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This paper investigates the problems of robust stabilization and robust control for the secondary component speed control system
with parameters uncertainty and load disturbance. The aim is to enhance the control performance of hydraulic system based on
Common Pressure Rail (CPR). Firstly, a mathematical model is presented to describe the hydraulic control system. Then a novel
observer is proposed, and an observed-based control strategy is designed such that the closed-loop system is asymptotically stable
and satisfies the disturbance attenuation level. The condition for the existence of the developed controller can by efficiently solved
by using the MATLAB software. Finally, simulation results are provided to demonstrate the effectiveness of the proposed method.

1. Introduction

It is well known that constructionmachinery has been widely
employed in many occasions, but the efficiency of hydraulic
system which is the main transmission model is low. This
is primarily why the construction machinery has the draw-
backs of high oil consumption and bad emission [1]. In
recent years, energy-saving research of the hydraulic system
becomes hotspot due to growing energy crisis. If the element
which converts the mechanical energy into hydraulic energy
could be called primary element, the component which
can interchange between mechanical energy and hydraulic
energy (hydraulic motor/pump) would be named as sec-
ondary component [2, 3]. The hydraulic secondary regula-
tion system is that it can regulate the hydraulic secondary
components which interconvert between mechanical energy
andhydraulic energy to realize the energy transformation and
transmission. Moreover, this kind of system includes energy-
storage components. Hence, it can recover braking energy
and gravity potential energy. The secondary regulation sys-
tem can be divided intoCommonPressure Rail (CPR) system

and flow coupled system [4, 5]. CPR system is suit for con-
structionmachinery since it could not only recuperate energy
but also keep the engine work in the high efficiency area.
Therefore, this technique can reduce the oil consumption.
Moreover, it can drivemultiple uncorrelated loads simultane-
ously because the pressure is almost constant in theory. How-
ever, in practice hydraulic system always includes parameter
uncertainty, nonlinearity, and load disturbance [6, 7]. It is dif-
ficult to obtain ideal performance since the precise model is
difficult to investigate and then the classical controlmethod is
not used well. In the construction machinery area especially,
the good performance is difficult to obtain because the bad
working condition also results in that the load fluctuates fre-
quently and greatly. For example, the load of swing system in
an excavator as the disturbance changes along with different
mass of soil, andwhenmechanical armswork simultaneously,
it will also cause the load change.The hydraulic speed control
system shouldmeet all of these requirements and it is hard for
the traditional PID controller to get a good performance [8].
Energy saving and good performance hydraulic system is the
development trend, especially for constructionmachinery. In
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recent years, the sensors are used widely in the construction
machinery to pursue the good performance; they also help
improve the control performance by using advanced control
algorithms.

In order to suppress interference, we can adopt novel
control methods such as adaptive control [9, 10], fuzzy
control [11], and robust control [12–26]. Among the existing
approaches, adaptive control method requires large com-
putation and the real-time capability is poor. The preci-
sion of fuzzy control is sensitive and is dependent on
high experiences. Robust control approach can convert the
error between mathematical model and realistic plant into
the uncertainty of themathematicalmodel. Robust controller
can guarantee the performances of the resulting closed-
loop systems and satisfy all admissible uncertainties. In
[14], the author deals with the problem of robust control
for delayed singular systems with parametric uncertainties.
𝐻
∞

control of uncertain systems with time delay in state
or input is investigated in [18, 19], and the result shows
much less conservativeness. Reference [25] is concerned
with the problem of robust output feedback control for a
class of uncertain discrete time delayed nonlinear stochastic
systems. However, there are few results on robust control for
velocity control system to improve the systems performance.
Furthermore, more sensors are required by collecting signals
to obtain the higher performance, but this is improper for
construction machinery because of the low reliability due
to the serious working condition which is harmful for the
sensors.

Motivated by the previous discussion, this paper inves-
tigates the problem of robust control for the hydraulic
velocity control systemwith parameters uncertainty and load
disturbance. First, we select the swing systemof one excavator
as the research object and build the mathematical model.
Then, by constructing a novel proportional and derivative
observer, an observer-based controller is designed such that
the closed-loop system is asymptotically stable and satisfies
the disturbance attenuation level. Moreover, MATLAB soft-
ware is used to solve the controller according to the new
method. Finally, simulation results are provided to illustrate
the effectiveness of the proposed method.

