which aim to reconcile the
favourable properties of both distributed and centralised systems.”

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
9

1.3 Problem statement

The project will focus on how it is possible to store and retrieve files in computer systems and
what topology, resource discovery protocol and security measures we need. A hybrid system
based on a distributed infrastructure and ad-hoc networks can be a solution.

Hybrid system solutions exists supporting infrastructure based and ad-hoc networks with
middleware supporting the different operating systems (OS) and retrieval / resource discovery
protocols, but they are not optimal. Using the two networks together is a challenge.

As a user I want to back-up my files using either my mobile phone or my laptop. I would like
to do it any where and not only when I am at home on my wireless infrastructure based
network, but also when I am in the airport or even on the train to or from the airport. How
will I be able to locate my files when my computer disk crashes? How will the network
topology look like and what protocols will the system use to look-up and locate my files
instead of some other persons` files? There are companies supporting this today, but there are
possibilities of doing this with a peer to peer network also and of course for free.

One issue is how centralized a distributed system has to be to support the amount of files and
peers in a back-up network. The question may arise on what is making a system distributed
or centralized? Is a distributed system centralized if there is part of the system keeping track
of the files like with the peer to peer BitTorrent tracker or does it have to be some central
hardware involved, like a server? There is though no doubt that BitTorrent is seen as a true
distributed system. What if we have multiple servers spread out through the world in an
international company network, will this set-up be a distributed network? The topology or
how the nodes or machines are set-up is important, but also how the files are found. What
algorithms are used? Will the information flow be too big if one computer or node contacts
all nodes at the same time? Is it better to communicate with one neighbouring node which
again contacts its next neighbour and sends back information of its findings for either the file
or where the nodes are? Should the file be stored as one file or spread like ashes in the wind
landing on random surroundings?

To illustrate how we can use such a system, we can simulate that you as a user is travelling or
on the move from your office location to dinner in town, meeting up with an old friend.
During the meal you would like to show pictures from your last skiing trip to Austria. This
can be done today as long as you uploaded the pictures to a central server like a photo
company server or to your private homepage area on a leased machine or server. The idea is
though that you instead of having a central storing place for pictures and another storing place
for documents, you could have access to files from one place only logging in once. It will
look like it is from one location, but really the files will possibly be spread to many peers,
with you also as a peer offering the same service back to them.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen

Figure 1 At the restaurant

You have 1000 pictures or files and another user or peer has the same amount. You recognize
the problem? You will have to store 1000 files for other peers. There are many files and few
users in the system, how is it possible to get around this? A truly distributed system might not
be able to handle the scenario. Is the solution to make a hybrid system using the best of both
centralized and distributed topologies and with ad-hoc networks attached to it?

What requirements do we have for our future perfect back-up system? Would it be more
important that our file is found after our hardware crash than actually how long it takes to find
it or is time important? What services do we expect from our system?

• The system will find my file and not some other persons file
• Time is not so important
• No one else should be able to read my file
• I can share a file with someone I trust
• No one else should be able to change my file
• A person I trust can change the file
• If my unit goes down I will be able to retrieve all backed up files
• It must be free
• Enough storage space

Our system should be efficient in the terms of communication, computation and storage
utilization and our system should be able to handle queries on demand in a standard operated
network. A dynamic topology maintaining an indexing hierarchy will be inefficient and we
might need to use content distribution instead of flooding to obtain query results. Flooding is
wasting the total bandwidth, though it is a quick algorithm to use for distributing material to
every part of the connected network and it is used in the routers today [6].

10

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
11

For designing our system or network we need to know the topology or structure of our
network. There are richly and simple structured objects. This means that with richly you can
interact with the data and with simple you only need to view it like with a web browser on
your mobile phone. By supporting the discovery of richly structured objects we would
support distributed applications, but it will increase the complexity of the discovery service
[7]. What services does the user want? One set of discovery services would be telephone
numbers indexed according to names. This might be working for us also searching for a file
name. Our system would definitely be heterogenic; no devices connected to the internet are
alike and even one user can have different devices he wants to connect to the internet. Then
we need a bridging between the different discovery services and middleware possibly using
Common Object Request Broker Architecture (CORBA) can do this.

1.4 Importance of study

Most people have their own mobile phone now and it is not only for calling somebody or
using sms. The phones are getting smarter and since we are moving from the GSM to UMTS
telecommunication system, there is an opening of a wider use of our personal phones and
other gadgets that can communicate. Voice is transferred as data packets, so a computer also
can act as our phone. This computer to computer communication produces the need for
storage space and the need for backing up the data. The data or files will need to be restored
so it is important to find which kind of system will be best for doing this. I think the study of
Resource discovery ability and Security in Distributed back-up systems is important in our
mobile way of living. We are getting used to be able to access information any where we are
and at what ever time. It increases our quality of life so nomadic computing is here to stay.
Getting to know how this system may work is interesting and important since there is a lot of
research and development in this field.

1.5 Report outline

This report is structured as followed:

Chapter 1 gives an introduction to the master thesis which is the current chapter.

Chapter 2 will explain the fundamental theories of retrieval of data and security.

Chapter 3 will explain different peer to peer architectures in use today.

Chapter 4 will explain the security aspects in using distributed system for storing personal
files.

Chapter 5 will show an example of a new design of a hybrid system.

Chapter 6 discusses the results in this report

Chapter 7 gives the conclusion of my work and the objectives of this research, also suggest
possible further work based on this thesis.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
12

2 THEORY AND STATE OF THE ART

2.1 Theory

File location is a simplified occurrence of Resource discovery [8]. The term resource on the
internet was first used to refer to the target of the Uniform Resource Identifier (URL) which is
the name of the home page server you visit, like http://www.wikipedia.org. The Resource
Description Framework (RDF) which is a Wold Wide Web Consortium (W3C) specification
describes URL or the resource in detail. Resources can be static or dynamical. A printer is a
static resource and Network bandwidth is dynamic. This thesis is focusing on backing up
personal files, so the resources we are looking for will be static addressable documents or files
[72]. Network topology, algorithms and protocols and security are important terms for
understanding Resource discovery.

2.1.1 Topology

Topology means “geometry of place” and is a large brand in Mathematics. When it comes to
computer topology it means how the computers are laid out and connected in a network. The
configuration of a computer network can be of many shapes. Two main shapes are
centralized and distributed / decentralized.

A person seeing this from an economic perspective said this: “It seems to me that nature
operates more along the lines of decentralized redundant/diverse/networked systems but
humans often (often for purposes of maximum control and exploitation) build highly
centralized systems that are poorly networked, lack redundancy, and are highly
centralized”[9].

The more technology or intelligence moved out to the peripheral systems, the more
decentralized or distributed the system is. The old telephone network was clearly centralized
since there where not much technology in the house phones. Today mobile phones are very
smart, but as we know it today, they are still used in a centralized telecommunication system
operated by the telephone companies.

Maintenance is easier in an own controlled centralized system. The knowledge is where the
main components are and there is higher management control over the system. Not only on
hardware, but also on access control lists and other control methods, which are important for
network security [10]. A centralized system relies heavily on a few components, which might
fail. Few components have a higher risk of creating bottlenecks.

A computer network is recognized by having two or more computers connected together
using a telecommunication system for the purpose of communicating and sharing resources.
The resource this thesis is focusing on is files. Files can be transferred between any two
computers and computers can be desktops, laptops, servers, pda`s or smart phones. There are
different ways of setting up a computer network. One is a centralized way.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen

Figure 2 Centralized systems

One centralized system is the ring topology. The ring topology is a way of distributing the
server load. The servers are connected and set up looking like one server. The machines are
physically close, not placed in different areas of the world and the machines are normally
owned by one organization only. The centralized system or star topology is the best known
setup. One central server with the client servers connected directly to it. The client can be
databases, web servers or other. A hierarchical topology has a central root node on the top of
the tree. There need to be 3 levels in this topology since with only one level the system would
be a Star system. The Domain Name Service (DNS) on the internet and the Network Time
Protocol (NTP) used for timing between computers have both a hierarchical topology.

In a decentralized structure all peers
communicate symmetrically and have equal
roles, but the peers are not heterogeneous. A
centralized system has a hierarchical
network node system. A distributed system
will have a non-hierarchical network node
system or chaos and it will tolerate hardware
faults, but can not guarantee communication
between nodes [12].

Figure 3 Decentralized/distributed system

In a distributed system no nodes are controlled in any way. The nodes have all equal rights,
but the machines are different as for storage space and operating systems. All controlling
routines are delegated throughout the network. This set-up is driven by the open source

13

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen

community; free software and free internet, freedom of speech and freedom from large
companies making money on what people now take for granted.

A distributed computer network will not rely on central components. This thesis is focusing
on files and file system like Suns` Network file system or Microsofts` Distributed file system
will support this. Another name for a distributed file system is a peer to peer (P2P) file
system network. ”Edge computing” is another word for the same. “Edge computing” is where
the data and computing power is pushed away from a centralized point to the edges of the
network where you are. The mobile edge of our networks today is getting more mobile, the
network perimeter has increased. Something called a mesh topology is also a decentralized
network. Mesh topology is used in military application and in peer to peer networks as
BitTorrent. In a mesh network all nodes are connected directly to each of the others with wire
or wireless.

By using existing distributed system architectures, the systems can tolerate the machines
being disconnected like in ad-hoc systems. In an ad-hoc system peers just connect up directly
to each other without any infrastructure. This requires automatic configuration and
reconfiguration of networked devices and services. A type of network called Mobile ad-hoc
networks (MANet) is a self configuring network. Mobile/nomadic computing is previously
used with cashing of data, but this is not necessary with the mobile ad-hoc networks we have
today [13]. Cashing of data was used for storing data temporarily until the device again was
connected to a network.

Another network topology type is the hybrid networks which use a combination of any two or
more topologies mentioned above. Hybrid networks are connected in such a way that the
resulting network does not look like the hierarchical, star or ring topologies. A tree network
connected to a tree network is still a tree network, but two star networks connected together
will become a hybrid network topology.

Hybrid topologies or networks may use the best of both centralized and decentralized
systems. Real world systems often combine several topologies into one system, making
hybrid network topologies. Nodes play multiple roles in such a system. For example, a node
might have a centralized interaction with one part of the system, while being part of a
hierarchy in another part.

Figure 4 Possible way of making a hybrid network system?

Centralized and ring topology can be used together as well in a hybrid system. Serious web
server applications can have a ring of servers for load balancing and failover. The server
system itself is a ring, but the system as a whole including the clients, is a hybrid. From the
clients point of view it looks simple and the ring structure for the server makes it robust.

Then we can use centralized and decentralized systems topology also. Here is where the peer
to peer systems come in like with a centralized system embedded in a decentralized system.
Peer to peer systems using this set-up are Napster, Gnutella, KaZaA and Morpheus. Internet

14

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen

email also has this kind of hybrid topology. Mail clients have a centralized relationship with
the mail server, but mail servers around the world share email in a decentralized way [14].

Figure 5 Centralized and distributed system [14] Figure 6 Hybrid architecture [15]

A pure peer to peer network has no servers involved. Pure peer to peer models provide
almost plug and play features, since it is possible to use the features of the peer to peer
networks just by plugging into internet. Peer to peer will also work for an intranet. In the
figure above showing a centralized and a distributed system, the servers are distributed. The
Phone, Personal Digital Assistance (PDA) and the laptop connected to one server could be in
a coffee shop or at a petrol station where there is a wireless router connecting up to the
distributed internet. The laptop could be the one that the person behind the counter is using.
Extra to this could be an ad-hoc network where actually the PDA and the Phone
communicated over infrared (IR) or Blue tooth creating a Mesh ad-hoc network.

There are also hybrid peer to peer topologies where a server is included. The server would
provide a list or an index of already connected peers for the new incoming peer and the
resources available with each of them. This will increase the possibility of finding a larger
number of peers in the network, but with some problems which will be mentioned. A Super-
peer based peer to peer model is suggested by Hao Ding in [15]. The Super-peer based peer
to peer model is a pure peer to peer model and a client/server model. A client/server model is
a so called two-tier peer to peer model where computers are designated servers or clients. For
a standard peer to peer model no peer is designated for anything at all. In a Super-peer based
network the clients or workstations run applications and rely on the servers for files, printer
devices etc and sometimes processing power, like in a standard network as we know it.

