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Wepropose amethod to improve the performance of evolutionary algorithms (EA).Theproposed approach defines operatorswhich
can modify the performance of EA, including Levy distribution function as a strategy parameters adaptation, calculating mean
point for finding proper region of breeding offspring, and shifting strategy parameters to change the sequence of these parameters.
Thereafter, a set of benchmark cost functions is utilized to compare the results of the proposedmethodwith some other well-known
algorithms. It is shown that the speed and accuracy of EA are increased accordingly. Finally, this method is exploited to optimize
fuzzy control of truck backer-upper system.

1. Introduction

Evolutionary algorithms (EA) are usually exploited as the first
candidates for hard optimization tasks. They can deal with
many kinds of problems and cost functions such as multi-
modal, discrete, constraint on variables, high dimensionality,
and stochastic cost functions; consequently, they are suitable
for many applications. In the case of evolutionary computa-
tion, there are four historical paradigms that have served as
the basis for much of the activity in this field, genetic algo-
rithms (Holland, 1975) [1], genetic programming (Koza, 1992)
[2], evolutionary strategies (Recheuberg, 1973) [3], and evolu-
tionary programming (EP) [4].The basic differences between
the paradigms lie in the nature of the representation schemes,
the reproduction operators, and selection methods [5].

These methods have drawn much attention to the
research community in conjunction with the parallel and/or
distributed computations. EP, in particular, was studied ini-
tially as a method for generating artificial intelligence [6, 7],
since it is stable kind of EA and has many advantages in
optimization multimodal problems. Among all proposed EP

algorithms in the literature, classical EP (CEP), fast EP (FEP)
[8], and Levy distributed EP (LEP) [6] are most famous
variants of EP.

The classical evolutionary programming (CEP) can be
presented as follows.

(1) Generate the initial population of 𝜇 individuals, and
set 𝑘 = 1. Each individual is taken as a pair of real
valued vectors, (𝑥

𝑖
, 𝜂
𝑖
), for all 𝑖 ∈ {1, . . . , 𝜇}, where

𝑥
𝑖
’s are objective variables and 𝜂

𝑖
’s are standard devia-

tions for Gaussian mutations (also known as strategy
parameters in self-adaptive evolutionary algorithms).

(2) Evaluate the fitness score for each individual (𝑥
𝑖
, 𝜂
𝑖
),

for all 𝑖 ∈ {1, . . . , 𝜇}, of the population based on the
objective function, 𝑓(𝑥

𝑖
).

(3) Each parent (𝑥
𝑖
, 𝜂
𝑖
), 𝑖 = 1, . . . , 𝜇, creates a single

offspring (𝑥󸀠
𝑖
, 𝜂
󸀠

𝑖
) by for 𝑗 = 1, . . . , 𝑛

𝑥
󸀠

𝑖
(𝑗) = 𝑥

𝑖
(𝑗) + 𝜂

𝑖
(𝑗)𝑁
𝑗 (0, 1) , (1)

𝜂
󸀠

𝑖
(𝑗) = 𝜂

𝑖
(𝑗) exp (𝜏󸀠𝑁(0, 1) + 𝜏𝑁𝑗 (0, 1)) , (2)
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where 𝑥
𝑖
(𝑗), 𝑥

󸀠

𝑖
(𝑗), 𝜂

𝑖
(𝑗), and 𝜂󸀠

𝑖
(𝑗) denote the 𝑗th

component of the vectors 𝑥
𝑖
, 𝑥
󸀠

𝑖
, 𝜂
𝑖
, and 𝜂󸀠

𝑖
, respec-

tively. 𝑁(0, 1) denotes a normally distributed one-
dimensional random number with mean zero and
standard deviation one. 𝑁

𝑗
(0, 1) indicates that the

randomnumber is generated anew for each value of 𝑗.
The factors 𝜏 and 𝜏󸀠 are commonly set to (√2√𝑛)−1

and (2√𝑛)−1.

(4) Calculate the fitness of each offspring (𝑥󸀠
𝑖
, 𝜂
󸀠

𝑖
), for all

𝑖 ∈ {1, . . . , 𝜇}.