2. System Modeling

In CPR, the constant pressure variable pump and hydraulic
accumulator constitute the high pressure oil sources, and
multiple different loads connect in parallel between the high
press and low press oil passage. When the load changes, the
pressure of system has small fluctuation while the flow varies
with the load, and the control target such as position, velocity,
or power can be reached by regulating the displacement of
hydraulic pump/motor. The velocity control system block
diagram based on CPR is depicted in Figure 1. The current
signal output to the electric-hydraulic servo valve is processed
by controller, and the inclination angle of the swash plate can
be changed as desired by adjusting the position of variable
displacement cylinder.The aim of driving or braking the load
is then achieved by the adjustment of rotational velocity. We
choose the swing system of 20𝑡 excavator as the model to

design the controller; the detailed period is written in the
following.

2.1. Servo Valve Flow Rate Equation. The linear servo valve
flow equation is

𝑞
𝐿
= 𝐾
𝑞
𝐾
𝑖
𝐾
𝑠
𝑢
𝑖
− 𝐾
𝑐
𝑝, (1)
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𝐿
and 𝑢

𝑖
are, respectively, cylinder flow and input

control voltage,𝐾
𝑖
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𝑠
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𝑞
, and𝐾

𝑐
are different kinds of gain:

they are the gain of the amplifier, servo valve coefficient, servo
valve flow gain, and servo valve flow-pressure coefficient,
respectively, and 𝑝 represents cylinder pressure difference.

2.2. Continuity Equation in the Hydraulic Cylinder. Applying
the continuity equation to each of the cylinder chambers and
the flow rate of cylinder yields
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(2)

where 𝐴
𝑔
represents area of variables cylinder, 𝑦 is the

displacement of variables cylinder, 𝛽
𝑒
, 𝐶
𝑖𝑐
, 𝐶
𝑒𝑐
, and 𝑉

𝑡
are

coefficients; they are the effective bulk modulus of system,
internal or cross-port leakage coefficient of cylinder, external
leakage coefficient of cylinder, and total volume of fluid under
compression in both chambers, respectively.The volume𝐴

𝑔
𝑦

is usually much smaller than 𝑉
𝑡
, and 𝑑𝑝

1
/𝑑𝑡 + 𝑑𝑝

2
/𝑑𝑡 ≈ 0

because 𝑝 = 𝑝
1
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2
; thus,
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where 𝐶
𝑡𝑐
is total leakage coefficient of variables cylinder.

The equilibrium of forces equation by applying Newton’s
second law to the forces on the cylinder yields

𝐴
𝑔
𝑃 = 𝑚
𝑑
2

𝑦

𝑑𝑡2
+ 𝐵
𝑐

𝑑𝑦

𝑑𝑡
+ 𝐾𝑦 + 𝐹, (4)

where 𝑚 is total mass of cylinder and load referred to cylin-
der, 𝐵

𝑐
represents viscous damping coefficient of cylinder

(N⋅s/m), and 𝐾 and 𝐹 are load spring gradient and load
disturbance, respectively.

2.3. Torque Motion Equation at the Load. The relationship
between the instantaneous volume of the secondary com-
ponent and displacement of the cylinder can be deduced as
follows

𝐷 =
𝑦

𝑦max
𝐷max, (5)

where 𝐷max is maximum volume of the secondary compo-
nent and 𝑦max is maximum displacement of cylinder.
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Figure 1: Velocity control system block diagram.

Another basic relation is the torque balance equation for
the secondary component which is expressed as

𝑝
𝑠

𝑦

𝑦max
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where 𝜃 denotes angular position of the secondary compo-
nent, 𝑝

𝑠
is pressure of the high pressure pipeline in CPR,

𝐽
𝑝/𝑚

represents total inertia of secondary component and
transformational load, 𝑟 is reduction ratio, and𝑀

𝑓
is the total

including friction torque of swing system, wind resistance
torque, and slope resistance torque.

2.4. System State-Space Model. State variables are selected as
𝑋 = [𝑥
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4
]
𝑇, where 𝑥

1
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secondary component, 𝑥
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velocity of cylinder, and 𝑥
4
is pressure difference of cylinder.

Thus, the state equation can be given by
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,

𝑦 (𝑡) = [1 0 0 0]
𝑇

𝑥 (𝑡) .