15

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
16

When it comes to distributed programming there are some typical basic architectures or
categories. In this thesis I concentrate on the client-server and the peer to peer [74] which are
the first and the last one:

• Client-server — Smart client code contacts the server for data, then formats and
displays it to the user. Input at the client is committed back to the server when it
represents a permanent change.

• 3-tier architecture — Three tier systems move the client intelligence to a middle tier so
that stateless clients can be used. This simplifies application deployment. Most web
applications are 3-Tier.

• N-tier architecture — N-Tier refers typically to web applications which further
forward their requests to other enterprise services. This type of application is the one
most responsible for the success of application servers.

• Tightly coupled (clustered) — refers typically to a set of highly integrated machines
that run the same process in parallel, subdividing the task in parts that are made
individually by each one, and then put back together to make the final result.

• Peer to peer — an architecture where there is no special machine or machines that
provide a service or manage the network resources. Instead all responsibilities are
uniformly divided among all machines, known as peers.

2.1.2 Algorithm and Protocols

For computers to be able to communicate there need to be a set of rules or protocols. For
programs to be able to run, they need to follow a set of algorithms. Both the protocol and the
algorithm names are used a bit mixed in this text which can make the reading a bit confusing.
A protocol is though the set of rules that the set of distributed algorithms obey [16].
Computing is not what it used to be and the protocols supporting the old thoughts need a
review. It actually used to be that the machines in the network were manually set up in a list
located on a server by the system administrator. This is still done to some extend, but can not
be done with mobile computing where reconfiguration of networked devices and services is
necessary all the time. Manual configuration of network IP addresses in this type of network
is impossible. There are new protocols for lookup and discovery of networked resources, but
still the ideas behind the old protocols are used. The computers need to communicate using
one type of protocol, but they also need to follow a set of protocols for lookup and discovery.
Different protocols are used for different purposes and some can be used for more than one
purpose. I have divided the protocols into chapters of communication, look-up and routing.

2.1.2.1 Communication protocol

When we talk about protocols we normally think of the rules that are set for computer
communication, like the Transport Control Protocol/Internet Protocol (TCP/IP) in the
transport layer and network layer in the Open System Interconnection (OSI) model, which is
the standard for computer communication. The Internet Protocol (IP) is below the TCP level
in the OSI model. There is a model called “The five layer TCP/IP model” which is a
simplification of the OSI layer model. At the bottom of the TCP/IP model we have the
physical layer which is the ISDN and modem layer. The data goes from one to the other.
Above this layer we have the data link layer which is the wireless standard 802.11, ATM,

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
17

Ethernet and GPRS layer. Above this layer is where we have the common set of
communication protocols like the Internet Protocol. Above IP we have as mentioned the
TCP, but also a protocol called User Datagram Protocol (UDP). TCP guarantees reliable and
in-order delivery of data which UDP is not doing, but UDP is faster since it does not check if
all the data has arrived, this is also why UDP is used for time sensitive data like with voice
and movie streaming. UDP also supports packet broadcast and multicasting. Broadcast
means that data can be sent to all which is what normally TV stations do, multicasting is to
send to selected subscribers. UDP is stateless, meaning that it does not keep any information
on where it sends the data; every data transfer is a new transfer. TCP is stateful, meaning that
it keeps track of where in the communication state it is. This is because it also checks that all
data has come through and possibly some packets need to be resent.

Above the UDP and TCP transport layer is the application layer where small written
applications are placed, like HTTP, SOAP and POP3 etc.

2.1.2.2 Routing algorithms

The algorithms mentioned in [20] are the “Flooding algorithm”, the “Swamping algorithm”,
“Random pointer jump” and “Name-Dropper”. The flooding algorithm is used in systems like
peer to peer and routing protocols used in routers [21]. The Flooding algorithm can be very
slow if it is not started with an initial graph with a small diameter, meaning that is starts with
an initial group of node. The first generation peer to peer system like Napster used flooding
based mechanism to search desired data. This kind of approach does not work for large
systems [22]. The Swamping algorithm is identical to the flooding algorithm except for that it
opens up for all nodes connected to it, not only some initial set of nodes. This increases the
communication complexity. The routing algorithm “Random pointer jump” would ease on
this since it chooses one random node to communicate with. Though when using the
“Random pointer jump” algorithm the network needs to be strongly connected or else the
graph will never converge to a complete graph. A peer to peer network is not “strongly
connected” so we will drop the “Name-Dropper” algorithm I think. The Absorption
algorithm is another one, but the latest ones are based on the basic and originally ones. A
gossip algorithm is another one, however most gossiping algorithms assume knowledge of all
the machines that exist on the network or global state which is a lot of information to keep
updating all the time.

A [4] push-pull gossiping protocol is another protocol that can be used with a distributed
discovery phase first to gather data on peers and to identify popular peers who they call seers
in a community. This protocol will be used for both finding the peer and finding the resource
that the peer has. By using the community of seers it is possible to pull information about the
whole community of peers within just two hops. The search can also be used for content
instead of file name search.

There are three performance measures for a resource discovery algorithm [19]:
1. time complexity - number of time steps taken;
2. message complexity - number of messages sent; and
3. pointer complexity - number of pointers (machine addresses) passed.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
18

Community search is a way of finding peers and files with a combination of graph theory and
link analysis [4]. For instance, if the links on a homepage of a peer were classified as
outgoing and incoming links, we would be able to identify a peer to peer community. The
links that the peer has stored will show what “interests” this peer has. Since query flooding
tends to be very expensive a Semantic Overlay Network (SON) based peer to peer system is
an interesting approach. This works like the community search and gossiping protocol. A
peer connects to a small set of random peers and queries are propagated along these
connections. Semantically related peers have some files in common like “skiing” files. If a
peer would like to search for skiing files, it will get a quicker reply from one of these groups.
This will reduce the search load.

Another protocol is Broose. It is a peer to peer protocol based on De Bruijn topology. De
Bruijn graph can be used to design dynamic networks within the internet so it will work well
with peer to peer networks.

Routing protocols have normally been static. If we wish for an ad-hoc topology we can not
use the standard protocols that routers use today. Ariadne is a service protocol for Mobile
Ad-hoc Network (MANet) integrated in middleware software like WSAMI [13]. A discovery
protocol called Universial plug and play (UPnp) sounds like a fun protocol and the goal of
this protocol is for all computer devices to connect seamlessly. It is a device control protocol
so that all gadgets at home or in the office can be used for communication with standard
internet communication protocols. The security protocols are complex for this protocol
though. For ad-hoc networks there are two routing protocols; proactive and reactive. The
proactive updates the routing table periodically. The reactive produce less network traffic
since it only communicates when it is necessary. A combination of these two protocols can
be used, then the proactive is used for communicating with nodes close by and the reactive
with nodes or terminals further away.

For routing there are different approaches. Gnutella uses flooding which is regarding a bit
inefficient in peer to peer systems, but is used in the routers today. More efficient is to use
Distributed Hash Tables (DHT), Routing Indicies (RI) and Semantic Overlay Network (SON).
The RI is using a way of choosing a subset of peers, rather than selecting a neighbour on
random or by flooding the network.

2.1.2.3 Resource discovery (look-up service) algorithms

Within the discovery protocol group, the major difference between resource discovery
protocols available is how much they rely on a central directory [21]. Resource discovery
protocols for hybrid networks will suit ad-hoc networks. Such heterogeneous environments
as peer to peer networks give new challenges to resource discovery. The challenges that need
to be looked into are:

• Bandwidth and reliability
• Protocol Interoperability.

To be able to retrieve a file, computers need to follow a certain algorithm. There are different
basic algorithms that systems today are based on doing their look-ups. Distributed algorithms

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
19

learn of other machines in the network by making queries to machines they already know.
The protocols or algorithms also have to be understood by any system or Operating System.
We can use middleware to translate the information on the network. Middleware is used for
web services and TCP/IP is used for standard communication. Using peers or using a central
storage facility, what tool is best for locating our files? Can we use a system which indexes
the file name or the content of the file? How does Google, Yahoo or FAST locate the files we
are looking for when we search the internet using their user interface?

Distributed Hash Table (DHT) is the most used algorithm in peer to peer computing. DHT
specifies a relation between files and an identifier (ID). Each file is assigned a key generated
by a hashing algorithm. The key is then mapped to a node which also has an ID. The DHT
algorithm is used in protocols like Content Addressable Network (CAN), Chord, Pastry,
Tapestry and Kademlia. “Each DHT scheme generally is pitched as being an entity unto
itself, different from all other schemes. In actually, the various available schemes all fit into a
multidimensional matrix” [67]. In protocols based on DHT each node is responsible of
maintaining the mapping, which makes this algorithm very efficient. The BitTorrent peer to
peer protocol is using DHT to look-up each node. The peer to peer protocols have different
ways of locating the files, which will be further explained later in this thesis.

Most protocols for distributed hash tables split the key space among nodes according to their
identifiers. This result is a very strict topology which is hard to make reliable with regard to
node failures. Chord was the first look-up protocol using DHT. The major breakthrough of
Kademlia which is another DHT, is to select the nodes storing an association for a given key
in a loose manner, or less trict. Other algorithms are Latent Semantic Indexing (LSI) based
on Vector Space Model (VSM) [23]. These will be used to classify peers into different
categories.

In centralized systems Heuristic (reasoning and past experience) key based routing and
standard routing like Open Shortest Path First (OSPF) for routers are used. Z39.50 is another
one. It is used for libraries and other information providers. The OSPF use an algorithm
called Dijkstra which is based on a “greedy” algorithm. Today companies are using database
search technology developed by other companies like FAST. Web crawlers like Google and
FAST crawl the web constantly for information and bring the information back to their
master. The peer to peer protocols and the Google and FAST protocols operate in different
ways.

Libraries used to base their information search on physical cards describing the book and
where it was stored. In computing, these cards can be called metadata. There are different
metadata schemes. Metadata can describe the content or the resource itself, like the file size
etc. Using metadata you will describe the file or data as you want it to be described so that
the file or resource can be easily located later, like in a library describing the author etc.
Unfortunately different users describe a file differently and the search criteria then need to be
different for different libraries or databases. There are definitely other and better ways of
finding text today.

A Content addressable storage (CAS) is another way of finding nodes and contents. CAS is a
data storage mechanism. It is retrieving data based on its content and not on the location and
with this you need at content identifier. Any change to the content will change the content

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen

identifier or address. CAS is best used with contents that do not change often. CAS uses the
greedy forwarding algorithm.

2.1.3 Security

2.1.3.1 The CIA of computer security

The CIA of information security is very important because it is the basics of network security.

• Confidentiality (limiting access) measures used: cryptography and digital signatures
• Integrity (data have not been changed) measures used; hash algorithms
• Availability (functioning information systems) measures used; avoid Denial of Service

(DoS) attacks [24]

Figure 7 CIA in security

Confidentiality is defined by International Standard Organization (ISO) to be "ensuring that
information is accessible only to those authorized to have access". It refers to the need to
keep information secure and private. It means ensuring that only authorized parties are able to
understand the data. Unauthorized parties may be aware that there is interesting data flowing
through the network cables or air, but they should not be able to understand it [26].

In computer security Integrity is defined as the prevention of unauthorized writing. No user of
a system should be able of making a mistake or be disloyal to modify data items in such a way
that information is lost or corrupted, also authorized user. Integrity is defined as the detection
and correction of modification, insertion, deletion, or replay of transmitted data including
intentional manipulations and random transmission errors.

Availability applies to the flow of data and the accessibility of the system. Information have
to be available for those who need it. An attack that makes a system crash will be a problem
for the availability of that service. A so called Denial of Service (DoS) attack is when an
attacker remotely has access to many computers like a Botnet and use these to access a server
at the same time. The server will not be able to deal with all the queries and locks up for
some time. In the mean time the competing company server will get the customers that the

20

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
21

attacked server lost due to the Denial of Service attack. Botnets can have 1.5 million peers.
As a user we have to make sure that we do not involuntarily become part of one.

In information security confidentiality, integrity and availability (CIA) are the basics.
Computer viruses, worms, digital signing, secure communication over wire and wire-less,
access control both physical access and software access, cryptography and authentication are
only a few words that pop up when thinking of security and computers.

The different types of viruses will not be mentioned here. Physical security of the networks
like locks on the doors; is not a scope for this thesis either. The focus will be on the data
transmission, but for a service to be available the hardware have to be protected, be
maintained and back-ups be done. Data transmission wise Quality of Service (QoS) is
important for the availability of the data and services. If you are watching a streamed movie,
you do not like it to be interrupted because of the bad transmission lines. Your data or
internet service is to be made available on the network, which the Internet Service Provider
(ISP) is providing you. The Internet Protocol (IP) packets might be dropped, be delayed or
have out of order delivery, data errors might also happen and the availability in CIA is then
compromized.

