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This paper considers the problemof delay-dependent stability and 𝑙
1
-gain analysis for positive 2D systemswith state delays described

by the Roesser model. Firstly, the copositive-type Lyapunov function method is used to establish the sufficient conditions for the
addressed positive 2D system to be asymptotically stable.Then, 𝑙

1
-gain performance for the system is also analyzed. All the obtained

results are formulated in the form of linear matrix inequalities (LMIs) which are computationally tractable. Finally, an illustrative
example is given to verify the effectiveness of the proposed results.

1. Introduction

2D systems exist in many practical applications, such as
circuits analysis, digital image processing, signal filtering,
and thermal power engineering [1–4]. Thus the analysis
and synthesis of 2D systems are interesting and challenging
problems, and they have received considerable attention; for
example, 2D state-space realization theory was researched in
[5], the stability and 2D optimal control theory was studied
in [6, 7], and 𝐻

∞
control and filtering problem for 2D

systemswere addressed in [8–11]. In addition, linear repetitive
processes, a distinct class of 2D systems, have also been
investigated. For example, the quasi-sliding mode control
problem for linear repetitive processes with unknown input
disturbance was solved in [12].

Themost popular models of two-dimensional (2D) linear
systems were introduced by Roesser [13], Fornasini and
Marchesini [5, 14], and Kurek [15]. These models have been
extended to positive systems in [16–19]. A positive system
means that its state and output are nonnegative whenever the
initial condition and input are nonnegative [19–21]. Positive
2D systems are needed in many cases such as the wave
equation in fluid dynamics and the heat equation which
describes the temperature (using thermodynamic temper-
ature scale) in a given region over time and the Poisson’s

equation. These facts stimulate the research on 2D positive
discrete systems. Reference [22] investigated the choice of the
forms of Lyapunov functions for positive 2D Roesser model.
The problem of stability analysis for 2D positive systems
has been investigated in [17, 23–25]. It should be noted that
although positive 2D systems have been discussed in control
engineering and mathematics literature recently, there are
still many questions which deserve further investigation.

On the other hand, the reaction of real-world systems to
exogenous signals is never instantaneous and, always infected
by certain time delays. For general systems, even nominal
stable systems when were affected by delays may inherit very
complex behaviors such as oscillations, instability, and bad
performance [26], and delayed systems have attracted many
researchers’ attention [27–32]. The reachability, minimum
energy control, and realization problem for positive 2D
discrete-time systems with delays has been analyzed in [18,
33]. And the stability analysis for 2D positive delayed systems
has been investigated in [34–36]. In addition, perturbations
and uncertainties widely exist in the practical systems. In
some cases, the perturbations and unmodeled errors can
be merged into disturbances, which can be supposed to
be bounded in the appropriate norms. It is important and
necessary to establish a criterion evaluating the disturbance
attenuation performance for the positive 2D discrete-time
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systems. However, to the best of our knowledge, there has
been no literature considering the disturbance attenuation
performance for positive 2D systems, which motivates the
present study.

In this paper, we will study the problem of delay-
dependent stability and 𝑙

1
-gain analysis for positive 2D linear

systems with delays. The main theoretical contributions of
this paper are as follows (1) We use 𝑙

1
-gain to evaluate the

disturbance attenuation performance of positive 2D linear
systems. This important performance is firstly considered
for positive 2D systems, and a delay-dependent stability
criterion of these systems with state delays is developed. (2)
Copositive-type Lyapunov function method is firstly used to
analyze delay-dependent stability and 𝑙

1
-gain performance

for positive 2D linear systems. (3) It is significant to char-
acterize conditions under which the positive 2D delayed
system is asymptotically stable. All the developed results are
expressed in terms of feasibility testing of LMIs which is
computationally tractable.

The paper is organized as follows. In Section 2, problem
statement and some definitions concerning the positive 2D
linear systems with delays are given. In Section 3, some
theorems concerning the delay-dependent stability and 𝑙

1
-

gain analysis of positive 2D linear systems are presented.
In Section 4, a numerical example is given to illustrate the
effectiveness of the proposed results. Finally, concluding
remarks are provided in Section 5.

Notations. In this paper, the superscript “𝑇” denotes the
transpose. The notation 𝑋 > 𝑌 (𝑋 ≥ 𝑌) means that matrix
𝑋-𝑌 is positive definite (positive semidefinite, resp.). 𝐴 ⪰

0 (⪯0) means that all entries of matrix 𝐴 are nonnegative
(nonpositive). 𝐴 ≻ 0 (≺ 0) means that all entries of matrix
𝐴 are positive (negative). 𝑅𝑛×𝑚 denotes the set of 𝑛 × 𝑚 real
matrices. The set of real 𝑛 × 𝑚 matrices with nonnegative
entries will be denoted by 𝑅

𝑛×𝑚

+
, 𝑅𝑛
+
denotes the set of

vectors with nonnegative entries, and the set of nonnegative
integers will be denoted by 𝑍

+
. The 𝑛 × 𝑛 identity matrix

will be denoted by 𝐼
𝑛
. The 𝑙

1
norm of a 2D signal 𝑤(𝑖, 𝑗) =

[𝑤
1
(𝑖, 𝑗), 𝑤

2
(𝑖, 𝑗), . . . , 𝑤

𝑚
(𝑖, 𝑗)]
𝑇 is given by

󵄩󵄩󵄩󵄩𝑤 (𝑖, 𝑗)
󵄩󵄩󵄩󵄩1
=

𝑚

∑

𝑘=1

𝑤
𝑘
(𝑖, 𝑗) . (1)

And we say 𝑤(𝑖, 𝑗) ∈ 𝑙
1
, if ‖𝑤(𝑖, 𝑗)‖

1
< ∞.

2. Problem Formulation and Preliminaries

Consider the positive 2D Roesser model with state delays
[25]:

[
𝑥
ℎ
(𝑖 + 1, 𝑗)

𝑥
𝑣
(𝑖, 𝑗 + 1)

] = 𝐴[
𝑥
ℎ
(𝑖, 𝑗)

𝑥
𝑣
(𝑖, 𝑗)

] + 𝐴
𝑑
[
𝑥
ℎ
(𝑖 − 𝑑
ℎ
(𝑖) , 𝑗)

𝑥
𝑣
(𝑖, 𝑗 − 𝑑

𝑣
(𝑗))

]

+ 𝐵𝑤 (𝑖, 𝑗) ,

(1a)

𝑧 (𝑖, 𝑗) = 𝐻𝑥 (𝑖, 𝑗) + 𝐿𝑤 (𝑖, 𝑗) , (1b)

where 𝑖 and 𝑗 are integers in𝑍
+
, 𝑥ℎ(𝑖, 𝑗) is the horizontal state

in 𝑅
𝑛
1

+
, 𝑥𝑣(𝑖, 𝑗) is the vertical state in 𝑅𝑛2

+
, 𝑥(𝑖, 𝑗) is the whole

state in 𝑅𝑛
+
, 𝑤(𝑖, 𝑗) ∈ 𝑅𝑚1

+
is the 𝑙

1
norm bounded disturbance

input, 𝑧(𝑖, 𝑗) ∈ 𝑅𝑚2
+

is the controlled output, and 𝐴, 𝐴
𝑑
, 𝐵,𝐻,

𝐿 ⪰ 0 are system matrices with compatible dimensions. The
matrices are

𝐴 = [
𝐴
11

𝐴
12

𝐴
21

𝐴
22

] , 𝐴
𝑑
= [

𝐴
𝑑11

𝐴
𝑑12

𝐴
𝑑21

𝐴
𝑑22

] , 𝐵 = [
𝐵
1

𝐵
2

] .