(7)

The previous constructed model is based on ideal condi-
tion.However, the real parameters are variable due to the hard

working period of excavator. We consider the parameters
variation in 𝐴. Moreover, we add 𝐶

𝑑
𝑑(𝑡) to the output

because the accuracy of sensor is also influenced with tem-
perature variation and electrical equipments. Finally, since𝐵

𝑑

is changing with the different load, the time varying function
𝑓(𝑥) is presented to simulate the real status. Hence, the state
equations are proposed as follows:

�̇� (𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑡, 𝑥) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑑
𝑑 (𝑡) ,

(8)

where 𝐴 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑛×𝑚, 𝐶 ∈ 𝑅𝑃×𝑛, and 𝐶
𝑑
∈ 𝑅
𝑃×𝑑.

Throughout this paper, we first provide the following
assumptions for the following proof

(i) (𝐴, 𝐵) is a stabilizable pair, (𝐴, 𝐶) is an observable
pair, and 𝐶

𝑑
is a full column rank;

(ii) 𝑓(𝑡, 𝑥) satisfies the following Lipschitz condition:
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, �̂�)

󵄩󵄩󵄩󵄩 ≤ 𝜃 ‖𝑥 − �̂�‖ , for ∀𝑥 (𝑡) , �̂� (𝑡) ∈ 𝑅𝑛;
(9)

(iii) 𝑑(𝑡) satisfies the norm-bounded condition ‖𝑑(𝑡)‖ ≤ 𝛿,
where 𝛿 > 0 is known constant;

(iv) Δ𝐴(𝑡) is unknown time-varying uncertainties satisfy-
ing Δ𝐴(𝑡) = 𝐷

1
⋅ 𝐹(𝑡) ⋅𝐷

2
, with𝐷

1
∈ 𝑅
𝑛×𝑛,𝐷

2
∈ 𝑅
𝑛×𝑛,

and 𝐹(𝑡) ∈ 𝑅𝑛×𝑛 is the unknown time-varying and
satisfies 𝐹𝑇(𝑡) ⋅ 𝐹(𝑡) ≤ 𝐼

𝑛
.

3. Main Results

Consider the following traditional Luenberger observer:

̇̂𝑥 (𝑡) = (𝐴 − 𝐿) ⋅ �̂� (𝑡) + 𝐵𝑢 (𝑡) + 𝐿𝑦 (𝑡) + 𝑓 (𝑡, �̂�) , (10)

where �̂�(𝑡) is the estimation of 𝑥(𝑡) and 𝐿 is the observer
gain to be designed. If one employs the observer (10) to plant
(8) and defines 𝑒(𝑡) = �̂�(𝑡) − 𝑥(𝑡), then one can obtain the
following error dynamics:

̇𝑒 (𝑡) = [𝐴 − 𝐿 + Δ𝐴 (𝑡)] ⋅ 𝑒 (𝑡) − Δ𝐴 (𝑡) ⋅ �̂� (𝑡)

+ 𝐿𝐶
𝑑
𝑑 (𝑡) + 𝑓 (𝑡, 𝑒 (𝑡)) ,

(11)

where 𝑓(𝑡, 𝑒(𝑡)) = 𝑓(𝑡, �̂�(𝑡)) − 𝑓(𝑡, 𝑥(𝑡)). It is observed that
the disturbance 𝐶

𝑑
𝑑(𝑡) in the error system (11) is multiplied
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by the gain matrix 𝐿. Hence, if 𝐿 is a high gain, the
disturbance effect will be amplified unavoidably. As a result,
ideal estimation performance of system state 𝑥(𝑡) cannot be
obtained by using the conventional observer (10).

To begin the formulation of our approach, the following
augmented variables and matrices are defined:

𝑥 (𝑡) = [
𝑥 (𝑡)

𝐶
𝑑
𝑑 (𝑡)
] , 𝐴 = [

𝐴 0

0 −𝐼
𝑃

] ,

𝐵 = [
𝐵

0
𝑝×𝑚

] , 𝐶 = [𝐶 𝐼
𝑃×𝑃
] ,

𝐸 = [
𝐼
𝑛
0

0 0
𝑃×𝑃

] , 𝐹 = [
𝐹 (𝑡) 0

𝑛×𝑃

0
𝑃×𝑛
0
𝑃×𝑃

] ,

𝐷
1
= [
𝐷
1
0

0 0
𝑃×𝑃

] , 𝐷
2
= [
𝐷
2
0

0 0
𝑃×𝑃

] ,

Δ𝐴 (𝑡) = [
Δ𝐴 (𝑡) 0

0 0
𝑃×𝑃

] , 𝑁 = [
0

𝐼
𝑃

] ,

𝑓 (𝑡, 𝑥) = [
𝑓 (𝑡, 𝑥)

0
𝑃×1

] ,

(12)

and the following augmented plant is constructed:

𝐸�̇� (𝑡) = [𝐴 + Δ𝐴 (𝑡)] 𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑡, 𝑒) + 𝑁𝑑 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) .