2.1.3.2 Secure data transmission

The TCP/IP version 4 protocol which we still use for communication on the internet, is a
totally open data stream. The new version 6 has security built into it and an increased number
of available IP addresses for networked devices. For secure transfer of data for version 4
users, they can send the data through secure tunnels like with Virtual Private Network (VPN).
Security protocols can be used like IPsec which is integrated in IPv6 and Secure Socket Layer
(SSL or TLS). These are securing the network layer or the socket layer. Socket is where the
data comes in on the different communication software ports on the computer. IPsec is part of
the operating system and SSL is part of the Web application [26] so they cover different
layers in the Open System Interconnection (OSI) model. The OSI model is very important for
describing the different layers in the computer network communication protocol design. OSI
is a Network standard for computer communication, but much taken over by TCP/IP model.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen

Figure 8 ISO standard 7498

For secure data transfer you can also encrypt the data with symmetric or asymmetric
encryption tools or Hash the data. These tools cover integrity and confidentiality in the CIA
triangle and cryptography can be used on many levels. For message secrecy we can use
symmetric block ciphers. Symmetric block ciphers as; Data Encryption Standard (DES) and
Advanced Encryption Standard (AES) which will hide what the data contains. These are
working like a digital codebook making the data readable only for those who know the key.
Hashing of data using SHA-1 is also a way of securing the data, but also makes it smaller in
size. Public key crypto like Rivest, Shamir and Adleman`s RSA do the same. The algorithms
from these tools are the basis for security in data transfers between applications. It is though
important to have security in all levels. A key used in the lower levels should not be able to
leak in to the upper levels [28]. Protocols like SSL and IPSec are though able to secure the
key by using certificates approved by a third party certificate authority (CA). Both provide
encryption, integrity and authentication [26]. CA issues digital certificates for use by other
parties. The certificates contain a public and a private key. There are commercial CA`s and
there are government CA`s.

Other ways of securing the information flow is by using message-level security for XML
documents [30] called XML signing. Anything that is accessible through an URL can be
signed, typically homepage areas on a server. Here the security is embedded in the header or
the message using Simple Object Access Protocol (SOAP) which makes it not tied to a

22

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
23

specific transport mechanism or protocol. SOAP is part of something called Middleware
which is placed between two applications that do not speak the same language. Middleware
acts like a translator for exchange of data and is on the application layer in the OSI model.
Middleware will be explained later.

Something difficult to cover on the security side is the “covert channel” which is a hidden
message sent parallel on a communication media. Prisoners can send messages hidden in
image pixels on a legal internet communication channel or hidden as part of a digital signature
of data. The largest problem in internet security is really the “layer 8 problem”. There are 7
layers in the OSI model, the top layer is layer 7 which is the application layer. The layer
above the application level is the user of the application. It is very important to train the users
of the system in network security. Security features embedded in the different layers are of no
use if an employee has no moral obligation to the company the user is working for.

An Information Dispersal Algorithm (IDA) can be used for dividing a file into small pieces
for security, load balancing and fault tolerance. When you want to send a file, you can not
trust it to arrive. By dividing the file in to smaller pieces before sending it, the chance is
much higher for the small bits of files to arrive. By adding a bit overhead of pieces of the file,
you will guarantee that the file will arrive at its destination. The file will then of course be
reconstructed at the destination. The IDA is analogous to the coding scheme used in RAID 5
level backup system. The peer to peer program BitTorrent works like that also. It takes small
pieces of a file from a swarm of computers for it to be downloaded quicker. Bits of a file is
taken from different peers and downloaded at the same time. This will also prevent
congestion in the information pipeline. If you have one large file that needs to be sent, it is
more effective to get different pieces of it from peers around the world. Security wise also it
is safer to chop the file in pieces so that a man in the middle listening in on the
communication channel would not be able to understand the small pieces of it [74].

2.1.3.3 Software security

The operating system (OS) is vital software for the computer. Without OS the computer can
not be communicating with the hardware and other software on the computer. OS has access
to the hardware, which makes it very vulnerable and important. Only operating systems in
government use are fully secure, but OS for standard users today are more secure than they
used to be. Many of the insecurities can be fixed by secure programming to avoid “buffer
overflow” when the space in memory is too small and “code/command injection” when you
can access a command in a normal guest book on peoples/companies home pages. There is a
part in the OS called kernel accessing the hardware for the OS application. The kernel is the
last frontier of the programmed part accessing the hardware or kernel of the OS like the seed
in a nut inside the shell. This is why the kernel programming is the most important. The
kernel manages the CPU, memory and devices. The kernel has different access control lists
(ACL) for different processes running, so that not all processes would run in supervisor mode
with all privileges. A computer does not need a kernel, but it is standard today because it can
able the programmers to control the input and outputs. The kernel is also divided up in
smaller parts, to be able to address different tasks directly and also secure the different
running kernels differently.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
24

Other ways of protecting the computer is using something called Sandbox. Sandbox is a
virtual container and used to run untested code or programs from not trusted third parties. For
programmers it is an isolated testing environment not mixing with a production environment
or operation environment. An application can be tested without testing it live and possibly
crash something. Java applets can be a Sandbox and application streaming. You can actually
run programs within your web browser or computer, but since they are sandboxed they will
just run passively. By using “Sandbox” you will box in the information so that it can not
interfere with other programs or have access to your hardware. Reverse sandboxing is when
you want to run an application on another computer and you do not want that computer to be
able to access your program. It is to extend a private computing environment onto a
standalone host in a public environment.

Mobile agents can also be used in security. They are software programs which can be
programmed and act on its own on behalf of the user. This is not what we want a malicious
user of a network to make. Mobile agents can be used to protect software as for Digital Right
Management (DRM). The movie- and music- industry were heavily into DRM, but has
loosened the grip this last year since the DRM that have been produced are hacked anyway.
A mobile agent can move it self to where the software is, then it can check its status.

2.1.3.4 Secure access

The Access Control Lists are used in programming, but similar can be used to actually access
networks also. An ACL is a list of permissions attached to an object or application. It can be
what operations that are allowed to access it, or users that are allowed to access it. There are
file system ACL`s and networking ACL`s. The Unix file system permissions are like ACL`s
permissions; like read, write and execute permissions for each file. ACL`s have been used in
distributed systems, but is not adequate [58]. They are used because they are simple, but are
originally made for centralized systems where the objects to protect are known. In a
distributed system with objects spread over many machines the administration of this is more
complex [63].

For controlling the users on a computer system we also have Role Based Access Control
(RBAC). In RBAC users are granted membership in a role according to their competence and
responsibility in the organization. The operations that the users are permitted to perform are
defined according to the role they belong to. Personnel within a department will be given the
same role. This is easier than giving each person access rights to different applications that
they need to use for their work. Most companies have some kind of security classification as
well which works on the file level. A person having a certain role in the company will
produce documents that will be labelled unclassified and another one Top Secret [26]. RBAC
is newer than Mandatory Access Control (MAC) and Discretionary Access Control (DAC).

Another access control is the context based access control (CBAC). In context based access
control, access decisions are based upon the user’s context. The context could be time,
location of the user, people or technical devices the user is close to, communication channel
or strength of user authentication. For example, if the context is the location of the user,
access rights are dependent on the network address the user operates from. Compared to
RBAC, context based access control is less specific, and it is more like a property than an

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
25

access control mechanism. When it comes to distributed networks there is also dRBAC,
which is the distributed form of RBAC using public key infrastructure (PKI).

With a “public key infrastructure” a 3.party is a Certificate Authority (CA) guaranteeing that
you are being who you say you are. This means the confidentiality part of CIA. When
paying for your lottery ticket over the Internet sticking your PKI card into the card reader, a
third party guarantees the lottery agency that when you log in and you pay, you are not
pretending to be another person. In public key crypto, you will have a private key which
nobody knows about and then there is a public key which all know about. It is like if you sign
an open letter. The letter is readable, but the signature proves that you wrote the letter. The
Smart cards we use in the smart card readers contain a password that we ourselves do not
need to remember. This is much safer than remembering passwords. People are terrible at
remembering passwords. Using password can grant you access, but it can still not secure the
data transfer. Which brings us to the possibility to use the free software Gnu Privacy Guard
(GnuPG) which is a hybrid encryption software program using symmetric keys for encryption
of the data because it is faster and public key cryptography as well for secure key exchange.
There are arranged “key signing parties” where people present their public keys to others.
Since they are able to see the person in real life, they will then digitally sign their certificate.
The web of trust is an alternative for Public Key Infrastructure (PKI). Higher processing
need, reduced bandwidth and disk space is a challenge with PKI. If there are possibilities of
eliminating the need for using keys, this will help securing the access of mobile ad-hoc
network users.

Kerberos is an authentication protocol built on symmetric key cryptography and is a ticket
based system. Windows and Mac OS use Kerberos in a form, but it is dependant on a
database storing the secret keys. Unfortunately a system depending on a central unit is not
what we are looking for, but Kerberos is wildly used and popular.

Bell and La Padula was originally used to perform access control in military applications
based on security levels. A user can only access certain documents that are on the same
security level as the user is. The Bell and LaPadula model is a mandatory access control
(MAC) opposed to the discretionary access control (DAC). When Bell LaPadula is used with
an access matrix, it can be discrete also meaning that accessing a document depends on your
role, not only on your security level clearance.

Instead of access rights we can trust objects in another way. Between people we can trust a
person we have known for a long time. If that person trusts another person, we would
probably trust that person also. The same ways can be used in computer networks. Still I
would probably know my friend very well, so I would not trust him/her in everything. The
trust would then be related to what tasks that needs to be done. In a computer network you
can build up trust. If you have behaved well on the network, you will get trusted. Peer to
peer systems will not function if the peers were not able to trust each other. At some point we
all need to take a chance. In [48] transitive delegation is one of the tools they want to use for
partners that need to share resources. This could typically be some companies working on a
joint project. One trusted person or role can delegate roles created by someone else.
Transitive delegation is also used in dRBAC mentioned above in addition to using PKI
identities to define trust domains [57]. Delegation generally is necessary for scalability of a
distributed network. Administrative tasks can then be delegated out to the peers since a
centralized unit will not be present in such a network [58].

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
26

Transitive delegation or proxy re-encryption is a way of cipher text to be re-encrypted many
times. A ciphered text might be re-encrypted from you to a peer and then again from the peer
to another peer. The encryption is based on your and the peers key and again then only the
peer you sent to and the next peer.

2.1.3.5 Secure storage of data on hardware

Redundant Array of Inexpensive/independent Disks (RAID) is a way of getting information
back even though one disk goes down. It is a “data storage scheme”. The data is stored on
multiple disks and provides data reliability and a quicker read/write process. It is faster to
read/write to multiple disks than to only one disk and you will also be able to restore you data
if a disk goes down. RAID has different levels, with 0 with no fault tolerance only better
read/write capabilities and storage space. The top level is 6 with minimum 4 disks for
restoring and spreading the data. The RAID system is used for server systems. The system
needs a controller, if this controller goes down it is not possible to rewrite the data. It is then
a must to have two of these.

How the RAID levels work with storing data on more than one disk for data reliability and
better read/write process, is really how the modern peer to peer networks work also. A
distributed and decentralized structure on disks is also good for denial of service (DoS)
attacks. A distributed structure will spread the load on more than one machine. So if an
attacker is saturating the victim with requests, one disk even though large may not handle all
the requests, but many disks acting like one will manage it. Peer to peer servers can though
be exploited to be part of an attack on another server, like Botnets which is not safe. For local
catastrophes like hurricanes or water flooding, servers need to be protected probably best
inside a mountain though communication lines might be flushed away. A distributed
approach for servers would here be ideal. Some companies buy network services from
companies that can run you system on servers all around the world, it is always nice weather
or day some where on the planet. While you sleep in Norway, Australians are awake
probably preparing for a BBQ while backing up your data.