(2)

𝑑
ℎ
(𝑖) and 𝑑

𝑣
(𝑗) are delays along horizontal and vertical

directions, respectively.We assume that𝑑
ℎ
(𝑖) and𝑑

𝑣
(𝑗) satisfy

𝑑
ℎ𝐿
≤ 𝑑
ℎ
(𝑖) ≤ 𝑑

ℎ𝐻
, 𝑑

𝑣𝐿
≤ 𝑑
𝑣
(𝑗) ≤ 𝑑

𝑣𝐻
, (3)

where𝑑
ℎ𝐿
,𝑑
ℎ𝐻

and𝑑
𝑣𝐿
,𝑑
𝑣𝐻

denote the lower and upper delay
bounds along horizontal and vertical directions, respectively.
The boundary conditions are defined by

𝑥
ℎ
(𝑖, 𝑗) = ℎ

𝑖𝑗
, ∀0 ≤ 𝑗 ≤ 𝑧

1
, −𝑑
ℎ𝐻

≤ 𝑖 ≤ 0,

𝑥
ℎ
(𝑖, 𝑗) = 0, ∀𝑗 > 𝑧

1
, −𝑑
ℎ𝐻

≤ 𝑖 ≤ 0,

𝑥
𝑣
(𝑖, 𝑗) = 𝑣

𝑖𝑗
, ∀0 ≤ 𝑖 ≤ 𝑧

2
, −𝑑
𝑣𝐻

≤ 𝑗 ≤ 0,

𝑥
𝑣
(𝑖, 𝑗) = 0, ∀𝑖 > 𝑧

2
, −𝑑
𝑣𝐻

≤ 𝑗 ≤ 0,

ℎ
00
= 𝑣
00
,

(4)

where 𝑧
1
< ∞ and 𝑧

2
< ∞ are positive integers, ℎ

𝑖𝑗
∈ 𝑅
𝑛
1

+
and

𝑣
𝑖𝑗
∈ 𝑅
𝑛
2

+
are given vectors.

Definition 1. The 2D positive system (1a) and (1b) with
𝑤(𝑖, 𝑗) = 0 is said to be asymptotically stable if lim

𝑙→∞
𝑋
𝑙
= 0

for all bounded boundary conditions (4), where

𝑋
𝑙
= sup {󵄩󵄩󵄩󵄩𝑥 (𝑖, 𝑗)

󵄩󵄩󵄩󵄩
: 𝑖 + 𝑗 = 𝑙, 𝑖, 𝑗 ≥ 1} . (5)

Definition 2. For 𝛾 > 0, the system (1a) and (1b) is said to be
asymptotically stable with the 𝑙

1
-gain index 𝛾, if the following

conditions hold.

(1) The system (1a) and (1b) with 𝑤(𝑖, 𝑗) = 0 is
asymptotically stable.

(2) Under zero boundary conditions, that is, ℎ
𝑖𝑗
= 0, 𝑣
𝑖𝑗
=

0 in (4), it holds that

∞

∑

𝑖=0

∞

∑

𝑗=0

󵄩󵄩󵄩󵄩𝑧(𝑖, 𝑗)
󵄩󵄩󵄩󵄩1
< 𝛾

∞

∑

𝑖=0

∞

∑

𝑗=0

󵄩󵄩󵄩󵄩𝑤 (𝑖, 𝑗)
󵄩󵄩󵄩󵄩1
, ∀0 ̸=𝑤 (𝑖, 𝑗) ∈ 𝑙

1
.

(6)

Remark 3. From (6), we see that 𝛾 can characterize the
disturbance attenuation performance of the system (1a)
and (1b). The smaller the 𝛾 is, the better the disturbance
attenuation performance is.
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3. Main Results

3.1. Stability Analysis. In this subsection, we focus on the
problem of delay-dependent asymptotically stability analysis
for the positive 2D discrete linear systems with state delays.

Theorem 4. For given positive constants 𝑑
ℎ𝐿
, 𝑑
ℎ𝐻

, 𝑑
𝑣𝐿
, 𝑑
𝑣𝐻
,

the positive 2D system (1a) and (1b) with 𝑤(𝑖, 𝑗) = 0 is
asymptotically stable if there exist vectors 𝑝, 𝑞, 𝜍

1
, 𝜍
2
, 𝜁 ∈ 𝑅

𝑛

+
,

such that

Φ = diag {Φ
1
, Φ
2
, . . . , Φ

𝑛
, Φ
󸀠

1
, Φ
󸀠

2
, . . . , Φ

󸀠

𝑛
, Φ
󸀠󸀠

1
, Φ
󸀠󸀠

2
, . . . , Φ

󸀠󸀠

𝑛
,

Φ
󸀠󸀠󸀠

1
, Φ
󸀠󸀠󸀠

2
, . . . , Φ

󸀠󸀠󸀠

𝑛
} < 0,

(7)

where

Φ
𝑘
=

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

(𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + (𝑎

𝑇

𝑘
+ (𝑑
ℎ𝐻

− 𝑑
ℎ𝐿
) 𝐸
𝑘
) 𝑞

+𝐸
𝑘
𝜁 + (𝑑

2

ℎ𝐻
(𝑎
𝑇

𝑘
− 𝐸
𝑘
) − 𝑑
ℎ𝐻
𝐸
𝑘
) 𝜍
2

+𝑑
2

ℎ𝐻
𝐸
𝑘
𝜍
1
,

1≤𝑘≤𝑛
1
,

(𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + (𝑎

𝑇

𝑘
+ (𝑑
𝑣𝐻

− 𝑑
𝑣𝐿
) 𝐸
𝑘
) 𝑞

+𝐸
𝑘
𝜁+(𝑑
2

𝑣𝐻
(𝑎
𝑇

𝑘
−𝐸
𝑘
)−𝑑
𝑣𝐻
𝐸
𝑘
) 𝜍
2

+𝑑
2

𝑣𝐻
𝐸
𝑘
𝜍
1
,

𝑛
1
+1≤𝑘≤𝑛,

Φ
󸀠

𝑘
=

{{

{{

{

𝑎
𝑇

𝑑𝑘
𝑝 + (𝑎

𝑇

𝑑𝑘
− 𝐸
𝑘
) 𝑞 + 𝑑

2

ℎ𝐻
𝑎
𝑇

𝑑𝑘
𝜍
2
, 1 ≤ 𝑘 ≤ 𝑛

1
,

𝑎
𝑇

𝑑𝑘
𝑝 + (𝑎

𝑇

𝑑𝑘
− 𝐸
𝑘
) 𝑞 + 𝑑

2

𝑣𝐻
𝑎
𝑇

𝑑𝑘
𝜍
2
, 𝑛
1
+ 1 ≤ 𝑘 ≤ 𝑛,

Φ
󸀠󸀠

𝑘
=

{{

{{

{

−𝐸
𝑘
𝜁 + 𝑑
ℎ𝐻
𝐸
𝑘
(𝜍
2
− 𝜍
1
) , 1 ≤ 𝑘 ≤ 𝑛

1
,

−𝐸
𝑘
𝜁 + 𝑑
𝑣𝐻
𝐸
𝑘
(𝜍
2
− 𝜍
1
) , 𝑛

1
+ 1 ≤ 𝑘 ≤ 𝑛,

Φ
󸀠󸀠󸀠

𝑘
=

{{

{{

{

−𝑑
ℎ𝐻
𝐸
𝑘
𝜍
1
, 1 ≤ 𝑘 ≤ 𝑛

1
,

−𝑑
𝑣𝐻
𝐸
𝑘
𝜍
1
, 𝑛
1
+ 1 ≤ 𝑘 ≤ 𝑛,

(8)

with 𝑘 ∈ 𝑛 = {1, 2, . . . , 𝑛}, 𝐸
𝑘
= [

𝑘−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0, 1,

𝑛−𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0], and

𝑎
𝑘
(𝑎
𝑑𝑘
) represents the 𝑘th column vector of matrix 𝐴(𝐴

𝑑
).

Proof. Choose the following copositive Lyapunov-Krasovskii
functional candidate:

𝑉 (𝑖, 𝑗) = 𝑉
ℎ
(𝑖, 𝑗) + 𝑉

𝑣
(𝑖, 𝑗) , (9)

where

𝑉
ℎ
(𝑖, 𝑗) =

5

∑

𝑘=1

𝑉
ℎ

𝑘
(𝑖, 𝑗) ,

𝑉
ℎ

1
(𝑖, 𝑗) = 𝑥

ℎ𝑇
(𝑖, 𝑗) 𝑝

ℎ
,

𝑉
ℎ

2
(𝑖, 𝑗) =

𝑖

∑

𝑟=𝑖−𝑑
ℎ(𝑖)

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝑞

ℎ
,

𝑉
ℎ

3
(𝑖, 𝑗) =

𝑖−1

∑

𝑟=𝑖−𝑑
ℎ𝐻

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝜁

ℎ
,

𝑉
ℎ

4
(𝑖, 𝑗) =

−𝑑
ℎ𝐿

∑

𝑠=−𝑑
ℎ𝐻
+1

𝑖−1

∑

𝑟=𝑖+𝑠

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝑞

ℎ
,

𝑉
ℎ

5
(𝑖, 𝑗) = 𝑑

ℎ𝐻

−1

∑

𝑠=−𝑑
ℎ𝐻

𝑖−1

∑

𝑟=𝑖+𝑠

𝜂
ℎ𝑇
(𝑟, 𝑗) 𝜍

ℎ
,

𝑉
𝑣
(𝑖, 𝑗) =

5

∑

𝑘=1

𝑉
𝑣

𝑘
(𝑖, 𝑗) ,

𝑉
𝑣

1
(𝑖, 𝑗) = 𝑥

𝑣𝑇
(𝑖, 𝑗) 𝑝

𝑣
,

𝑉
𝑣

2
(𝑖, 𝑗) =

𝑗

∑

𝑠=𝑗−𝑑
𝑣(𝑗)

