
Clustering with Terracotta

May 2008 – wei sun

Clustering with Terracotta

A qualifying pre-project Report
submitted to the Faculty

of the
Agder University College

By:

16 May 2008

Approved:

Clustering with Terracotta

May 2008 – wei sun 2

Abstract

In today’s java community, modern enterprise application products have more constraints and
requirements then ever. High availability, application scalability and also good performance
are required, which means an application is needed to be deployed on multiple JVMs, in other
words, it has to be clustered or distributed. It is essential for the application to scale out well,
has better performance and less complexity during development of clustering.

This master thesis focuses on clustering with Terracotta which is a JVM level clustering
technique. First I start analyzing the complexity when an application comes into scale-out,
and also analyzing the shortcomings of the common approaches to clustering an application.
Then I do a deep dive to the Terracotta and demonstrate how to utilize Terracotta to conquer
these problems with emphasis on providing scalability and high performance using natural
java programming. Finally, various scenarios are made as benchmark tests. The final result
has shown that Terracotta as redundancy solution is strong recommended to be implemented
for high availability and high scalability

Preface
This project concludes the two-year Master of Science program in Information and
Communication Technology (ICT) at Agder University College (AUC), Faculty of
Engineering and Science in Grimstad, Norway. This project has been carried out from January
to June 2008.

First of all, I would like to thank Arild Andas from DevoTeam Company and Selo Sulistyo at
Agder University, for excellent supervision and guidance throughout the project period. My
discussion with them has really helped me clarify several obstacles during my project.
Without their help, this project and report would not have been the same.

I would also like to thank all the experts working at Terracotta for their patience and
contributions. They gave me a lot of precious advices.

Sun Wei
Grimstad, March 2008

Clustering with Terracotta

May 2008 – wei sun 3

Table of contents

List of Figures .. 4
Chapter 1 Introduction ... 6
Chapter 1 Introduction ... 6

1.1 Thesis Definition .. 6
1.2 Background .. 7

1.2.1 Cluster ... 7
1.2.2 Java Virtual Machine .. 8

1.3 Current Clustering State of Art .. 8
1.3.1 Database Strategy.. 8
1.2.2 Clustering Based on Complicated Java API ... 9
1.2.3 Clustering Based on Cache Mechanism.. 10

1.4 Problems of Traditional Clustering Techniques... 14
1.4.1 Implement Serializable Interface (coarse-grained replication) 14
1.4.2 Break Object Identity .. 14
1.4.3 Low Performance .. 15
1.4.4 Need Callback Mechanism.. 15
1.4.5 Essential of Complexity of Current Clustering Techniques.................................... 15

1.5 Motivation .. 15
1.6 Delimitations .. 17
1.7 Thesis Overview... 17

Chapter 2 Theory.. 18
2.1 What is Terracotta (DSO) .. 18

2.1.1 Network Attached Memory... 18
2.1.2 What does NAM do?... 19

2.2 Architecture and How Terracotta DSO Works .. 21
Chapter 3 Clustering with Terracotta ... 24

3.1 Aspect-Oriented Programming (AOP)... 24
3.1.1 Java Language Specification... 24
3.1.2 Java Memory Model.. 24
3.1.3 ASM .. 25
3.1.4 How it Works .. 25
3.1.5 Fine-Grained Replication .. 28
3.1.6 Thread Coordination ... 29

3.2 Hub and Spoke ... 31
3.2.1 Cluster Hub to Avoid SPOF.. 32
3.2.2 Batched Field-Level Changes ... 33

Chapter 4 Scenarios & Discussion ... 34
4.1 Pitfall Overview ... 34

4.1.1 Loading Problem... 34
4.1.2 Replication Problem.. 37

4.2 Terracotta Scenario and discussion .. 41
4.2.1 Scenario1 – fix separately loading problem.. 41
4.2.2 Scenario2 – fix limitation of physical memory... 44
4.2.3 Scenario3 – fix n-1 ACK problem .. 45
4.2.4 Scenario4 – where to use Terracotta ... 46

Chapter 5 Conclusion and Future work.. 61
5.1 Sum up.. 61

5.1.1 Complexity problem: read inefficient from database leads to complexity 62

Clustering with Terracotta

May 2008 – wei sun 4

5.1.2 Terracotta solution: Transparent, inter-JVM thread coordination 62
5.1.3 Implicit problem: limitation of heap space which leads undesirable effect on
database .. 62
5.1.4 Terracotta Solution: virtual heap of Terracotta ... 62
5.1.5 scale-out problem: writes inefficient and Database abuse (based on ORMapping)
leads to hard to scale-out .. 63
5.1.6 Terracotta solution: virtual heap of Terracotta.. 63
5.1.7 what is Terracotta .. 63

5.2 Conclusion.. 63
5.3 Future work .. 64

List of Figures

Figure 1.1 clustering solution based on database... 9
Figure 1.2 clustering based on complicated java API.. 10
Figure 1.3 cache clustering solution... 11
Figure 1.4 cache solution: get method ... 12
Figure 1.5 cache solution: set method.. 13
Figure 1.6 cache solution: put method ... 13
Figure 1.7 cache solution doesn’t preserve object identity .. 14
Figure 1.8 comparison based on traditional clustering solutions 16
Figure 2.1 plug-in Terracotta ... 20
Figure 2.2 scale-out application based on Terracotta... 22
Figure 3.1 bytecode instructions .. 25
Figure 3.2 object graph in heap.. 26
Figure 3.3 add Terracotta to the heap... 27
Figure 3.4 Terracotta intercepts the changes to the object graph in heap 27
Figure 3.5 Terracotta transfers changes to other JVM ... 28
Figure 3.6 java synchronization mechanism .. 29
Figure 3.7 Terracotta synchronization mechanism .. 31
Figure 3.8 architecture overview of Terracotta .. 32
Figure 3.9 batching changes to Terracotta server .. 33
Figure 4.1 naïve loading database solution in distributed environment........................... 34
Figure 4.2 naïve loading database solution in single JVM .. 35
Figure 4.3 add cache as objects shared layer ... 36
Figure 4.4 add cache layer in the distributed environment .. 37
Figure 4.5 add cache layer leads object stale problem... 38
Figure 4.6 sticky session solution .. 38
Figure 4.7 network overhead problem based on copy mechanism of distributed cache.. 39
Figure 4.8 database overhead problem based on invalidate mechanism of distributed

cache... 40
Figure 4.9 local JVM Problem of distributed cache... 41
Figure 4.10 distributed cache solution without Terracotta... 42
Figure 4.11 loading times from database based on distributed cache solution without

Terracotta ... 42
Figure 4.12 accessing time based on distributed cache solution without Terracotta 43
Figure 4.13 distributed cache solution with Terracotta.. 43
Figure 4.14 loading times from database based on distributed cache solution with

Terracotta ... 44
Figure 4.15 accessing time based on distributed cache solution with Terracotta 44

Clustering with Terracotta

May 2008 – wei sun 5

Figure 4.16 object fault in Terracotta... 44
Figure 4.17 load object from Terracotta server instead database..................................... 45
Figure 4.18 accessing time of loading object from Terracotta server after 3 seconds 45
Figure 4.19 fix n-1 ACK problem with Terracotta .. 46
Figure 4.20 baseline application... 47
Figure 4.21 add hibernate... 48
Figure 4.22 enable 2nd level cache ... 50
Figure 4.23 problem based on enable 2nd level cache solution in distributed environment

.. 51
Figure 4.24 enable 2nd level cache with Terracotta .. 53
Figure 4.25 results of Terracotta administer console ... 54
Figure 4.26 Tomcat 1 ... 54
Figure 4.27 Tomcat 2 ... 54
Figure 4.28 Tomcat 3 ... 55
Figure 4.29 Tomcat 4 ... 55
Figure 4.30 JMeter aggregate report for 1 application server .. 55
Figure 4.31 JMeter aggregate report for 2 application servers .. 55
Figure 4.32 JMeter aggregate report for 3 application servers .. 55
Figure 4.33 JMeter aggregate report for 4 application servers .. 56
Figure 4.34 detached pojos... 57
Figure 4.35 detached pojos with Terracotta ... 59
Figure 5.1 typical distributed solution.. 61

Clustering with Terracotta

May 2008 – wei sun 6

Chapter 1 Introduction
In today’s world of java open-source, higher availability requirements, better performance,
the adoption of cheaper hardware and lower budget are in demand at critical levels of
efficiency in the real market. These factors are driving java developers to adopt various
clustering approaches to make applications as “failure-proof” as possible meanwhile with
high performance and great capability of scale-out. However clustering has never been an
easy-done job during the life-cycle of application development. A close look at java language
itself, according to the original contract of java, we could conclude the application works
almost perfectly as long as it runs within a single JVM. Unfortunately, things start falling
apart when the application is intended to be clustered, in other words – if it is intended to be
deployed on multiple JVMs, the problem with scaling out breaks this promise that java made.
And this also leads developer get parts of their energy focusing on the things beyond the
development of business logic and generating extra code to maintain data consistent among
multiple JVMs. It turns out that there are two big obstacles in java today, namely: scale-out
and complexity.

1.1 Thesis Definition
This thesis proposes a simple and powerful alternative: clustering with Terracotta which is a
JVM level clustering solution, as it is the only technology available today that provides the
runtime clustering solution that supports highly available and scalable java applications.

In this article, we focus on the scalability using natural java language semantics by
introducing Terracotta.

We start from the current state of the art in clustering. First we exploit various clustering
techniques, analyze how the strengths and weaknesses of each and come out what is the real
reason of complexity of current clustering techniques. Second we are moving on to eliminate
clustering concerns out of the application layer down into JVM, which is the simplest solution
without impacting the business logic of applications.

