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Missing values are prevalent in microarray data, they course negative influence on downstreammicroarray analyses, and thus they
should be estimated from known values.We propose a BPCA-iLLSmethod, which is an integration of two commonly usedmissing
value estimation methods—Bayesian principal component analysis (BPCA) and local least squares (LLS).The inferior row-average
procedure in LLS is replaced with BPCA, and the least squares method is put into an iterative framework. Comparative result shows
that the proposedmethod has obtained the highest estimation accuracy across all missing rates on different types of testing datasets.

1. Introduction

Data generated from DNA microarray data is useful for var-
ious biological applications; the data is in the form a large
matrices. Generally, a row in a matrix represents a gene, and
a column represents an experimental condition. But as large
matrices, the data often suffer from missing values due to
technical reasons such as spotting problems and background
noise [1]. However, downstream analyses always need full
matrices as input; thus these missing values should be
estimated from existing values. Various methods to estimate
missing values in microarray data have been proposed in
the past decades. Generally, methods to estimate missing
values can be divided into four categories [2]: (i) global based
methods, (ii) local based methods, (iii) hybrid methods, and
(iv) knowledge-based methods. Singular value decomposi-
tion (SVD) [3] and Bayesian principal component analysis
(BPCA) [4] are two major global based approaches. SVD
estimates the missing value 𝑗 in gene 𝑖 by first regressing
this gene against 𝐾 eigengenes and use the coefficients of the
regression to reconstruct 𝑗 from a linear combination of the

𝑘 eigengenes. BPCA estimates the target gene (i.e., a gene
that contains missing values) by a linear combination of 𝐾
principal axis vectors, where the parameters are identified by
a Bayesian estimation method. Local based category includes
some classical and newly proposed methods. The most well-
studied local based method is local least squares (LLS) [5].
LLS uses a multiple regression model to estimate the missing
values from𝐾 nearest neighbor genes of the target gene.Most
recently proposed local methods are based on LLS, including
iterated Local Least Squares (iLLS), weighted local least
squares (wLLS) and iterative bicluster-based least squares (bi-
iLS). Hybrid methods aim to capture both global and local
correlations in the data. LinCmb [6] and EMDI [7] are two
typical hybrid methods which estimate the missing values
by a combination of other estimation methods from global
approaches and local approaches. In the knowledge-based
category, domain biological knowledge or external informa-
tion is integrated into the estimation process.

Among all kinds of microarray missing value estimation
methods, BPCA and local least squares (LLS) are two most
widely used approaches. The former is based on the global
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structure of the matrix, and the latter is based on local sim-
ilarity of the matrix. According to a survey [8] about dif-
ferent microarray missing value estimation methods, BPCA
performs better than LLS on datasets with lower complexity,
whereas due to another survey [9], LLS is superior than
BPCA in the presence of data with dominant local similarity
structures. This phenomenon inspires us to integrate the two
methods, with the hope of improving the estimation accuracy
and robustness. The idea of iterated local least squares again
inspired us to put the integrated method into an iterative
framework, which will further improve the estimation accu-
racy.Wewill give a brief review of BPCAandLLS in Section 2,
the new method will be described in Section 3, comparative
test of the proposedmethodwith LLS and BPCAwill be given
Section 4, and a conclusion is drawn in Section 5.

2. Brief Review of BPCA and LLS

2.1. Bayesian Principal Component Analysis. Bayesian meth-
ods have been widely used in many fields such as face recog-
nition and decision making [10–13], and it also has successful
application in microarray missing value estimation. Bayesian
principal component analysis (BPCA) represents the 𝐷-
dimensional microarray expression vectors Y as a linear
combination of 𝐾 (𝐾 < 𝐷) principal axis vectors 𝑤𝑙 (1 ≤
𝑙 ≤ 𝐾):

𝑦 =
𝐾

∑
𝑙=1

𝑥𝑙𝑤𝑙 + 𝜀, (1)

where the coefficient 𝑥𝑙 is called a factor score and 𝜀 denotes
the residual error. The principal axis vectors are obtained by
computing the eigenvalues and eigenvectors of the covariance
matrix of the dataset Y. As there are missing values in the
original matrix Y, the principal axis vectors are separated
into two parts as W = (Wobs,Wmiss), corresponding to the
observed part and missing part, respectively. Factor scores
𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑘) are obtained by minimizing the residual
error of the observed part:

err =
𝑦

obs
− Wobs

𝑥


2

. (2)

Equation (2) is a least squares problem which can be solved
easily in BPCA. By using the factor scores 𝑥 and Wmiss, the
missing part of the dataset is estimated as

𝑦
miss

= Wmiss
𝑥. (3)

In BPCA, the factor scores 𝑥 and the residual error 𝜀 in
(1) are assumed to obey normal distributions; BPCA utilizes a
probabilistic PCA (PPCA) model [14] to estimate parameters
in the normal distribution. The parameter W, along with
another two parameters 𝜇 and 𝜏 in the normal distribution,
forms a parameter set 𝜃 = {W, 𝜇, 𝜏}. BPCA introduces a
Bayesian estimation method for the PPCA model, where the
posterior distributions of 𝜃 and Ymiss are estimated by a
variational Bayes algorithm [15] simultaneously.