(5) Conduct pairwise comparison over the union of
parents (𝑥

𝑖
, 𝜂
𝑖
) and offspring (𝑥󸀠

𝑖
, 𝜂
󸀠

𝑖
), for all 𝑖 ∈

{1, . . . , 𝜇}. For each individual, 𝑞 opponents are cho-
sen uniformly at random from all the parents and
offspring. For each comparison, if the individual’s
fitness is no smaller than the opponent’s, it receives
a “win.”

(6) Select the 𝜇 individuals out of (𝑥
𝑖
, 𝜂
𝑖
) and (𝑥󸀠

𝑖
, 𝜂
󸀠

𝑖
), for

all 𝑖 ∈ {1, . . . , 𝜇}, that have themost wins to be parents
of the next generation.

(7) Stop if the halting criterion is satisfied; otherwise, 𝑘 =
𝑘 + 1 and go to step (3).

Considering disadvantages arising in performance of
the CEP results in searching for new methods. Although
some methods have been introduced for dealing with these
disadvantages, they have not attained considerable success
yet. Moreover, EP family, as thought, has many advantages
in dealing with multimodal cost functions, its applications in
the real world are not up to mark in comparison with other
evolutionary algorithms like genetic algorithm. Hence, and
it is worthwhile to investigate new methods which are more
successful in dealing with EP’s disadvantages. Many variants
of EP have been developed to boost the performance of CEP
by changing (1) and (2) in step (3) [6–15]. Most attempts have
introduced better distribution function in place of Gaussian
mutation function such as FEP. In [8], a Cauchy-mutation-
based EP, called fast EP (FEP), has been proposed, which
demonstrated much better performance rather than CEP in
term of converging to a near-global optimum point on some
benchmark mathematical functions. FEP’s success can be
attributed to its greater ability to escape from local minima
by using Cauchy mutation. At the same time, this will lead to
difficulties in copingwith some other functions. Larger jumps
are beneficial when the current solution is far away from the
global optimum or a better optimum, while such large jumps
near the global optimum point are undesirable. In short, fast
EP (FEP) is similar to CEP, but it uses a Cauchy function
instead of Gaussian function mutation as the primary search
operator. In [6], the authors proposed LEP (evolutionary
programming using the Levy probability distribution) which
can be considered as the generalization of both Gaussian and
Cauchy mutation EP. Beside CEP and FEP, Narihisa et al.
[9, 10] proposed EEP (exponential mutation evolutionary
programming) with the mutation operator based on a double
exponential probability distribution. It has been shown that

the potential efficiency of EEP is compatible to the FEP. The
eminent merit of EEP is that the size of search step for the
solution search processes is controlled by the distribution
parameter of double exponential distribution according to
the convergence state for given problems [10]. Alipouri et
al. [16, 17] introduced a new approach for EP family. They
have shown that using some information remaining from
the previous iteration of running algorithm can speed up
and improve the performance of the CEP. One piece of
information is average point of where parents settled in
previous iteration. This information has been considered as
inertia weight in (1). This method called moment coefficient
EP (MCEP) changes the searching procedure of CEP through
adding a new factor to produce and pull offspring toward
the gathered point (mean value) of parents. In this method,
gather point of individuals is assumed to be estimation of
global minima.

In EP, mutation is implemented by adding strategy
parameters to variable vectors of parents in order to pro-
duce offspring. When one of the strategy parameters takes
on a large value, adding it to the related variable causes
abrupt change. Hence, the variable grows with large steps
and deviates far from the optimum point whereas some of
other variables do not sense considerable changes. If this
event repeats for some iteration, the variable will go further,
and consequently, it slows down EP in some iteration. To
avoid such an occurrence, [16] introduced a new method
(shifted classical evolutionary programming (SCEP)), which
can enhance the performance of classical evolutionary pro-
gramming.

In this paper, speed and accuracy characterizations of
EA are improved using cost and coordination information.
The proposed approach defined operators which can modify
performance of EA: Levy distribution function for strategy
parameters adaptation, calculating mean point for finding
proper region for breeding offspring, and shifting strategy
parameters to change the sequence of these parameters.
Thereafter, a set of benchmark cost functions are used to
compare the results of the proposed method with some
other known algorithms. Finally, this modified approach is
exploited to optimize fuzzy control of truck backer-upper
system.

