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This paper is concerned with the 𝐻
∞

control issue for a class of networked control systems (NCSs) with packet dropouts and
time-varying delays. Firstly, the addressed NCS is modeled as a Markovian discrete-time switched system with two subsystems; by
using the average dwell time method, a sufficient condition is obtained for the mean square exponential stability of the closed-loop
NCS with a desired𝐻

∞
disturbance attenuation level. Then, the desired𝐻

∞
controller is obtained by solving a set of linear matrix

inequalities (LMIs). Finally, a numerical example is given to illustrate the effectiveness of the proposed method.

1. Introduction

Networked control systems (NCSs) are distributed systems
in which communication between sensors, actuators, and
controllers is supported by a shared real-time network.
Compared with conventional point-to-point system connec-
tion, this new network-based control scheme reduces system
wiring and has low cost, high reliability, information sharing,
and remote control [1, 2]. Nevertheless, the introduction of
communication networks also brings some new problems
and challenges, such as time-delay, packet dropout, quanti-
zation, and band-limited channel [3–8], which all might be
potential sources of poor performance, even of instability.

Random delay and packet dropout in NCS are two
major causes for the deterioration of system stability; various
approaches have been developed for the NCS with random
communication delays and packet dropout in [9–17]. The
time delay occurs in various physical, industrial, and engi-
neering systems and is a source of poor performance and
instability of systems. In [9, 10], the uncertainties of the delays
are transformed into those of the system models with uncer-
tain parameters.The delay is limited to take finite values dur-
ing a sampling period, and the NCS is ultimately modeled as
a discrete-time switched system with a finite number of sub-
systems [11, 12]. In [13–15], the delay is assumed to be random

and follows some specific distribution laws, which may not
be exactly known prior in practice. And in some literature the
delay is separated into a nominal part and an uncertain part;
in this way, the NCS is represented as an uncertain system
with norm-bounded uncertainties or polytopic uncertainties.
Another important issue in NCS control problem is packet
dropout; most of the NCS models are presented by using the
Bernoulli random binary distributed sequence methods or
the Markov chain. For NCSs, let the binary-valued function
denote the data transmission status from sensor to controller
and controller to actuator, respectively, where 1 means suc-
cessful packet communication and 0 is the case of packet
dropout [16]. Reference [17] proposes an iterative method to
model NCSs with bounded packet dropout as MJLSs with
partly unknown transition probabilities.

On the other hand, in view of abrupt variation in the
structures, such as component failures, sudden environmen-
tal disturbance, and abrupt variations of the operating points
of NCSs, it is more appropriate tomodel such class of systems
as a special class of stochastic hybrid systems with finite
operation modes. And packet dropout (time-delay) of the
next sampling moment may have a close relation to the
previous moment, so it is reasonable to model NCS as the
Markov switched system. The mean square stabilization of a
class of Markovian NCS is studied in [18], and the average
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dwell time (ADT) approach is applied to investigate the
stability of the NCS in [19]. However, to the best of our
knowledge, the problems ofmean square exponential stability
and control for the NCS have not been fully investigated to
date. This motivates the present study.

With the motivation of the above reasons, we consider
the mean square exponential𝐻

∞
performance for NCS with

randomdelay and packet dropout.Themain contribution can
be summarized as follows: (i) an NCS model with random
delay and packet dropout is proposed firstly; the packet
dropout process is modeled as a finite stateMarkov chain and
the resulting closed-loop system is a Markovian switching
system; (ii) the parameter-dependent Lyapunov function is
applied for stability analysis and control synthesis, and suf-
ficient conditions for the robustly mean square exponential
stability of the closed-loop system are given by using theADT
method [20], where the convergence of the Markov chain is
utilized; and (iii) a state feedback controller is designed by
using a cone complementary linearization approach to ensure
that the closed-loop system is mean square exponentially
stable and achieves the disturbance attenuation level.

The paper is organized as follows. In Section 2, the NCS
with packet dropouts and time-varying delays is modeled as
a class of the Markovian discrete-time switched system with
two subsystems. The mean square exponential stability of
the closed-loop NCS with a desired 𝐻

∞
disturbance atten-

uation level is developed in Section 3 and the desired 𝐻
∞

controller is formulated in a set of LMIs.Anumerical example
is provided in Section 4. Finally, Section 5 concludes this
paper.

Notation 1. Throughout the paper, the superscript “−1” and
“𝑇” stand for the inverse and transpose of a matrix, respec-
tively; 𝑅𝑛 denotes the 𝑛-dimensional Euclidean space and the
notation 𝑃 > 0 means that 𝑃 is a real symmetric positive
definite matrix. 𝐸{𝑥} is the expectation of the stochastic
variable 𝑥. 𝐼 and 0 represent identity matrix and zero matrix
with appropriate dimensions in different places. In symmetric
block matrices or complex matrix expressions, we use an
asterisk ∗ to represent a term that is induced by symmetry
and diag{⋅ ⋅ ⋅ } stands for a block diagonal matrix. ‖ ⋅ ‖ refers
to the Euclidean norm for vectors and induced 2-norm for
matrix. 𝐿

2
[𝑘
0
,∞) stands for the space of square integrable

functions on [𝑘
0
,∞).

2. Model of Networked Control System

Consider the following system:

𝑥̇ (𝑡) = 𝐴
𝑝
𝑥 (𝑡) + 𝐵

𝑝
𝑢 (𝑡) + 𝑓 (𝑥, 𝑡) + 𝐻

𝑝
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛, 𝑢(𝑡) ∈ 𝑅

𝑚, and 𝑧(𝑡) ∈ 𝑅
𝑃 are the state

vector, control input vector, and controlled output vector,
respectively, and 𝑤(𝑡) ∈ 𝑅

𝑑 is the exogenous disturbance
signal belonging to 𝐿

2
[0,∞). 𝐴

𝑝
, 𝐵
𝑝
, 𝐻
𝑝
, and 𝐶 are known

real matrices with appropriate dimensions.𝑓 : Ω×[𝑡
0
,∞) →

𝑅
𝑛

(Ω ⊂ 𝑅
𝑛

) is the nonlinear function vector, and𝑓(0, 𝑡
0
) = 0.