2.2. Local Least Squares. Local least squares (LLS) uses the
linear correlation of the target gene and its 𝑘 nearest neigh-
bors to recover unknown entries in the target gene. To explain
how LLS works, we take an 𝑚 × 𝑛 microarray matrix as an
example. Assuming that gene 𝑦 has 𝑝 missing values, take 𝑔1
and its 𝑘nearest neighbors𝑔𝑠1, 𝑔𝑠2, . . . , 𝑔𝑠𝑘 as a columnvector,
where in finding the nearest neighbors, the measurement can
be 𝑙2-norm distance or Pearson’s correlation; then, rewrite the
vector as (4):

(

𝑔1
𝑔𝑠1
𝑔𝑠2
...

𝑔𝑠𝑘

)

= (
𝛼 w𝑇
B A )

= (

𝛼1 𝛼2 ⋅ ⋅ ⋅ 𝛼𝑝 𝑤1 𝑤2 ⋅ ⋅ ⋅ 𝑤𝑛−𝑝
𝐵1,1 𝐵1,2 ⋅ ⋅ ⋅ 𝐵1,𝑝 𝐴1,1 𝐴1,2 ⋅ ⋅ ⋅ 𝐴1,𝑛−𝑝
𝐵2,1 𝐵2,2 ⋅ ⋅ ⋅ 𝐵2,𝑝 𝐴2,1 𝐴2,2 ⋅ ⋅ ⋅ 𝐴2,𝑛−𝑝
...

...
...

...
...

...
...

...
𝐵𝑘,1 𝐵𝑘,2 ⋅ ⋅ ⋅ 𝐵𝑘,𝑝 𝐴𝑘,1 𝐴𝑘,2 ⋅ ⋅ ⋅ 𝐴𝑘,𝑛−𝑝

).

(4)

In (4), 𝛼 is the vector of unknown entries of the target
gene and w𝑇 is the vector of known entries of the target gene.
B and A are the 𝑘 neighbors’ corresponding columns with 𝛼
and w𝑇, respectively. A linear coefficient vector X is estab-
lished as a least squares problem with A𝑇 and w:

min
X

A
𝑇X − w . (5)

Then the unknown entries of the target gene can be recon-
structed by a linear combination of B𝑇 and X:

𝛼
𝑇

= (𝑎1 ⋅ ⋅ ⋅ 𝑎𝑝)
𝑇

= B𝑇X = B𝑇(A𝑇)
†

w, (6)

where (A𝑇)† is the pseudoinverse ofA𝑇. Repeat the procedure
for all rows that have missing values and the full matrix can
be recovered.

To estimate a proper 𝑘 value in finding 𝑘 nearest neigh-
bors, LLS [5] provides amethod like this. First, erase a certain
number of known entries as missing values. Then, estimate
the artificial missing matrix by using different 𝑘 neighbors by
LLS. At last, compare these estimatedmatrices with the actual
matrix; the 𝑘 value corresponding to the highest accuracy is
chosen to be the optimal parameter.

3. BPCA-iLLS

Note that in LLS, in order to find 𝑘 nearest neighbors and
to estimate an optimal 𝑘 value, a complete matrix is needed.
However, in many cases, almost all rows in amicroarraymat-
rix contain missing values, which makes the distances bet-
ween the target gene and other genes unable to be mea-
sured. To solve this problem, LLS [5] fills all missing values
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in the target gene by the row’s average value first. But in
our experiment, we found that row-average cannot reflect the
real structure of the dataset. Because row-average only uses
the information of an individual row, the missing values in a
target gene do not only rely on the known values in its own
row. In the proposedBPCA-iLLSmethod, we replace the row-
average procedure in LLS with BPCA. The flowchart of the
proposed method is shown in Figure 1.

First, the input incomplete matrix is estimated by BPCA,
to get a complete matrix. Next, this complete matrix is used
as a temporarymatrix for a further LLS procedure. In the LLS
procedure, the optimal 𝑘 value is estimated on this temporary
matrix, and this 𝑘 value is used to find matrices A and B.
Subsequently, the missing values in every target gene are
estimated by matrix B and the coefficient vectorX. LLS is put
into an iterative framework in the proposed method; that is,
the estimated values by LLS are reused to form the temporary
matrix in every iteration, and matrices A and B are refined
in every iteration. It can be seen from the flowchart that the
temporary matrices are different in each iteration. The initial
temporary matrix is estimated by BPCA; following that, this
matrix turns into the completematrix that is estimated by LLS
in each iteration. It should be mentioned that if the number
of complete rows in the original incomplete matrix exceeds
a preset threshold (e.g., 400 in LLS [5]), only complete rows
are used to form the initial temporary matrix, which will
highlight the original information of the matrix. This phe-
nomenon happens only when the missing rates are low
(typically below 5%). Inmost cases, the initial temporarymat-
rices are BPCA-estimated ones in our proposed method. By
replacing the row-average procedure in LLS by BPCA, and
refining the temporary matrix in each iteration, the proposed
method has the advantage over LLS and BPCA to be more
robust on all kinds of datasets and has the ability to reduce
the estimation error.