When you send data over a radio link or a network cable you want your data to come through.
There are different systems to restore data if the link has been bad. NASA use different error
coding on their Deep-space telecommunication than what is needed of error coding for the
TCP/IP protocol using checksum on the payload. The same techniques used for restoring data
on bad data links, can be reconstructing data on hard disks also. The RAID system uses the
optimal erasure code which is a parity code that adds a bit, if the data is good or not. This odd
or even parity check scheme can only detect odd number of errors. If there are two errors the
count of “0” or “1” will make it look like there are no errors in the transfer. A protocol called
Reed-Solomon (RS) error correction code is able to reconstruct data when they are encoded as
a polynomial known from linear algebra. A newer and better one is the “Tornado” and Luby
Transform (LT) code based on a graph called bipartite. The LT code does not need two-way
communication which is usually the case for error correction. The RS code is used in
Distributed Internet Backup System (DIBS) and the LT code is used in the newer version
iDIBS which will be explained later in this thesis.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
27

Hard disk drives crash. One of the reasons is that there are moving parts inside. The disk is
rotating like a CD or a LP record. It is not advised to move the hard disk while it is working,
since the disk is spinning quite fast. Mechanical moving parts will at some point break down,
so backing up data is vital. Flash memory does not have any moving parts and the amount of
data you can store on them is increasing. An audio player like iPod has flash memory. Since
a moving disk will suffer when you go for a run, a flash drive will not be sensitive for that. A
flash drive could theoretically take over for hard disks, but flash drives fail also. Flash
memory is though used for running programs directly off it and also flash drives would last
longer and store more data than a DVD. So for backups and additional storing capacity, flash
drives will help out if we have a hard disk that is about to crash, which can be any time.

Another securing tool is a cryptographic file system where the file system can encrypt a file.
The key is only in memory as the file is opened, but this can be enough time for a malicious
user to get it if the user is clever enough. These file systems are layered on top of the standard
file system and use public-key cryptography.

2.2 Discovery services in use

2.2.1 Search engine

Internet search engines are special crawlers on the Web that are designed to help people find
information they are looking for. There are differences in the ways various search engines
work, but they all perform three basic tasks [73]:

• They search the Internet or select pieces of the Internet based on important words.
• They keep an index of the words they find, and where they find them.
• They allow users to look for words or combinations of words found in that index.

Early search engines held an index of a few hundred thousand pages and documents and
received one or two thousand inquiries each day. Hash tables like DHT reduces the average
time it takes to find an entry in an index so today a top search engine will index hundreds of
millions of pages. Before a search engine can tell you where a file or document is, it must be
found. To find information on the hundreds of millions of Web pages that exist, a search
engine use special software robots, called spiders, to build lists of the words found on Web
sites. When a spider is building its lists, the process is called Web crawling. The usual
starting points are lists of heavily used servers and very popular pages. The spider will begin
with a popular site, indexing the words on its pages and follow every link found within the
site. Google.com began as an academic search engine. In the paper that describes how the
system was built, Sergey Brin and Lawrence Page give an example of how quickly their
spiders can work. They built their initial system to use multiple spiders, normally three at one
time. Each spider could keep about 300 connections to Web pages open at a time. At its peak
performance, using four spiders, their system could crawl over 100 pages per second,
generating around 600 kilobytes of data each second. Google, Lycos and AltaVista use
different approaches to make the spider operate faster. To exclude the spiders a robot
exclusion protocol needs to be added in the Meta-tag section of the webpage. This is used
because game pages can mistake a spider for a player [73]. Meta elements are HTML
elements used to provide structured metadata about a web page. Metadata was also mentioned

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
28

when finding books in libraries. Such elements must be placed as tags in the head section of
an HTML document [74]. Sergey Brin and Lawrence Page founders of Google, writes that “it
is interesting to note that metadata efforts have largely failed with web search engines,
because any text on the page which is not directly represented to the user is abused to
manipulate search engines” [62]. Google uses “PageRank” which is a link analysis algorithm
that assigns a numerical weighting to each element of a hyperlinked set of documents,
patented to Stanford University. A page that is linked to by many pages with high PageRank
receives a high rank itself [74].

By using crawlers and Dynamic Assignment policy, a central server will assign new URLs
(home pages) to different crawlers dynamically. This allows the central server to balance the
load of each crawler. The central server may become the bottleneck, so most of the workload
must be transferred to the distributed crawling processes for large crawls. There exist two
different crawling architectures for dynamic assignment: 1: A small crawler configuration
with a central DNS resolver and central queues pr Web site and distributed downloaders. 2: A
large crawler configuration in which the DNS resolver and the queues are also distributed.
FAST crawler (Risvik and Michelsen, 2002) is the crawler used by the FAST search engine.
It uses distributed architecture in which each machine holds a “document scheduler” that
maintains a queue of documents to be downloaded by a “document processor” that stores
them in a local storage subsystem. Each crawler communicates with the other crawlers via a
“distributor” module that exchanges hyperlink information.
Distributed web crawling is a way of parallelization, a large problem can be divided into
many small problems, which is what “distributed” is all about.

A mobile agent is kind of like a crawler which is a process that can transport its state from one
environment to another [74]. A mobile agent is also able to learn and it can perform actions
without requiring continued user involvement. This sounds scary, that it is possible to have
something lurking around on your system, just like a crawler does acting on behalf of a user.
They are though mostly used for implementing distributed applications in a computer
network. Mobile agent applications can also check resource availability and monitoring and
be used for resource discovery. A mobile agent can also be used for security purposes, for
information flow control. It can probably be used to keep track of peers and what resources
they have also.

2.2.2 Middleware

Middleware is very important in exchanging services between different operating systems.
Middleware makes it possible to support heterogeneous computers and networks while
offering a single system view. Distributed systems are organized in layers of software so the
Middleware layer is placed between a higher-level layer of users and applications and a layer
of heterogeneous operating systems (OS) [2] [13].

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen

Figure 9 Middleware [2]

Middleware is computer software that connects software components or applications. It is
used most often to support complex, distributed applications or programs. It has tools that
support application development and delivery. Web services describe a standardized way of
integrating Web-based applications using the Extensible Markup Language (XML) , Service
Oriented Architecture Protocol (SOAP) , Web Services Description Language (WSDL) and
Universal Description, Discovery and Integration (UDDI) open standards over an Internet
protocol backbone.

• XML is used to tag the data
• SOAP is used to transfer the data
• WSDL is used for describing the services available
• UDDI is used for listening what services are available

Figure 10 Web services [26]

29

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
30

Middleware is supporting distributed applications. Microsoft writes: “Web services ease the
integration with existing systems. The Web service capabilities offered through like the .NET
Framework enable the system to communicate with a variety of back-end systems and
desktop applications” [17]. Middleware Infrastructures also makes it easier to manage
dynamic networks ad-hoc networks in distributed systems [18].

Available middleware can be classified into four main categories:

• Transaction-oriented middleware that mainly aim at system architectures whose
components are database applications. Ensure the integrity of the database is
maintained.

• Message-oriented middleware which is using a message based communication
protocol to store, route or transform messages as being delivered.

• Object-oriented middleware that are based on the remote procedure call (RPC)
paradigm which means a protocol that allows a program on one computer to cause
code to be executed on another computer.

• Service-oriented system architecture software integration and interoperation (web
services) is Small programs (API) that can be accessed over the internet.

There has been development of middleware-based systems though it is said that middleware
heterogeneity is still an open issue [35]. Multi-protocol Service Discovery and Access
(MSDA) is a research project within the Arles project to overcome the heterogeneity problem
in mobile ad-hoc networks. It is layered on top of an already existing middleware, since
standard middleware is not addressing the heterogeneity problem. The heterogeneity problem
is the different discovery and access -protocols and the connection problems in using different
network types [25] like infrastructure based and ad-hoc based. Service-oriented system
integration provides a mechanism for binding different information systems together at the
service layer. With this the organizations can share common system services as well as
information. System services may be shared either by hosting them on a central server or by
accessing them through distributed objects or standard Web services mechanisms [26].

2.2.3 Distributed Hash Table (DHT) algorithm

DHT is a look-up service. It is part of the third generation of peer to peer overlay networks.
The first one Napster, depended on a central database. The second one was Gnutella based on
the flooding algorithm. The new one BitTorrent is based on DHT. A Hash function
compresses the information. Hashing is also used in cryptography for authentication and
message integrity. Hashing is also used in checking if all data has come through correctly for
a Cyclic Redundancy Check (CRC). Since the data is compressed into a Hash key, it is
possible to compare the two keys. The sender sends the hashed key with the open data and
the receiver hashes the data received and compares it with the sent hash. If they are alike,
there is no data missing. A Hash key is the unique identifier of the data item. In Distributed
Hash Table (DHT) based peer to peer systems, files are associated to keys [22] not data
packets in production networks. The DHT functionality allows nodes to put and get files
based on their key which is very useful for large distributed systems. In DHTs, each node
handles a portion of the job load which is positive for the load balance. In a centralized
system one server is doing the whole job, while using DHT the job is divided among many

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
31

peers [34]. DHT is so good because no node needs to know about the state of all other nodes,
called “global knowledge”, since the load is divided among all the peers there is no “single
point of failure” either. With many nodes doing the work, DHT scores high on scalability.

DHT was introduced in 2001. It is a table that maps keys to data values. Knowledge of DHT
algorithms is a key ingredient in developments of distributed applications [36] because DHTs
can scale to extremely large numbers of nodes and to handle continual node arrivals,
departures, and failures. Chord, Kademlia and Pastry are DHT`s and look-up protocols like
BitTorrent is using DHT. Unlike existing master/slave database replication architectures, all
nodes are peers that can join and leave the network freely. In a DHT, the insertion and
removal of nodes is independent of the insertion and removal of data, since the data is still
stored in the network of nodes even if one node logs off for the day.

• There is no center server in a DHT Network.
• Every client takes charge of a small range of routing
• Every client has a small set of data storage
• In the whole DHT network, data can be found, read and written even without all the

nodes connected.

DHT is used by peer to peer systems which are categorized as structured. CAN which is the
first distributed hash table before Chord and Kademlia, is “structured”. This means that there
are some laws on were the peers are. In an unstructured network, information needs to be
flooded since there is no knowledge of where a peer with that certain information that we
need is. Flooding will increase the information flow in the network. Since DHT is structured
and does not use flooding, DHT is more effective. The CAN protocol uses the greedy
algorithm instead. Using a structured approach, DHT systems can be used to perform
efficient filename searches because they guarantee the location of the data [4]. DHT assigns
each file name with a key generated by the hashing algorithm, then it maps the key to the
node or peer which also has an ID which can be a hashed IP address [34].

2.2.4 JXTA protocol

Juxtapose (JXTA) is a hybrid peer to peer protocol specification that includes network
addressing, routing and messages [39]. JXTA technology is based on a set of open peer to
peer protocols. It promises that any device with a digital heartbeat can connect to it. They
also have addressed security from the beginning. It was created by Sun Microsystems, but is
now an open standard. It will allow communication even if a peer is behind a firewall and it
is platform independent meaning that it can run on different operating systems (OS). With
JXTA you are supposed to still be able to be contacted even though you are logged off the
system [38]. Also a user or node gets a unique address which does not change with the IP
address when he or she is on the move. Juxtapose means “side by side” which is a rewriting
of the term “peer to peer”. JXTA uses Super-peers which can operate as a proxy server for
peers that are on the edge of the network overlay, with low bandwidth and bad connectivity.
The Super-peers are divided up in rendezvous and relay peers. If the network is divided on
different subnets, there will be at least one rendezvous peer. The rendezvous peer is in charge
of coordinating the peers in the network. A relay peer allows a peer behind a firewall to be
part of the JXTA network. JXTA uses Java based protocols. Java is also a product from Sun
Microsystems. JXTA also use DHT and not crawlers for searches. JXTA search is suitable

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
32

for environments where content is rapidly changing. JXTA is licensed under the Apache
license and JXTA is used in companies like Nokia and Jet Propulsion Laboratory (JPL) which
is NASA’s lead center for robotic exploration of our solar system. Nokia’s Automatic
Network Services (ANS) uses JXTA to communicate between the individually installed
machines. The ANS group specializes in secure content management. The JPL’s software
will be used to support data distribution for future planetary missions. The same software is
being used to simulate how cancer works so that it can be discovered in an early stage.
Security is important in JXTA. In the bottom layer of JXTA there is the JXTA Core where
the functions for security are located. On top of this layer there are JXTA services which are
indexing, search and file sharing. There is also an application layer which makes it possible
for programmers to build peer to peer networks on top of the JXTA protocol. Other peers will
get access to the network via “advertisements” which is an XLS document. For connecting
PDA’s etc to the peer to peer network there will not be need for a driver. A PDA or a mobile
phone only need to be compatible with JXTA [71].