𝑥
𝑣𝑇
(𝑖, 𝑠) 𝑞

𝑣
,

𝑉
𝑣

3
(𝑖, 𝑗) =

𝑗−1

∑

𝑡=𝑗−𝑑
𝑣𝐻

𝑥
𝑣𝑇
(𝑖, 𝑡) 𝜁

𝑣
,

𝑉
𝑣

4
(𝑖, 𝑗) =

−𝑑
𝑣𝐿

∑

𝑠=−𝑑
𝑣𝐻
+1

𝑗−1

∑

𝑡=𝑗+𝑠

𝑥
𝑣𝑇
(𝑖, 𝑡) 𝑞

𝑣
,

𝑉
𝑣

5
(𝑖, 𝑗) = 𝑑

𝑣𝐻

−1

∑

𝑠=−𝑑𝑣
𝐻

𝑗−1

∑

𝑡=𝑗+𝑠

𝜂
𝑣𝑇
(𝑖, 𝑡) 𝜍

𝑣
,

𝜂
ℎ
(𝑟, 𝑗) = [𝑥

ℎ𝑇
(𝑟, 𝑗) 𝛿

ℎ𝑇
(𝑟, 𝑗)]

𝑇

,

𝜂
𝑣
(𝑖, 𝑡) = [𝑥

𝑣𝑇
(𝑖, 𝑡) 𝛿

𝑣𝑇
(𝑖, 𝑡)]
𝑇

,

𝛿
ℎ
(𝑟, 𝑗) = 𝑥

ℎ
(𝑟 + 1, 𝑗) − 𝑥

ℎ
(𝑟, 𝑗) ,

𝛿
𝑣
(𝑖, 𝑡) = 𝑥

𝑣
(𝑖, 𝑡 + 1) − 𝑥

𝑣
(𝑖, 𝑡) ,

(10)

with 𝑝ℎ, 𝑞ℎ, 𝜁ℎ, 𝜍ℎ
1
, and 𝜍ℎ

2
∈ 𝑅
𝑛
1

+
,𝑝𝑣, 𝑞𝑣, 𝜁𝑣, 𝜍𝑣

1
, and 𝜍𝑣

2
∈ 𝑅
𝑛
2

+
,

𝜍
ℎ
= [𝜍
ℎ

1
𝜍
ℎ

2
]
𝑇

∈ 𝑅
2𝑛
1

+
, and 𝜍𝑣 = [𝜍𝑣

1
𝜍
𝑣

2
]
𝑇
∈ 𝑅
2𝑛
2

+
.

Along the trajectory of the system (1a) and (1b), we have

Δ𝑉 (𝑖, 𝑗) = 𝑉
ℎ
(𝑖 + 1, 𝑗) − 𝑉

ℎ
(𝑖, 𝑗) + 𝑉

𝑣
(𝑖, 𝑗 + 1) − 𝑉

𝑣
(𝑖, 𝑗)

=

5

∑

𝑘=1

Δ𝑉
ℎ

𝑘
(𝑖, 𝑗) +

5

∑

𝑘=1

Δ𝑉
𝑣

𝑘
(𝑖, 𝑗) ,

(11)
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where
Δ𝑉
ℎ

1
(𝑖, 𝑗) = 𝑥

ℎ𝑇
(𝑖 + 1, 𝑗) 𝑝

ℎ
− 𝑥
ℎ𝑇
(𝑖, 𝑗) 𝑝

ℎ
,

Δ𝑉
ℎ

2
(𝑖, 𝑗) =

𝑖+1

∑

𝑟=𝑖+1−𝑑
ℎ(𝑖+1)

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝑞

ℎ

−

𝑖

∑

𝑟=𝑖−𝑑
ℎ(𝑖)

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝑞

ℎ

= 𝑥
ℎ𝑇
(𝑖 + 1, 𝑗) 𝑞

ℎ
− 𝑥
ℎ𝑇
(𝑖 − 𝑑
ℎ
(𝑖) , 𝑗) 𝑞

ℎ

+

𝑖

∑

𝑟=𝑖+1−𝑑
ℎ(𝑖+1)

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝑞

ℎ

−

𝑖

∑

𝑟=𝑖+1−𝑑
ℎ(𝑖)

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝑞

ℎ

≤ 𝑥
ℎ𝑇
(𝑖 + 1, 𝑗) 𝑞

ℎ
− 𝑥
ℎ𝑇
(𝑖 − 𝑑
ℎ
(𝑖) , 𝑗) 𝑞

ℎ

+

𝑖

∑

𝑟=𝑖+1−𝑑
ℎ𝐻

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝑞

ℎ

−

𝑖

∑

𝑟=𝑖+1−𝑑
ℎ𝐿

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝑞

ℎ

= 𝑥
ℎ𝑇
(𝑖 + 1, 𝑗) 𝑞

ℎ
− 𝑥
ℎ𝑇
(𝑖 − 𝑑
ℎ
(𝑖) , 𝑗) 𝑞

ℎ

+

𝑟=𝑖−𝑑
ℎ𝐿

∑

𝑟=𝑖+1−𝑑
ℎ𝐻

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝑞

ℎ
,

Δ𝑉
ℎ

3
(𝑖, 𝑗) =

𝑖

∑

𝑟=𝑖+1−𝑑
ℎ𝐻

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝜁

ℎ
−

𝑖−1

∑

𝑟=𝑖−𝑑
ℎ𝐻

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝜁

ℎ

= 𝑥
ℎ𝑇
(𝑖, 𝑗) 𝜁

ℎ
− 𝑥
ℎ𝑇
(𝑖 − 𝑑
ℎ𝐻
, 𝑗) 𝜁
ℎ
,

Δ𝑉
ℎ

4
(𝑖, 𝑗) =

−𝑑
ℎ𝐿

∑

𝑠=−𝑑
ℎ𝐻
+1

𝑖

∑

𝑟=𝑖+1+𝑠

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝑞

ℎ

−

−𝑑
ℎ𝐿

∑

𝑠=−𝑑
ℎ𝐻
+1

𝑖−1

∑

𝑟=𝑖+𝑠

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝑞

ℎ

=

−𝑑
ℎ𝐿

∑

𝑠=−𝑑
ℎ𝐻
+1

[𝑥
ℎ𝑇
(𝑖, 𝑗) 𝑞

ℎ
−𝑥
ℎ𝑇
(𝑖+ 𝑠, 𝑗) 𝑞

ℎ
]

= (𝑑
ℎ𝐻

− 𝑑
ℎ𝐿
) 𝑥
ℎ𝑇
(𝑖, 𝑗) 𝑞

ℎ

−

𝑖−𝑑
ℎ𝐿

∑

𝑟=𝑖−𝑑
ℎ𝐻
+1

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝑞

ℎ
,

Δ𝑉
ℎ

5
(𝑖, 𝑗)

= 𝑑
ℎ𝐻

−1

∑

𝑠=−𝑑
ℎ𝐻

𝑖

∑

𝑟=𝑖+1+𝑠

𝜂
ℎ𝑇
(𝑟, 𝑗) 𝜍

ℎ

− 𝑑
ℎ𝐻

−1

∑

𝑠=−𝑑
ℎ𝐻

𝑖−1

∑

𝑟=𝑖+𝑠

𝜂
ℎ𝑇
(𝑟, 𝑗) 𝜍

ℎ

= 𝑑
ℎ𝐻

−1

∑

𝑠=−𝑑
ℎ𝐻

(𝜂
ℎ𝑇
(𝑖, 𝑗) 𝜍

ℎ
− 𝜂
ℎ𝑇
(𝑖 + 𝑠, 𝑗) 𝜍

ℎ
)

= 𝑑
2

ℎ𝐻
𝜂
ℎ𝑇
(𝑖, 𝑗) 𝜍

ℎ
− 𝑑
ℎ𝐻

𝑖−1

∑

𝑟=𝑖−𝑑
ℎ𝐻

𝜂
ℎ𝑇
(𝑟, 𝑗) 𝜍

ℎ

= 𝑑
2

ℎ𝐻
[𝑥
ℎ𝑇
(𝑖, 𝑗) 𝑥

ℎ𝑇
(𝑖 + 1, 𝑗) − 𝑥

ℎ𝑇
(𝑖, 𝑗)]