The organization of this paper is as follows: Section 2
explains the EP variants; Section 3 introduces the weighted
shifted Levy distributed evolutionary programming
(WSLEP); and the main results are presented In Section 4.
Application of the proposedmethod to fuzzy control of truck
backer-upper system is investigated in Section 5. Finally, we
conclude in Section 6.

2. Evolutionary Programming’s Variants

2.1. Classical Evolutionary Programming (CEP). The general
form of CEP follows a two-step process of selection and vari-
ation in a population. Following initialization of a population,
the fitness of each individual in the population is scored with
respect to an arbitrary fitness function. In general, selection is
applied as a tournamentwherein the fitness of each individual
in the population is compared against the fitness of a random
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set of other individuals in the same population. A “win” is
recorded for an individual when individual’s fitness equals or
exceeds that of another in the tournament set. Individuals
are then ranked with respect to the number of wins, and
those with the highest number of wins over some threshold
are selected as parents for the next generation. Parents are
randomly varied to generate offspring, and the fitness of each
member in the population is reevaluated. This process is
repeated for a user-specified number of generations [18].

Offspring (𝑥󸀠) and strategy parameters (𝜂) are updated in
each generation by (1) and (2), respectively. This process has
confronted with three drawbacks.

(1) In EP, mutation is performed by adding strategy
parameters to the coordinate of parents. Classical
evolutionary programming uses Gaussian distribu-
tion function for updating offspring and strategy
parameters (mutation parameters). Since Gaussian
distribution has some drawbacks, other distribution
functions are alternatively used. In the following,
somewell-knowndistribution functionswill be intro-
duced.

(2) The strategy parameters play main role in deciding
the place of offspring. Determining an optimal lower
bound for the strategy parameter is essential for
the EP algorithm in most applications. The optimal
setting of the lower bound depends on the problem
and cannot be the same throughout the evolution
process. In [16], shifting operator was proposed for
solving this problem. In this paper, this method will
be used for controlling strategy parameters step sizes.

(3) It is obvious that the basic advantages of any algo-
rithm is in deciding the most suitable place for
breeding offspring and finding the route toward the
global minimum. This goal is implemented by mean
point operator in MCEP [17]. In this paper, the mean
point operator is used for finding optimal region for
breeding new offspring.

Therefore, three methods are utilized simultaneously in
order to enhance the capabilities of EP family.

2.2. Fast Evolutionary Programming (FEP). Yao et al. [8]
proposed a Cauchy-mutation-based EP, called fast EP (FEP).
FEP’s success can be attributed to its greater ability to escape
local minima by using Cauchy mutation. It demonstrates
much better performance than CEP in converging to a near-
global optimum point on some benchmark mathematical
functions but not on all.

2.3. Levy Distributed Evolutionary Programming (LEP). LEP
is a variant of EP which is similar to CEP and FEP. The
difference comes from defining mutation function. LEP uses
a Levy distribution function in place ofGaussian formutation
function. However, unlike FEP, in LEP only distribution
function in (1) has been changed and (2) remains unchanged.
So, step sizes in LEP, and CEP for strategy coefficients are
similar. Practically, LEP is more similar to CEP than FEP [6].

All three distribution functions, Gaussian, Cauchy, and
Levy, are special cases of the stable distributions. These
distribution functions can be produced by the following
equation:

𝑝 =
𝑥

𝑦(1/𝛼)
,

if 𝛼 = 1 󳨐⇒ 𝑝 is Cauchy random number,

if 1 < 𝛼 < 2 󳨐⇒ 𝑝 is Levy random number,

(3)

where 𝑥 and 𝑦 are independent normal Gaussian random
numbers; in other words, Cauchy with zero mean and vari-
ance of 1 has the distribution of a random variable that is the
ratio of two independent standard normal random variables.
Similarly, Levy has distribution of a random variable that
is the ratio of two independent standard normal random
variables with different power as defined in (3). For example,
where 𝑥 is Gaussian random number with mean 𝜇 and
variance 𝜎, then (𝑥 − 𝜇)−2 has a Levy distribution with
location 0 and scale 𝜎−2.