Here we introduce Terracotta step by step: What Terracotta is what its architecture is and how
it works? In particular, we focus on the Terracotta DSO (distributed shared objects) which is
the core of Terracotta. We will analyze how this DSO component virtualizes multiple JVMs
and makes them equivalent to a single JVM, how this helps reducing database load and
reducing development efforts and dependencies on applications servers and frameworks.

Terracotta has been deeply investigated in the five aspects of the following in this article:
1. JVM clustering
2. Object identity preservation
3. Shared virtual heap (network attached memory)
4. Clustered thread mechanism
5. POJO clustering

And various benchmark testing scenarios are given to illustrate the resulting performance
which will be analyzed across the following functional dimensions:
1. Scalability
2. Availability

Clustering with Terracotta

May 2008 – wei sun 7

3. Fine grained sharing of data
4. High performance

We also describe its impact on the way of our coding from our point of view for better
performance.

Finally, we use a real world project to illustrate how easy to seamlessly integrate existing
project with Terracotta.

The research result is given as “Terracotta is a strongly recommendation for requirement of
high availability, high salability and high performance”.

1.2 Background
In this section, we present relevant background material of clustering. It includes some brief
description and definition of relevant terms.

1.2.1 Cluster
A computer cluster is a group of loosely coupled computers that work together closely so
that in many respects they can be viewed as though they are a single computer. The
components of a cluster are commonly, but not always, connected to each other through fast
local area networks. Clusters are usually deployed to improve performance and/or availability
over that provided by a single computer, while typically being much more cost-effective than
single computers of comparable speed or availability [1].

High-availability clusters (also known as failover clusters) are implemented primarily for the
purpose of improving the availability of services which the cluster provides. They operate by
having redundant nodes, which are then used to provide service when system components fail.
The most common size for an HA cluster is two nodes, which is the minimum requirement to
provide redundancy. HA cluster implementations attempt to manage the redundancy inherent
in a cluster to eliminate single point of failure [1].

1.2.1.1 Scalability

Scalability: From Wikipedia, in telecommunications and software engineering, scalability is a
desirable property of a system, a network, or a process, which indicates its ability to either
handle growing amounts of work in a graceful manner, or to be readily enlarged, the ability
for a distributed system to easily expand and contract its resource pool to accommodate
heavier or lighter loads. Alternatively, the ease with which a system or component can be
modified, added, or removed, to accommodate changing load [1].

1.2.1.2 Availability

Availability: From Wikipedia, availability refers to the ability of the user community to
access the system, whether to submit new work, update or alter existing work, or collect the
results of previous work. If a user cannot access the system, it is said to be unavailable.
Generally, the term downtime is used to refer to periods when a system is unavailable [1].

Clustering with Terracotta

May 2008 – wei sun 8

1.2.1.3 High Availability

High Availability: From Wikipedia, it is a system design protocol and associated
implementation that ensures a certain absolute degree of operational continuity during a given
measurement period [1], which can avoid single point of failure (SPOF).

1.2.1.4 Failover

Failover: From Wikipedia, failover is the capability to switch over automatically to a
redundant or standby computer server, system, or network upon the failure or abnormal
termination of the previously active server, system, or network. Failover happens without
human intervention and generally without warning, unlike switchover [1].

1.2.2 Java Virtual Machine
 A Java Virtual Machine (JVM) is a platform-specific (operating system and hardware)
program that implements a well-defined, platform-independent virtual machine [2]. Here we
don’t mean to give an introduction to JVM. The only thing about JVM that we need to keep in
mind is that JVM operates on Java bytecode, which is normally (but not necessarily)
generated from java source code and a JVM can also be used to implement programming
languages other than java [1].

1.2.2.1 Bytecode

Java Bytecode: Java Bytecode is the form of instructions that the java virtual machine
executes (e.g. normally used getField and putField to access an object’s fields).

1.3 Current Clustering State of Art
The following are three common solutions to cluster java applications and we will see how
these solutions leave the developers no choice, namely, business logic including the code
required for clustering. This means the developers are burdened to build extra code for
infrastructure service of clustering, in other words, the developers can’t only focus the
business logic they really need to focus on and this results in all these solutions are
unnecessarily complex.

1.3.1 Database Strategy
This might be the easiest way to provide high availability. We can just go to the relational
database and write all of our application data into it. Then we have a highly available solution,
and we can plug-in application servers as well. This is a very good strategy and a relatively
common development pattern. This is the kind of strategy that hibernate helps us with writing
our pojos (plain ordinary java object) and mapping them to the database. This strategy has
been used in many solutions: the entire stack simply writes all of its data into the database. As
we can imagine, once began to write all of our scratch data into the database, it will become
our centralized point for all our application servers and this also means that there will be a
significant overhead in our database layer as our usage grew. This is depicted by the
following Figure1.1: clustering solution based on database

Clustering with Terracotta

May 2008 – wei sun 9

Figure 1.1 clustering solution based on database

The problem within this database solution is we should only use database to store only the
“system of Record” information as the black dash line depict.

For example, within a particular web environment, an application will carry on a conversation
with the user during parts of the normal web flow. That web flow with the user describes what
is happening as the application interacts with the user, namely it is generating scratch data.
Scratch data is defined as object oriented data that is critical to the execution of series of java
operation inside the JVM, but may not be critical once a business transaction is complete [1].
The term “scratch data”: is derived from students’ use of a piece of scratch paper to make
interim calculations for a multiple choice examination. This scratch paper is critical to the
student during the exam, yet once the final answers are turned in; it is not longer of value to
the student or the instructor [1]. This is analogous to the data that is generated during the
conversation flow the application has with the user. So, in each user’s request/response cycle,
the application is generating data that doesn’t necessarily need to be stored permanently
across the lifecycle of the entire application. It only needs to be stored during the lifecycle of
the conversation with the user. Hence, storing those data in the database for the purpose of
clustering, for the purpose of scale out and high availability means we are overloading our
database and the database becomes the chief bottleneck in our clustering solution. Besides,
manual coordination is a very difficult and complex task and forces developers work in an
unnatural way to code explicitly for the clustering case, which is unnecessary within the
situation of running application in a single JVM. Then the code is far more complex and
performance suffers greatly as our usage grew.

1.2.2 Clustering Based on Complicated Java API
Another common used clustering solutions is complicated Java API. Basically they are JMS,
RMI, or RPC to synchronize the destination and security state across the servers which means
various JVMS in the cluster can share in-memory object state data and be able to signal or
coordinate among nodes. Illustrated by Figure1.2: clustering based on complicated java API

Clustering with Terracotta

May 2008 – wei sun 10

Figure 1.2 clustering based on complicated java API

But they all ultimately boil down to significant amount of custom development in the form of
JMS messaging or RMI, RPC coordination. All of these solutions require a very significant
change to the developer’s application and require custom development by the application
developers to implement this application level high availability and high scalability. This
mechanism available today can greatly increases the complexity of java applications and
usually burden the developers with extra code way out of utopian business logic. It turns out
in larger, more error prone source code, longer development period, and difficult management
of deployed applications.

The problem with this solution is, taking JMS as an example, we have to write a JMS layer to
keep various object state data in the stack coherent across all the nodes in the cluster. If we
want to distribute the user session, we distribute shared data through the JMS layer and we
also have to make sure that all of these data consistent. For the sake of that, we have to define
points at which changes made by one JVM are distributed across all the other nodes. Basically
what we do is to serialize the changed object graph on the local machine and ship them across
the wire. The main pain point here is there are overheads of serialization and maintaining the
JMS layer. As if we do this distribution too often or we add more nodes into our cluster to
handle swelling traffic, the performance of the entire system will suffer and there is no way to
less this, otherwise the data coherent would be broken.

 1.2.3 Clustering Based on Cache Mechanism
Over the years, a lot of products have been conceived on purpose to help relieve the burden of
the developers from writing underlying infrastructure services like complicated
communication code and eliminate the overheads of database as a temporary store for scratch
data. But basically, in traditional cache clustering solution, the cache is resident inside the
JVM. Typically it is exposed to the developers in some kind form of hashmap. Illustrated by
Figure 1.3:

Clustering with Terracotta

May 2008 – wei sun 11

Figure 1.3 cache clustering solution

As you can see in the figure we have to use put() methods to store the updated data into the
cache and at this point the cache service will take responsibility for transmitting these changes
to the other application servers across all the nodes. The cache server will notify the clustering
caches when changes occur, and listener callback mechanism will inform other caches when
detecting something elsewhere has changed. Then we could use get() methods to retrieve the
data that we put into the cache previously.

Based on the description above, we can tell this kind of elaborate hashmap is very intuitive to
use and the only thing that we need to do is to make sure that the objects stored in the cache
have to implement the Serializable interface. However, this type of cache mechanism has
some known limitations relating to clustering.

Now let’s take an online store as example to illustrate these problems of traditional cache
solution. This is a conceptual online store which only contains a product A and has a
distributed cache across the clustered servers. Consider that we have three application servers
as Figure1.3. We have a hashmap structure installing on each application server and wire
them up. When a user requests on one of the application servers to view product A. Node 1
retrieves the object from the cache using some kind of get method as Figure 1.4 illustrate:

Clustering with Terracotta

May 2008 – wei sun 12

Figure 1.4 cache solution: get method

Then if the user wishes to update some information (say, the price of product A), he would
update the product A he previously retrieved from the cache by calling setPrice() as Figure
1.5. And then put it back by calling putA()as depicted in Figure 1.6.

Clustering with Terracotta

May 2008 – wei sun 13

Figure 1.5 cache solution: set method

Figure 1.6 cache solution: put method

Clustering with Terracotta

May 2008 – wei sun 14

At this point, the cache service takes responsibility to transmit this update to other two nodes
in the cluster through serializing the entire product A over the wire.