[
[

[

𝜍
ℎ

1

𝜍
ℎ

2

]
]

]

− 𝑑
ℎ𝐻
[

𝑖−1

∑

𝑟=𝑖−𝑑
ℎ𝐻

𝑥
ℎ𝑇
(𝑖, 𝑗) 𝑥

ℎ𝑇
(𝑖, 𝑗) − 𝑥

ℎ𝑇
(𝑖 − 𝑑
ℎ𝐻
, 𝑗)]

× [

[

𝜍
ℎ

1

𝜍
ℎ

2

]

]

,

Δ𝑉
𝑣

1
(𝑖, 𝑗) = 𝑥

𝑣𝑇
(𝑖, 𝑗 + 1) 𝑝

𝑣
− 𝑥
𝑣𝑇
(𝑖, 𝑗) 𝑝

𝑣
,

Δ𝑉
𝑣

2
(𝑖, 𝑗) =

𝑗+1

∑

𝑠=𝑗+1−𝑑
𝑣(𝑗+1)

𝑥
𝑣𝑇
(𝑖, 𝑠) 𝑞

𝑣

−

𝑗

∑

𝑠=𝑗−𝑑
𝑣(𝑗)

𝑥
𝑣𝑇
(𝑖, 𝑠) 𝑞

𝑣

= 𝑥
𝑣𝑇
(𝑖, 𝑗 + 1) 𝑞

𝑣
− 𝑥
𝑣𝑇
(𝑖, 𝑗 − 𝑑

𝑣
(𝑗)) 𝑞
𝑣

+

𝑗

∑

𝑠=𝑗+1−𝑑
𝑣(𝑗+1)

𝑥
𝑣𝑇
(𝑖, 𝑠) 𝑞

𝑣

−

𝑗

∑

𝑠=𝑗+1−𝑑
𝑣(𝑗)

𝑥
𝑣𝑇
(𝑖, 𝑠) 𝑞

𝑣

≤ 𝑥
𝑣𝑇
(𝑖, 𝑗 + 1) 𝑞

𝑣
−𝑥
𝑣𝑇
(𝑖, 𝑗− 𝑑

𝑣
(𝑗)) 𝑞
𝑣

+

𝑗

∑

𝑠=𝑗+1−𝑑
𝑣𝐻

𝑥
𝑣𝑇
(𝑖, 𝑠) 𝑞

𝑣

−

𝑗

∑

𝑠=𝑗+1−𝑑
𝑣𝐿

𝑥
𝑣𝑇
(𝑖, 𝑠) 𝑞

𝑣

= 𝑥
𝑣𝑇
(𝑖, 𝑗 + 1) 𝑞

𝑣
− 𝑥
𝑣𝑇
(𝑖, 𝑗 − 𝑑

𝑣
(𝑗)) 𝑞
𝑣

+

𝑗−𝑑
𝑣𝐿

∑

𝑡=𝑗+1−𝑑
𝑣𝐻

𝑥
𝑣𝑇
(𝑖, 𝑡) 𝑞

𝑣
,
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Δ𝑉
𝑣

3
(𝑖, 𝑗) =

𝑗

∑

𝑠=𝑗+1−𝑑
𝑣𝐻

𝑥
ℎ𝑇
(𝑖, 𝑠) 𝜁

𝑣

−

𝑗−1

∑

𝑠=𝑗−𝑑
𝑣𝐻

𝑥
ℎ𝑇
(𝑖, 𝑎) 𝜁

𝑣

= 𝑥
𝑣𝑇
(𝑖, 𝑗) 𝜁

𝑣
− 𝑥
𝑣𝑇
(𝑖, 𝑗 − 𝑑

𝑣𝐻
) 𝜁
𝑣
,

Δ𝑉
𝑣

4
(𝑖, 𝑗) =

−𝑑
𝑣𝐿

∑

𝑠=−𝑑
𝑣𝐻
+1

𝑗

∑

𝑡=𝑗+1+𝑠

𝑥
𝑣𝑇
(𝑖, 𝑡) 𝑞

𝑣

−

−𝑑
𝑣𝐿

∑

𝑠=−𝑑
𝑣𝐻
+1

𝑗−1

∑

𝑡=𝑗+𝑠

𝑥
𝑣𝑇
(𝑖, 𝑡) 𝑞

𝑣

=

−𝑑
𝑣𝐿

∑

𝑠=−𝑑
𝑣𝐻
+1

[𝑥
𝑣𝑇
(𝑖, 𝑗) 𝑞

𝑣
− 𝑥
𝑣𝑇
(𝑖, 𝑗 + 𝑠) 𝑞

𝑣
]

= (𝑑
𝑣𝐻

− 𝑑
𝑣𝐿
) 𝑥
ℎ𝑇
(𝑖, 𝑗) 𝑞

𝑣

−

𝑗−𝑑
𝑣𝐿

∑

𝑡=𝑗−𝑑
𝑣𝐻
+1

𝑥
𝑣𝑇
(𝑖, 𝑡) 𝑞

𝑣
,

Δ𝑉
𝑣

5
(𝑖, 𝑗)

= 𝑑
𝑣𝐻

−1

∑

𝑠=−𝑑𝑣
𝐻

𝑗

∑

𝑡=𝑗+1+𝑠

𝜂
𝑣𝑇
(𝑖, 𝑡) 𝜍

𝑣

− 𝑑
𝑣𝐻

−1

∑

𝑠=−𝑑𝑣
𝐻

𝑗−1

∑

𝑡=𝑗+𝑠

𝜂
𝑣𝑇
(𝑖, 𝑡) 𝜍

𝑣

=𝑑
𝑣𝐻

−1

∑

𝑠=−𝑑
𝑣𝐻

(𝜂
𝑣𝑇
(𝑖, 𝑗) 𝜍

𝑣
−𝜂
𝑣𝑇
(𝑖, 𝑗+𝑠) 𝜍

𝑣
)

= 𝑑
2

𝑣𝐻
𝜂
𝑣𝑇
(𝑖, 𝑗) 𝜍

𝑣
− 𝑑
𝑣𝐻

𝑗−1

∑

𝑡=𝑗−𝑑
𝑣𝐻

𝜂
𝑣𝑇
(𝑖, 𝑡) 𝜍

𝑣

= 𝑑
2

𝑣𝐻
[𝑥
𝑣𝑇
(𝑖, 𝑗) 𝑥

𝑣𝑇
(𝑖, 𝑗 + 1)−𝑥

𝑣𝑇
(𝑖, 𝑗)]

× [

[

𝜍
𝑣

1

𝜍
𝑣

2

]

]

−𝑑
𝑣𝐻

[

[

𝑗−1

∑

𝑡=𝑗−𝑑
𝑣𝐻

𝑥
𝑣𝑇
(𝑖, 𝑗) 𝑥

𝑣𝑇
(𝑖, 𝑗)−𝑥

𝑣𝑇
(𝑖, 𝑗 − 𝑑

𝑣𝐻
)]

]

× [

𝜍
𝑣

1

𝜍
𝑣

2

] .

(12)

Substitute the previously mentioned formulations into (11),
and take

𝑝 = [
𝑝
ℎ

𝑝
𝑣] , 𝑞 = [

𝑞
ℎ

𝑞
𝑣] , 𝜁 = [

𝜁
ℎ

𝜁
𝑣] ,

𝜍
1
= [

[

𝜍
ℎ

1

𝜍
ℎ

1

]

]

, 𝜍
2
= [

[

𝜍
ℎ

2

𝜍
ℎ

2

]

]

,

𝐷
𝐻
= [

𝑑
ℎ𝐻
𝐼
𝑛
1

0

0 𝑑
𝑣𝐻
𝐼
𝑛
2

] , 𝐷
𝐿
= [

𝑑
ℎ𝐿
𝐼
𝑛
1

0

0 𝑑
𝑣𝐿
𝐼
𝑛
2

] ,

𝑥 (𝑖, 𝑗) = [𝑥
ℎ𝑇
(𝑖, 𝑗) 𝑥

𝑣𝑇
(𝑖, 𝑗)]

𝑇

,

𝑥
𝑑
(𝑖, 𝑗) = [𝑥

ℎ𝑇
(𝑖 − 𝑑
ℎ
(𝑖), 𝑗) 𝑥

𝑣𝑇
(𝑖, 𝑗 − 𝑑

𝑣
(𝑗))]
𝑇

,

𝑥
𝐻
(𝑖, 𝑗) = [𝑥

ℎ𝑇
(𝑖 − 𝑑
ℎ𝐻
, 𝑗) 𝑥

𝑣𝑇
(𝑖, 𝑗 − 𝑑

𝑣𝐻
)]
𝑇

,

𝑥
𝑠
(𝑖, 𝑗) = [

[

𝑖−1

∑

𝑟=𝑖−𝑑
ℎ𝐻
+1

𝑥
ℎ𝑇
(𝑟, 𝑗)

𝑗−1

∑

𝑡=𝑗−𝑑
𝑣𝐻+1

𝑥
𝑣𝑇
(𝑖, 𝑡)]

]

𝑇

.