𝑓 satisfies the local Lipschitz condition, that is,
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥
1
, 𝑡) − 𝑓 (𝑥

2
, 𝑡)
󵄩
󵄩
󵄩
󵄩2
≤ 𝛼

󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑥
2

󵄩
󵄩
󵄩
󵄩2
,

∀𝑥
1
, 𝑥
2
∈ Ω ⊂ 𝑅

𝑛

, ∀𝑡 ∈ [𝑡
0
,∞) ,

(2)

where 𝛼 > 0 is a known constant.
In the considered NCS, time delays exist in both channels

from sensor to controller and from controller to actuator.
Sensor-to-controller delay and controller-to-actuator delay
are denoted by 𝜏sc and 𝜏ca, respectively. The assumptions in
the above NCS are as follows:

(1) the discrete-time state-feedback controller and the
actuator are event driven; the sensor is time-driven
with sampling period 𝑇,

(2) the network-induced delay 𝜏
𝑘
≜ 𝜏

sc
𝑘
+ 𝜏

ca
𝑘
satisfies 0 <

𝜏min ≤ 𝜏𝑘 ≤ 𝜏max < 𝑇,
(3) the zero-order hold device does not update the output

value until the new value arrives.

The output value of the discrete-time state-feedback
controller corresponding to 𝑥(𝑘) is denoted by

𝑢 (𝑘) = 𝐾𝑥 (𝑘) . (3)

Consider the plant input:

𝑢 (𝑘)

= {

𝑢̂ (𝑘) if 𝑢̂ (𝑘) and 𝑥 (𝑘) is successfully transmitted,
𝑢 (𝑘−1) if 𝑢̂ (𝑘) or 𝑥 (𝑘) is lost during transmission.

(4)

Discretizing system (1) in one period, we can obtain the
discrete state equation of the NCS:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵
0
(𝜏
𝑘
) 𝑢 (𝑘)

+ 𝐵
1
(𝜏
𝑘
) 𝑢 (𝑘 − 1) +

̃
𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘) ,

(5)

where 𝐴 = 𝑒
𝐴𝑝𝑇, 𝐵

0
(𝜏
𝑘
) = ∫

𝑇−𝜏𝑘

0

𝑒
𝐴𝑝𝑠

𝑑𝑠𝐵
𝑝
, 𝐵
1
(𝜏
𝑘
) =

∫

𝑇

𝑇−𝜏𝑘

𝑒
𝐴𝑝𝑠

𝑑𝑠𝐵
𝑝
, 𝐻 = ∫

𝑇

0

𝑒
𝐴𝑝𝑠

𝑑𝑠𝐻
𝑝
, and ̃

𝑓(𝑥, 𝑘) =

∫

𝑇

0

𝑒
𝐴𝑝𝑠

𝑑𝑠𝑓(𝑥, 𝑘).
By using the Jordan form of the matrix 𝐴

𝑝
, 𝐵
0
(𝜏
𝑘
) is

rewritten as [21]

𝐵
0
(𝜏
𝑘
) = 𝐹
0
+

V

∑

𝑖=1

𝜂
𝑖
(𝜏
𝑘
) 𝐹
𝑖

(6)

with V ≤ 𝑛, where 𝐹
0
and 𝐹

𝑖
are constant matrices, 𝜂

𝑖
(𝜏
𝑘
) =

𝑒
𝑎(𝑇−𝜏𝑘) cos(𝑏(𝑇 − 𝜏

𝑘
)) and the eigenvalue of 𝐴 is 𝜆 = 𝑎 + 𝑖𝑏.

Then, {𝐵
0
(𝜏
𝑘
) | 𝑘 ∈ 𝑁} is a subset of co(𝐹) with

𝐹 = {𝐹
0
+

V

∑

𝑖=1

𝜂
𝑖
𝐹
𝑖
| 𝜂
𝑖
= 𝜂
𝑖
, 𝜂
𝑖

, 𝑖 = 1, 2, . . . , V}

= {𝐹
𝑖
| 𝑖 = 1, 2, . . . , 2

V
} ,

(7)
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where 𝜂
𝑖
= max 𝜂

𝑖
(𝜏
𝑘
), 𝜂
𝑖

= min 𝜂
𝑖
(𝜏
𝑘
), 𝐹 is the set of vertices,

and co(⋅) denotes the convex hull. Thus we obtain

𝐵
0
(𝜏
𝑘
) =

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝐹
𝑖
, (8)

with ∑2
V

𝑖=1
𝜉
𝑖
(𝑘) = 1, 𝜉

𝑖
(𝑘) ∈ [0, 1].

Defining an augmented vector 𝑥(𝑘) =

[𝑥
𝑇

(𝑘) 𝑢
𝑇

(𝑘 − 1)]

𝑇, during each sampling period, two
cases may arise, which can be listed as follows.

𝑆
1
: no packet dropout happens; (5) can be written as

𝑥 (𝑘 + 1) = 𝐴
1
(𝑘) 𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶𝑥 (𝑘) ,

(9)

where

𝐴
1
(𝑘) = [

𝐴 + 𝐵
0
(𝜏
𝑘
)𝐾 𝐵

1
(𝜏
𝑘
)

𝐾 0
]

= [

𝐴 𝐵 − 𝐵
0
(𝜏
𝑘
)

0 0
] + [

𝐵
0
(𝜏
𝑘
)

𝐼
] [𝐾 0] ,

𝐵 = ∫

𝑇

0

𝑒
𝐴𝑝𝑠

𝑑𝑠𝐵
𝑝
, 𝐵

1
(𝜏
𝑘
) = 𝐵 − 𝐵

0
(𝜏
𝑘
) ,

𝑓 (𝑥, 𝑘) = [

̃
𝑓 (𝑥, 𝑘)

0

] , 𝐻 = [

𝐻

0
] , 𝐶 = [𝐶 0] .

(10)

Substituting (8) into (9) gives rise to

𝐴
1
(𝑘) =

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝐴
𝑖
, (11)

where
𝐴
𝑖
= 𝐴
𝑖
+ 𝐵
𝑖
[𝐾 0] = 𝐴

𝑖
+ 𝐵
𝑖
𝐾,

𝐴
𝑖
= [

𝐴 𝐵 − 𝐹
𝑖

0 0

] , 𝐵
𝑖
= [

𝐹
𝑖

𝐼

] , 𝐾 = [𝐾 0] .