The problem within this solution is not too much different from other two above. Worse,
developers have to do like get() fields from a clustered hashmap, after update the field by
calling set(), they also have to remember to put() fields back into the map and share the data
through signaling. Code is still hard to write and maintain in this kind of unnatural
programming way.

1.4 Problems of Traditional Clustering Techniques
In this section we conclude some of the limitations of traditional clustering techniques.

1.4.1 Implement Serializable Interface (coarse-grained replication)
All of these solutions force that objects must implement java.io.Serializable interface. Simply
put, serialization, whether native java serialization or custom serialization, is a transmission
and rebuilding mechanism for java objects. This would normally not be an issue if we got all
of the source code, but it could be a real affliction if we are working without other people’s
source codes or with a third-party library.

1.4.2 Break Object Identity
The most important problem of these traditional solutions for clustering is that all of them
typically rely on java serialization to ship changes across the nodes and serialized object is
written out in native bytes. This means that the cache mechanism, either RMI or JMS has to
maintain an exact copy of a given object for objects moving between servers and any change
to an element in the map will force the developer to code explicitly to guarantee data coherent.
In other words, the developers may check out any number copies of a given object for use.
Although these objects are logically the same, they are out of sync and cannot be updated. It is
all up to the developers to decide how to handle it. In short, this cache solution doesn’t
preserve object identity.

Take a classic example to illustrate this problem as showed in Figure1.7 [3]

Figure 1.7 cache solution doesn’t preserve object identity

In this scenario, we have objects A and B both maintaining a reference to object X. If we put()
B in cache, release it and then get() it. When B is returned to the system, X is returned along
with it as a completely new object [3]. The true is java Serializable interface tells java virtual
machine to disconnect our serialized classes or objects into bytes and then reassemble them
back which will result in X and X’ seems two different objects in the system. Actually they
are semantically the same object. Then this is the burden on developer to figure out how to
maintain referential integrity. And usually it forces the developer to program like a database

Clustering with Terracotta

May 2008 – wei sun 15

designer to use a foreign key to treat X and X’ are identical, to break our domain model apart
and manually stitch it back with key mechanism which is a unnatural programming way and
make our code extra complex.

1.4.3 Low Performance
Worse, we are hampering our application performance here: if we are only changing one field
of an object, yet we have to serializing the entire store and ship it across the entire nodes. If
the object size is huge, then even a tiny little change to one single field of an object would
trigger serializing the whole object across the cluster. This would be unnecessarily expensive.

1.4.4 Need Callback Mechanism
Besides above, there is a trivial problem left in our online store example: after node 1 updated
product A’s price, the cache has already finished distributing our update. Now the price of
product A in cache 2 has updated, but the price in node 2 (the user previously called getA() on
the cache 2) still is the stale one. We have to appeal to some sort of callback mechanism to
register our objects to get informed when changes occur, which no doubt makes our code
even more complex.

1.4.5 Essential of Complexity of Current Clustering Techniques
When java was first introduced, developers were living in a magical utopian world. The
original promise of java was that the developer was supposed to only focus on their own
business logic, other things like infrastructure services will all be handled by JVM. This
means that JVM was supposed to take care of everything below the application automatically
and extremely. In fact, this all works well and separation of business logic from infrastructure
services is a brilliant and elegant design as long as the application runs within the confine of a
single JVM. However the developers have to deal with the underlying infrastructure services
if the application is intended to be clustered or scaled out. So now, we have scale out
happening today, the contract made by Java start falling apart.

1.5 Motivation
All of these above solutions are unnecessarily complex. The idea here is to find some way to
focus developers on their own business logic and separate business logic from infrastructure
services when clustering.

A good clustering solution should at least offer the following in addition to high availability:
1. Simple:
It should be as simple as possible which means that we only need to write less code to achieve
clustering or to add more nodes to our cluster for high availability.

2. Fast:
It should be high performance as adding more nodes, namely, linear scale. In other words,
deploying an application on one node or more nodes should not have much different of
decrease of the overall system performance.

Clustering with Terracotta

May 2008 – wei sun 16

And In fact, as I mentioned above that enterprise java has become more and more complex in
the last few years, developers seem have various accesses for clustering an application,
however none of them doesn’t burden our network, burden our class hierarchy and burden our
developer. We already have java its original semantics: synchronized(), wait()/notify(),
locking mechanism, etc. Isn’t this enough to extend its original semantics for multiple
machines to cooperate as one by certain plug-in? Here comes out Terracotta. And clustered
applications would be much easier to write and maintain by using Terracotta as a JVM plug-in
and we can safely run the application on multiple nodes without any program modification.

The bottom line is to focus developers on the things they really need to focus on, in other
words, business logic. All of these clustering mechanism of moving objects between JVMs
has nothing to do with the core business logic whether we are using JMS or custom API
solutions. And java language has off the shelf multi-thread API, plus there is nothing
theoretically different between multi-thread and multi-node computing. The only thing that
we need to do is to extend the java thread mechanism and memory model on multiple nodes
environment. And that’s exactly Terracotta did. Then we can offer scalability and high
availability using natural java.

The following Figure 1.8 illustrates the current state of the art in clustering for high
availability and how the strengths and weaknesses of each tool lead to a resulting impact on
the business logic.

 Scalable Serialization-

Based
Manual
Cooperation

Performance Impact on
Business Logic

Database Low Need Medium Low High
JMS Low Need High Medium High
Cache Low Need High Medium High
JVM High No Need No Need High Low
Figure 1.8 comparison based on traditional clustering solutions

Instruction of above functional dimensions:
Scalable: Assume that all the changes must be replicated, data integrity is guaranteed, and
such solution will not burden the network or the database otherwise scalability can be done
due to network or database as a bottleneck.

Serialization – Based: Serialization normally leads to a lot of overhead to the system and also
increased traffic on the network. It is an important factor that we need to take into account
with regards to performance and maintenance as more nodes adding.

Manually cooperation: Explicit code for cooperation across JVMs is needed today for most
clustering solutions, because thread mechanism works fine only within a single JVM
boundary. Infrastructure service’ transparency is also important to the easy use of a solution.

Performance: we also hope that a solution could provide high performance while it offers
high availability.

Clustering with Terracotta

May 2008 – wei sun 17

1.6 Delimitations
Since our research is based on real market clustering techniques, far more resources would be
needed which is beyond a master thesis project. The ideal test environment is at least 7
computers for testing to avoid intervention:
1. for JMeter simulation test,
2. for Apache HTTP Server as a load balancer.
3. for Terracotta as a primary clustering server.
4. for Terracotta as a standby clustering server.
5. as the first application server.
6. as the second application server.
7. as a database server

I can’t simulate this clustering environment in my computer due to cup capability and process
limitation of operation system. So I can only test the high availability and all the test data
showing high performance are not able to be trusted.

1.7 Thesis Overview
Chapter 1 gives an introduction to the problems of traditional clustering techniques

Chapter 2 is an introduction to the concepts of Terracotta

Chapter 3 explains the architecture of Terracotta and how it works
Chapter 4 shows all our results from different scenarios and discusses the results

Chapter 5 gives the conclusion of our project. It also point out possible further work based on
this thesis.

Clustering with Terracotta

May 2008 – wei sun 18

Chapter 2 Theory
When we get ourselves into any major, large scale data center running mission critical java
applications today, whether it be a stocking system, a train booking system or online shopping
system, we are more likely to see 2 or 4 cheap commodity hardware running Linux or
Windows. Unprecedented requirement of higher performance, higher availability and
adoption of cheaper commodity hardware are driving developers to scale out the applications.
However scaling out a java application traditionally has not been an easy way as we have seen.

According to the above reasons, JVM level clustering takes advantage of the natural
semantics of java language and it completely hides the underlying cluster services from the
application. It is the simplest solution to achieve high scalability and high availability without
impacting business logic. And this is exactly how Terracotta was conceived.

Here there is a term that we should know: Terracotta DSO (distributed shared object).
Normally, we refer Terracotta as Terracotta DSO, former is just a name and latter is the
technique that Terracotta uses for clustering.

2.1 What is Terracotta (DSO)
Basically, we could take Terracotta as a clustering plug-in at java runtime and it extends the
java thread mechanism and memory model to enable multi-node distributed system working
as simple as single java application. The most important thing is that all the underlying
infrastructure service of clustering is totally transparent to the developers, which makes
developers can only focus on their own business logic.

From Terracotta organization, Terracotta is Network Attached Memory (NAM) [4].

2.1.1 Network Attached Memory
Terracotta coined the term "Network Attached Memory" to explain what Terracotta does for
Java applications [4]. Any Network Attached Memory (NAM) implementation must honor 2
fundamental principles [4]:

2.1.1.1 NAM must look just like RAM to the application

Constructors, Wait / Notify, synchronized(), == and .equals() should all work as expected [4].
An easy way to think about NAM's interface to the application is that an application that
supports NAM should run with or without a NAM implementation [4]. For example, if you
use a Network Attached Storage (NAS) file server, the application is not aware, nor does it
need to be, of whether it is writing to a local or a networked disk [4]. The application itself
does not change if NAS is present or not. NAM is exactly the same [4]. If NAM is not present,
the application will continue, writing to local RAM. Likewise, the application need not
change with the introduction of NAM [4].

Clustering with Terracotta

May 2008 – wei sun 19

2.1.1.2 NAM must work as an infrastructure service

That is, NAM must run as a driver inside the JVM but also as a separate process apart from
the application cluster [4]. This is due to the fact that like networked file systems, the memory
must survive whether or not your application is running [4]. Otherwise, NAM does not
provide the true value of connect/disconnect on-the-fly that one would expect when compared
to Network Attached Storage [4].
Terracotta provides Java applications with this powerful NAM concept whereby developers
get clustering and high availability because [4]:

1) The memory is shared and external to the JVM, allowing for coordinated cross-JVM I/O[4].