(13)

Then we have

Δ𝑉 (𝑖, 𝑗) = 𝑥
𝑇
(𝑖, 𝑗) {(𝐴

𝑇
− 𝐼
𝑛
) 𝑝 + (𝐴

𝑇
+ 𝐷
𝐻
− 𝐷
𝐿
) 𝑞

+ 𝜁 + 𝐷
2

𝐻
((𝐴
𝑇
− 𝐼
𝑛
) 𝜍
2
+ 𝜍
1
) − 𝐷
𝐻
𝜍
2
}

+ 𝑥
𝑇

𝑑
(𝑖, 𝑗) {𝐴

𝑇

𝑑
𝑝 + (𝐴

𝑇

𝑑
− 𝐼
𝑛
) 𝑞 + 𝐷

2

𝐻
𝐴
𝑇

𝑑
𝜍
2
}

+ 𝑥
𝑇

𝐻
(𝑖, 𝑗) {−𝜁 + 𝐷

𝐻
(𝜍
2
− 𝜍
1
)}

+ 𝑥
𝑇

𝑠
(𝑖, 𝑗) {−𝐷

𝐻
𝜍
1
} .

(14)

If condition (7) holds, one obtains

(𝐴
𝑇
− 𝐼
𝑛
) 𝑝 + (𝐴

𝑇
+ 𝐷
𝐻
− 𝐷
𝐿
) 𝑞 + 𝜁

+ 𝐷
2

𝐻
((𝐴
𝑇
− 𝐼
𝑛
) 𝜍
2
+ 𝜍
1
) − 𝐷
𝐻
𝜍
2
≺ 0,

𝐴
𝑇

𝑑
𝑝 + (𝐴

𝑇

𝑑
− 𝐼
𝑛
) 𝑞 + 𝐷

2

𝐻
𝐴
𝑇

𝑑
𝜍
2
≺ 0,

−𝜁 + 𝐷
𝐻
(𝜍
2
− 𝜍
1
) ≺ 0,

−𝐷
𝐻
𝜍
1
≺ 0.

(15)

It follows that Δ𝑉(𝑖, 𝑗) < 0, which means that

𝑉
ℎ
(𝑖 + 1, 𝑗) + 𝑉

𝑣
(𝑖, 𝑗 + 1) < 𝑉

ℎ
(𝑖, 𝑗) + 𝑉

𝑣
(𝑖, 𝑗) . (16)

Summing up both sides of (16) from 𝐷 to 0 with respect to 𝑖
and from 0 to𝐷with respect to 𝑗, for any nonnegative integer
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𝐷 ≥ max(𝑧
1
, 𝑧
2
), one gets

𝑉
ℎ
(1, 𝐷) + 𝑉

𝑣
(0, 𝐷 + 1) + 𝑉

ℎ
(2, 𝐷 − 1)

+ 𝑉
𝑣
(1, 𝐷) + ⋅ ⋅ ⋅ + 𝑉

ℎ
(𝐷 + 1, 0) + 𝑉

𝑣
(𝐷, 1)

= ∑

𝑖+𝑗=𝐷+1

𝑉
ℎ
(𝑖, 𝑗) + ∑

𝑖+𝑗=𝐷+1

𝑉
𝑣
(𝑖, 𝑗)

= ∑

𝑖+𝑗=𝐷+1

𝑉 (𝑖, 𝑗)

≤ 𝑉
ℎ
(0, 𝐷) + 𝑉

𝑣
(0, 𝐷) + 𝑉

ℎ
(1, 𝐷 − 1)

+ 𝑉
𝑣
(1, 𝐷 − 1) + ⋅ ⋅ ⋅ + 𝑉

ℎ
(𝐷, 0) + 𝑉

𝑣
(𝐷, 0)

= ∑

𝑖+𝑗=𝐷

𝑉 (𝑖, 𝑗) .

(17)

Then from (9), we can conclude that

lim
𝑖+𝑗→∞

𝑥 (𝑖, 𝑗) = 0, (18)

which implies that the system (1a) and (1b) with 𝑤(𝑖, 𝑗) = 0

is asymptotically stable.
This completes the proof.

When 𝑑
ℎ𝐻

= 𝑑
ℎ𝐿
= 𝑑
ℎ
, and 𝑑

𝑣𝐻
= 𝑑
𝑣𝐿
= 𝑑
𝑣
, the system

(1a) and (1b) with 𝑤(𝑖, 𝑗) = 0 is reduced to the following
system:

[
𝑥
ℎ
(𝑖 + 1, 𝑗)

𝑥
𝑣
(𝑖, 𝑗 + 1)

] = 𝐴[
𝑥
ℎ
(𝑖, 𝑗)

𝑥
𝑣
(𝑖, 𝑗)

] + 𝐴
𝑑
[
𝑥
ℎ
(𝑖 − 𝑑
ℎ
, 𝑗)

𝑥
𝑣
(𝑖, 𝑗 − 𝑑

𝑣
)
] , (19)

where 𝑑
ℎ
and 𝑑

𝑣
are constant delays along horizontal and

vertical directions, respectively, and the boundary conditions
are defined in (4). Then we can get the following result.

Corollary 5. For given positive constants 𝑑
ℎ
and 𝑑

𝑣
, the

positive 2D system (19) is asymptotically stable if there exist
vectors 𝑝 and 𝑞 ∈ 𝑅𝑛

+
, such that

Φ̃ = diag {Φ
1
, Φ
2
, . . . , Φ

𝑛
, Φ
󸀠

1
, Φ
󸀠

2
, . . . , Φ

󸀠

𝑛
} < 0, (20)

where

Φ̃
𝑘
= (𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + 𝑎

𝑇

𝑘
𝑞,

Φ̃
󸀠

𝑘
= 𝑎
𝑇

𝑑𝑘
𝑝 + (𝑎

𝑇

𝑑𝑘
− 𝐸
𝑘
) 𝑞,

(21)

with 𝑘 ∈ 𝐾 = {1, 2, . . . , 𝑛}, 𝐸
𝑘
= [

𝑘−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0, 1,

𝑛−𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0], 𝑝,

𝑞 ∈ 𝑅
𝑛

+
, and 𝑎

𝑘
(𝑎
𝑑𝑘
) represents the 𝑘th column vector of matrix

𝐴(𝐴
𝑑
).

Proof. Choose the following copositive Lyapunov-Krasovskii
functional candidate for the system (19):

𝑉 (𝑖, 𝑗) = 𝑉
ℎ
(𝑖, 𝑗) + 𝑉

𝑣
(𝑖, 𝑗) , (22)

where

𝑉
ℎ
(𝑖, 𝑗) =

2

∑

𝑘=1

𝑉
ℎ

𝑘
(𝑖, 𝑗) , 𝑉

ℎ

1
(𝑖, 𝑗) = 𝑥

ℎ𝑇
(𝑖, 𝑗) 𝑝

ℎ
,

𝑉
ℎ

2
(𝑖, 𝑗) =

𝑖

∑

𝑟=𝑖−𝑑
ℎ

𝑥
ℎ𝑇
(𝑟, 𝑗) 𝑞

ℎ
,

𝑉
𝑣
(𝑖, 𝑗) =

2

∑

𝑘=1

𝑉
𝑣

𝑘
(𝑖, 𝑗) , 𝑉

𝑣

1
(𝑖, 𝑗) = 𝑥

𝑣𝑇
(𝑖, 𝑗) 𝑝

𝑣
,

𝑉
𝑣

2
(𝑖, 𝑗) =

𝑗

∑

𝑠=𝑗−𝑑
𝑣

𝑥
𝑣𝑇
(𝑖, 𝑠) 𝑞

𝑣
,

(23)

with 𝑝ℎ, 𝑞ℎ ∈ 𝑅𝑛1
+
, 𝑝𝑣, 𝑞𝑣 ∈ 𝑅𝑛2

+
. Then following the proof line

of Theorem 4, the corollary can be obtained.