(12)

𝑆
2
: packet dropout happens; (5) can be written as

𝑥 (𝑘 + 1) = 𝐴
2
(𝑘) 𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶𝑥 (𝑘) ,

(13)

where 𝐴
2
= [
𝐴 𝐵

0 𝐼
].

From (2)–(9), the nonlinear uncertainty 𝑓(𝑥, 𝑘) satisfies

𝑓

𝑇

(𝑥, 𝑘) 𝑓 (𝑥, 𝑘) =
̃
𝑓
𝑇

(𝑥, 𝑘)
̃
𝑓 (𝑥, 𝑘) ≤ 𝑥

𝑇

(𝑘) 𝑈
𝑇

𝑈𝑥 (𝑘) ,

(14)

where 𝑈 is a known constant positive-definite matrix.
By the above analysis and assumptions, we can see that

networked control system can be described by the following
switched system with two modes:

𝑥 (𝑘 + 1) = 𝐴
𝜎(𝑘)

(𝑘) 𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶𝑥 (𝑘) ,

(15)

where 𝜎(𝑘) is called a switching signal. 𝜎(𝑘) = 1 represents no
packet dropout, while 𝜎(𝑘) = 2 implies packet dropout. The
switching characteristics between the two modes are often
assumed as theMarkov chain, and𝜋

𝑟𝑙
is transition probability

from mode 𝑟 to 𝑙, 𝑟, 𝑙 = 1, 2; therefore, 𝜎(𝑘) of the Markov
chain has ergodicity and satisfied the following condition:

lim
𝑛→∞

𝜋
(𝑛)

𝑟𝑙
= 𝜋
𝑙
, 𝑟, 𝑙 = 1, 2, (16)

where𝜋
𝑙
is the limitation of state 𝑙. So {𝜋

1
, 𝜋
2
} is the stationary

distribution of the Markov chain.
For an arbitrary switching sequence 𝜎(𝑘) and any given

integer 𝑘 > 0, let 𝑘
0
imply the initial time, and 𝑘

0
< 𝑘
1
<

𝑘
2
< ⋅ ⋅ ⋅ 𝑘

𝑞
< ⋅ ⋅ ⋅ < 𝑘, 𝑞 ≥ 1 represent the switching instants.

Denote 𝑇1[𝑘
0
, 𝑘) as the all sequence of the time period in

which subsystem 1 is active during the time interval [𝑘
0
, 𝑘).

Similarly, 𝑇2[𝑘
0
, 𝑘) represents the all period sequence that

subsystem 2 is active during the time interval [𝑘
0
, 𝑘).

Lemma 1 (Schur complement [22]). For a given matrix 𝑆 =

[

𝑆11 𝑆12

𝑆
𝑇

12
𝑆22

], where 𝑆
11
, 𝑆
22

are square matrices, the following
conditions are equivalent:

(1) 𝑆 < 0;

(2) 𝑆
11
< 0, 𝑆

22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
< 0;

(3) 𝑆
22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma 2 (see [23]). The stochastic stability in discrete time
implies the stochastic stability in continuous time.

Definition 3 (see [24]). The closed-loop system (15) is mean
square exponentially stable with 𝑤(𝑘) = 0, if there exists 𝛿 >
0, 0 < 𝛽 < 1, such that

𝐸 {‖𝑥 (𝑘)‖
2

} < 𝛿𝛽
𝑘−𝑘0

𝐸 {
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑘
0
)
󵄩
󵄩
󵄩
󵄩

2

} (17)

for all initial condition (𝑥(𝑘
0
), 𝜎(𝑘
0
)).

Definition 4 (see [25]). For any 𝑘 > 𝑘
0
≥ 0, let 𝑁

𝜎
[𝑘
0
, 𝑘)

denote the total number of the switching of 𝜎(𝑘) during the
interval [𝑘

0
, 𝑘). If

𝑁
𝜎
[𝑘
0
, 𝑘) ≤ 𝑁

0
+

𝑘 − 𝑘
0

𝑇
𝑎

(18)

holds for a given 𝑁
0
≥ 0, 𝑇

𝑎
> 0, then the constant 𝑇

𝑎
is

called the average dwell time and𝑁
0
is the chatter bound. For

simplicity, we choose𝑁
0
= 0 without loss of generality.

Definition 5 (see [20]). Given scalars 𝛾 > 0 and 0 < 𝜆 < 1, the
closed-loop system (15) is robustly exponentially stable with
an exponential𝐻

∞
performance 𝛾 if the following conditions

are satisfied:

(a) the closed-loop system (15) with 𝜔(𝑘) ≡ 0 is
exponentially stable;
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(b) under the zero-initial condition, it holds that

∞

∑

𝑘=𝑘0

𝐸 {𝜆
𝑘

𝑧
𝑇

(𝑘) 𝑧 (𝑘)}

< 𝛾
2

∞

∑

𝑘=𝑘0

𝐸 {𝑤
𝑇

(𝑘) 𝑤 (𝑘)} , ∀𝑤 (𝑘) ∈ 𝐿
2
[𝑘
0
,∞) .

(19)

3. Main Results

The following theorems present a sufficient condition for the
mean square stability of the considered system and the 𝐻

∞

controller design method.

3.1. Stability Analysis. In this subsection, sufficient conditions
for the existence of mean square exponential stability of
system (15) with 𝜔(𝑘) ≡ 0 are given in the following theorem.