2) If the JVM crashes, the data survives any crashes and restarts [4].

Developers get HA (high availability) and scale as a result of plugging in NAM [4].

2.1.2 What does NAM do?
As we have already mentioned traditional database approach achieve high availability by
putting all the data into a database server. However, sending all the data including scratch data
to the database will burden the database and the database server will become a bottleneck as
too much overhead. Although this database solution could provide us high availability, the
capacity is bound by the database. And this is why it can’t offer scalability as more nodes
added to the system.

With NAM, we could think of Terracotta as giving us a way to mark certain objects as critical,
and when these objects join the heap. This critical part of the heap needs to be stay persistent,
transactionable and safe. That is what NAM really doing. Basically, this part of the heap will
be moving out to the network server, Terracotta server, in case of some nodes fail or any
nodes need to see what other nodes are doing. So network attached memory is really a
powerful paradigm. It is just like network attached storage, where we can swap in a network
file system without rewriting. Illustrated by Figure 2.1

Clustering with Terracotta

May 2008 – wei sun 20

Figure 2.1 plug-in Terracotta

In the above figure, NAM is depicted as NO.2. Here is a high level of what Terracotta does: it
plugs into the JVM, and the effects are the following.

2.1.2.1 Reduce Database Load

It’s like Terracotta provides an adorable store to the heap of JVM. Without it, we have using
O/R mapping to store java objects into the database. Now, we eliminate the database overload
because the intermediary writes that were happening during the conversation with users are no
longer being pushed down to the database. Alternatively, all these scratch data populate in
Terracotta and this eliminates the database overload.

2.1.2.2 High Availability and Less Resource Cost

Now, we have all our intermediary data in Terracotta. This means that each JVM can get the
data from Terracotta instead of database to provide high availability in case any other JVM
down. And more than that, because we no longer put all the scratch data into database, we
don’t need serialization mechanism which is a big overhead to the system. High performance
can achieve by avoiding frequent database operations.

Clustering with Terracotta

May 2008 – wei sun 21

2.1.2.3 High Scalability

The reason that why it’s better than database layer if pushing all of these scratch data into
Terracotta is simply that Terracotta is working on the object land. We don’t need to handle
cluster infrastructure by ourselves anymore. All the O/R mapping that is required to convert
an object into a relational table, store it in the database and then take it back out of the
database are not necessary. Terracotta instruments our objects as they are loaded into the JVM
and provides clustering for us without us having to manually maintain the synchronization
between different objects.

2.1.2.4 Simple and Natural Code

As Terracotta provides this adorable store to the heap, then, from the developer’s point of
view, building a clustering application is as easy as writing to the heap: there is no more
manual coordination logic needed, there is no more clustering logic needed. The application is
the same as writing as simple pojos (plain old java object).

2.1.2.5 High Performance

Terracotta can provide higher performance. The first point that we have seen is that we don’t
need serialization with Terracotta. It instruments our objects as they are loaded into the JVM
and provides clustering for us, in other words, it can automatically maintain objects
synchronized and coherent without an intervention by the developers. No serialization and
heap level replication means higher performance. The second point is Terracotta doing fine-
grained replication on shared objects. The third point is that changes are sent are only the
changes that are made to the objects while the objects are resident in memory.

We will explain the second and third point later after we deep dive on how Terracotta DSO
works.

2.1.2.6 Large Virtual Heap

As Terracotta was devised as a network attached storage file system, we can actually page out
of any shared objects we don’t need on the fly to the Terracotta server and Terracotta server
can spill the data to the disk, on the other side, once we need those data to get our job done,
we could ask Terracotta server retrieve the data back from the disk. It seems that our
application has a very large heap far exceeding machine’ physical RAM.

2.2 Architecture and How Terracotta DSO Works
As we’ve said that Terracotta DSO is a runtime solution of clustering at JVM level instead of
the application’s level and it works 100% transparent to the developers without manually
handling underlying infrastructure service of clustering as multiple nodes working within one
single JVM.

Terracotta uses ASM to manipulate application classes as those classes load into the JVM [5].
Here we will not get into this in technical details, if readers got interest, please reference
appendix.

Clustering with Terracotta

May 2008 – wei sun 22

Figure2.2 denotes a conceptual high level perspective of Terracotta’s architecture and how it
works.

Figure 2.2 scale-out application based on Terracotta

First thing that we should notice: Terracotta is that big red server at the bottom and we can
cluster this server, so there will not be a single point of failure as long as we can run two of
them. In short, Terracotta server supports cluster by itself.

And from the Figure above, we have the web application started inside each JVM. The picture
is kind of inverted (JVM outside the application server). The app server box meant to denote
one virtual machine, but we use that big and short of can at the bottom represent it for
convenience. And we could observe that there is a Terracotta library installed inside each
virtual machine. When one JVM starts up, that JVM will start up with Terracotta’s library,
which means a bunch of jars basically hook into it and every application loaded into that JVM
through its class loader is capable of being clustered.

The white and black things with dots and lines are objects graphs, which denote Terracotta to
get in there and think about which objects to cluster and which not: the black dot-shape things
are object graph not being clustered by Terracotta. Coexisted with white dot-shape, which are
the object graph being shared by Terracotta. This means that with Terracotta we have the
ability to decide for performance reasons what to share and what not to share.

Note that all the web applications connect down to Terracotta depicted by red pipes above.
Each pipe normally is a TCP/IP point to point socket. Terracotta multiplexes in its own library
inside that socket, so we could have a lot of multi-thread conversations going on
simultaneously without lots of net resource.

Clustering with Terracotta

May 2008 – wei sun 23

We number the above application servers: server1, server2, server3 from left to right. And we
could see that although three servers all get different unshared-object graphs, there is
something different on server2: from the above picture, server1 has those shared objects
which are exactly identical to those on server3 and those in Terracotta server. But server2 in
the middle has grabbed a subset of the objects. So server2 only share part of the object graph,
because it only needs this part of the objects to get its work done. It pulls those four little
white dots that it needs from the Terracotta server on the fly and no more, which means if
some other parts of the objects change Terracotta won’t act pushing the changes into the node
unless the node needs them. In other words, this is how Terracotta starts to deliver salability
for clusters and we will explain this later.

So basically, we can conclude Terracotta’s features as following:
1. Fine-grained Replication
2. JVM Coordination
3. Large Virtual Heaps

Clustering with Terracotta

May 2008 – wei sun 24

Chapter 3 Clustering with Terracotta
In this chapter we will do deep dive on what we just mentioned in the pervious chapter.

First, let’s recall java language itself. Java is a multi-threaded language with convenient
facilities to enable parallel multi-threaded applications and all the language semantics work
well in one single JVM. Now, if we want to cluster JVMs running and cooperating just like
one. It implies that we have to extend java virtual machine to make the JVM heap
virtualization and thread execution working across the whole clusters; in short, JVM level
clustering is a crosscutting infrastructure service which maintains java language specification
and java memory model. The following are the techniques used in Terracotta.

3.1 Aspect-Oriented Programming (AOP)
Terracotta use Aspect Oriented Programming (AOP) to inject clustering concerns into JVMs
at loading time and implement transparent clustering for developers, which works like a plug-
in to the java virtual machine to provide clustering infrastructure service. And this has been
done based on ASM bytecode manipulation framework. We will see later.

3.1.1 Java Language Specification
We say Terracotta provides seamless clustering solution without impacting our existing
projects as working within one JVM. An important reason is Terracotta maintains java
language semantic across clusters. The following are the core components among semantic
features.
1. Preserve Object Identity
2. Pass by Reference

Actually, they are the identical, which means if object identity is broken, then there is no pass-
by-reference.

As we have discussed in section 1.4.1 of chapter 1, most traditional clustering solutions relies
on the use of java serialization. However this will break object identity which means pass-by-
reference semantics can not be used any longer. Here comes developers usually have to
manually maintain the relationship between objects; codes are becoming complex and hard to
maintain. Worse, this kind of based on java serialization replication is an object level
clustering solution. This implies there is no way that we could transfer exact changes of the
object graph over the wire instead we have to move the entire object to guarantee no stale data.
Performance will degrade as object graph swells. And this is why we call these kinds of
solutions as coarse-grained replication.

3.1.2 Java Memory Model
Here we will not go to details about JSR-000133 [6] Java Memory Model [6]. We emphasize
that Terracotta provides shared virtual heap and clustering locking mechanism by using AOP
to plug into the java memory model. It intercepts accesses to the memory model about read
and write operations and keeps the consistent data within the virtual clustered heap in
Terracotta server. And it also reinterprets build-in thread coordination mechanism of java
language by detecting multi-thread programming keyword like synchronized, wait, notifyAll,

Clustering with Terracotta

May 2008 – wei sun 25

etc. So, all the thread coordination mechanism to the local JVM is extended to the cluster-
wide.

3.1.3 ASM
Terracotta uses ASM bytecode manipulation framework to achieve this transparent clustering
solution we described above.

Terracotta intercepts bytecode instructions like (not an exhaustive list) [5]:
BYTECODE Injected Behavior

GETFIELD
Read from the Network for certain objects. Terracotta also has a heap-
level cache that contains pure Java objects. So GETFIELD reads from
RAM if-present and faults in from NAM if a cache miss occurs.

PUTFIELD

Write to the Network for certain objects. When writing field data
through the assignment operator "=" or through similar mechanisms,
Terracotta writes the changed bytes to NAM as well as allowing those
to flow to the JVM's heap.