3.2. 𝑙
1
-Gain Analysis. The following theorem establishes suf-

ficient condition of the asymptotical stability with 𝑙
1
-gain

performance for the system (1a) and (1b).

Theorem 6. For given positive constants 𝑑
ℎ𝐿
, 𝑑
ℎ𝐻

, 𝑑
𝑣𝐿
, 𝑑
𝑣𝐻
,

and 𝛾, the positive 2D system (1a) and (1b) is asymptotically
stable with the 𝑙

1
-gain index 𝛾 if there exist vectors 𝑝 ∈ 𝑅

𝑛

+
,

𝑞 ∈ 𝑅
𝑛

+
, 𝜍
1
∈ 𝑅
𝑛

+
, 𝜍
2
∈ 𝑅
𝑛

+
, and 𝜁 ∈ 𝑅𝑛

+
, such that

Φ = diag {Φ
1
, Φ
2
, . . . , Φ

𝑛
, Φ
󸀠

1
, Φ
󸀠

2
, . . . , Φ

󸀠

𝑛
, Φ
󸀠󸀠

1
, Φ
󸀠󸀠

2
, . . . , Φ

󸀠󸀠

𝑛
,

Φ
󸀠󸀠󸀠

1
, Φ
󸀠󸀠󸀠

2
, . . . , Φ

󸀠󸀠󸀠

𝑛
, Τ
1
, Τ
2
, . . . , Τ

𝑚
} < 0,

(24)

whereΦ󸀠
𝑘
, Φ󸀠󸀠
𝑘
, and Φ󸀠󸀠󸀠

𝑘
are denoted as in Theorem 4, and

Φ
𝑘

=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

(𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + (𝑎

𝑇

𝑘
+ (𝑑
ℎ𝐻

− 𝑑
ℎ𝐿
) 𝐸
𝑘
) 𝑞 + 𝐸

𝑘
𝜁

+ (𝑑
2

ℎ𝐻
(𝑎
𝑇

𝑘
− 𝐸
𝑘
) − 𝑑
ℎ𝐻
𝐸
𝑘
) 𝜍
2

1 ≤ 𝑘 ≤ 𝑛
1
,

+𝑑
2

ℎ𝐻
𝐸
𝑘
𝜍
1
+
󵄩󵄩󵄩󵄩ℎ𝑘

󵄩󵄩󵄩󵄩1
,

(𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + (𝑎

𝑇

𝑘
+ (𝑑
𝑣𝐻

− 𝑑
𝑣𝐿
) 𝐸
𝑘
) 𝑞 + 𝐸

𝑘
𝜁

+ (𝑑
2

𝑣𝐻
(𝑎
𝑇

𝑘
− 𝐸
𝑘
) − 𝑑
𝑣𝐻
𝐸
𝑘
) 𝜍
2

𝑛
1
+1 ≤ 𝑘 ≤ 𝑛,

+𝑑
2

𝑣𝐻
𝐸
𝑘
𝜍
1
+
󵄩󵄩󵄩󵄩ℎ𝑘

󵄩󵄩󵄩󵄩1
,

𝑇
𝜀
= 𝑏
𝑇

𝜀
𝑝 + 𝑏
𝑇

𝜀
𝑞 + 𝑏
𝑇

𝜀
𝐷
2

ℎ𝐻
𝜍
2
+
󵄩󵄩󵄩󵄩𝑙𝜀
󵄩󵄩󵄩󵄩1
− 𝛾, 1 ≤ 𝜀 ≤ 𝑚,

𝐷
𝐻
= diag {𝑑

ℎ𝐻
𝐼
𝑛
1

, 𝑑
𝑣𝐻
𝐼
𝑛
2

} ,

(25)

with 𝑘 ∈ 𝑛 = {1, 2, . . . , 𝑛}, 𝜀 ∈ 𝑚 = {1, 2, . . . , 𝑚},

𝐸
𝑘
= [

𝑘−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0, 1,

𝑛−𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0], 𝑎

𝑘
, 𝑎
𝑑𝑘
, 𝑏
𝑘
, and ℎ

𝑘
represent the 𝑘th

column vector of matrices 𝐴, 𝐴
𝑑
, 𝐵, and𝐻, respectively, and 𝑙

𝜀

represents the 𝜀th column vector of matrix 𝐿.
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Proof. It is an obvious fact that (24) implies the following
inequality:

Ψ = diag {Ψ
1
, Ψ
2
, . . . , Ψ

𝑛
, Ψ
󸀠

1
, Ψ
󸀠

2
, . . . , Ψ

󸀠

𝑛
, Ψ
󸀠󸀠

1
, Ψ
󸀠󸀠

2
, . . . ,

Ψ
󸀠󸀠

𝑛
, Ψ
󸀠󸀠󸀠

1
, Ψ
󸀠󸀠󸀠

2
, . . . , Ψ

󸀠󸀠󸀠

𝑛
} < 0,

(26)

where

Ψ
𝑘
=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

(𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + (𝑎

𝑇

𝑘
+ (𝑑
ℎ𝐻

− 𝑑
ℎ𝐿
) 𝐸
𝑘
) 𝑞

+𝜁
𝑘
+ (𝑑
2

ℎ𝐻
(𝑎
𝑇

𝑘
− 𝐸
𝑘
) − 𝑑
ℎ𝐻
𝐸
𝑘
) 𝜍
2

+𝑑
2

ℎ𝐻
𝐸
𝑘
𝜍
1
, 1 ≤ 𝑘 ≤ 𝑛

1
,

(𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + (𝑎

𝑇

𝑘
+ (𝑑
𝑣𝐻

− 𝑑
𝑣𝐿
) 𝐸
𝑘
) 𝑞

+𝜁
𝑘
+ (𝑑
2

𝑣𝐻
(𝑎
𝑇

𝑘
− 𝐸
𝑘
) − 𝑑
𝑣𝐻
𝐸
𝑘
) 𝜍
2

+𝑑
2

𝑣𝐻
𝐸
𝑘
𝜍
1
, 𝑛

1
+ 1 ≤ 𝑘 ≤ 𝑛,

Ψ
󸀠

𝑘
=

{

{

{

𝑎
𝑇

𝑑𝑘
𝑝 + (𝑎

𝑇

𝑑𝑘
− 𝐸
𝑘
) 𝑞 + 𝑑

2

ℎ𝐻
𝑎
𝑇

𝑑𝑘
𝜍
2
, 1 ≤ 𝑘 ≤ 𝑛

1
,

𝑎
𝑇

𝑑𝑘
𝑝 + (𝑎

𝑇

𝑑𝑘
− 𝐸
𝑘
) 𝑞 + 𝑑

2

𝑣𝐻
𝑎
𝑇

𝑑𝑘
𝜍
2
, 𝑛
1
+1≤𝑘≤𝑛,

Ψ
󸀠󸀠

𝑘
=

{

{

{

−𝜁
𝑘
+ 𝑑
ℎ𝐻
𝐸
𝑘
(𝜍
2
− 𝜍
1
) , 1 ≤ 𝑘 ≤ 𝑛

1
,

−𝜁
𝑘
+ 𝑑
𝑣𝐻
𝐸
𝑘
(𝜍
2
− 𝜍
1
) , 𝑛

1
+ 1 ≤ 𝑘 ≤ 𝑛,

Ψ
󸀠󸀠󸀠

𝑘
={

−𝑑
ℎ𝐻
𝐸
𝑘
𝜍
1
, 1 ≤ 𝑘 ≤ 𝑛

1
,

−𝑑
𝑣𝐻
𝐸
𝑘
𝜍
1
, 𝑛
1
+ 1 ≤ 𝑘 ≤ 𝑛,

(27)

with 𝑘 ∈ 𝑛 = {1, 2, . . . , 𝑛}, 𝐸
𝑘
= [

𝑘−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0, 1,

𝑛−𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0], and

𝑎
𝑘
(𝑎
𝑑𝑘
) represents the 𝑘th column vector of matrix 𝐴(𝐴

𝑑
).

By Theorem 4, we can obtain that the system (1a) and
(1b) with 𝑤(𝑖, 𝑗) = 0 is asymptotically stable. Now we are
in a position to prove that the system (1a) and (1b) has
a prescribed 𝑙

1
-gain index 𝛾 for any nonzero 𝑤(𝑖, 𝑗) ∈ 𝑙

1
.