3. Weighted Shifted Levy Distributed
Evolutionary Programming (WSLEP)

In evolutionary computational techniques, solution of prob-
lem and the values of the individuals finally converge to
a unique point. This convergence is slowly seen over the
generations, and the algorithm gradually approaches the
optimum point as the number of generation increases. This
procedure gives us the idea of adding the average of the
individuals in each generation to the algorithm to enhance
the convergence speed of the EP. This technique is known
as inertia weight method [17]. In order to implement this
idea, first, an averaging is carried out on all of the variables.
The resulted individual is called “gathered point” or “mean
point.”The mean value of winners in the previous iteration is
regarded as the gathered point. In next step, each offspring
is steered toward the mean point. For implementing this
idea, coordinate of gathered point is added to coordinate
of offspring. A coordinate of new individuals is calculated
by adding three factors: coordinate of gathered, location of
previous individuals, and strategy parameter multiplied by
Levy random number. Thus, the formula of CEP can be
changed for finding new individuals (1), (2) as follows:

𝑥
󸀠

𝑖
(𝑗) = 𝑎 × 𝑥

𝑖
(𝑗) + (1 − 𝑎) ×mean (𝑗)

+ 𝜂
𝑖
(𝑗) 𝐿
𝑗 (0, 1) ,

(4)

𝜂
󸀠

𝑖
(𝑗) = 𝜂

𝑖
(𝑗) exp(𝜏󸀠 𝑁(0, 1)

𝑁(0, 1)
1/3
+ 𝜏
𝑁 (0, 1)

𝑁(0, 1)
1/3
) ,

(5)

where mean (𝑗) stands for 𝑗th element of the gathered point
or mean point (Figure 1), and 𝑎 is defined as follows:

𝑎 =
iter

total iter
. (6)
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In the above equations, total iter is the abbreviation of
the total iteration which is specified by user, and iter is the
abbreviation of the current iteration. Figure 1 shows breeding
region of offspring produced by WSLEP.

In addition, Levy distribution function is used in muta-
tion operator presented in (4), (5) as it has long tails, thus
giving offspring big step size to search map quicker which is
necessary for some cost functions.

In EP, mutation is implemented by adding strategy
parameters to variable vectors of parents in order to produce
offspring.When one of the strategy parameters takes on a big
value, adding it to the related variable causes abrupt changes
in the variable. So, the variable grows with big steps and
deviates far from the optimum point, whereas some of other
variables do not sense considerable changes. If this event
continues for some iteration, the variable will go further.This
event slows down EP in some iteration. To avoid such an
occurrence, [16] introduces a new method (shifting oper-
ator) that can overcome these disadvantages and enhance
the performance of classical evolutionary programming. It
described a modification of evolutionary programming by
using a shifting method to prevent large and small changes
to the strategy parameters. This method adds a function to
the mutation operator. This function operates on strategy
parameters and changes the sequence of these parameters.

There is a question that if the three explained approaches
can enhance EP separately, whether the compound method
of them (when they are used simultaneously in EP) can be
more helpful or not?

Here, the LEP with weighted mean point and optimized
shifting strategy parameters approach is used. The pseudo
code for used method is given as follows:

Choose the initial population of individuals
Produce strategy parameters by Levy mutation func-
tion
Evaluate the cost of each individual in that popula-
tion.

Repeat this generation until termination: (time limit,
sufficient cost achieved, etc.)

Update the weighted mean point by (4)
Shift strategy parameters 𝑟 times to the left or right (𝑟
is a random number)
Breed individuals through mutation to give birth to
the offspring
Evaluate the cost of the offspring
Raise tournament to decide the next generationmem-
bers

End.