Theorem 6. System (15) is mean square exponentially stable
with a decay rate 𝜆𝜌, if there exist positive definite matrices 𝑃

𝑖
,

𝑄, scalars 𝜇 ≥ 1, 𝜆
1
, and 𝜆

2
, such that

[

𝐴
𝑇

𝑖
(𝜋
11
𝑃
𝑗
+𝜋
12
𝑄)𝐴
𝑖
− 𝜆
1
𝑃
𝑖
+𝑈
𝑇

𝑈 𝐴
𝑇

𝑖
(𝜋
11
𝑃
𝑗
+𝜋
12
𝑄)

∗ (𝜋
11
𝑃
𝑗
+𝜋
12
𝑄) − 𝐼

]

< 0,

(20)

[

𝐴

𝑇

2
(𝜋
21
𝑃
𝑗
+𝜋
22
𝑄)𝐴
2
− 𝜆
2
𝑄+𝑈
𝑇

𝑈 𝐴

𝑇

2
(𝜋
21
𝑃
𝑗
+𝜋
22
𝑄)

∗ (𝜋
21
𝑃
𝑗
+𝜋
22
𝑄) − 𝐼

]

< 0 𝑖, 𝑗 = 1, 2, 3, . . . , 2
V
,

(21)

1

𝜇

𝑄 ≤ 𝑃
𝑖
≤ 𝜇𝑄, (22)

0 < 𝜆 < 1, (23)

max {𝜋
12
, 𝜋
21
} < −

ln 𝜆
ln 𝜇

, (24)

where 𝜆 = 𝜆
𝜋21/(𝜋12+𝜋21)

1
𝜆
𝜋12/(𝜋12+𝜋21)

2
, 𝜌 = 1 + max{𝜋

12
, 𝜋
21
} ⋅

(ln 𝜇/ ln 𝜆).

Proof. For the system (15), define the following Lyapunov
function:

𝑉
𝜎(𝑘)

(𝑥 (𝑘) , 𝜉 (𝑘)) = 𝑥
𝑇

(𝑘) 𝑃̃
𝜎(𝑘)

𝑥 (𝑘) , (25)

where

𝑃̃
𝜎(𝑘)

=

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝑃
𝑖
, for 𝜎 (𝑘) = 1,

𝑃̃
𝜎(𝑘)

= 𝑄, for 𝜎 (𝑘) = 2.

(26)

For subsystem 1, it follows from (15) that

Δ𝑉
1
[𝑥 (𝑘 + 1)]

= 𝐸 [𝑉
1
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] − 𝜆

1
𝑉
1
(𝑥 (𝑘) , 𝜉 (𝑘))

= 𝑥
𝑇

(𝑘 + 1)(𝜋
11

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝑃

𝑗
+ 𝜋
12
𝑄)𝑥 (𝑘 + 1)

− 𝜆
1
𝑥
𝑇

(𝑘)(

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝑃
𝑖
)𝑥 (𝑘)

≤ (

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝐴
𝑖
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘))

𝑇

× (𝜋
11

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝑃

𝑗
+ 𝜋
12
𝑄)

⋅ (

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝐴
𝑖
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘))

− 𝜆
1
𝑥
𝑇

(𝑘)(

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝑃
𝑖
)𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘) 𝑈
𝑇

𝑈𝑥 (𝑘) − 𝑓

𝑇

(𝑥, 𝑘) 𝑓 (𝑥, 𝑘)

=

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘)

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) [

𝑥 (𝑘)

𝑓 (𝑥, 𝑘)

]

𝑇

Θ[

𝑥 (𝑘)

𝑓 (𝑥, 𝑘)

] ,

(27)

where

Θ = [

𝐴
𝑇

𝑖
(𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄)𝐴
𝑖
− 𝜆
1
𝑃
𝑖
+ 𝑈
𝑇

𝑈 𝐴
𝑇

𝑖
(𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄)

∗ (𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄) − 𝐼

] .

(28)

From inequality (20), one obtains

𝐸 [𝑉
1
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] < 𝜆

1
𝑉
1
(𝑥 (𝑘) , 𝜉 (𝑘)) . (29)

In the same way, for subsystem 2, we obtain

Δ𝑉
2
[𝑥 (𝑘 + 1)]

= 𝐸 [𝑉
2
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] − 𝜆

2
𝑉
2
(𝑥 (𝑘) , 𝜉 (𝑘))

= 𝑥
𝑇

(𝑘 + 1)(𝜋
21

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝑃

𝑗
+ 𝜋
22
𝑄)𝑥 (𝑘 + 1)

− 𝜆
2
𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘)
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≤ (𝐴
2
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘))

𝑇

× (𝜋
21

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝑃

𝑗
+ 𝜋
22
𝑄)

⋅ (𝐴
2
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘)) − 𝜆

2
𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘) 𝑈
𝑇

𝑈𝑥 (𝑘) − 𝑓

𝑇

(𝑥, 𝑘) 𝑓 (𝑥, 𝑘) ;

(30)

then

𝐸 [𝑉
2
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] < 𝜆

2
𝑉
2
(𝑥 (𝑘) , 𝜉 (𝑘)) . (31)

Considering the condition (22), we get that

𝑉
1
(𝑥 (𝑘) , 𝜉 (𝑘)) ≤ 𝜇𝑉

2
(𝑥 (𝑘
−

) , 𝜉 (𝑘
−

)) ,

𝑉
2
(𝑥 (𝑘) , 𝜉 (𝑘)) ≤ 𝜇𝑉

1
(𝑥 (𝑘
−

) , 𝜉 (𝑘
−

)) .

(32)

Then for 𝑘
𝑞
< 𝑘 < 𝑘

𝑞+1
, we get

𝐸 [𝑉
𝜎(𝑘)

(𝑥 (𝑘) , 𝜉 (𝑘))]

< 𝐸 [𝜇𝜆

(𝑘−𝑘𝑞)

𝜎(𝑘𝑞)
𝑉
𝜎(𝑘𝑞−1)

(𝑥 (𝑘
𝑞
) , 𝜉 (𝑘

𝑞
))]

< 𝐸 [𝜇𝜆

(𝑘−𝑘𝑞)

𝜎(𝑘𝑞)
𝜆

(𝑘𝑞−𝑘𝑞−1)

𝜎(𝑘𝑞−1)
𝑉
𝜎(𝑘𝑞−1)

(𝑥 (𝑘
𝑞−1
) , 𝜉 (𝑘

𝑞−1
))]

...

< 𝐸 [𝜇
𝑁𝜎[𝑘0 ,𝑘)

𝜆
𝑇
1
[𝑘0 ,𝑘)

1
𝜆
𝑇
2
[𝑘0 ,𝑘)

2
𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))] .

(33)

Note that the Markov chain is stationary (16); then

𝐸 [𝑇
1

[𝑘
0
, 𝑘)] = 𝜋

1
(𝑘 − 𝑘

0
) ,

𝐸 [𝑇
2

[𝑘
0
, 𝑘)] = 𝜋

2
(𝑘 − 𝑘

0
) .