2.3 Requirements for a centralized system

In a centralized control network, there is a single server carrying out synchronization of the
different clients and the causality control. In a peer to peer centralized system this is applied
using an index server to store all the data address information. When a node makes a request
for a data item, it queries the server and it returns the desired data address, then the node
accesses the node storing the data, directly.
This typical system is Napster. It works by operating a central server which directs traffic
between individual registered users. Each time the user submits a request for a song; the
central server creates a list of users who are currently connected to Napster whose collections
include the specified song. Although centralized peer to peer systems are simple and easy to
manage, they have some obvious problems which are not suitable for large scale systems:

• Single point of failure
• Giant communication traffic and storage on server

In a fully centralized system a centralized messaging system will consist of a large data centre
that hosts many servers like global catalogue servers, domain controllers and exchange
servers (electronic mail, shared calendar, data storage and support for the mobile and web
based access to information). The data centre will support all messaging systems for the users,
whether they connect locally or remotely.

The characteristics of a centralized messaging system is [41]:

• Data is hosted and managed in a centralized location regardless of whether the users
are connected remotely.

• Software upgrades can be rolled out from a centralized location.
• The data centre incorporates power-insulating devices such as an uninterruptible

power supply (UPS) so that it is possible for a controlled shut down of the servers and
"hot site" (get the system quickly up and running after a disaster) or "cold site".

• Business requirements associated with reducing cost and security requirements are
usually the driving forces behind centralizing systems.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
33

If you are planning for a centralized design you should consider it if:
• If you have access to fast network connections between the data centre and your

clients else where
• If you save money on administrative and operational costs by centralizing compared to

the how expensive it is to install high-end servers and computer clusters in the data
centre

• If single point of failure is no problem
• If you have the possibility of caching data for remote users if there is a network

outage
• If it is ok to have a lot of reliable storage systems with the large centralized data

volumes.
• A centralized model gives you easier security management and greater degree of

control over the system physically and data wise.

Google is using centralized indexing. In “Anatomy of a Search Engine” Brin and Page have
the opinion that there will be no problem indexing everything everyone in the US has written
for a whole year using a Centralized Indexing Architecture, because storage space is now
cheap [62]. Will this be the future? Do we not need to use the peers in a peer to peer network
for storing our index or even whole files?

2.4 Requirements for a distributed system

Early decentralized peer to peer systems are not based on a central server. They use
“broadcast” to search the desired data. When a node receives a request for a key which
represents the data item, it attempts to retrieve the file locally if possible. If this is not
possible it forwards the request to another node. When a request is successful or failed, the
desired data item or failure report is returned to the requester along the same path of the
incoming request. Some systems use caching or forward the request to neighbours that are
more likely to store the desired data. The typical systems are Gnutella and Freenet. They use
the flooding algorithm and are classified as “unstructured”. The disadvantages of this system
are:

• No guaranteed reliable content locating information
• Expensive cost for routing (flooding mechanism) and scalability

There are some challenges in peer to peer systems. Two main lessons from a measurement
result [42].

1) Any similar peer to peer system must be very careful about delegating responsibilities
across peers (since they are all alike)

2) Peers tend to deliberately misreport information if there is something to gain from it

Because effective delegation of responsibility depends on accurate information, it means that
future systems must have built-in motivation or reward for peers to tell the truth. Systems
must be able to directly measure or verify reported information because peers will not report
that they have a high speed link and have a lot of CPU power. A peer that reports high
bandwidth is more likely to receive download requests from other peers, consuming network
resources, which is not positive for the peer. The peers are different, so we need to get

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
34

accurate information on these two issues. In peer to peer systems, files are stored on the
computers of the individual users or peers and exchanged through a direct connection between
the downloading and uploading peers, over a standard web browsing HTTP protocol.
All peers in this system are symmetric ie they all have the ability to function both as a client
and a server, but they are not alike. Their heterogeneity is a problem when they do not
accurately report bandwidth, but by using meta data which is already available it is possible to
get bandwidth, number of files currently being shared by the peer, current number of uploads
and downloads in progress, names and files being shared and the IP address of the peer. This
is possible with the BitTorrent client application Azuresus. Problems with peer to peer
networks are 1) free riders who only download files and never keep their client program open
so that they upload also 2) no proper connection between peers since they are more or less ad-
hoc 3) the heterogeneity is a problem. The last can be fixed by delegating different degrees of
responsibility to different host depending on the peers’ characteristics like bandwidth, cpu
power and storage capacity and also the degree of trust the peer has in the network, but we
need to know this information before we delegate responsibility.

2.5 Centralized versus Distributed

The peer to peer topology is very appealing, since it is so accessible and familiar. A
centralized system is more like something a large company would use and mixing this with a
peer to peer idea that everything can be distributed is disturbing the glorious view. Indexing
can be distributed, timing of the computers can be distributed and there is storage capacity out
there on people’s machines. Trust is functioning in peer to peer systems today and security
has become a natural part of applications running on machines in everyone’s homes.

Early [44] they could see that both centralized and distributed computing could be used
together in a network. The problem they had was that there were no protocols made for
communication, file structure and databases for this. Today we have the technology, but
“control” is still an aspect when it comes to which system to use.

Students still in and just come out of universities have produced peer to peer systems, like
Gnutella and BitTorrent. These systems are also used by serious companies today. The
music- and movie- industry has finally figured out that the peer to peer systems are a good
tool for distributing their products.

The distributed approach has advantages:

• Reduced core network bandwidth requirements
• Improved response time
• Decreased jitter (unwanted variations of signal characteristics)
• Increased reliability [44]
• Small disks are effective when data is needed often

The centralized approach has advantages:

• Better network communication
• Better synchronization between nodes
• Better latency

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
35

2.6 “Resource discovery and Security” literature review

Resource discovery and security has been an issue from the start of computer networking. It
is interesting to read about United States Air Force computer security technology study from
1972. A new and also interesting is the “Peer to peer communities: Architecture, information
and trust management” by Mujtaba Khambatti which is a dissertation for the degree of Doctor
in Philosophy at Arizona state university. The span seems long from USAF in 1972 and
Philosophy study in 2003, but the ideas are the same. Literature which is more descriptive is
the two on the DHT algorithms Chord and Kademlia from Massachusetts Institute of
Technology (MIT) and New York University (NYU). Most of the references are from the
USA, but there are others also. Most of the Literature reviewed was found in the databases
IEEE, ISI and ACM. We are encouraged to use the reports in these databases, so when I have
searched for a topic it does not matter which country the papers come from. Two references I
have used are from Norges Teknisk-Naturvitenskaplige Universitet (NTNU) which are a
master thesis in “A Security Focused Integration Architecture for an Electronic Observation
Chart” in hospitals and a dissertation for a Doctor’s degree on “ A Semantic Search
Framework in Peer-to-Peer Based Digital Libraries. Another one is from Wuhan University
in China where our fellow students come from which is on “Efficient Query Routing for
Information Retrieval in Semantic Overlays”. I have also used French, Indian, Italian and
Japanese references in this thesis. When seeing that people all around the world are interested
in the same issues, I see the point of internet and the importance of sharing information.
Though the most important reference I have used, which explains to me when there are
something in the other papers that I do not understand, is Wikipedia. Wikipedia is updated by
individual who also write the papers that I have read, but they then pay more attention to
explaining details on a subject. Together with the official databases, Google has also been of
very good help. I am really impressed of how much information their databases are holding.

3 SURVEY ON DIFFERENT CURRENT P2P
ARCHITECTURES

3.1 Peer to Peer systems

One common characteristic of peers in a peer to peer network is that they exist on the edge of
the regular network. Because they unpredictable connect and disconnect themselves and with
then variable network addresses every time, they are outside the standard scope of the Domain
Name System (DNS) which is the internet naming system translating IP address to names of
machines that humans can read and remember [31]. How can we deal with such nodes, which
at one point are connected and then suddenly gone?

Peer to peer protocol overlay networks can be categorized after their generation or by being
centralized like the first peer to peer protocol Napster, decentralized like KaZaA, structured
like CAN using DHT, unstructured like Gnutella using flooding or hybrid like JXTA.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
36

Napster, Gnutella, KaZaA and BitTorrent are peer to peer download sharing technologies
[32]. The newest is BitTorrent. Napster uses a centralized registry with a well known IP
address that users query for song selections [33]. This centralized topology was what made
Napster easy to target legally. It is though now running legally, but not sharing music for
free. Gnutella uses a proper peer to peer architecture. The requests get forwarded to the peers
and the peers forward the request further until the resource is found or the time to live (TTL)
value is reached. The peer to peer system Gnutella is one of the most pure decentralized or
distributed systems. It has only a small centralized function to bootstrap a new host ie starting
up a new host so it can work within the network. KaZaA is another product. Those that
developed KaZaA also developed Skype IP telephone and Joost IP television. BitTorrent is
though the discovery look-up service which is able to download files faster than any other
software device. This is due to a file is downloaded from many peers at the same time. One
part of a file is downloaded from one peer and another part downloaded at the same time from
another peer. Swarming (group of peers connected to each other) technology is used in
BitTorrent, instead of treelike network structure [73] in standard file systems. BitTorrent has
become house-broken and Paramount, MTV, 20th Century Fox and Warner bros have their
movies on the BitTorrent homepage. There are some points to BitTorrent that makes it better
than the rest of the peer to peer protocols:

• BitTorrent makes many small peer to peer requests over different TCP sockets, while
web-browsers make a single HTTP GET request over a single TCP socket.

• BitTorrent downloads in a random or "rarest-first" (rarest piece of file [64]) approach
that ensures high availability, while HTTP downloads in a contiguous manner.

• BitTorrent is using both trackers (centralized servers) and DHT (Kademlia)

Another decentralized network is Freenet. It has a heuristics key based routing, remembering
using reason and past experience. Freenet is a censorship resistant peer to peer network. No
nodes are rated in Freenet which is unusual for a peer to peer network, but probably so
because of the peers supposed to be anonymous. Freenet does also key based routing like
DHT, but it is not the same. Freenet does not guarantee that it can find a given piece of data.

A routing algorithm is Kademlia. Kademlia is a routing algorithm using XOR metric routing,
based on Distritbuted Hash Table (DHT). XOR function returns zero if bits are the same and
one if bits are different. Kademlia searches the network bit by bit to finally become close to
zero which is the best node. Kademlia uses the User Datagram Protocol (UDP) which is on
the same level in the OSI model as the Transmission Control Protocl (TCP) layered above the
Internet Protocol (IP). The Kademlia algorithm is based on calculating the distance between
two nodes. The distance here is the exclusive OR (XOR) of the two node ID`s. Kademlia is
used in BitTorrent. Other DHT`s are Chord, CAN, Pastry and Tapestry. Chord was the first
DHT algorithm and bases the search on length r = O(LogN) as Kademlia where N is number
of nodes in the network and O is just describing the function. Chords length is not the
distance between two nodes, but the number of nodes traversed during a look-up operation.

There are different approaches to how to design a peer to peer network as those mentioned
above. There are different protocols in use to find each individual peer. In a client/server-
based model, any peer looking for resources does not need to visit other peers than the server
itself since the server is maintaining the information of each peer. The server can be a
discovery, lookup and content server or taking care of only one of them or two or all three.
The server will though slow down if there are too many requests generated simultaneously.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
37

Single point of failure does not exist in peer to peer models. In a distributed environment a
peer to peer network that lacks a central authority, a simple formation and discovery problem
might become complex. In order to compensate for the server, the cost of communication will
be higher. A network called a “Super-peer” peer to peer network is an integration between
the pure peer to peer model and a client/server model. A node is given a Super-peer tag and
will operate as both a client and a server to a set of clients and as an equal with a set of other
Super-peers. The Super-peer or group of Super-peers will provide services like listing of
connected peers, acting as primary connection node and sometimes operate as a search hub.
Together the Super-peers will form a pure peer to peer overlay network. A practical system in
architectures like this is JXTA. It provides the efficiency of a centralized network and also
autonomy, reliability and load balancing of a distributed network. An overlay topology like
de Bruijn also uses the Super-peer structure [22].