AASTORE Same as PUTFIELD but for arrays
AALOAD Sames as GETFIELD but for arrays

MONITORENTRY
Get a lock inside the JVM on the specified object AND get a lock in
NAM in case a thread on another JVM is trying to edit this object at the
same time

MONITOREXIT Flush changes to the JVM's heap cache back to NAM in case another
JVM is using the same objects as this JVM

INVOKE0
Stop a constructor from firing if it has fired elsewhere in the application
cluster already. Instead page in the object graph from NAM that was
flushed down to NAM by the previous JVM

Figure 3.1 bytecode instructions

3.1.4 How it Works
We depict the Figure3.2 on purpose to show how this works.

Clustering with Terracotta

May 2008 – wei sun 26

Figure 3.2 object graph in heap

The figure above shows that we have an application tragged App, and this application has a
notion of object-graph. We could see there is a root [7] object on the top, which has a bunch
of objects inside it that we want to cluster and make it available to multiple JVMs.

In this particular case, that 4 objects hanging off the root, we name them object1, object2
counting from left t right at the second level and object3 and object4 at the bottom. The lines
between app and heap represent business logic and this business logic actually manipulates
the heap.

We do assignment operations with the equal sign or we do the access operations with dot sign.
In fact, we just get in that field and manipulate that field of the object. At runtime, it’s
updating the heap in that JVM above the ram. Terracotta basically works like to build a
clustering implementation down between the application and the heap. It’s illustrated by
Figure3.3.

Clustering with Terracotta

May 2008 – wei sun 27

Figure 3.3 add Terracotta to the heap

Terracotta watches where our business logics trying to access the memory. It just inserts itself
right in the middle as the red triangle. So it can figure out what’s happening in the memory,
which is touching the memory, and then replicate the changes to multiple JVMs.

Now, let’s go forward. We want to update the object at the bottom of this object graph, the red
one. Figure3.4

Figure 3.4 Terracotta intercepts the changes to the object graph in heap

The clustering implementation did something interesting. It started up the transaction and
inside this transaction we changed object4. At the end of this transaction, we need to push it to
other JVMs. Now, here come the problems: Are there any other JVMs which need to know
we have changed the object4? How would we know that?

Clustering with Terracotta

May 2008 – wei sun 28

In order to replicate the object changes of this JVM over to the others, we need a central
broker, namely, Terracotta server. We need someone to tell us which server references
object4 in the cluster. Figure3.5

Figure 3.5 Terracotta transfers changes to other JVM

In this case, server1 and server2 both have a copy of the same root [7], both are actively
consuming object4. So if server1 on the left changed its object4, server2 will find out and is
server2 changed its object4, server1 will also know the change. The reason is the clustering
server in the bottom knows both of them are referencing the object4 actively.

3.1.5 Fine-Grained Replication
So basically, what Terracotta does is inserting itself right between the application logics in the
heap. So it doesn’t have to understand why we are changing a field. It just have to know that’s
we are changing a field. And the way Terracotta knows the change is that equal sign turns into
a putfield call at a bytecode level and the dot sign turns into a getfield call at a bytecode level.
So the Terracotta just has to know who is calling putfield, who’s calling getfield, what the
arguments are. Then it can replicate those changes to other machines.

Since Terracotta disassembles objects into the field’s level at class loading time, only changed
fields need to be replicated and sent over the wire and more important is these changes only
go the server are referencing them actively. As Figure2.2 shows, server2 only stores parts of
the objects, because it only needs those for that moment. Faulting in from cluster server only

Clustering with Terracotta

May 2008 – wei sun 29

happens when application server really needs the objects. As server1 and server3, both they
have the same object-graph view.

So fine-grained replication means less data move around the network to other nodes. This
means we don’t need sending around the entire object anymore if there is only tiny change
happened, which leads to higher scalability, lower latency and higher throughput.

3.1.6 Thread Coordination
In one single JVM, the memory model works as a cop to specify how memory actions when
multithreaded access to shared memory. In a clustered environment, Terracotta extends the
multithreaded mechanism across the cluster. Demonstrated by above, we have already seen
how Terracotta preserves the semantics of the JVM. Here we will discuss clustering locks in
Terracotta.

As we mentioned in section 3.13 ASM, Terracotta detects bytecode instructions like
MONITORENTRY and MONITOREXIT in synchronized blocks. By using AOP, join
point matches synchronized blocks, lock and unlock pointcuts respectively match
monitor_enter and monitor_exit. Figure3.6

Figure 3.6 java synchronization mechanism

Here are the two pointcuts that pick out all the critical sections (entry and exit) where a
clusterable instance is being locked on (and most likely a shared instance is being modified)
[9]:

private pointcut clusteredMonitorEnter(Object o):

isClustered() &&lock() &&

Clustering with Terracotta

May 2008 – wei sun 30

@args(Clustered) &&

args(o);

private pointcut clusteredMonitorExit(Object o) :

isClustered() &&unlock() &&

@args(Clustered) &&

args(o);

Then we can write a before and after advice that will delegate to the monitorEnter() and
monitorExit() methods in the ClusterManager[9]:

before(Object o) : clusteredMonitorEnter(o) {
ClusterManager.monitorEnter(o);
}

after(Object o) : clusteredMonitorExit(o) {
ClusterManager.monitorExit(o);
}

These calls will be delegated to the lock manager in the coordinator, which will use the object
identity of the pointcut argument instance to acquire (or release) a distributed cluster wide
lock on the instance [9].

Basically, a synchronized request will lead to lock the object on the both application server
and cluster server, which will guarantee that monitor enter and monitor exit are synchronous.
Figure3.7:

Clustering with Terracotta

May 2008 – wei sun 31

Figure 3.7 Terracotta synchronization mechanism

3.2 Hub and Spoke
Hub and spoke is topology that conceptually refers to a bicycle wheel. From the Figure2.2,
Terracotta is using hub-and-spoke architecture. In Terracotta world we call Terracotta client
(application server) as L1, Terracotta server as L2. This means it has one L2 server and n L1
application servers. Figure3.8 [10]:

Clustering with Terracotta

May 2008 – wei sun 32

Figure 3.8 architecture overview of Terracotta

As you can see at the bottom of Figure, the clustering server is the core of this architecture. It
works like a coordinator across the entire clustering environment and uses lock manager to
take care of the clustering lock, like: which thread in which node accesses the critical section
(synchronized), which nodes are referencing the shared objects actively and for the shared
objects which are not used frequently, they will be paged out to the disk.

More interesting, it servers as a JMV level database, which store all the shared state, scratch
data in the persistence as we have already mentioned.

Here comes some common confusion about this architecture as we presented in the following.

3.2.1 Cluster Hub to Avoid SPOF
In fact, Terracotta server can work in an active-passive mode to avoid single point of failure.
Basically, in most common situations, there is one Terracotta server running in active mode,
and other Terracotta servers act as a hot standby in passive mode in case of failures. For now,

Clustering with Terracotta

May 2008 – wei sun 33

there are ways to cluster Terracotta servers. One is using shared disk, and the second is over
network. For more details, go to Configuring a Terracotta Server Cluster [11].

3.2.2 Batched Field-Level Changes
As we have mentioned above Terracotta can propagate fine-grained changes. However, fine
grained change replication also means that our application JVM has to communicate with
Terracotta server each time when there is a change occurs, right? And if so, the network will
become overload.

Actually, what is really happening between application servers and clustering server when we
replicate the changes is not like we naively assumed. In short, Terracotta extends the
semantics of the locking of java language; it can recognize a synchronized block and take it as
a boundary of a transaction. We refer Terracotta transactions as sets of changes that must be
applied atomically. So this means that if we changed 3 different fields of an object one after
the other, Terracotta distributes one batch with the 3 updates instead committing 3 updates
respectively as Figure3.9:

Figure 3.9 batching changes to Terracotta server

So batching up the changes in the local JVM and then sending these to the clustering server
once avoid frequently chatting through wires, which also means that higher efficient and
lower network overload.

Clustering with Terracotta

May 2008 – wei sun 34

Chapter 4 Scenarios & Discussion
The previous chapter described the theory behind Terracotta JVM level clustering technique,
now we move on to the design of different of scenarios; test how Terracotta provides high
availability and scalability, and how it will impact the way of our programming and where to
use it.

4.1 Pitfall Overview
Multi-tier is a brilliant architectural design pattern in the development of software. The
separation of concerns in the code makes the developers can focus on what they really care
and parallel the deployment. Struts, Spring, and Hibernate, these open sources are all focus on
speeding efficiency of software development or relieving developer’ coding burden. They all
make software look elegant; however, they also have a significant problem when it comes that
applications require scaled out in response to increasing capacity demands. We will discuss
these problems as the following.

4.1.1 Loading Problem
This is the most common problem: inefficient read from database.

4.1.1.1 Naïve Loading Problem

As we have discussed previously, nowadays, database has been abused. Figure4.1 illustrates a
basic use of database for clustering.

1. Low efficiency in clustering

Figure 4.1 naïve loading database solution in distributed environment

Since we don’t have an easy-use, reliable mechanism for application state objects clustering,
we have to load the objects that we need from database, and commit the changes back to it
after each update finished to keep data persistent. In this picture, we clustered three

Clustering with Terracotta

May 2008 – wei sun 35

applications and here comes the problem: each of them has to individually communicate with
the database for loading even they are operating the same objects.

2. Low efficiency even in one app

Worse, even we operated with the previous object; we still need to load it again because we
closed last database connection. Illustrated by Figure4.2

Figure 4.2 naïve loading database solution in single JVM

The real problem is that we don’t have application layer’s shared states which leads we have
to do these unnecessary trips to the database.