4. Main Results

The main results of this paper are presented in two parts.
In the first part, the seven algorithms of CEP, FEP, LEP,
EEP, MCEP, SCEP, and WSLEP are compared. In this part,

R

R

Xi

Mean point

Global minimum

Parent
R = 𝜂 × N(0.1)

a

CEP’s offspring region

WSLEP’s offspring region

Origin 1 − a

Figure 1: Location of offspring which is produced by CEP and
WSLEP. Offspring is somewhere inside of the dashed circles.

it will be shown that the speed and accuracy of the proposed
EP improved in terms of reaching the global minimum can
improve via the proposed approach. In second part, the
proposed algorithm is compared with 4 algorithms: jumping
gene (JG) [19], IW-PSO (Increasing InertiaWeight PSO) [20],
BEA (Bacterial Evolutionary Algorithm) [21], and WSLEP
from other well-known families.

Part 1. 12 well-known benchmark cost functions are selected
to compare the algorithms. Descriptions of these cost func-
tions are presented in Table 1. Some main properties of these
functions will be explained, and more details can be found in
[8, 22].

These cost functions can be categorized in 3 subgroups:
unimodal high dimensional, multimodal high dimensional
and low dimensional.

Functions f1–f4 are high dimensional-unimodal prob-
lems, which have only one global minimum that is also
their only local minimum as well. Functions f5–f8 are
high dimensional-multimodal functions where the number
of local minima increases exponentially with the problem
dimension. They are regarded as the most difficult class of
problems for many optimization algorithms of which CEP
has slow convergence on these functions [8]. Functions f9–
f12 are low-dimensional functions, which have only a few
local minima, however it is not easy to find these points by
evolutionary algorithms.

The ranges of the variables and dimensions of the cost
functions are chosen according to [8]. For high-dimension
functions, the number of the variable is 𝐷 = 30 (if it is not
limited by the cost function). All parameters of algorithms,
mentioned in Table 2, are same in all simulation results.

The best algorithm amongWSLEP, CEP, FEP, EEP,MCEP,
SCEP, and LEP is going to be selected on 12 test functions.
To avoid any concurrence in the results, all of the algorithms
have been run 20 times, and the averages of the obtained
results are presented in Table 3.

All of the algorithms are run until a prespecified gen-
eration is reached. The number of generations is shown in
the second column of Table 3. In this table, the best result
obtained for each cost function is highlighted. These results
show that the new proposed method in most cases can reach
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Table 1: The 12 benchmark functions used in our experimental study; the second column introduces name of functions.

𝑓
1
(𝑥) Sphere model

𝑛

∑

𝑖=1

𝑥
2

𝑖

𝑓
2
(𝑥) Schwefel’s problems 2.22

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 +

𝑛

∏

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨

𝑓
3
(𝑥) Schwefel’s problems 1.2

𝑛

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

𝑓
4
(𝑥) Schwefel’s problems 2.21 max

𝑖
{
󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 , 1 ≤ 𝑖 ≤ 𝑛}

𝑓
5
(𝑥) Generalized Schwefel’s problem 2.26

𝑛

∑

𝑖=1

− 𝑥
𝑖
sin(√󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨)

𝑓
6
(𝑥) Generalized Rastrigin’s function

𝑛

∑

𝑖=1

[𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10]

𝑓
7
(𝑥) Ackley’s function −20 exp(−0.2√ 1

𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
) − exp(1

𝑛

𝑛

∑

𝑖=1

cos 2𝜋𝑥
𝑖
) + 20 + exp (1)

𝑓
8
(𝑥) Generalized Griewank function 1

4000

𝑛

∑

𝑖=1

𝑥
2

𝑖
−

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖
) + 1

𝑓
9
(𝑥) Shekel’s Foxholes function [

[

1

500
+

25

∑

𝑗=1

1

𝑗 + ∑
2

𝑖=1
(𝑥
𝑖
− 𝑎
𝑖𝑗
)
6

]

]

𝑓
10
(𝑥) Six-hump camel-back function 4𝑥

2

1
− 2.1𝑥

4

1
+
1

3
𝑥
6

1
+ 𝑥
1
𝑥
2
− 4𝑥
2

2
+ 4𝑥
4

2

𝑓
11
(𝑥) Hartman’s family 2 −

4

∑

𝑖=1

𝑐
𝑖
exp[−

4

∑

𝑖=1

𝑎
𝑖𝑗
(𝑥
𝑗
− 𝑝
𝑖𝑗
)
2

]

𝑓
12
(𝑥) Shekel’s family 3 −

10

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
) (𝑥 − 𝑎

𝑖
)
𝑇

+ 𝑐
𝑖
]
−1

Table 2: Parameters of the algorithms.