3.2 Efficient and Secure Information Sharing in Distributed,
collaborative Environment

The idea behind this system is when a set of partners need to share resources [48]. The
partners could be different departments or organizations. I vision a company like Aker
Kvaerner and its people who are doing work for Statoil on a project. In the project people
from both companies will have to be able to access each others files etc, but only the files or
areas related to the specific project. The paper suggests the use of transitive delegation,
cryptographic file system, capacity sandboxing, reverse sandboxing and fine-grained access
control. The collaboration model they use is similar to Common Object Request Broker
Architecture (CORBA). The access control is controlled by agent (an engineer), asset (host)
and object (program) certificates which include the holders` identity, key and information
based on if you are an agent, asset or object. A delegate is an activity created by an agent and
it can access multiple objects. An agent can create a delegate and a delegate can create
another delegate and these can be created on the source or on a distrusted target machine or
asset. Transitive delegation is an explanation of a goal to allow a delegate running on a not
trusted asset, to be able to create a delegate on another asset. It is like if I trust a person, I also
trust that persons friends. The cryptographic file system (CryptoFS) they use has a
cryptographic key for each file. They want to use this system so that the servers or storing
units for these files do not need to be secured in any way. There is no authentication or access
control on the units the files are stored on. The key for each file is stored in a “key server”
which can be an asset on some partners’ hard disk or “server”. To get to the file though, the
participant or agent will need to authenticate it self to the “key server” using its certificate.
The files can not be updated, only changed out and then with a new key associated with it.
With this set-up both authentication and access are separated. This can also be done to other
tasks than to get a file. If you want to run a program or maybe even a movie, you get the
“key” for the movie you want to watch at the key server and then you have the key to be able
to run and stream the movie to your machine and screen. The certificates are changed out
often, but the private keys stay the same. A Certificate Authority (CA) is dealing with the
keys. For secure deployment of delegates to assets, only partly trusted sandboxing and
reversed sandboxing are used.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
38

3.3 pStore: A Secure Peer To Peer Backup system

This system is based on a peer to peer system overlay and they specify that they are doing
incremental backup also [54]. Here they though mean backing up the files that are updated,
leaving the files that are not changed. Software developers use a system called Concurrent
Versioning System (CVS) which helps developers specially those that work on open source
software were anybody can update the software, to know which version of the software they
work on. Versioning can also be used in backup systems. The versioning type pStore is using
is rsync type for Unix OS systems. They use Chord to locate the peers to where the files will
be stored. The files are not stored as a whole, the files are split into chunks or they use the
“exact-copy chunk replication” and the chunks are spread to different peers. The chunk is
called a File Block (FB) and the File Block List (FBL) keeps track of the ID, hash, length and
offset. The FB and the FBL are encrypted with symmetric keys to preserve privacy. The
FBL’s key is derived from the users private key. Each chunk of data includes the owners`
public key, so anyone can view the metadata of the file chunk or FB. Only a small number of
replications are needed to ensure an acceptable level of redundancy. A quota policy where
the amount of space available for a user is proportional to the space contributed to the system
is a wished part of pStore, but they did not implement a mechanism for it. RSA is used for
public key encryption, EAS is used for symmetric key encryption and SHA-1 for
cryptographic hashing. With pStore they discovered that with digital signatures they found
that performance, bandwidth and storing got worse. Not surprisingly.

3.4 iDIBS: An Improved Distributed Backup System

The original Distributed Internet Backup System (DIBS) used Reed-Solomon error correction
code, but iDIBS is using a new type called Luby Transform which is supposed to be better for
large files [56]. LT coding only needs one-way communication to get the data across to the
receiver end. These codes are used for restoring the data since in peer to peer networks the
peers can join and leave the network at any time. DIBS is a sourceForge project [55]. One of
the objectives of both DIBS and iDIBS is that it is important to make backup cheaper. This is
probably why DIBS and iDIBS are based on peer to peer systems and the internet. There is
no concern about the amount of disk space available in a peer to peer network, which is also
what the Microsoft group agrees with [68] and also the founders of Google [62]. iDIBS has
reliability and recovery as their major concerns. A measure to identify the peers which are
storing your data, after your disk has crashed has been solved by storing some information
about the other peers on each peer. Another is that some files need to be updated quite often
and this will create network traffic and the error correction can increase the processor time
needed. The packet transfer mechanism in iDIBS is improved. A backup of a peer list is
incorporated in iDIBS and only one list is needed to recover the entire peer list. The list is
backed up every time a peer changes it. The peer list is stored on each peer. The data is
encrypted using Gnu Privacy Guard (GPG) which is an open standard and GPG is also used
for signing. The users’ GPG key will though have to be stored offline on a CD or USB card.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
39

4 SECURITY REQUIREMENTS OF A SYSTEM

I have divided this chapter in three. First part will be on “Security policy”, the second on
“Anonymity and Trustworthiness” and the third is on Physical security.

4.1 Security policy

Network security is not something we can just apply on top of a system. Network security
will have to be built into the foundation of a computer system and also into the layers on top
of this. The network infrastructure, the policies and the network access points combined
together form the security chain where each link in the chain is important.

For ad-hoc distributed systems, security is a challenge. This is because users are connecting
up their mobile units anywhere at any time. An ad-hoc network does not have a central
infrastructure to rely on for securing the network. Instead a decentralized trust management
can be used. Also cryptographic protocols in use on desktop computers can not be used on
mobile devices that most of us use today, since they need more processing power and network
bandwidth than mobile devices have access to today[18].

Ideally we do not want a central component in our network. A fully distributed system is
what we dream of.

Our objectives are:

• Secure data transmission (Protecting network traffic)
• Software security (delegating rights)
• Secure access (Authenticating the communicating parties)
• Secure storage of data on hardware (Enforcing access control policies on the objects’

member functions)

Peer to peer networks still have a lot of security issues.

We can expect attacks like:

• Attack on plaintext/ciphertext
• Attack on protocols
• Attack on access control mechanisms
• Denial of service (DoS) attacks

Trust and policy management are really important for computer security. If there are no
policies, it is impossible to be able to set up a system according to “nothing”. Most people
have an idea of what should be protected like the points above, but they need to be put into
policies. These policies can then be followed up by programmers, network administrators and
users. Some points could be:

• Criteria for trust
• Confidentiality policies need to be modelled
• System composition
• Covert channel analysis (hidden channel)

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen

4.2 Anonymity and Trustworthiness

Anonymity or trustworthiness in Distributed systems [75] could be possible. There are
networks that provide you with anonymity like the Tor onion routing network. For
trustworthiness it is usually tied to digital signatures or other form of authentication. Though
a signature has only value for how much we trust the verifier of the signature.

There is no central, trusted authority in distributed systems. In an operating system there is a
unit controlling the interaction between users and processes. A distributed system is a
network overlaying the inter-network, where the peers or hosts will run different operating
systems with different security policies [45]. The security functions distributed out in the
system need also to trust the other parts of the system to be able to perform their own security
functions [46]. We possibly need a reference monitor controlling the interactions that an OS
has between users, applications and the application’s data. The function of a reference
monitor is to control and authorize accesses made by subject to objects.

• The users and applications are subjects; they are active since they can manipulate data.
• The application’s data is an object; it is passive and is holding the data.

Figure 11 Reference Monitor

A reference monitor is a module that controls all software access to data objects or files. The
newer operating systems (OS) have this, like for Microsoft products it is Windows
NT/2000/XP and up. This issue has been important for a very long time. In 1972 the United
States Airforce (USAF) made a study on planning of computer security technology [47] and
point out in the report that IBM at that time planned to spend 40 million dollars in a 5 year
period on the computer security problem. The study makes clear that it is the “malicious user
threat” which is the single largest barrier for providing multilevel secure processing. One of
the issues this study point out is that they want; “controlled execution of a users program or
any program executed on a users’ behalf. We explicitly include the operating system service
functions in this requirement”. They also ask for a “reference validation” mechanism which
today can be called a reference monitor. The Bell and LaPadula model comes from this
research [59].

Trust is very important and each level will need to trust the level below. Even on the lowest
level there need to be security measures. This will make all systems and applications secure

40

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
41

based on the basics. Something called the Trusting Computing Base (TCB) is hardware,
firmware and software components that are classified as critical to a computer system. The
TCB is one of the main targets for attack countermeasures. We can not expect the network or
system to be secure if the base is not secure. Each link in the security chain is important. The
TCB depends though on the security policy issued, since it is up to each one to define what
part of the system that needs more attention than the rest. There is though an agreement to
keep the TCB as small as possible, as it is with the kernel. The smaller; the easier to manage.
Not all of TCB has a kernel. Some part or the whole OS can be part of TCB. When the TCB
is defined in a system it is then easier to relate to the “TCB” in the security policy, like they
do in the “Department of Defence trusted computer system evaluation criteria” [59]. For
different areas like; “Discretionary Access Control”, “Identification and Authentication” and
“Operational Assurance” they write: “The TCB shall”. So they only make a reference to the
TCB and the TCB is defined some where else.

Peer to peer systems and BitTorrent do not offer its users anonymity except for Thor and The
FreeHaven project which take a lot of bandwidth. It is possible to obtain the IP addresses of
the connected computers or swarm, having the piece of the file that you want in BitTorrent
clients. The tracker is the piece locating the swarm and it has then the information about the
IP addresses in the swarm of computer nodes. BitTorrent uses cryptographic hashing of all
data which makes it harder to detect BitTorrent files that Internet Service Providers (ISP) like
to filter out. The data then only look like a hash function and will not give away any
information that the file is really a .torrent file.

Trust in peer to peer networks does work like trust among people in standard networks. In the
client applications a peer can get trust by how much the peer has contributed to the system or
also being recommended by others. Online shopping sites with links to many online stores
publish the views of a person using a particular online store. The feedback could be if the
service was bad like it took long before the item was sent to them or if the store is super good.
Usually the online store gets an amount of stars behind its name on the online shopping site.

4.3 Physical security

Using a distributed system will make the user less vulnerable to server crashes or floods from
water or earth quakes. In a distributed system it does not matter if a node is down, since the
files are spread on many nodes. The nodes that are left are enough for the file to be rebuilt
[51]. The network naturally tolerates hardware faults when nodes are organized in a non-
hierarchical way like with peer to peer systems and each node only holds a list of its
neighbours instead of a long list of many peers. A long list of peers will only slow down the
tracking of the nodes. Unfortunately the peer to peer network can not guarantee
communication between nodes, by using the before mentioned Information Dispersal
Algorithm (IDA) in 2.1.3.2 we can get a more secure and fault tolerant transmission and with
a better load balancing [52].

In a distributed system encryption is used to hide the file extension for Internet Service
Providers (ISP) so that they will not filter out the data. It is also used for anonymity so that
peers in totalitarian countries like China and Iran can communicate with other peers without
being sent to prison. For our system, we will use encryption to preserve privacy or integrity
of the data.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
42

Distributed Internet Backup System (DIBS) [29] is based on cheap storage space and so
should backups be. The data is encrypted using Gnu Privacy Guard (GPG) which also
supports smart cards. DIBS use the error correction code called Reed-Solomon which means
here that each file you want to backup is split into N pieces. To recover that file, you only
need N/2 pieces. With a peer to peer network of 14 nodes, 7 nodes could be disconnected and
you can still recover the file. This sounds good for physical security for your stored files.
The RAID backup system can only rebuild a file if one node/disk is down.

5 DESIGN OF HYBRID ARCHITECTURE

So what is the perfect design of a backup distributed system when it comes to resource
location and security? What topology will be the best to use and what search protocol.

5.1 Topology

If NASA thinks that JXTA is good enough for them, I think it is good enough for my hybrid
architecture also. Both Nokia and the Jet Propulsion Laboratory (JPL) seem to be able to
adopt the JXTA to their need. Nokia writes that it is easy to add an additional server using the
JXTA advertisement and discovery service. They also perform their database replication and
synchronization using the JXTA socket which is an Application Programming Interface
(API). JPL is more into the query part of the JXTA protocol. So, I can use JXTA for
addressing, routing and messaging. Also I can do discovering, grouping and communication
between pc’s and devices [39]. The only thing I need to do is to program JXTA as I want it to
be.

There was a concern about using a peer to peer topology since peers are believed to be lying
about their characteristics like bandwidth and computing power. I do not see this as a
problem since there are ways of providing this information using mechanisms in the network.
Backup network storage is a bigger problem than bandwidth and computing power [70]. A
peer can though be required to publish auditable records and also allowing other nodes to
audit the peer. Also agents can flow in the network checking disk space.