4.1.1.2 Loading problem with Cache Solution

Actually, in the real market, as we mentioned in Chapter 1, various sorts of caching products
help us solve the above problem.

1. Limitation of the memory
To solve the problem of Figure4.2, we add a cache layer between our application server and
database. Figure4.3

Clustering with Terracotta

May 2008 – wei sun 36

Figure 4.3 add cache as objects shared layer

This all works fine, except only one pitfall, namely, our application layer cache is an in-
memory cache in this case. This solution requires enough physical memory to keep the data in
the cache; otherwise some of the cache has to be evicted out from cache according certain
expiration mechanism like LRU, LFU, etc [12]. If there is no enough memory space for the
entire cache, we still need to start to unnecessary trips to the database.

2. Still Overload on the Database as More Nodes Added In
To solve the problem of Figure4.1, we do the same as above by adding a cache layer between
application servers and database. Illustrated by Figure.4.4

Clustering with Terracotta

May 2008 – wei sun 37

Figure 4.4 add cache layer in the distributed environment

For now, our application servers don’t need to get the objects from database for each access.
When the objects first have been loaded, the cache layer stores them in for later use. However,
each application cache still has to load/maintain the objects from database separately. This
means increasing application caches also burden the database regardless of what has been
loaded in other application caches. So this solution, we could imagine, would work well under
a few nodes environment, but the naïve loading problem will become obvious as adding more
nodes.

4.1.2 Replication Problem
When changes occur in the clustered environment, it comes more complicated and inefficient
problems. Basically, each application server works on its own cache, which means that the
other caches will have no idea when there are changes occurred in one cache. Take a web
based application as an example illustrated by Figure4. Since there is no way to inform the
other two application caches that object A has already been updated and both of them have
the object A in their cache, so they just get it from their local cache instead checking out from
the database and have no idea that the object is stale.

Clustering with Terracotta

May 2008 – wei sun 38

Figure 4.5 add cache layer leads object stale problem

Normally we have two solutions to solve this problem:
1. Sticky Session Solution [14]
It means not that the sessions are sticky. In simple words, sticky session solution is that we
force our loadbalancer transferring the requests from the same user to the same application
server. Figure4.

Figure 4.6 sticky session solution

Clustering with Terracotta

May 2008 – wei sun 39

Now, we have all the servers have no stale object state.

2. Distributed Cache Solution
Another commonly used solution is distributed cache, which means to replicate data between
the caches to get them consistent. As we have mentioned in chapter 1, to maintain cache
consistent we have to so all those unnatural programming like put, update and remove and we
also need some sort of notification mechanism. Basically, there are two different ways to fix
this problem.

 Copy between clustered caches:
Cache server will serialize the object and transmit it to other cache servers in the cluster.

 Invalidate the data, other cache servers load it from database
Cache server will be forced to load the data from database to refresh its cache.

4.1.2.1 Problem of Sticky Session

The problem with sticky session is quite obvious: it doesn’t solve our scalability problem
radically. The load balancer with sticky session mechanism has to send all the requests to
their original server, even that server is heavily loaded and there is another server is idle.

4.1.2.2 Problems of Distributed Cache

Copy mechanism illustrated by Figure4. (Red circle represents fresh object, black circle is
stale.)

Figure 4.7 network overhead problem based on copy mechanism of distributed cache

Clustering with Terracotta

May 2008 – wei sun 40

As discussed in chapter I, the cache service doesn’t understand our business objects, and then
we must break them into bytes using serialization and assemble them back, which could cause
a serious network load problem as more nodes added in.

Invalidate mechanism illustrated by Figure4.8

Figure 4.8 database overhead problem based on invalidate mechanism of distributed cache

Using invalidation mechanism (LRU, etc), we could effectively avoid net work problem,
because only the object key needs to be transmitted over the network. However, this leads
database load problem as mentioned in section 4.1.1. Server 2 and server 3 have to refresh the
data from the database.

4.1.2.3 Local JVM Problem of Distributed Cache

Distributed cache layer will take care of all the notification between caches. However, there is
another problem about distributed cache, which needs us to fix it by ourselves. After cache
servers finish distributed updates, we have our cache data coherent. But we should notice that
server 2 and server 3 both have the stale object A in their local heap, which could be
previously got from cache. So we have to utilize some sort of callbacks mechanism to register
our app, get informed when updates occur. This will result in complex architecture of our
code, which turns out hard to maintain. Again it is unnatural. Figure4.9

Clustering with Terracotta

May 2008 – wei sun 41

Figure 4.9 local JVM Problem of distributed cache

4.1.2.4 N-1 Notification Problem of Distributed Cache

No matter copy or invalidate mechanism that we use, we all need some kind of notification
mechanism of cache mechanism. Even cache server will take care automatically for us or only
object key will be sent across net when clustering caches work under invalidate mode, we will
still got n-1 notification problem. N-1 notification means that n-1 notifications have to be sent
to other nodes in the cluster as one cache instance change occurs. This could potentially
generate a large amount of network traffic.

4.2 Terracotta Scenario and discussion
We use this section to present our test results based on Terracotta, and we will see how
Terracotta solves the problems as mentioned in section 4.1.

4.2.1 Scenario1 – fix separately loading problem
Now we will plug Terracotta into the application and see how it fixes this problem of
clustering with cache as presented in 4.1.1.2. For the simplicity, we hardcode the code and
simulate database as a map, all the loading operation will get corresponding business objects
from this map. And we use Apache CXF to monitor the visit times to our database (which is
in case simulated by a map). We use hashmap as our cache and store the object into the
hashmap for later access. We simulate three application servers and three individual caches
just like as we mentioned in section 4.1.

Since Terracotta can seamlessly cluster our applications, first let’s look at this test without
Terracotta plug-in. Illustrated by Figure4.10

Clustering with Terracotta

May 2008 – wei sun 42

Figure 4.10 distributed cache solution without Terracotta

In the above figure, we have to load three times if we want to get object A from three
application servers respectively. The following is the result from eclipse console:

Figure 4.11 loading times from database based on distributed cache solution without Terracotta

And the lapsed time for this getObject() call is showed as following Figure4.7. Here we paste
8 times’ of calling this method. We could see each application server loads the object
separately from the database and they warm the cache when this getObject() is first called.
After the object has been loaded into the cache, the accessing time is dramatically reducing.

Visit Sequence App Server1 Lapsed

Time
App Server2 Lapsed
Time

App Server3 Lapsed
Time

First 3033.801782 millis 3126.375838 millis 2934.970785 millis
2 0.025422 millis 0.025981 millis 0.212877 millis
3 0.024863 millis 0.027099 millis 0.029892 millis

Clustering with Terracotta

May 2008 – wei sun 43

4 0.024304 millis 0.025422 millis 0.022349 millis
5 0.025701 millis 0.027657 millis 0.023746 millis
6 0.024305 millis 0.024305 millis 0.022908 millis
7 0.025422 millis 0.024863 millis 0.023746 millis
8 0.024863 millis 0.024864 millis 0.029334 millis
Figure 4.12 accessing time based on distributed cache solution without Terracotta

Now we plug Terracotta to our application servers, and it will work like Figure4.8

Figure 4.13 distributed cache solution with Terracotta

Terracotta provides a single, consistent cache to solve this overload problem as the above red
bar. Except the first time accessing we need to load the object directly from database, the
other nodes which need to get the object will not have to warm their cache directly from the
database. Instead, they will automatically load it from the Terracotta Server. The following is
the result from eclipse console:

Clustering with Terracotta

May 2008 – wei sun 44

Figure 4.14 loading times from database based on distributed cache solution with Terracotta

We also present the lapsed time for this getObject() as following Figure4.15. Here we do the
same thing of pasting 8 times’ of calling this method. After the object has been loaded into the
cache, we still get the accessing time is dramatically reducing. But we would notice that the
loading time of server2 and server3 is much less. This is because that Terracotta notices that
our hashmap as a cache layer have been clustered, and when we ask for that object it just
faulted in (Figure4.16) and took approximate 4 milliseconds. We don’t need reload the data
from database. And now if we refresh this, the data is already local to its own particular JVM,
so we got our warm cache for each server.

Visit Sequence App Server1 Lapsed

Time
App Server2 Lapsed
Time

App Server3 Lapsed
Time

First 5247.586215 millis 4.312559 millis 4.48353 millis
2 0.177117 millis 0.181587 millis 0.184381 millis
3 0.181587 millis 0.188851 millis 0.179911 millis
4 0.180191 millis 0.184381 millis 0.182705 millis
5 0.20254 millis 0.179353 millis 0.179073 millis
6 0.186336 millis 0.197511 millis 0.18494 millis
7 0.251149 millis 0.201142 millis 0.241651 millis
8 0.189689 millis 0.173206 millis 0.182985 millis
Figure 4.15 accessing time based on distributed cache solution with Terracotta

Figure 4.16 object fault in Terracotta

And as more nodes are added for scale-out, the loading amount from database is still one. So
we get higher number of application servers and lower load of database.

4.2.2 Scenario2 – fix limitation of physical memory
In this scenario, we do the same as the first scenario; the only different is we use Ehcache. As
we have mentioned above, in our cache solution we have the constraints of available memory.
We need enough memory to maintain our active data, otherwise even some data were still
valid, and we still have to abandon them due to limited memory space. This leads undesirable
effect to load them again from database.

Clustering with Terracotta

May 2008 – wei sun 45

Terracotta solves this problem by using its virtual heap so our JVM can spill data out into the
Terracotta server. The basic workflow is first client JVMs send data to the cluster server, then
Terracotta cluster, in turn, can store data in the disk.