4. Comparative Result

4.1. Methods and Evaluation. We compare the proposed
BPCA-iLLSmethodwith BPCA and LLS.The only parameter
of BPCA (number of principal axis vectors) is set to its default
value, and the only parameter of LLS (number of neighbor
genes) is learned by its heuristic method. For the proposed
method, the number of iterations is a new parameter, and in
our experiments, we set this parameter to be 5 because the
estimation results do not change much after 5 iterations.

The accuracy is evaluated by normalized root mean
square error (NRMSE):

NRMSE =

√∑
𝑁

𝑗=1
(𝑦𝑗 − �̂�

𝑗
)
2

/𝑁

𝜎𝑦
,

(7)

where 𝑦𝑗 is the real value, �̂�𝑗 is the estimated value, and 𝜎𝑦 is
the standard deviation for the 𝑁 actual values of the missing
entries. A smaller NRMSE represents a higher accuracy. The
same evaluation criterion was also used in LLS, BPCA, and a
survey of different missing value estimation methods [9].
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Figure 1: Flowchart of BPCA-iLLS.

Table 1: Testing datasets.

Dataset Reference Original size Complete size Type
CDC15 28 [16] 6178 × 41 869 × 41 TS
SP ALPHA [16] 6178 × 18 4489 × 18 TS
NCI60 [17] 9706 × 60 2266 × 60 NTS
Yoshi [18] 6166 × 24 4380 × 24 MIX

4.2. Datasets. Three types of datasets are tested for the pro-
posedmethod, they are time series data (TS), non-time-series
data (NTS), and mixed data (MIX). Table 1 shows details of
the testing datasets. Here, CDC15 28 is the same time series
data as what was used in survey [9]; SP ALPHAwas also used
in [5] to test the performance of LLS. NCI60 and Yoshi come
from the non-time-series data and mixed data in survey [9],
respectively.

All original datasets contain missing values. To compute
the estimation error rates, only complete rows of these
datasets are used. A number of entries are randomly removed
from the complete part to get artificial missing values in
different missing rates. As the real values of these entries are
actually known, the error rates can be calculated following
(7). The same testing method was also employed in BPCA,
LLS, and surveys [2, 8, 9].

4.3. Experimental Result. We estimate different rates of sim-
ulated missing values on the abovementioned datasets by
three comparative methods: LLS, BPCA, and BPCA-iLLS,
and calculate NRMSE following (7). Figures 2(a), 2(b), 2(c),
and 2(d) provide the NRMSE across different missing rates
for the three comparative methods on datasets CDC15 28,
SP ALPHA, NCI60, and Yoshi, respectively. Every NRMSE
is a mean value of five independent experiments.
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Figure 2: NRMSE on the four testing datasets. (a) CDC15 28, (b) SP ALPHA, (c) NIC60, and (d) Yoshi.

It can be seen from Figure 2 that on all the four
testing datasets, BPCA-iLLS obtains the lowest NRMSE
across all missing rates. LLS outperforms BPCA on datasets
CDC15 28 and NCI60, and BPCA outperforms LLS on
dataset SP ALPHA; this reveals that the two methods are
complementary with each other. As an integration of the
two methods, BPCA-iLLS shows its robustness on different
datasets.

Table 2 shows the computational time of different meth-
ods on dataset CDC15 28. The time is obtained from run-
ning experiments by Matlab R2011b on an ordinary 64 bit
Windows 7 computer with 3.4GHz quad-core processor and
16GB internal memory. Intuitively, as an integration of two
methods, BPCA-iLLS requires more computational time. It
can be seen from Table 2 that the computational time of
BPCA-iLLS is indeed longer than that of BPCA and LLS.

Table 2: Computational time (seconds) on CDC15 28.

Missing rate BPCA LLS BPCA-iLLS
3% 20.90 12.78 41.04
5% 27.86 12.43 47.90
8% 31.33 11.99 49.76
10% 27.23 11.74 46.85
15% 25.14 10.65 37.16
20% 22.25 9.57 34.29

However the increment of time is within a limited scope.
Considering its estimation accuracy, the increment of com-
putational time is acceptable.
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5. Conclusion

Microarray missing value estimation is an important pro-
cedure in biology experiments. As two widely used missing
value estimation methods, Bayesian principal component
analysis (BPCA) and local least squares (LLS) take advantage
of the matrix’s global structure and local structure, respec-
tively; these twomethods are complementarywith each other.
The proposed BPCA-iLLS method is an integration of BPCA
and LLS, which fully exploits the global structure and local
structure of the microarray matrix simultaneously, and the
iterative scheme also helps to reduce the estimation error.
Experimental results show that BPCA-iLLS has obtained the
lowest normalized root mean square error (NRMSE) across
all missing rates on all the testing datasets within an accept-
able computational time. The performance of BPCA-iLLS
also reveals the effectiveness of the integration of both global
and local correlations of the microarray data, and such integ-
ration is one possible future direction of this field.
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