5.2 Protocols and algorithms

No extra hardware is needed for the independent users on the internet to join up and share
files. We use the internet and on top of that we put a protocol forming an overlay network as
with the persons in the figure below.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen

Figure 12 Internet with a peer to peer overlay network

Napster and Gnutella form an overlay network within the internet, but the protocols used in
Napster and Gnutella are not good enough. Napster uses the HTTP internet protocol with a
central server and Gnutella uses flooding in its protocol. There are other protocols available
which are better. The protocol should also support an ad-hoc network since so many are
using small devices like mobile phones today.

A Content Addressable Network (CAN) is a Distributed Hash Table (DHT), but will not be
used in this network since it is best used with data that do not change often. As a user I will
probably update my files quite often. A User Datagram Protocol (UDP) using a XOR based
metric topology with the Kademlia protocol which also is a DHT algorithm, seems to be a
good choice. Node look-ups can be done asynchronously with Kademlia. Kademlia is used
for file sharing and used with BitTorrent.

The de Bruijn topology using the Broose protocol is also a peer to peer network using the
DHT algorithm, but maintained in a loose manner, better than Kademlia. The protocol allows
load balancing of hot spots which are public accessible wireless connections to the internet
[50]. This is the first protocol handling key collisions. Its goal is to be as practical as
Kademlia. JXTA is another overlay network and uses different protocols for the different set
of peers in the network. There are edge-peers and Super-peers and they have their own rules
or protocols to follow. It is the same with the peer behind the firewall. DHT is applied when
the rendezvous or Super-peer is forwarding an advertisement index to another peer.

The only protocol supporting ad-hoc devices and is fast on the query side, is the JXTA
protocol. I will not use any other protocol since JXTA can be used with both TCP and UDP.

When storing a file in the peer to peer network I would like it to be split so that it can be
partly stored on different peers. There are different ways of doing this. The Information

43

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
44

Dispersal Algorithm (IDA) is a protocol which breaks a file into pieces, adds an overhead of
data so that some of the pieces can be used to reconstruct the data afterwards. In [53] they
propose to use IDA for signature authorizing instead of a Tornado type code, because
Tornado is said to be better for large segments to code. IDA is though better when the
number of segments is smaller. We assume that the number of segments that we have is
going to be small compared to using Tornado, RS code or LT code.

JXTA has all this already and the possibility for encrypting files and applying a key. JXTA is
supposed to handle any type of files, but I do not know if it sends a whole Codat (data) or part
of one. I will use JXTA here also since it looks like that JXTA can give me “the whole
packet”.

5.3 Security

In a peer to peer network, your access to the network resources will not be jeopardized by
some few nodes failing or not being connected. Centralized systems are vulnerable to local
catastrophes. Large companies have backup storage places spread around the world to avoid
this. By using peer to peer networks, this problem can be avoided.

How secure should the data be? The personnel of Microsoft suggest a serverless file storing
scheme without mutual trust [68]. They say that without mutual trust we need file crypto and
digital signing of the file when the file is updated. They propose that the file should be
encrypted before they are replicated. They also worry about encryption interfering with
duplication control. They propose though to do a one-way cryptographic hash and sign the
hash which corresponds to what other systems also do.

When the file is finally sent away to some peers, then I would like to use reverse sandboxing
[48]. If I want to store a file on an area you have opened up for me on your computer which
is what you do with file sharing software, I want my files protected from being tampered with
from you and your machine. My file will be pre-encrypted using a cryptographic file system
like the one that was proposed in “Efficient and Secure Information Sharing in Distributed,
collaborative Environment”. When the file needs updating it will not be updated. The whole
file will be changed out and also the key belonging to it. My client software and the client
software running in the background on your computer will exchange keys using public key
infrastructure (PKI) or Gnu Privacy Guard (GPG). There will be no authentication or control
on the shared hard disk because transitive delegation [4] [48] is used. Transitive delegation is
showed below. I have created a delegate on a shared area on Peer 1’s computer. Peer 1 has
also created a delegate on my computer. We though do not necessary trust or know of each
other.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen

Personal area of Peer 1

ASSET
Delegate

Personal area for me

ASSET
Delegate

Shared

Shared

Figure 13 Transitive Delegation

Confidentiality will normally be provided by the use of keys. Symmetric keys will be used
for cryptography where the symmetric key is shared beforehand using public key
cryptography. AES can be used for the symmetric part and RSA for the public key
cryptography [53] part. It is possible to have a single signature scheme over multiple packets,
so this will be used.

45

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
46

6 DISCUSSION

6.1 The 3 backup systems

“A Survey should be made of different current architectures for resource discovery in large
scale systems, such as in popular p2p systems”

6.1.1 Efficient and Secure information sharing

Even though the paper on “Efficient and Secure information sharing” came out in 1999, it still
seems very new. It has some surprising ideas that none of the other two bring in to their
paper. One of them is the idea of using “Sandbox”. The paper focuses on “Efficient and
Secure information sharing”, but does not mention any look-up service. I assume the
machines sharing the information already know of each others IP addresses etc, so standard
routing is enough. In the paper they mention secure storing and key handling which is a good
thing and the collaboration mode is similar to CORBA, so I do not understand why CORBA
can not be used directly. The key handling seems a bit cumbersome. They rely on a “key
server”. I assume that when they mention “file server” and “key service” this is hopefully not
something that needs to be centralized. A “file server” and a “key service” can be objects
distributed to different machines. I though like the idea of changing out the whole file and the
key, when a file needs an update. Personally it scares me to have different versions of a file.
Also Microsoft mentioned that the duplication of files can be a problem. As for explaining
the file size, they only suggest to divide the files into short physical files instead of storing the
whole large file. They also suggest distributing these short physical file on different file
servers. I assume a file server can be a standard machine. These views fit with what I find is
important in an architecture.

The crypto file system they suggest will separate authentication and access. Here there is a
separate system encrypting the files and a different system actually signing the file instead of
one system encrypt and then sign in one go. I do not like the use of CA generally, because it
smells like money. The CA could though be an internal CA for the peer to peer network.

6.1.2 pStore

pStore uses Chord to do the look-ups. The only reason for this must be that Kademlia [65]
was released the year after, which was in 2002. Kademlia has a better distance metric for the
nodes. Nodes can not be added in Chord [66] before Chord has finished its round updating
which nodes are still in the network. With Kademlia a node can be updated if a node is
querying another node. There is no separate update method in Kademlia as it is with Chord. I
though think that the versioning system CVS which is vital for the open software groups, is a
good idea. CVS seems to work for multiple code writers spread across the world, updating
the same application. The pStore group was running tests with and without versioning, both
using Unix rsync and CVS for versioning. Tests showed that CVS used more bandwidth than
the others at first, but the cause of this was that it was doing a full backup of all files. Later
when only doing updates of the files, it used less bandwidth. Whatever versioning system

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
47

chosen, at least I think it is a good idea using something that is already working. Both rsync
and CVS have proved that they are working. Block sharing used in pStore does also help
keeping the bandwidth lower both when using versioning or not. The blocks of data can be
viewed as an idea of splitting the files in to smaller pieces which has already been suggested
done earlier.

6.1.3 iDIBS

iDIBS use LT erasure coding to restore data in their Distributed Internet Backup System.
According to [53] “Efficient Multicast Stream Authentication Using Erasure Codes” Tornado
coding, which came before the LT coding can not be used for their purpose. Tornado and LT
are effective on large number of segments which will work for iDIBS. RS, Tornado and LT
coding can be used here since the purpose is to reconstruct large number of files and not
signing small packets of data. Instead of using IDA to be able to sign multiple packets, iDIBS
use Gnu Privacy Guard (GPG) for both encryption and signing. iDIBS do incrementing
backups meaning that it updates a file only if there has been a change to it. Just part of the
file needs updating. The files are split into blocks which make the overall performance better
as done in the other schemes.

6.2 Security requirements of a system

“There is a security aspect in using a Distributed System for storing your personal files;
confidentiality, integrity and availability need to be taken into account”

6.2.1 Topology

The topology of the system is important for the availability of the resources in the system. A
peer to peer topology is more secure than a centralized topology because of geographically
localized faults as for natural disasters with failed routers or broken network cables [68]. The
uptime of a peer to peer system is very high because of the redundancy. By using a hybrid or
peer to peer network topology we will also save money on expensive servers and network
administrators. A peer to peer system is always available for any users if there are no security
algorithms in the system.

The JXTA seem to be a very good system to choose since security is built into it from the
start. Since my architecture needs a “key server” the Super-peer will have enough capacity to
handle this job. Unfortunately the certificates the system is using will have to be backed up
outside the peer to peer network.

6.2.2 Algorithms and protocols

As for data encryption and signing the data, the old basic strategies are still valid, securing the
confidentiality and availability. Encrypting the data while still on disk is not a problem even
though cryptography steals a lot of CPU power. Signing data also takes some computation,

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
48

but a least if the signing is done just once per file it is less costly. Trust was an issue, but both
Microsoft and the “Efficient and Secure information sharing” do not see the need for this. In
a peer to peer network as in interpersonal networks, a kind of trust is built up over some time.
Encryption and signing of data should be enough, but in addition to this the architecture will
use the “reverse sandbox” technique. This will make the data on another peers’ machine even
safer also using transitive delegation will able another person that I trust to access my data.

6.3 Design of new system

“Investigate/design a hybrid architecture which achieve reliable resource discovery with
minimal centralized server requirements, i.e. which aims to reconcile the favourable
properties of both distributed and centralized systems”

6.3.1 Topology

Unfortunately I did not understand the quality of JXTA until I had surveyed other peer to peer
architectures first. I was a bit unsure for a while if JXTA should have gotten a more
prominent place in my thesis and after choosing JXTA I see that it should. The layers in the
JXTA protocol with Super-peer and standard nodes on one level and an application user
interface on the next level is really impressive. Anybody can make JXTA fit their purpose
and policies which is just what a perfect tool is about.

6.3.2 Algorithms and protocols

The possibilities for the JXTA and its protocols seem to be unlimited. JXTA has a number of
protocols for the individual status of the peers, like the Super-peers will use two different
protocols which is one for the rendezvous peer and one for the relay peer allowing companies
accessing distributed machines behind a firewall. DHT is a very important algorithm as well
and JXTA uses it.

7 CONCLUSIONS AND FURTHER WORK

7.1 Conclusions

I looked into the security aspects related to using distributed systems for resource discovery
and I have suggested a design of a resource discovery architecture which will use distributed
systems for backup of personal data with minimal centralized server requirements.

I began looking into the theory and the state of the art technology related to anything on peer
to peer networks and resource discovery. Resource discovery in peer to peer systems can be
used not only for file sharing and backup, but the game industry is also very interested in it. I
did not have to look into real-time data, which can be challenging. Static resources like files
are more manageable.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
49

Today’s protocols have already shown their qualities which made it possible to investigate an
imaginary perfect backup system. The only way of knowing if JXTA can be used for this is
to actually write Java code with it.

I have answered the questions for the requirements of a perfect backup architecture.

The questions from chapter 1.3 with answers:

• The system will find my file and not some other persons file

Using JXTA and the protocols associated with it, I will find my file and not some other
persons’ file.

• Time is not so important

Finding my file will be done in a timely matter. JXTA “search” suits environments where
content is rapidly changing [38].

• No one else should be able to read my file

If I am using a cryptographic file system like it was suggested in the “Efficient and Secure
Information Sharing in Distributed collaborative Environment”, with digital signing of the
file with a key, I will keep anyone else from reading my file.

• I can share a file with someone I trust

By using transitive delegation I can as an agent, create a delegate which can access certain
objects, which here will be my file.

• No one else should be able to change my file
• A person I trust can change the file

A person that I trust can then access the file, either as read-only or execute. Others will not
have access. Since I am using the JXTA configuration, the key associated with the file will be
handled by a key server which is one of the Super-peers. For extra security the area on the
other peers’ computer is reverse sandboxed. The other peer is not trusted.

• If my unit goes down I will be able to retrieve all backed up files

The key for retrieving files is stored on a key server. The certificate I will need to backup to
some where safe, so that I can use the backed up certificate to retrieve my files if my computer
dies.

• It must be free
• Enough storage space

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
50

This set-up is using open source software and is free and according to Microsoft and the
Google founders [68], [62] there is an overhead of storage space on the internet.