Tournament size 𝑞 10
Population size 100
Range bound of variables Mentioned in last column of Table 5
Number of repetition 20
Number of generation Mentioned in second column of Table 5

the global minimum better than other mentioned methods.
All of the parameters have been considered to be the same
for fivemethods. Furthermore, all methods have started from
the same initial point (first generation). From Table 3, it can
be seen that WSLEP shows the best answer for all unimodal
functions. These results were expected, since WSLEP has a
factor pulling offspring toward the gathered point (mean
value) of parents. Unimodal cost functions have only one
local minimum which is also their only global minimum.
Thus, the mean value can steer offspring below the hole in
a short time.

Multimodal functions make it difficult for EP families to
find global minimum as they have many local and several
global minimums. WSLEP has the best answer in this group
too. Good results in this group are very important as there are
few methods that have acceptable performance.

Part 2. In this part, four algorithms have been compared with
simulation parameters cited in Table 4.

Similar to the previous part, the algorithms have been
tested on 12 cost functions. The test has been repeated
twenty times, and average results have been considered.
Table 5 shows that the average of the best minimum has been
found by algorithms in 20 time repetitions. In addition, this
table shows that the accuracy of the proposed method is
considerable among three other algorithms, that is, accuracy
of WSLEP is better than JG, BEA, and IW-PSO.

Part 3 (statistical test). In recent years, use of statistical tests
for evaluating performance evaluation of a new method has
become a widespread technique in computational intelli-
gence. In this section, a procedure is assigned to estimate
the differences between several algorithms. It is named the
contrast estimation of medians method. This method is very
recommendable when the global performance is reflected by
the magnitudes of differences between performances of the
algorithms [23]. These estimators can be understood as an
advanced global performance measure. It is especially useful
to estimate the extent to which an algorithm outperforms
another one [23].

In the current experimental analysis, the set of estimators
of medians is directly calculated from the average error
results. Table 6 shows the estimations computed for each
algorithm. By observing the rows of the Table 6, it can be
seen that the performance of WSLEP is more suitable com-
paring to other algorithms, since all its related estimators are
negative and it achieves low error rates of median estimation;
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Table 3: Comparison algorithms on 𝑓
1
–𝑓
12
. 𝑁 is dimension of functions, 𝐹MIN stands for global minimum, and last column is range of

variables.

Number of generation CEP FEP EEP LEP SCEP MCEP WSLEP 𝑁 𝐹MIN Range bound
𝑓
1

1500 155.67 25.194 27.34 26.685 6.3𝑒 − 6 2.8𝑒 − 10 3.5e − 16 30 0 [−100, 100]
𝑛

𝑓
2

2000 0.418 0.596 0.746 0.707 2.3𝑒 − 4 7.6𝑒 − 7 2.5e − 10 30 0 [−10, 10]
𝑛

𝑓
3

5000 1161 4438 2314 650 1.2e − 8 8.4𝑒 − 3 0.021 30 0 [−100, 100]
𝑛

𝑓
4

5000 0.607 34.38 2.14 1.07 0.0012 0.0002 0.00016 30 0 [−100, 100]
𝑛

𝑓
5

3000 −8373 −12542 −12154 −11167 −9500 −8230 −12162 30 −12569.5 [−500, 500]
𝑛

𝑓
6

5000 44.275 1.864 0.124 13.435 30.34 3.1𝑒 − 7 3.5e − 15 30 0 [−5.12, 5.12]
𝑛

𝑓
7

1500 8.43 3.773 0.21 5.36 0.006 0.026 0.0016 30 0 [−32, 32]
𝑛

𝑓
8

2000 2.373 0.971 1.03 0.694 0.009 0.049 0.0049 30 0 [−600, 600]
𝑛

𝑓
9

100 3.432 1.047 1.32 1.458 1.889 2.23 2.884 2 1 [−65.53, 65.53]
𝑛

𝑓
10

100 −1.031 −1.031 −1.031 −1.031 −1.031 −1.031 −1.031 2 −1.031 [−5, 5]
𝑛

𝑓
11

200 −3.322 −3.201 −3.21 −3.164 −3.30 −3.322 −3.322 6 −3.32 [0, 1]
𝑛

𝑓
12

100 −8.578 −8.311 −8.823 −9.145 −10.17 −9.86 −10.52 4 −10.5 [0, 10]
𝑛

Table 4: Essential parameters of the algorithms.