To establish the 𝑙
1
-gain performance, we choose the same

copositive Lyapunov-Krasovskii functional candidate as in
(9) for the system (1a) and (1b). Following the proof line of
Theorem 4, we can get that

Δ𝑉 (𝑖, 𝑗) +
󵄩󵄩󵄩󵄩𝑧(𝑖, 𝑗)

󵄩󵄩󵄩󵄩1
− 𝛾

󵄩󵄩󵄩󵄩𝑤 (𝑖, 𝑗)
󵄩󵄩󵄩󵄩1

= 𝑥
𝑇
(𝑖, 𝑗) {(𝐴

𝑇
− 𝐼
𝑛
) 𝑝 + (𝐴

𝑇
+ 𝐷
𝐻
− 𝐷
𝐿
) 𝑞

+𝜁 + 𝐷
2

𝐻
((𝐴
𝑇
− 𝐼
𝑛
) 𝜍
2
+ 𝜍
1
) − 𝐷
𝐻
𝜍
2
}

+ 𝑥
𝑇

𝑑
(𝑖, 𝑗) {𝐴

𝑇

𝑑
𝑝 + (𝐴

𝑇

𝑑
− 𝐼
𝑛
) 𝑞 + 𝐷

2

𝐻
𝐴
𝑇

𝑑
𝜍
2
}

+ 𝑥
𝑇

𝐻
(𝑖, 𝑗) {−𝜁 + 𝐷

𝐻
(𝜍
2
− 𝜍
1
)}

+ 𝑥
𝑇

𝑠
(𝑖, 𝑗) {−𝐷

𝐻
𝜍
1
}

+ 𝑤
𝑇
(𝑖, 𝑗) {𝐵

𝑇
(𝑝 + 𝑞 + 𝐷

2

𝐻
𝜍
2
)}

+
󵄩󵄩󵄩󵄩𝐻𝑥 (𝑖, 𝑗)

󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩𝐿𝑤 (𝑖, 𝑗)

󵄩󵄩󵄩󵄩1
− 𝛾

󵄩󵄩󵄩󵄩𝑤 (𝑖, 𝑗)
󵄩󵄩󵄩󵄩1
.

(28)

According to the definition of 𝑙
1
norm, one obtains

𝐻𝑥 (𝑖, 𝑗) =

[
[
[
[

[

ℎ
1,1

ℎ
1,2

⋅ ⋅ ⋅ ℎ
1,𝑛
1

ℎ
2,1

ℎ
2,2

⋅ ⋅ ⋅ ℎ
2,𝑛
1

...
... ⋅ ⋅ ⋅

...
ℎ
𝑝,1

ℎ
𝑝,2

⋅ ⋅ ⋅ ℎ
𝑝,𝑛
1

ℎ
1,𝑛
1
+1

ℎ
1,𝑛
1
+2

⋅ ⋅ ⋅ ℎ
1,𝑛

ℎ
2,𝑛
1
+1

ℎ
2,𝑛
1
+2

⋅ ⋅ ⋅ ℎ
2,𝑛

...
... ⋅ ⋅ ⋅

...
ℎ
𝑝,𝑛
1
+1

ℎ
𝑝,𝑛
1
+2

⋅ ⋅ ⋅ ℎ
𝑝,𝑛

]
]
]
]

]

[
[
[
[
[
[
[
[
[
[

[

𝑥
ℎ

1
(𝑖, 𝑗)

...
𝑥
ℎ

𝑛
1

(𝑖, 𝑗)

𝑥
𝑣

1
(𝑖, 𝑗)

...
𝑥
𝑣

𝑛
2

(𝑖, 𝑗)

]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[

[

ℎ
1,1
𝑥
ℎ

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

1,𝑛
1

𝑥
ℎ

𝑛
1

(𝑖, 𝑗) + ℎ
1,𝑛
1
+1
𝑥
𝑣

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

1,𝑛
𝑥
𝑣

𝑛
2

(𝑖, 𝑗)

ℎ
2,1
𝑥
ℎ

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

2,𝑛
1

𝑥
ℎ

𝑛
1

(𝑖, 𝑗) + ℎ
2,𝑛
1
+1
𝑥
𝑣

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

2,𝑛
𝑥
𝑣

𝑛
2

(𝑖, 𝑗)

...
ℎ
𝑝,1
𝑥
ℎ

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

𝑝,𝑛
1

𝑥
ℎ

𝑛
1

(𝑖, 𝑗) + ℎ
𝑝,𝑛
1
+1
𝑥
𝑣

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

𝑝,𝑛
𝑥
𝑣

𝑛
2

(𝑖, 𝑗)

]
]
]
]
]

]

,

󵄩󵄩󵄩󵄩𝐻𝑥 (𝑖, 𝑗)
󵄩󵄩󵄩󵄩1
=

𝑝

∑

𝑘=1

ℎ
𝑘,1
𝑥
ℎ

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

𝑘,𝑛
1

𝑥
ℎ

𝑛
1

(𝑖, 𝑗) + ℎ
𝑘,𝑛
1
+1
𝑥
𝑣

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

𝑘,𝑛
𝑥
𝑣

𝑛
2

(𝑖, 𝑗)

= (

𝑝

∑

𝑘=1

ℎ
𝑘,1
)𝑥
ℎ

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + (

𝑝

∑

𝑘=1

ℎ
𝑘,𝑛
1

)𝑥
ℎ

𝑛
1

(𝑖, 𝑗) + (

𝑝

∑

𝑘=1

ℎ
𝑘,𝑛
1
+1
)𝑥
𝑣

1
(𝑖, 𝑗)

+ ⋅ ⋅ ⋅ + (

𝑝

∑

𝑘=1

ℎ
𝑘,𝑛
)𝑥
𝑣

𝑛
2

(𝑖, 𝑗)

= 𝑥
𝑇
(𝑖, 𝑗) [

󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩1

⋅ ⋅ ⋅
󵄩󵄩󵄩󵄩ℎ𝑛

󵄩󵄩󵄩󵄩1]
𝑇

,

(29)
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where ℎ
𝑘
represents the 𝑘th column vector and ℎ

𝑖,𝑗
represents

the entry located at (𝑖, 𝑗) of matrix𝐻. Then, similarly

󵄩󵄩󵄩󵄩𝐿𝑤 (𝑖, 𝑗)
󵄩󵄩󵄩󵄩1
= 𝑤
𝑇
(𝑖, 𝑗) [

󵄩󵄩󵄩󵄩𝑙1
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝑙2
󵄩󵄩󵄩󵄩1

⋅ ⋅ ⋅
󵄩󵄩󵄩󵄩𝑙𝑚

󵄩󵄩󵄩󵄩1]
𝑇

,

𝛾
󵄩󵄩󵄩󵄩𝑤 (𝑖, 𝑗)

󵄩󵄩󵄩󵄩1
= 𝑤
𝑇
(𝑖, 𝑗) [𝛾 𝛾 ⋅ ⋅ ⋅ 𝛾]

𝑇

,

(30)

where 𝑙
𝑘
represents the 𝑘th column vector of matrix 𝐿.

Substituting (29)-(30) into (28) leads to

Δ𝑉 (𝑖, 𝑗) +
󵄩󵄩󵄩󵄩𝑧(𝑖, 𝑗)

󵄩󵄩󵄩󵄩1
− 𝛾

󵄩󵄩󵄩󵄩𝑤 (𝑖, 𝑗)
󵄩󵄩󵄩󵄩1

= 𝑥
𝑇
(𝑖, 𝑗) { (𝐴

𝑇
− 𝐼
𝑛
) 𝑝 + (𝐴

𝑇
+ 𝐷
𝐻
− 𝐷
𝐿
) 𝑞 + 𝜁

+ 𝐷
2

𝐻
((𝐴
𝑇
− 𝐼
𝑛
) 𝜍
2
+ 𝜍
1
) − 𝐷
𝐻
𝜍
2

+[
󵄩󵄩󵄩󵄩ℎ1

󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩1

⋅ ⋅ ⋅
󵄩󵄩󵄩󵄩ℎ𝑛

󵄩󵄩󵄩󵄩1]
𝑇

}

+ 𝑥
𝑇

𝑑
(𝑖, 𝑗) {𝐴

𝑇

𝑑
𝑝 + (𝐴

𝑇

𝑑
− 𝐼
𝑛
) 𝑞 + 𝐷

2

𝐻
𝐴
𝑇

𝑑
𝜍
2
}

+ 𝑥
𝑇

𝐻
(𝑖, 𝑗) {−𝜁 + 𝐷

𝐻
(𝜍
2
− 𝜍
1
)}

+ 𝑥
𝑇

𝑠
(𝑖, 𝑗) {−𝐷

𝐻
𝜍
1
}

+ 𝑤
𝑇
(𝑖, 𝑗) {𝐵

𝑇
(𝑝 + 𝑞 + 𝐷

2

𝐻
𝜍
2
)

+[
󵄩󵄩󵄩󵄩𝑙1
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝑙2
󵄩󵄩󵄩󵄩1

⋅ ⋅ ⋅
󵄩󵄩󵄩󵄩𝑙𝑚

󵄩󵄩󵄩󵄩1]
𝑇

−[𝛾 𝛾 ⋅ ⋅ ⋅ 𝛾]
𝑇

} .