7.2 Future work

Since I did not have time to test the different systems, it would be interesting to see what they
can do, especially the JXTA protocol. It took me a while to find that it is a very popular
protocol. There has been done a lot of work on it and the only way of getting to know is to
play with it. Looking at the JXTA home pages, it looks like a very versatile protocol.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
51

ABBREVIATIONS

ACL Access control list
Ad-Hoc Unplanned (here for a network)
AES Advanced Encryption Standard Up to 256 bits
CA Cartificate Authority
CAN Content Adressable Network
CBAC Context based access control
CSOAP Client SOAP
CORBA Common Object Request Broker Architecture

CVS
Concurrent Versions system, open source ver
control

DAC Discretionary Access Control
DES Data Encryption Standard 56 bits
DHT Distributed Hash Table
DIBS Distributed Internet Backup System
DRM Digital Right Management
GPG Gnu Privacy Guard

Hotspot
public accessible wireless connections to the
internet

IDA Information Dispersal Algorithm
ISO International Organization for Standardization
ISP Internet Service Provider
LSI Latent Semantic Indexing
MAC Mandatory Access Control
OS Operating System
OSI Open System Interconnection
PDA Personal Digital Assistance
Peer a computer node with the same status as you
PKI Public Key Infrastructure
P2P Peer to Peer
QoS Quality of Service
RSA Rivest, Shamir and Adleman. Public key crypto
RBAC Role Bases Access Control
RS code error correcting code
Reversed Sandbox Protecting my programs from your machine
Sandbox Protecting my machine from your programs
SOAP Simple Object Access Protocol
SLP Service Location Protocol
SWAN Small World Adaptive Networks
SWAN 2 Stateless wireless Ad Hoc Networks
Swarm (P2P network) connected computers having part of a file

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
52

TCB Trusting Computing Base
TCP Transmission Control Protocol
Two-tier Two-layer
UDDI Universal Discription Discovery and Integration
URL Uniform Resource Identifier
VPN Vertual Private Network
XOR negate of OR returning '0' when bits are the same

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
53

REFERENCES

[1] Context-Aware Computing. Thomas P. Moran and Paul Dourish. 2001.
[2] Distributed systems, Principles and Paradigms. Andrew S. Tanenbaum and Maarten

van Steen
[3] http://www.laas.fr/mosaic/documents/storage-edcc-2006/storage.html
[4] PEET-TO-PEER COMMUNITIES: ARCHITECTURE, INFORMATION AND

TRUST MANAGEMENT Mujtaba Khambatti, 2003.
[5] http://delivery.acm.org/10.1145/1150000/1141672/p1669-

jin.pdf?key1=1141672&key2=5916908711&coll=ACM&dl=ACM&CFID=177932
68&CFTOKEN=86871692

[6] Content-Aware search of Multi Media data in Ad Hoc networks, Bo Yang and Ali
R. Hurson, 2005

[7] A Taxomony of Discovery Services and Gap Analysis for Ultra-Large Scale
Systems, K Krauter, R Buyya, M Maheswaran

[8] http://people.cs.uchicago.edu/~anda/papers/thesis-abstract.html
[9] http://bfi-internal.org/sustainability/node/68
[10] http://www.sequoiabroadband.com/technology_centralized.html
[11] http://acronyms.thefreedictionary.com/
[12] http://www.gris.det.uvigo.es/~rebeca/vodca/slides/Bella_Pistagna_Riccobene_vodca

04.pdf
[13] http://www.inria.fr/rapportsactivite/RA2005/arles/uid34.html
[14] http://www.openp2p.com/pub/a/p2p/2001/12/14/topologies_one.html
[15] A Semantic Search Framework in Peer-to-Peer based Digital Libraries. Hao Ding.

2006
[16] http://www.vpnc.org/ietf-ipsec/92.ipsec/msg02350.html
[17] http://www.microsoft.com/industry/financialservices/insurance/businessvalue/wifpi

m.mspx
[18] http://www.inria.fr/rapportsactivite/RA2005/arles/uid19.html
[19] http://autoidlabs.mit.edu/whitepapers/MIT-AUTOID-TR-004.PDF
[20] http://citeseer.ist.psu.edu/jun99agentbased.html
[21] Resource Discovery in Distributed systems. Mor Harchol-Balter, Tom Leighton and

Daniel Lewin. 1999.
[22] http://wpage.unina.it/cotroneo/dwnd/P2P/P2P_DHT.pdf
[23] Efficient query routing for Information Retrieval in Semantic Overlays. Hai Jin,

Xiaomin Ning, Hanhua Chen, Zuoning Yin. 2006
[24] http://privacy.med.miami.edu/glossary/xd_confidentiality_integrity_availability.htm
[25] The MSDA Multi Protocol approach to Service discovery and access in pervasive

Environments Pierre-Guillaume Raverdy, Rafik Chibout, Agnès de La Chapelle and
Valèrie Issarny 2005

[26] A Security Focused Integration Architecture for an Electronic Observation
ChartInformation Security. NTNU. Divic, Mirela, Huse, Hveding. 2005.

[27] Distrubuted Role Based Access Control for Dynamic Coalition Environments Eric
Freudenthal, Tracy Pesin, Lawrence Port, Edward Keenan and Vijay Karamcheti
2002

[28] http://www.ssh.com/support/cryptography/protocols/
[29] http://web.mit.edu/~emin/www/source_code/dibs/index.html
[30] http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.w

ebsphere.express.doc/info/exp/ae/cwbs_wssmessage.html

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
54

[31] http://emhain.wit.ie/~pwall/CvD.htm
[32] http://www.docuverse.com/blog/donpark/2003/11/30/how-bittorrent-works
[33] http://delivery.acm.org/10.1145/1240000/1233406/p355-

hoffert.pdf?key1=1233406&key2=7560108711&coll=ACM&dl=ACM&CFID=213
41166&CFTOKEN=60501093

[34] P2P systems based on distributed hash algorithm. Ming Xie. 2003.
[35] http://www.inria.fr/rapportsactivite/RA2005/arles/uid15.html
[36] http://linuxjournal.com/article/6797
[37] http://www.bittorrent.org/Draft_DHT_protocol.html
[38] http://www.jxta.org
[39] http://java.sun.com/developer/technicalArticles/Networking/jxta2.0/
[40] www.ariadne.ac.uk/issue8/resource-discovery
[41] http://technet.microsoft.com/en-us/library/9c9e0367-4032-47be-b334-

bf3fed9ea539.aspx
[42] http://www.cs.washington.edu/homes/gribble/papers/mmcn.pdf
[43] Centralized versus Decentralized Computing: Organizational Considerations and

Management Options. John Leslie King. 1983.
[44] http://ieeexplore.ieee.org/iel1/49/11144/00508287.pdf?tp=&isnumber=11144&arnu

mber=508287
[45] http://www.cs.vu.nl/~bpopescu/papers/cms02/node1.html
[46] http://delivery.acm.org/10.1145/170000/165613/p6-

mirhakkak.pdf?key1=165613&key2=7301515711&coll=ACM&dl=ACM&CFID=1
8557190&CFTOKEN=77586152

[47] Computer security technology planned study. Jampes P. Anderson. 1972.
[48] Efficient and secure information sharing in distributed, collaborative environments .

Partha Dasgupta, Vijay Karamcheti and Zvi M. Kadem 1999.
[49] D2B: a de Bruijn based content addressable network Pierre Fraigniaud and Philipe

Gauron
[50] Broose: A practical distributed hashtable based on de Bruijn topology 2004. Anh

Tuan Gai and Laurent Viennot.
[51] Distributed Backup through information Dispersal. Giampaolo Bella, Costantino

Pistagna and Salvatore Riccobene. 2004.
[52] Information Dispersal and Security, load balancing and fault tolerance. Michael O.

Rabin. 1989.
[53] Efficient Multicast Stream Authentication Using Erasure Codes. Jung Min Park,

Edwin K. P. Chong and Howard Jay Siegel. 2002.
[54] PStore: A Secure Peer to Peer backup system. Christopher Batten, Kenneth Barr,

Arvind Saraf and Stanley Trepetin. 2001.
[55] http://sourceforge.net/projects/dibs
[56] iDIBS: An Improved Distributed Backup System. Faruck Morcos, Thidapat

Chantem, Philip Little, Tiago Gaiba and Doug Thain. 2006
[57] dRBAC: Distributed Role-based Access Control for Dynamic Coalition

Environments, Eric Freudenthal, Tracy Pesin, Lawrence Port, Edward Keenan and
Vijay Karamcheti. 2001.

[58] The Role of Trust Management in Distributed Systems Security. Matt Blaze, Joan
Feigenbaum, Hohn Ioannidis and Angelos D. Keromytis. 1999.

[59] Department of Defense trusted computer system evaluation criteria. 1985.
[60] Security in distributed peer-to-peer systems. IKT 404. Borgi, Isfeldt, Larsen. 2006.
[61] Quality of Service (QoS) in mobile ad hoc networks. Morten Kronstad Vinje. 2006.

 Resource discovery and Security in Distributed systems

May 2007 – Line Larsen
55

[62] http://infolab.stanford.edu/~backrub/google.html
[63] Access Control in Distributed Object Systems: Problems with Access Control Lists.

S. V. Nagaraj. 2004.
[64] Rarest first and Choke algorithms are enough. Arnaud Legout, G. Urvoy-Keller and

P. Michiardi. 2006.
[65] Kademlia: A Peer-to-peer Information System Based on the XOR Metric. Petar

Maymountkov and David Mazières.
[66] Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications. Ion

Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari Balakrishnan.
2001.

[67] http://delivery.acm.org/10.1145/950000/941154/6797.html?key1=941154&key2=03
49510811&coll=ACM&dl=ACM&CFID=19659166&CFTOKEN=64261270 DHT
part I.

[68] Feasibility of a Serverless Distributed File System Deployed on an Existing set of
Desktop PCs. William J. Bolosky, John R. Douceur, David Ely and Marvin
Theimer. MS research. 2000.

[69] Guarding Security Sensistive Content using Confined Mobile Agents. Guido van `t
Noordende, Frances M.T: Brazier and Andrew S. Tanenbaum. 2006.

[70] Economic Behaviour in Peer-to-Peer Storage Networks. Andrew C. Fuqua, Tsuen-
Wan Ngan and Dan S. Wallach. 2003.

[71] http://www.pcworld.dk on JXTA. 2001.
[72] gnunet.org
[73] howstuffworks.com
[74] wikipedia.org
[75] gnutella.com

	Abstract
	Keywords
	Preface
	Table of contents
	Figure list
	1 INTRODUCTION
	1.1 Background
	1.2 Thesis definition
	1.3 Problem statement
	1.4 Importance of study
	1.5 Report outline

	2 THEORY AND STATE OF THE ART
	2.1 Theory
	2.1.1 Topology
	2.1.2 Algorithm and Protocols
	2.1.2.1 Communication protocol
	2.1.2.2 Routing algorithms
	2.1.2.3 Resource discovery (look-up service) algorithms

	2.1.3 Security
	2.1.3.1 The CIA of computer security
	2.1.3.2 Secure data transmission
	2.1.3.3 Software security
	2.1.3.4 Secure access
	2.1.3.5 Secure storage of data on hardware

	2.2 Discovery services in use
	2.2.1 Search engine
	2.2.2 Middleware
	2.2.3 Distributed Hash Table (DHT) algorithm
	2.2.4 JXTA protocol

	2.3 Requirements for a centralized system
	2.4 Requirements for a distributed system
	2.5 Centralized versus Distributed
	2.6 “Resource discovery and Security” literature review

	3 SURVEY ON DIFFERENT CURRENT P2P ARCHITECTURES
	3.1 Peer to Peer systems
	3.2 Efficient and Secure Information Sharing in Distributed, collaborative Environment
	3.3 pStore: A Secure Peer To Peer Backup system
	3.4 iDIBS: An Improved Distributed Backup System

	4 SECURITY REQUIREMENTS OF A SYSTEM
	4.1 Security policy
	4.2 Anonymity and Trustworthiness
	4.3 Physical security

	5 DESIGN OF HYBRID ARCHITECTURE
	5.1 Topology
	5.2 Protocols and algorithms
	5.3 Security

	6 DISCUSSION
	6.1 The 3 backup systems
	6.1.1 Efficient and Secure information sharing
	6.1.2 pStore
	6.1.3 iDIBS

	6.2 Security requirements of a system
	6.2.1 Topology
	6.2.2 Algorithms and protocols

	6.3 Design of new system
	6.3.1 Topology
	6.3.2 Algorithms and protocols

	7 CONCLUSIONS AND FURTHER WORK
	7.1 Conclusions
	7.2 Future work

	ABBREVIATIONS
	REFERENCES