General Population size 100
Number of repetition 50

WSLEP Tournament size 𝑞 10
Initial standard deviation 1

JG

Number of transposon 1
Length of transposon 2

Crossover Uniform
Mutation rate 0.1

IW-PSO
Acceleration coefficients 2

Linearly increasing inertia weight From 0.5 to 1.5
Maximum velocity ±𝑋max

Table 5: Comparison algorithms on 𝑓
1
–𝑓
12
.

Number of generation BEA JG IW-PSO WSLEP
𝑓
1

1500 5 2.2𝑒 − 3 2.1𝑒 − 6 3.3e − 15
𝑓
2

2000 0.002 2𝑒 − 6 2.8𝑒 − 10 2.4e − 11
𝑓
3

5000 0.68 7.3e − 5 2.4𝑒 − 4 0.021
𝑓
4

5000 0.02 0.57 0.0074 0.00016
𝑓
5

3000 −2572 −7040 −8917 −12020
𝑓
6

5000 8.06 1𝑒 − 10 2.3𝑒 − 7 3e − 15
𝑓
7

1500 8e − 5 5.14𝑒 − 2 5𝑒 − 2 0.0001
𝑓
8

2000 0.5 0.0022 0.103 0.0049
𝑓
9

100 2.03 1.74 1.25 2.23
𝑓
10

100 −0.57 −1.031 −1.031 −1.031
𝑓
11

200 −3.22 −2.86 −3.22 −3.322
𝑓
12

100 −9.63 −9.95 −10.32 −10.52

However, FEP achieves higher error rates in this experimental
study. Table 5 shows that WSLEP is most similar to MCEP in
error rate (performance), as the contrast estimated method
shows small difference between error rate of WSLEP and
MCEP.

x = 10, 𝜙 = 90∘

x = 0 x = 20

𝜙

𝜃 (x, y)

Figure 2: Simulated truck backer-upper benchmark system.

5. Fuzzy Control of Truck
Backer-Upper System

In this section, the proposed EP method (WSLEP) is
exploited to optimize fuzzy control of truck backer-upper
system. Truck backer-upper problem is an excellent test
bed for fuzzy control systems. Fuzzy controller, formulated
on the basis of human understanding of the process or
identified from measured control actions, can be regarded as
an emulator of human operator. Controller design, however,
may become difficult, especially if the numbers of state
variables are large [24]. In this regard, WSLEP is used for
finding the fuzzy rules, and the system is routedwith a specific
start point. The WSLEP algorithm uses different start points
for finding optimum rules. Besides, selecting initial points
and relating them in defining a cost function for learning
rules are important factors. In this study, fuzzy system uses
known membership function with unknown rules. Number
of rules is 35. For detailed explanation, refer to [25]. The
simulated truck backer-upper benchmark system is shown in
Figure 2.

The truck position is determined by three state variables,
𝜑, 𝑥, and 𝑦, where 𝜑 is the angle of the truck with respect
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Table 6: Comparison of estimation method results for different algorithms.

CEP FEP LEP EEP SCEP MCEP WSLEP
CEP 0 −2.23 −1.03 −1 0.57 0.58 0.59
FEP 2.23 0 1.19 1.23 2.81 2.8 2.82
LEP 1.03 −1.19 0 0.033 1.61 1.63 1.63
EEP 1 −1.23 −0.03 0 1.58 1.58 1.59
SCEP −0.57 −2.81 −1.61 −1.58 0 0.1 0.01
MCEP −0.58 −2.8 −1.63 −1.58 −0.1 0 1𝑒 − 4

WSLEP −0.59 −2.82 −1.63 −1.59 −0.01 −1𝑒 − 4 0

Table 7: Final fuzzy rule base for the truck backer-upper control
problem.