(31)

If condition (24) holds, we have

𝑉
ℎ
(𝑖 + 1, 𝑗) − 𝑉

ℎ
(𝑖, 𝑗) + 𝑉

𝑣
(𝑖, 𝑗 + 1) − 𝑉

𝑣
(𝑖, 𝑗)

+
󵄩󵄩󵄩󵄩𝑧 (𝑖, 𝑗)

󵄩󵄩󵄩󵄩1
− 𝛾

󵄩󵄩󵄩󵄩𝑤 (𝑖, 𝑗)
󵄩󵄩󵄩󵄩1
< 0.

(32)

We know that

Δ𝑉 (𝑖, 𝑗) = 𝑉
ℎ
(𝑖 + 1, 𝑗) − 𝑉

ℎ
(𝑖, 𝑗) + 𝑉

𝑣
(𝑖, 𝑗 + 1) − 𝑉

𝑣
(𝑖, 𝑗) .

(33)

For any positive scalars 𝑘
ℎ
, and 𝑘

𝑣
∈ 𝑍
+
, it can be verified

that

𝑘
ℎ

∑

𝑖=0

𝑘
𝑣

∑

𝑗=0

Δ𝑉 (𝑖, 𝑗) =

𝑘
ℎ

∑

𝑖=0

𝑘
𝑣

∑

𝑗=0

(𝑉
ℎ
(𝑖 + 1, 𝑗) − 𝑉

ℎ
(𝑖, 𝑗))

+

𝑘
ℎ

∑

𝑖=0

𝑘
𝑣

∑

𝑗=0

(𝑉
𝑣
(𝑖, 𝑗 + 1) − 𝑉

𝑣
(𝑖, 𝑗))

=

𝑘
𝑣

∑

𝑗=0

(𝑉
ℎ𝑇
(𝑘
ℎ
+ 1, 𝑗) − 𝑉

ℎ𝑇
(0, 𝑗))

+

𝑘
ℎ

∑

𝑖=0

(𝑉
𝑣𝑇
(𝑖, 𝑘
𝑣
+ 1) − 𝑉

𝑣𝑇
(𝑖, 0)) .

(34)

When 𝑘
ℎ
and 𝑘
𝑣
= ∞, we have

∞

∑

𝑖=0

∞

∑

𝑗=0

(
󵄩󵄩󵄩󵄩𝑧 (𝑖, 𝑗)

󵄩󵄩󵄩󵄩1
− 𝛾

󵄩󵄩󵄩󵄩𝑤 (𝑖, 𝑗)
󵄩󵄩󵄩󵄩1
) <

∞

∑

𝑖=0

∞

∑

𝑗=0

Δ𝑉 (𝑖, 𝑗) . (35)

The existence of solution for LMI (24) implies that the
positive 2D system (1a) and (1b) is asymptotically stable.
Together with the zero boundary conditions, one can get

∞

∑

𝑖=0

∞

∑

𝑗=0

Δ𝑉 (𝑖, 𝑗) = 0. (36)

Applying (36) to (35), one has

∞

∑

𝑖=0

∞

∑

𝑗=0

󵄩󵄩󵄩󵄩𝑧 (𝑖, 𝑗)
󵄩󵄩󵄩󵄩1
< 𝛾

∞

∑

𝑖=0

∞

∑

𝑗=0

󵄩󵄩󵄩󵄩𝑤 (𝑖, 𝑗)
󵄩󵄩󵄩󵄩1
. (37)

By Definition 2, the positive 2D system (1a) and (1b) is
asymptotically stable and has the 𝑙

1
-gain index 𝛾.

This completes the proof.

Remark 7. In Theorem 6, the disturbance attenuation per-
formance of positive 2D linear systems is analyzed, and
sufficient conditions for the existence of 𝑙

1
-gain performance

for positive 2D system to (1a) and (1b) are proposed in terms
of LMIs which are computationally tractable. This is also the
major contribution of our paper.

4. Numerical Example

Consider the positive 2D system with delays in the Roesser
model (1a) and (1b), where

𝐴 =

[
[
[
[
[
[

[

0.10 0.20

... 0.2

0.00 0.30

... 0.10

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0.00 0.10

... 0.40

]
]
]
]
]
]

]

,

𝐴
𝑑
=

[
[
[
[
[
[

[

0.10 0.01

... 0.05

0.10 0.02

... 0.05

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0.03 0.12

... 0.03

]
]
]
]
]
]

]

,

𝐵 = [

[

0.2

0.1

0.1

]

]

, 𝐻 = [0.1 0 0.2] , 𝐿 = 0.1,

𝑑
ℎ
(𝑖) = 4 + 2 sin(𝜋𝑖

2
) , 𝑑

𝑣
(𝑗) = 5 + 2 sin(

𝜋𝑗

2
) ,

𝑤 (𝑖, 𝑗) = 𝑒
−(𝑖+0.5𝑗)

,

(38)
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Figure 1: State response of 𝑥ℎ
1
(𝑖, 𝑗).

where state dimensions are 𝑛
ℎ
= 2 and 𝑛

𝑣
= 1. The boundary

conditions are given by

𝑥
ℎ
(𝑖, 𝑗) = [

0.1

0.1
] , ∀0 ≤ 𝑗 ≤ 52, −𝑑

ℎ𝐻
≤ 𝑖 ≤ 0,

𝑥
𝑣
(𝑖, 𝑗) = 0.1, ∀0 ≤ 𝑖 ≤ 52, −𝑑

𝑣𝐻
≤ 𝑗 ≤ 0.

(39)

In this example, we can get 𝑑
ℎ𝐿

= 2, 𝑑
ℎ𝐻

= 6, 𝑑
𝑣𝐿
= 3, and

𝑑
𝑣𝐻

= 7. Given 𝛾 = 4.5, then by using the LMI Control
Toolbox [37] to solve the inequalities in Theorem 6, we can
get the following solutions:

𝑝 = [1.7310 1.6842 1.7364]
𝑇

,

𝑞 = [3.2077 2.8768 3.3026]
𝑇

,

𝜁 = [1.0334 1.1075 0.9957]
𝑇

,

𝜍
1
= [0.3675 0.4042 0.3552]

𝑇

,

𝜍
2
= [0.0385 0.0489 0.0330]

𝑇

.

(40)

Figures 1, 2, and 3 show the state responses of the system;
it can be seen that the corresponding positive 2D system
is asymptotically stable. Furthermore, by computing, under
zero boundary conditions, we have ∑∞

𝑖=0
∑
∞

𝑗=0
‖𝑧(𝑖, 𝑗)‖

1
=

4.0206∑
∞

𝑖=0
∑
∞

𝑗=0
‖𝑤(𝑖, 𝑗)‖

1
= 1.0977. It is obvious that the

prescribed 𝑙
1
-gain performance level 𝛾 = 4.5 is satisfied.

5. Conclusions

This paper has addressed the delay-dependent stability anal-
ysis with 𝑙

1
-gain performance for positive 2D systems with

state delays in the Roesser model. A sufficient condition for
the existence of the delay-dependent asymptotic stability of
positive 2D linear systems with time delays has been estab-
lished. Copositive-type Lyapunov function method has been
used to get a computationally tractable LMI-based sufficient
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Figure 2: State response of 𝑥ℎ
2
(𝑖, 𝑗).
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Figure 3: State response of 𝑥𝑣(𝑖, 𝑗).

criterion which ensures that the system is asymptotically
stable and has a prescribed 𝑙

1
-gain performance. A numerical

example has been given to illustrate the efficiency of the
results. Furthermore, our future work will be devoted to the
𝑙
1
-gain control problem for positive 2D systems with delays.
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