(34)

Therefore, we can obtain that

𝐸 [𝑉
𝜎(𝑘)

(𝑥 (𝑘) , 𝜉 (𝑘))]

< 𝐸 [𝜇
𝑁𝜎[𝑘0 ,𝑘)

𝜆
𝜋1(𝑘−𝑘0)

1
𝜆
𝜋2(𝑘−𝑘0)

2
𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))]

= 𝐸 [𝜇
𝑁𝜎[𝑘0 ,𝑘)

𝜆
(𝜋21/(𝜋12+𝜋21))(𝑘−𝑘0)

1

×𝜆
(𝜋12/(𝜋12+𝜋21))(𝑘−𝑘0)

2
𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))]

= 𝐸 [𝜇
𝑁𝜎[𝑘0 ,𝑘)

𝜆
(𝑘−𝑘0)

𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))]

= 𝐸 [𝜆
𝑁𝜎[𝑘0 ,𝑘)(ln 𝜇/ ln𝜆)

𝜆
(𝑘−𝑘0)

𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))]

= 𝐸 [(𝜆
1+(𝑁𝜎[𝑘0 ,𝑘)/(𝑘−𝑘0))⋅(ln 𝜇/ ln𝜆)

)

(𝑘−𝑘0)

]

× 𝐸 [𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))] .

(35)

From Definition 4 we have that

𝑘 − 𝑘
0

𝑁
𝜎
[𝑘
0
, 𝑘)

≥ 𝑇
𝑎
. (36)

And from [24], we can get 1/𝐸(𝑇
𝑎
) ≤ max{𝜋

12
, 𝜋
21
}; then

combining (23) and (24), we can know that

0 < 𝜆
1+(𝑁𝜎[𝑘0 ,𝑘)/(𝑘−𝑘0))⋅(ln 𝜇/ ln𝜆)

< 1, (37)

which ensure the convergence of 𝐸[𝑉
𝜎(𝑘)

(𝑥(𝑘), 𝜉(𝑘))].
In this case,

𝐸 [𝑉
𝜎(𝑘)

(𝑥 (𝑘) , 𝜉 (𝑘))]

< 𝐸 [(𝜆
1+(1/𝑇𝑎)⋅(ln 𝜇/ ln𝜆)

)

(𝑘−𝑘0)

]

× 𝐸 [𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))]

= 𝜆
(𝑘−𝑘0)[1+(1/𝐸(𝑇𝑎))⋅(ln 𝜇/ ln𝜆)]

𝐸 [𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))]

≤ (𝜆
𝜌

)
(𝑘−𝑘0)

𝐸 [𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))] .

(38)

Furthermore

𝐸 [𝑎‖𝑥 (𝑘)‖
2

] ≤ 𝐸 [𝑉
𝜎(𝑘)

(𝑥 (𝑘) , 𝜉 (𝑘))]

< (𝜆
𝜌

)
(𝑘−𝑘0)

𝐸 [𝑏
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑘
0
)
󵄩
󵄩
󵄩
󵄩

2

] .

(39)

Then

𝐸 [‖𝑥 (𝑘)‖
2

] ≤

𝑏

𝑎

(𝜆
𝜌

)
(𝑘−𝑘0)

𝐸 [
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑘
0
)
󵄩
󵄩
󵄩
󵄩

2

] . (40)

Therefore, by Definition 3, system (15) is mean square expo-
nentially stable.

Remark 7. From Lemma 2, we know that system (1) is also
mean square exponentially stable.

3.2.𝐻
∞

Performance Analysis and Controller Design. In this
subsection, we are in the position to prove the main result.
The 𝐻

∞
controller design method is given in the following

theorem.

Theorem8. For given scalars𝜆
1
,𝜆
2
, 𝛾, and𝜇 ≥ 1, if there exist

positive definite matrices 𝑃
𝑖
, 𝑋
𝑖
, 𝑆, 𝑄, and matrix 𝐾 = [𝐾 0]

of appropriate dimensions, 𝑖, 𝑗 = 1, 2, 3, . . . , 2V, such that (22)–
(24) and the following inequalities:

[

[

[

[

[

[

[

[

[

[

[

−𝜆
1
𝑃
𝑖
0 0 Γ

14
Γ
15

𝐶

𝑇

𝑈
𝑇

∗ −𝐼 0 √𝜋11
𝐼 √𝜋12

𝐼 0 0

∗ ∗ −𝛾
2

𝐼 √𝜋11
𝐻

𝑇

√𝜋12
𝐻

𝑇

0 0

∗ ∗ ∗ −𝑋
𝑗

0 0 0

∗ ∗ ∗ ∗ −𝑆 0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

< 0, (41)
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where Γ
14

= √𝜋11
𝐴
𝑇

𝑖
+ √𝜋11

𝐾

𝑇

𝐵
𝑇

𝑖
, Γ
15

= √𝜋12
𝐴
𝑇

𝑖
+

√𝜋12
𝐾

𝑇

𝐵
𝑇

𝑖
,

[

[

[

[

[

[

[

[

[

[

[

−𝜆
2
𝑄 0 0 √𝜋21

𝐴

𝑇

2
√𝜋22

𝐴

𝑇

2
𝐶

𝑇

𝑈
𝑇

∗ −𝐼 0 √𝜋21
𝐼 √𝜋22

𝐼 0 0

∗ ∗ −𝛾
2

𝐼 √𝜋21
𝐻

𝑇

√𝜋22
𝐻

𝑇

0 0

∗ ∗ ∗ −𝑋
𝑗

0 0 0

∗ ∗ ∗ ∗ −𝑆 0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

< 0,

𝑋
𝑖
𝑃
𝑖
= 𝐼, 𝑆𝑄 = 𝐼, 𝑖, 𝑗 = 1, 2, 3, . . . , 2

V

(42)

hold, then system (15) with the controller gain matrix 𝐾

has robustly mean square exponential stability with 𝐻
∞

disturbance attenuation level 𝛾.

Proof. It is easy to obtain that (20) and (21) can be deduced
from (41) and (42), respectively. Then from Theorem 6, it
can be verified that closed-loop system (15) is mean square
exponentially stable with 𝑤(𝑘) = 0.