In our code, we set objects live time 3000 milliseconds to simulate object eviction. Figure4.17
and Figure4.18 illustrate that our application server1 load the object from Terracotta server.
And then after 3000 milliseconds, application server2 and server3 request the same object.
Here we could see all the servers load the object from Terracotta server instead from database.

Figure 4.17 load object from Terracotta server instead database

We only load from database once.

Load App Server1 Lapsed

Time
App Server2 Lapsed
Time

App Server3 Lapsed
Time

First 4909.708915 millis
After 3 seconds 13.140777 millis 13.430198 millis 11.496992 millis
After 3 seconds 0.178235 millis 0.184381 millis 0.296686 millis
After 3 seconds 0.24612 millis 0.181588 millis 0.23299 millis
After 3 seconds 0.185499 millis 0.184939 millis 0.184381 millis
Figure 4.18 accessing time of loading object from Terracotta server after 3 seconds

After we load the object from database and store the object in the Terracotta server, whenever
we need, we get it from the cluster server and put it into our cache. Then we have the warm
cache in local. The fault-in process works just like Figure4.10.

4.2.3 Scenario3 – fix n-1 ACK problem
In this scenario, we will see how Terracotta eliminate n-1 problem as we mentioned in section
4.1.2.4. Actually, we just write a simple application running in one JVM and we cluster it
using Terracotta. It is illustrated by Figure4.19.

Clustering with Terracotta

May 2008 – wei sun 46

Figure 4.19 fix n-1 ACK problem with Terracotta

We have two application servers, 1 and 2. We have Terracotta server. In application server 1,
we change object A, then it talks to Terracotta server to notify the object has changed. Client
reads object A on application server2. The interesting part is that we don’t implement any
types of callbacks mechanism to inform app2 that object A has changed; app2 will still get the
fresh new object.

The reason is, as we talked before, Terracotta is a 2-tier hub architecture and clustering server
maintains essentially has a map of which reference is living on which application server. With
this client-server architecture, we avoid n-1 ACK problem, the clustering server is the only
one needed to know the changes and with the map in clustering server the changes are pro-
actively pushed to the application server2.

4.2.4 Scenario4 – where to use Terracotta
In this scenario, we will do a deep dive analyzing how to design a good application, how to
use Terracotta to implement a good clustering application.

We can start by looking at a simple baseline JDBC application, which is where we usually
start at if we were just doing simple operations against the database. Next step would be to
add hibernate. And next if we want to increase our performance, this is done by enable the

Clustering with Terracotta

May 2008 – wei sun 47

second level cache, using something like Ehcache, OScache, Jboss Tree cache underneath
hibernate. And finally there is a last model which is recommended by the hibernate
documentation, which is to detach the pojos entirely from the application and reattach them
later after updates have been made. We will analyze the pros and cons of each of these design
patterns and where to use Terracotta to provide the best performance in clustering case

So the first level is our baseline JDBC application. We like to illustrate a typical application
as Figure4.20. This typical application has a user request flow, a conversation, which is
happening between the use and the application. We just picked up a random number: there are
3 user requests during this conversation, 2 pojo-updates per request.

Figure 4.20 baseline application

Here we can see that each operation, it will be directly operating against the database. We
count from left to right, there are 9 totally operations to the database.

The next step is to go ahead and add hibernate. This is a great option, because adding
hibernate as flexibility to this application, so we have the ability to model our relational data
using objects, using pojos. It gives us a very nice model for being able to write all of our
operations to the database using the object model.

The upside of this solution is that now we talk in terms of beginning a transaction and ending
a transaction. This is a typical hibernate best practice: we open a session, begin a transaction,

Clustering with Terracotta

May 2008 – wei sun 48

modify or create pojos in that session, then we will write them into the database. During the
time in which I modify those pojos, we are going to be writing directly to the heap store that
the pojos represent illustrated by Figure4.21

Figure 4.21 add hibernate

So now we no longer write those updates to the database, we actually writing those updates
directly to the pojo store, which is the level that is depicted by hibernate.

Clustering with Terracotta

May 2008 – wei sun 49

The difference here is that now our application instead of writing those updates to the
database is writing the updates into the hibernate pojo store which is batching those updates
up in memory and only committing them when we tell hibernate to commit the entire
transaction.

So what this means is like if we count each of these transactions. Now we see instead of 9
operations to the database, now we have 6 total transactions to our database. So we have
increased our flexibility and decreased our database load.

The next step is the third level. This level is to enable second level cache, which is illustrated
by Figure4.22

Clustering with Terracotta

May 2008 – wei sun 50

Figure 4.22 enable 2nd level cache

This level is to enable second level cache that will enable us to eliminate all the intermediate
loads from database.

Here is how it works: when our user conversation begins, we still have to do the same load
into memory that we did before and now we perform our updates into our first level cache.
And as we end our transaction, we commit down to the database. However, we commit as
well into the hibernate second level cache. So the objects exit in the second level cache. Then

Clustering with Terracotta

May 2008 – wei sun 51

when our user returns, we don’t have to do these load operations as before. It is done directly
in the hibernate second level cache, which means is that we are reading those objects out of
the memory store instead of reaching down into the database to instantiate the data. So overall
we have now eliminated the load phase from our user conversation. We have a very nice
looking of database interactions here: we now take our 6 database transactions and reduce
them down to 4.

However, here come problems. First of all, if we were going to store database objects into the
second level cache, they would have to be serializable. If we need to cluster our second level
cache, the second level doesn’t store objects as actual data, they actually are stored as
serialized data and that means there are no opportunities for a solution to intercept field level
changes and replicate field level changes. What this means is that the cache is storing very
large objects that simply serialized as a sequence of bytes. And to replicate that cache, we
have to replicate the entire sequence of bytes and we have no idea what those bytes represent,
which will be significant throughput costs illustrated by Figure4.23.

Figure 4.23 problem based on enable 2nd level cache solution in distributed environment

Basically, there are two different solutions available with Terracotta to cluster our application.

Clustering with Terracotta

May 2008 – wei sun 52

The first solution:

This one is if we have an application that enable the second level cache and we like to simply
scale it out. We can simply take the Terracotta product and install it to our application, install
the hibernate plug-in, install the Ehcache plug-in, enable the Ehcache clustering, then we will
get a coherent cache across our cluster, which is very easy to integrate.

We create an on-line forum as a benchmark test application for a company named Devoteam.
In this application, we enable the second level cache and query cache and use 4 Tomcat
servers with Apache as a load balancer, as is illustrated by Figure4.24.

Note: please see Appendix A for more details on the benchmark test.

Clustering with Terracotta

May 2008 – wei sun 53

Figure 4.24 enable 2nd level cache with Terracotta

Here we can see each of these application servers got their cache clustered and instead of
loading 4 times from database, now we only load once.

Clustering with Terracotta

May 2008 – wei sun 54

Figure 4.25 results of Terracotta administer console

Figure 4.26 Tomcat 1

Figure 4.27 Tomcat 2

Clustering with Terracotta

May 2008 – wei sun 55

Figure 4.28 Tomcat 3

Figure 4.29 Tomcat 4

We use JMeter to test the throughputs of our cluster application.
The test case is simple as follows:
Request the index page. During this process, all the data that are needed to dynamically
formalize the index page will be grabbed from database.

The following is the aggregate report for 1 application server. (thread number:100, ramp-up
period:2, loop:10)

Figure 4.30 JMeter aggregate report for 1 application server

The following is the aggregate report for 2 application servers. (thread number:100, ramp-up
period:2, loop:10)

Figure 4.31 JMeter aggregate report for 2 application servers

The following is the aggregate report for 3 application servers. (thread number:100, ramp-up
period:2, loop:10)

Figure 4.32 JMeter aggregate report for 3 application servers

Clustering with Terracotta

May 2008 – wei sun 56

The following is the aggregate report for 4 application servers. (thread number:100, ramp-up
period:2, loop:10)

Figure 4.33 JMeter aggregate report for 4 application servers

Refer to figure above, we can see even we cluster our application successfully but we did not
achieve the scale out linearly that Terracotta promised and we also got some errors.

We applied to the experts of Terracotta. This is exactly what they said: “If you want to test for
linear scale, you should be testing with more than machine. Ideally you should be testing with
one machine dedicated to each tomcat instance, terracotta server, JMeter and load balancer. If
you can not do that, you should at least run terracotta server on a different machine. When
you benchmark clustering results, you will see the real comparisons when tomcat instances
are on distributed nodes, otherwise results will be skewed and can not be trusted.”

Unfortunately, we were actually running all of our applications, Apache load balancer,
Terracotta server, and JMeter on the same machine. So we figure out that this may be we have
not get the good test results.

Anyway, we still get our application clustered. This is the fast and easy way to cluster our
application. However it doesn’t take the full advantage of Terracotta solution. As we have
discuss previously, the objects in the cache are represented as BLOBs and Terracotta simply
treat those as bytes to ship around the network, which works fine but it just don’t take the full
advantage of Terracotta provides at the pojo cache layer.

The last level is that we can completely detach our pojos from hibernate. During our
conversation with our user, we can store them in a session, in either an httpSession or any
other types of contexts like a cache that is outside of the hibernate level. So now we can
retrieve them, operate on them and reattach them at the end of the conversation and commit
the entire set as a single sequence to the database. You can see from Figure4.34.

Clustering with Terracotta

May 2008 – wei sun 57

Figure 4.34 detached pojos

Clustering with Terracotta

May 2008 – wei sun 58

Because we have stored the objects locally in the httpSession, we do one load to instantiate
our objects and every time our user returns, we are able to simply pull them out of the
httpSession, update them in the session. At the end, when we finished with our entire
conversation, we just commit our entire sequence to the database. So for now, we have really
got the ultimate in database performance.