S3 S1 S2 CE B1 S2
S2 CE S3 S2 S2 S2
S1 S2 B2 S3 S2 S2

Φ CE B2 B1 CE S2 S3
B1 S1 B1 B3 B1 CE
B2 S1 CE B1 CE S1
B3 B1 CE B2 CE CE

S2 S1 CE B1 B2
X

to the horizontal line. The control input to this truck is
the steeling angle 𝜃. The truck moves backward by a fixed
unit distance every stage. For simplicity, we assume enough
clearance between the truck and the loading dock such that
𝑦 does not have to be considered as a state variable [25]. The
task is to design a controller such that the system steers to
final states (𝑥

𝑓
, 𝜑
𝑓
) = (10, 90

∘
). We assume that 𝑥 ∈ [0, 20],

𝜙 ∈ [−90, 270], and 𝜃 ∈ [−40∘, 40∘].
For simulating purposes, we need a mathematical model

of the truck. We use the following approximate model [25]:

𝑥 (𝑡 + 1) = 𝑥 (𝑡) + cos [𝜙 (𝑡) + 𝜃 (𝑡)]

+ sin [𝜃 (𝑡)] sin [𝜙 (𝑡)] ,

𝑦 (𝑡 + 1) = 𝑦 (𝑡) + sin [𝜙 (𝑡) + 𝜃 (𝑡)]

− sin [𝜃 (𝑡)] cos [𝜙 (𝑡)] ,

𝜙 (𝑡 + 1) = 𝜙 (𝑡) − sin−1 [2 sin (𝜃 (𝑡))
𝑏

] ,

(7)

where 𝑏 is the length of the truck, and we assume that 𝑏 = 4
in our simulations.

In step (1), we define 7 fuzzy sets in [−90∘, 270], 5 fuzzy
sets in [0, 20], and 7 fuzzy sets in [−40∘, 40󸀠], where the
membership functions are shown in Figure 3.

Now, rules for fuzzy system must be designed. The cost
function is

Error = |(𝑥 − 10)| + 󵄨󵄨󵄨󵄨phi − 90
󵄨󵄨󵄨󵄨 . (8)

The error is summed for all five initial points. The five
algorithms CEP, FEP, EEP, MCEP, and SCEP along with
the proposed algorithm (WSLEP) are used for minimizing

S1

S1

S1

S2

S2

S2

S3

S3

CE

CE

CE

B1

B1

B1

B2

B2

B2

B3

B3

−90 0 90 180 270

0 10 20

−40 0 40

x

𝜃

𝜙

Figure 3: Membership functions.
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Figure 4: Cost via iteration result for optimized system using
WSLEP.

the defined cost function by finding proper rules. Figure 4
shows the resulted cost via iteration curve. It can be seen that
the proposed algorithm is fast and accurate to minimize the
cost function (8).

The minimum founded cost is 9.4356𝑒 − 004. Table 7
shows the final fuzzy rule base for the truck backer-upper
control problem.
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Figure 5: The truck trajectory using the designed fuzzy system as the controller for different initial conditions.

Some initial points are chosen to test the designed
controller. Figure 5 shows the truck trajectory using the
designed fuzzy system for different initial conditions. We see
that the fuzzy controller can successfully control the truck to
the desired position.

6. Conclusion

In this paper, we proposed a modified approach to increase
speed and accuracy of evolutionary algorithms by designing
controller using cost and coordination information. The
proposed method defined operators which can improve per-
formance of evolutionary algorithms: Levy distribution func-
tion for strategy parameters adaptation, calculating mean
point for finding proper region for breeding offspring, and
shifting strategy parameters to change the sequence of these
parameters. Thereafter, a set of benchmark cost functions

were used to compare the results of the proposed method
with some other known algorithms. It was intuitively obvious
that the proposed algorithm was more accurate and fast in
finding the value and location of the global minimum in all
three groups of the cost functions. Finally, this method was
exploited to optimize fuzzy control of truck backer-upper
system.
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