For the nonzero𝑤(𝑘), using the same Lyapunov function
candidates as in Theorem 6, the following relations can be
obtained:
Δ𝑉
1
[𝑥 (𝑘 + 1)]

= 𝐸 [𝑉
1
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] − 𝜆

1
𝑉
1
(𝑥 (𝑘) , 𝜉 (𝑘))

≤ (

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝐴
𝑖
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘))

𝑇

× (𝜋
11

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝑃

𝑗
+ 𝜋
12
𝑄)

⋅ (

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝐴
𝑖
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘))

− 𝜆
1
𝑥
𝑇

(𝑘)(

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝑃
𝑖
)𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘) 𝑈
𝑇

𝑈𝑥 (𝑘) − 𝑓

𝑇

(𝑥, 𝑘) 𝑓 (𝑥, 𝑘) ,

Δ𝑉
2
[𝑥 (𝑘 + 1)]

= 𝐸 [𝑉
2
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] − 𝜆

2
𝑉
2
(𝑥 (𝑘) , 𝜉 (𝑘))

≤ (𝐴
2
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘))

𝑇

× (𝜋
21

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝑃

𝑗
+ 𝜋
22
𝑄)

⋅ (𝐴
2
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘))

− 𝜆
2
𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) + 𝑥
𝑇

(𝑘) 𝑈
𝑇

𝑈𝑥 (𝑘)

− 𝑓

𝑇

(𝑥, 𝑘) 𝑓 (𝑥, 𝑘) .

(43)

From inequalities (43), we have

Δ𝑉
1
[𝑥 (𝑘 + 1)] + 𝑧

𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

≤

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘)

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝜂

𝑇

(𝑘) Ξ
1
𝜂 (𝑘) ,

(44)

Δ𝑉
2
[𝑥 (𝑘 + 1)] + 𝑧

𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

≤

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝜂

𝑇

(𝑘) Ξ
2
𝜂 (𝑘) ,

(45)

where

𝜂 (𝑘) = [𝑥
𝑇

(𝑘) 𝑓

𝑇

(𝑥, 𝑘) 𝑤
𝑇

(𝑘)]

𝑇

,

Ξ
1
=
[

[

[

𝜓
1
𝐴
𝑇

𝑖
(𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄) 𝐴

𝑇

𝑖
(𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄)𝐻

∗ 𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄 − 𝐼 (𝜋

11
𝑃
𝑗
+ 𝜋
12
𝑄)𝐻

∗ ∗ 𝜑
1

]

]

]

,

Ξ
2
=
[

[

[

𝜓
2
𝐴

𝑇

2
(𝜋
21
𝑃
𝑗
+ 𝜋
22
𝑄) 𝐴

𝑇

2
(𝜋
21
𝑃
𝑗
+ 𝜋
22
𝑄)𝐻

∗ 𝜋
21
𝑃
𝑗
+ 𝜋
22
𝑄 − 𝐼 (𝜋

21
𝑃
𝑗
+ 𝜋
22
𝑄)𝐻

∗ ∗ 𝜑
2

]

]

]

,

𝜓
1
= 𝐴
𝑇

𝑖
(𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄)𝐴
𝑖
− 𝜆
1
𝑃
𝑖
+ 𝐶

𝑇

𝐶 + 𝑈
𝑇

𝑈,

𝜓
2
= 𝐴

𝑇

2
(𝜋
21
𝑃
𝑗
+ 𝜋
22
𝑄)𝐴
2
− 𝜆
2
𝑄 + 𝐶

𝑇

𝐶 + 𝑈
𝑇

𝑈,

𝜑
1
= 𝐻

𝑇

(𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄)𝐻 − 𝛾

2

𝐼,

𝜑
2
= 𝐻

𝑇

(𝜋
21
𝑃
𝑗
+ 𝜋
22
𝑄)𝐻 − 𝛾

2

𝐼.

(46)

In terms of the Schur complement, we obtain

[

[

[

[

[

[

[

−𝜆
1
𝑃
𝑖
+ 𝐶

𝑇

𝐶 + 𝑈

𝑇

𝑈 0 0 √𝜋11
𝐴
𝑇

𝑖
√𝜋12

𝐴
𝑇

𝑖

∗ −𝐼 0 √𝜋11
𝐼 √𝜋12

𝐼

∗ ∗ −𝛾
2

𝐼 √𝜋11
𝐻

𝑇

√𝜋12
𝐻

𝑇

∗ ∗ ∗ −𝑃
−1

𝑗
0

∗ ∗ ∗ ∗ −𝑄
−1

]

]

]

]

]

]

]

< 0,

(47)

where 𝐴
𝑖
= 𝐴
𝑖
+ 𝐵
𝑖
𝐾,

[

[

[

[

[

[

[

−𝜆
2
𝑄 + 𝐶

𝑇

𝐶 + 𝑈

𝑇

𝑈 0 0 √𝜋21
𝐴

𝑇

2
√𝜋22

𝐴

𝑇

2

∗ −𝐼 0 √𝜋21
𝐼 √𝜋22

𝐼

∗ ∗ −𝛾
2

𝐼 √𝜋21
𝐻

𝑇

√𝜋22
𝐻

𝑇

∗ ∗ ∗ −𝑃
−1

𝑗
0

∗ ∗ ∗ ∗ −𝑄
−1

]

]

]

]

]

]

]

< 0.

(48)

In light of Lemma 1, if equalities (47) and (48) hold, then
combining (44) and (45), we have that
𝐸 [𝑉
1
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] < 𝜆

1
𝑉
1
(𝑥 (𝑘) , 𝜉 (𝑘)) − 𝐽 (𝑘) ,

𝐸 [𝑉
2
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] < 𝜆

2
𝑉
2
(𝑥 (𝑘) , 𝜉 (𝑘)) − 𝐽 (𝑘) ,

(49)

where 𝐽(𝑘) = 𝑧𝑇(𝑘)𝑧(𝑘) − 𝛾2𝑤𝑇(𝑘)𝑤(𝑘).
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Combining (22) and (49), it can be seen that

𝐸 [𝑉
𝜎(𝑘)

(𝑥 (𝑘) , 𝜉 (𝑘))]

< 𝐸
[

[

𝜇𝜆

𝑘−𝑘𝑞

𝜎(𝑘𝑞)
𝑉
𝜎(𝑘𝑞−1)

(𝑘
𝑞−1
) −

𝑘−1

∑

𝑠=𝑘𝑞

𝜆
𝑘−𝑠−1

𝜎(𝑘𝑞)
𝐽 (𝑠)

]

]

< 𝐸

{

{

{

𝜇𝜆

𝑘−𝑘𝑞

𝜎(𝑘𝑞)

[

[

𝜆

𝑘𝑞−𝑘𝑞−1

𝑘𝑞−1

𝑉
𝜎(𝑘𝑞−1)

(𝑘
𝑞−1
)−

𝑘𝑞−1

∑

𝑠=𝑘𝑞−1

𝜆

𝑘𝑞−𝑠−1

𝜎(𝑘𝑞−1)
𝐽 (𝑠)

]

]

−

𝑘−1

∑

𝑠=𝑘𝑞

𝜆
𝑘−𝑠−1

𝜎(𝑘𝑞)
𝐽 (𝑠)

}

}

}

...