As the above Figure shows, we are loading our objects, operating on them in memory while
we need them in memory and then we commit them at the very end. So all the data that is
happening between the beginning and the committing are scratch data as we mentioned
previously. Basically, we don’t want to put these scratch data into our database. What we are
doing here is putting them in the httpSession layer and committing only the important,
ultimate data.

However, we still got some problems. First of all, what happens if our application server fails?
Our user could lose his conversation. In the shopping cart example, maybe we can offer to
lose it or maybe we can’t. And if our user is interacting with us, giving our important
information, we really don’t want to lose it. We want our user to have a non-interrupted
experience while they just check out and never knew there was a failure on the server side.
Obviously, we need to cluster our application for high availability and high performance.

The problem above boils down that the replication at httpSession layer is expensive. Most
application servers and almost every book we read including the hibernate documentation
itself says the only way we can realistically put data into the httpSession is we keep our
objects small. It is not realistic to put large object graphs in the httpSession, because we can’t
rely on the httpSession clustering level to replicate those in an efficient manner.

The second solution

The second solution that we can use is to cluster our pojos at the session layer and reattach
them in the session. This is the best scale out solution using Terracotta, which basically takes
advantage of pojos at the hibernate layer and pojos at the Terracotta layer. It can do fine-
grained replication compared to the first solution and reduce the network traffic efficiently,
which illustrated by Figure4.35.

Clustering with Terracotta

May 2008 – wei sun 59

Figure 4.35 detached pojos with Terracotta

So this detached pojo solution with Terracotta gives us an extremely powerful manner to
implement high available, scale out distributed applications.

Clustering with Terracotta

May 2008 – wei sun 60

Here we use JPetStore as a benchmark test. And the test case is simple as following:
1. Log in to the JPetStore application
2. Add some kind of items to the shopping cart
3. Repeat modifying the quantity of the items for 1000 iterations

Note: please see Appendix A for more details on the benchmark test.

However, as we anticipated, we successfully cluster our JPetStore application for high
availability but we didn’t get the linear performance as test based one single machine can not
be trusted. We have to at least run Terracotta server on a different machine. As the limitation
of the hardware, we didn’t finish this test. The entire code and configuration files are attached
for future tests.

So in this chapter, we introduce how to eliminate the abuse of database and give a best use
case for Terracotta.

Clustering with Terracotta

May 2008 – wei sun 61

Chapter 5 Conclusion and Future work
5.1 Sum up
In this master thesis, we focused on how Terracotta relieves the burden of developers with
regard to maintenance of a scale-out application and complexity of writing a distributed
application. All the complexity of coding a distributed system is to coordinate the shared data
and all the scale-out problems come from database abuse as depicted in Figure5.1.

Figure 5.1 typical distributed solution

The typical solution is as following:

The Typical Solution:

1.check if k exists in the cache
2.If not, load v from the service (a database for example) using k
3.Put the canonical value (k,v) into the cache

public interface ItemService<K,V> {
 public V get(K k);
}

public class CachingService<K,V> implements ItemService<K,V> {
 public V get(K k)
 {
 CacheElement<V> element = cacheStore.getValue(k);
 if (element != null) { return element.get(); }

 element = getService.get(k); //read from database(dummy code)

Clustering with Terracotta

May 2008 – wei sun 62

 return cacheStore.putIfNotExists(k, element).get();
 }

5.1.1 Complexity problem: read inefficient from database leads to
complexity

From the above we can see, each application server must load and maintain its cache from
database separately. What we want to do is to coordinate the loading action of each cache so
that only one of them loads the object, put it into the cache, and then notifies the other
pending cache that the object is available. It sounds easy. Actually, this is where that we have
to use RMI, JMS, JGroups, Soap, EJB or the proprietary API to implement this sounds-easy
inform-mechanism. This is where distributed applications become more and more complex.

5.1.2 Terracotta solution: Transparent, inter-JVM thread
coordination

So what we need to do with Terracotta is just to simply rely on java synchronization as
following:
public synchronized V get(K k) {
}
This will ensure only one cache instance reads the value. And that is all.

5.1.3 Implicit problem: limitation of heap space which leads
undesirable effect on database

In the above typical distributed environment, the application layer caches are in-memory
caches, which means to that they require enough memory space to hold the active data. In the
ideal situation, a cache instance would remain all the data we need until they become invalid,
however, if there isn’t enough memory to keep all the active data, the cache will automatically
purge some data out based on certain invalidation mechanism like LRU etc, even though the
data is still valid. This will lead to unnecessary trips to the database to get the data, in other
words, undesirable trips will burden the database.

5.1.4 Terracotta Solution: virtual heap of Terracotta

When the local heap reaches a threshold, terracotta starts a cache manager which will cleans
the data that we don’t need based on certain algorithm of LFU and LRU. If the data is needed
again by our application, it will be fetched from the Terracotta server.

We don’t have to code anything extra. Once the data is added in TC configuration file for
sharing, the management of this data is totally taken care transparently by terracotta. This
means once we need the data, it will be faulted in from Terracotta server automatically instead
going down to the database.

Clustering with Terracotta

May 2008 – wei sun 63

5.1.5 scale-out problem: writes inefficient and Database abuse
(based on ORMapping) leads to hard to scale-out

In the ideal situation, we expect that the application object pattern will be totally the same
with relational data pattern in the database. However, the actual situation is we have the
impedance mismatch[14] between object data and relational data. And Object-Relational
frameworks like hibernate provide object durability in the application tier; it is tempting the
application developers to use it to store objects that fill in the application data model rather
than the business data model.

These objects are typically used by the application to store intermediate results before a final
result that is eventually stored in the database.

As an example, a shopping cart object may be used to store a user’s intended purchase items
prior to placing an order. The data we only need in our business may only be the final placed
order, but application developers may be tempted to store shopping cart data in the database
to make the application to be failover—that is, we want our users to have a non-interrupted
experience while they just check-out and never knew there was a failure on the server side.
Without the persistence provided by the database, all the data in the shopping cart would
disappear.

Such architecture may provide scalability on the surface; it in fact is the killer of the database
and forces the database to scale.

5.1.6 Terracotta solution: virtual heap of Terracotta

We can imagine Terracotta works as a network attached memory, which provides the
durability in object format.
So this eliminates the impedance mismatch between the object data in the application layer
and the relational data in the database.
It also provides persistence which means that we don’t need to put intermediate data into
database.

5.1.7 what is Terracotta
Now we can define what Terracotta is:

1. Network-attached, virtual, persistent heap
2. Transparent, inter-JVM thread coordination

5.2 Conclusion
In this thesis, we delve into Terracotta compared to other open source clustering techniques.
We deeply analyzed the pros and cons of various clustering techniques and summarize that
Terracotta relieves the burden of database, eliminate the complexity and high maintenance of
applications as scale-out. And finally we demonstrate a best use case for Terracotta.

Clustering with Terracotta

May 2008 – wei sun 64

5.3 Future work
Although we came up with all the testing code and environment, in terms of performance we
don’t think our results can be trusted. It seems that we just tested our computer not Terracotta,
so it would be interesting to do all of the tests again with supports of appropriate hardware.

ABBREVIATIONS

JVM Java Virtual Machine

DSO Distributed Shared Objects

POJO Plain Old Java Object

HA High Availability

HC High scalability

HP High Performance

API Application Program Interface

Clustering with Terracotta

May 2008 – wei sun 65

JMS Java Messaging Service

RMI Remote Method Invocation

RPC Remote Procedure Calls

HTTP Hypertext Transfer Protocol

NAM Network Attached Memory

O/RMapping Mapping Objects to Relational Databases

RAM Random Access Memory

ASM An all purpose Java bytecode manipulation and analysis framework

TCP/IP Transmission Control Protocol/Internet Protocol

AOP Aspect-Oriented Programming

JSR Java Specification Request

SPoF Single Point of Failure

LRU Least Recently Used

LFU Least Frequently Used

JDBC Java Database Connector

ACK Acknowledgment

BLOB Binary Large Object

SOAP Simple Object Access Protocol

EJB Enterprise Java Beans

Appendix A

Test application
Scenario 1: Cache application

Scenario 2: Cache application

Scenario 3: Cache application

Scenario 4: Devoteam application and Jpetstore application

Clustering with Terracotta

May 2008 – wei sun 66

 JPetstore application included in the Spring Distribution, version 2.5
 Download from http://www.springframework.org/download.

Test tool:
Apache JMeter.

Download from http://jakarta.apache.org/jmeter.

Hardware:
1 x AMD (2.4 GHZ w/4 MB KB cache – 2 cores total)
2 GB Memory
Window XPsp2

Appendix B

[1] on-line wikipedia en.wikipedia.org
[2] T. Lindholm and F. Yellin. The Java Virtual Machine Speci_cation. Addison-Wesley,
1997.
[3] Terracotta white paper
[4] http://www.terracotta.org/confluence/display/orgsite/What+Is+Terracotta
[5] http://www.terracotta.org/confluence/display/orgsite/How+Terracotta+Works
[6] http://jcp.org/aboutJava/communityprocess/final/jsr133/index.html

http://www.cs.umd.edu/~jmanson/java/popl05.pdf
[7] http://www.terracotta.org/confluence/display/docs1/Concept+and+Architecture+Guide
[8] AspectJ
[9] http://www.aosd.net/2007/program/industry/I1-ClusteringJVMUsingAOP.pdf

[10] http://www.terracotta.org/confluence/display/devdocs/Architecture
[11]
http://docs.terracotta.org/confluence/display/docs1/Configuring+a+Terracotta+Server+Cluster
[12] LRU, LFU on-line wikipedia en.wikipedia.org
[13] ehcache http://ehcache.sourceforge.net/
[14] impedance mismatch on-line wikipedia en.wikipedia.org