< 𝐸
[

[

𝜇
𝑁𝜎[𝑘0 ,𝑘)

𝜆
𝑇
1
[𝑘0 ,𝑘)

1
𝜆
𝑇
2
[𝑘0 ,𝑘)

2
𝑉
𝜎(𝑘0)

(𝑘
0
)

−

𝑘−1

∑

𝑠=𝑘0

𝜇
𝑁𝜎[𝑠,𝑘)

𝜆
𝑇
1
[𝑠,𝑘−1)

1
𝜆
𝑇
2
[𝑠,𝑘−1)

2
𝐽 (𝑠)

]

]

.

(50)

Since𝑉
𝜎(𝑘)

> 0 and the zero-initial state assumption, it can be
seen that

𝐸
[

[

𝑘−1

∑

𝑠=𝑘0

𝜇
𝑁𝜎[𝑠,𝑘)

𝜆
𝑇
1
[𝑠,𝑘−1)

1
𝜆
𝑇
2
[𝑠,𝑘−1)

2
𝐽 (𝑠)

]

]

< 0. (51)

From (34), (51) can be written as

𝐸
[

[

𝑘−1

∑

𝑠=𝑘0

𝜇
𝑁𝜎[𝑠,𝑘)

𝜆
𝑘−1−𝑠

𝐽 (𝑠)
]

]

< 0. (52)

Multiplying both sides of inequality (52) by −𝑁
𝜎
[0, 𝑘), we can

obtain

𝐸
[

[

𝜇
−𝑁𝜎[0,𝑘)

𝑘−1

∑

𝑠=𝑘0

𝜇
𝑁𝜎[𝑠,𝑘)

𝜆
(𝑘−1−𝑠)

𝑧
𝑇

(𝑠) 𝑧 (𝑠)
]

]

< 𝐸
[

[

𝜇
−𝑁𝜎[0,𝑘)

𝑘−1

∑

𝑠=𝑘0

𝜇
𝑁𝜎[𝑠,𝑘)

𝜆
(𝑘−1−𝑠)

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)
]

]

,

(53)

which is equivalent to

𝐸
[

[

𝑘−1

∑

𝑠=𝑘0

𝜇
−𝑁𝜎[0,𝑠)

𝜆
(𝑘−1−𝑠)

𝑧
𝑇

(𝑠) 𝑧 (𝑠)
]

]

< 𝐸
[

[

𝑘−1

∑

𝑠=𝑘0

𝜇
−𝑁𝜎[0,𝑠)

𝜆
(𝑘−1−𝑠)

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)
]

]

.

(54)

Then, from Definition 4 and (24)

𝑁
𝜎
[0, 𝑠) ≤

𝑠

𝑇
𝑎

< 𝑠 ⋅max {𝜋
12
, 𝜋
21
} < 𝑠 ⋅ (−

ln 𝜆
ln 𝜇

) , (55)

we have

𝐸
[

[

𝑘−1

∑

𝑠=𝑘0

𝜇
−𝑁𝜎[0,𝑠)

𝜆
(𝑘−1−𝑠)

𝑧
𝑇

(𝑠) 𝑧 (𝑠)
]

]

> 𝐸
[

[

𝑘−1

∑

𝑠=𝑘0

𝜇
𝑠⋅ln𝜆/ ln 𝜇

𝜆
(𝑘−1−𝑠)

𝑧
𝑇

(𝑠) 𝑧 (𝑠)
]

]

= 𝐸
[

[

𝑘−1

∑

𝑠=𝑘0

𝜆
(𝑘−1)

𝑧
𝑇

(𝑠) 𝑧 (𝑠)
]

]

,

𝐸
[

[

𝑘−1

∑

𝑠=𝑘0

𝜇
−𝑁𝜎[0,𝑠)

𝜆
(𝑘−1−𝑠)

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)
]

]

< 𝐸
[

[

𝑘−1

∑

𝑠=𝑘0

𝜆
(𝑘−1−𝑠)

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)
]

]

.

(56)

Therefore

𝐸
[

[

𝑘−1

∑

𝑠=𝑘0

𝜆
(𝑘−1)

𝑧
𝑇

(𝑠) 𝑧 (𝑠)
]

]

< 𝐸
[

[

𝑘−1

∑

𝑠=𝑘0

𝜆
(𝑘−1−𝑠)

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)
]

]

,

(57)

which implies that

𝐸
[

[

∞

∑

𝑠=𝑘0

𝑧
𝑇

(𝑠) 𝑧 (𝑠)

∞

∑

𝑘=𝑠+1

𝜆
(𝑘−1)

]

]

< 𝐸
[

[

∞

∑

𝑠=𝑘0

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)

∞

∑

𝑘=𝑠+1

𝜆
(𝑘−1−𝑠)

]

]

.

(58)

Then

𝐸
[

[

∞

∑

𝑠=𝑘0

𝜆
𝑠

𝑧
𝑇

(𝑠) 𝑧 (𝑠)
]

]

< 𝐸
[

[

∞

∑

𝑠=𝑘0

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)
]

]

. (59)

By Definition 5, system (15) has an exponential 𝐻
∞

perfor-
mance 𝛾. This completes the proof.

Remark 9. It should be pointed out that the conditions
proposed inTheorem 8 are not standard LMIs. In this paper,
it is suggested to use the cone complementarity linearization
(CCL) algorithm to solve this problem [26]; a nonlinear
constraint can be converted to a linear optimization problem
with a rank constraint.
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Remark 10. In this paper, the mean square exponential
𝐻
∞

performance of the system (15) can be guaranteed,
which means the noise attenuation performance is different
when the decay degree of the system is different, and the
decay degree has a close relation with the elements of the
transition probabilities. Note that the scalar 𝜆 in the sequel
symbolizes the decreasing rate of the Lyapunov function to
be constructed for each subsystem fromTheorem 6. Then, if
𝜆 → 1, the evaluated performance index will approach the
normal𝐻

∞
performance for the whole time domain.

4. Numerical Example

In this section, we present an example to illustrate the effec-
tiveness of the proposed approach. Consider the following
system:

𝑥̇ (𝑡) = [

−1 1

0 −0.1
] 𝑥 (𝑡) + [

0

0.1
] 𝑢 (𝑡)

+ [

0.06𝑥
1
sin𝑥
1

0.01𝑥
2
cos𝑥
2

] + [

0.05

0.01
]𝑤 (𝑡) ,

𝑧 (𝑡) = [0.1 0.5] 𝑥 (𝑡) .

(60)

Let the sampling period be 𝑇 = 0.3 s, and 0 ≤ 𝜏
𝑘
≤ 0.1 s.

Assume that the transition probability matrix of stochastic
switching signals is given as 𝑃 = [

0.8 0.2

0.6 0.4
]; the corresponding

matrices are given by

𝐴
1
=
[

[

0.5488 0.2219 0

0 0.9704 0

0 0 0

]

]

,

𝐴
2
=
[

[

0.5488 0.2219 0.1

0 0.9704 0

0 0 0

]

]

,

𝐴
3
=
[

[

0.5488 0.2219 −0.0980

0 0.9704 0.0098

0 0 0

]

]

,

𝐴
4
=
[

[

0.5488 0.2219 0.0020

0 0.9704 0.0098

0 0 0

]

]

,

𝐴
2
=
[

[

0.5488 0.2219 0.0037

0 0.9704 0.0296

0 0 1

]

]

, 𝐵
1
=
[

[

0.0037

0.0296

1

]

]

,

𝐵
2
=
[

[

−0.0963

0.0296

1

]

]

, 𝐵
3
=
[

[

0.1017

0.0198

1

]

]

,

𝐵
4
=
[

[

0.1017

0.0198

1

]

]

, 𝐻 =
[

[

0.0116

0.0030

0

]

]

,

𝑈 = diag {0.2, 0.2, 0} , 𝐶 = [0.1 0.5 0] .

(61)
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Figure 1: State trajectories of the closed-loop system.

For subsystem 2 without state feedback, 𝐴
2
is an unstable

matrix, and 𝜆
2
> 1. By Theorem 6, we can get 0 < 𝜆

1
< 1.

Take 𝜆
1
= 0.45, 𝜆

2
= 2; then 𝜆 = 0.6533 < 1, which satisfies

the condition (16). It is assumed that 𝛾 = 2; solving LMIs (41)
and (42) inTheorem 8, we get the following solutions:

𝑋
1
=
[

[

2.3889 −0.1809 0.9960

−0.1809 0.0703 −0.8737

0.9960 −0.8737 40.8886

]

]

,

𝑋
2
=
[

[

6.4614 −0.1005 −31.2945

−0.1005 0.0663 −1.2282

−31.2945 −1.2282 275.1873

]

]

,

𝑋
3
=
[

[

7.8714 −0.3703 43.1660

−0.3703 0.0723 −1.6709

43.1660 −1.6709 343.6616

]

]

,

𝑋
4
=
[

[

2.4000 −0.1227 4.0524

−0.1227 0.2325 −11.7220

4.0524 −11.7220 145.1491

]

]

,

𝑆 =
[

[

9.7289 −2.4859 9.0787

−2.4859 0.7924 −4.3508

9.0787 −4.3508 85.3273

]

]

.

(62)

Then the controller gain can be obtained:

𝐾 = [−0.8405 −14.2332] . (63)

The state trajectories of the NCS and the corresponding
switching signal are shown in Figures 1 and 2, respectively,
where the initial condition 𝑥

0
= [−1 1]

𝑇 and 𝑤(𝑘) =

0.05 exp(−0.01𝑘).
From simulation results, it can be seen that the NCS

is robustly mean square exponentially stable and the 𝐻
∞

disturbance attenuation level 𝛾 = 2.
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Figure 2: The stochastic switching signal.

5. Conclusions

In this paper, a discrete-time switched system with two
subsystems has been presented to model the NCS with time
delay and packet dropout. A new approach by using the
average dwell time method is proposed to study the robust
stabilization and 𝐻

∞
control of the addressed NCS. Finally,

a numerical example has been given to demonstrate the
effectiveness of the proposed method.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China under Grants nos. 60974027 and
61273120.

References

[1] G. P. Liu, Y. Q. Xia, J. Chen, D. Rees, and W. S. Hu, “Networked
predictive control of systems with random network delays in
both forward and feedback channels,” IEEE Transactions on
Industrial Electronics, vol. 54, no. 3, pp. 1282–1297, 2007.

[2] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of
networked control systems,” IEEE Control Systems Magazine,
vol. 21, no. 1, pp. 84–97, 2001.

[3] H. Song, L. Yu, and W. A. Zhang, “Stabilisation of networked
control systems with communication constraints and multiple
distributed transmission delays,” IET ControlTheory & Applica-
tions, vol. 3, no. 10, pp. 1307–1316, 2009.

[4] W. A. Zhang and L. Yu, “Output feedback stabilization of
networked control systems with packet dropouts,” IEEE Trans-
actions on Automatic Control, vol. 52, no. 9, pp. 1705–1710, 2007.

[5] W. A. Zhang and L. Yu, “A robust control approach to stabiliza-
tion of networked control systems with time-varying delays,”
Automatica, vol. 45, no. 10, pp. 2440–2445, 2009.

[6] L. Zhang, Y. Shi, T. Chen, and B. Huang, “A new method for
stabilization of networked control systemswith randomdelays,”
IEEE Transactions on Automatic Control, vol. 50, no. 8, pp. 1177–
1181, 2005.

[7] P. Seiler and R. Sengupta, “An 𝐻
∞

approach to networked
control,” IEEE Transactions on Automatic Control, vol. 50, no.
3, pp. 356–364, 2005.
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