(13)

System (13) is a singular system, where the state vector
𝑥(𝑡) and disturbance vector 𝑑(𝑡) are both the components of
the augmented state vector.

It is noted that 𝐸 and 𝐶 defined previously have the
following property:

rank [𝐸
𝐶
] = rank[

[

𝐼
𝑛
0

0 0
𝑃×𝑃

𝐶 𝐼
𝑃

]

]

= 𝑛 + 𝑃. (14)

Therefore, an appropriate matrix 𝐿
𝐷
∈ 𝑅
(𝑛+𝑝)×𝑝 can

always be selected such that the matrix 𝑆 ≜ (𝐸 + 𝐿
𝐷
𝐶)

is nonsingular. Motivated by this observation, the following
proportional and derivative observer is proposed for system
(13):

𝑆�̇� (𝑡) = (𝐴 − 𝐿
𝑃
𝐶) 𝑧 (𝑡) + 𝐴𝑆

−1

𝐿
𝐷
𝑦 (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑡, �̂�) ,

�̂� (𝑡) = 𝑧 (𝑡) + 𝑆
−1

𝐿
𝐷
𝑦 (𝑡) ,

(15)

where 𝑧(𝑡) = [𝑧𝑇
𝑥
(𝑡) 𝑧
𝑇

𝑑
(𝑡)]
𝑇

is the middle variable, �̂�(𝑡) ≜

[�̂�
𝑇

(𝑡) �̂�
𝑇

(𝑡)]

𝑇

is the estimation of 𝑥(𝑡), and 𝐿
𝐷
∈ 𝑅
(𝑛+𝑝)×𝑝

and 𝐿
𝑝
∈ 𝑅
(𝑛+𝑝)×𝑝 are the observer gains to be designed. 𝑆 =

𝐸+𝐿
𝐷
⋅𝐶 is designed to be invertible by selecting appropriate

𝐿
𝐷
. It is now in the position to derive the error system. In fact,

from (14)-(15), it is derived that

𝑆
̇̂
𝑥 = (𝐴 − 𝐿

𝑃
𝐶) �̂� (𝑡) + 𝐿

𝑃
𝑦 (𝑡)

+ 𝐿
𝐷
�̇� (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑡, �̂�) .

(16)

On the other hand, adding 𝐿
𝐷
�̇�(𝑡) to both sides of the

plant (13), the following equation is derived:

𝑆�̇� (𝑡) = [(𝐴 − 𝐿
𝑃
𝐶) + Δ𝐴 (𝑡)] 𝑥 (𝑡) + 𝐿

𝑃
�̇� (𝑡)

+ 𝐿
𝐷
�̇� (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑡, 𝑥) + 𝑁𝑑 (𝑡) .

(17)

Define the following error variable:

𝑒 (𝑡) = �̂� (𝑡) − 𝑥 (𝑡) , 𝑓 (𝑡, 𝑒) = 𝑓 (𝑡, �̂�) − 𝑓 (𝑡, 𝑥) . (18)

Subtracting (17) from (16), the error system is derived as

𝑆 ̇𝑒 (𝑡) = [𝐴 − 𝐿
𝑃
𝐶] 𝑒 (𝑡) − Δ𝐴 (𝑡) 𝑥 (𝑡) − 𝑁𝑑 (𝑡) + 𝑓 (𝑡, 𝑒) .

(19)

On the other hand, we propose the following observer-
based control strategy for plant (8):

𝑢 (𝑡) = 𝐾�̂� (𝑡) 𝐾 ∈ 𝑅
𝑚×(𝑛+𝑝)

, (20)

where𝐾 = [𝐾, 0
𝑚×𝑝
]. Applying (20) to plant (8) yields

�̇� (𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡) + 𝐵𝐾�̂� (𝑡) + 𝑓 (𝑡)

= (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡) + 𝐵𝐾 (𝑒 (𝑡) + 𝑥 (𝑡)) + 𝑓 (𝑡)

= (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡) + 𝐵𝐾𝑒 (𝑡) + 𝐵𝐾𝑥 (𝑡) + 𝑓 (𝑡) .

(21)

Equation (21) together with (19) yields the following overall
closed-loop system:

�̇� (𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡) + 𝐵𝐾𝑥 (𝑡) + 𝑓 (𝑡) + 𝐵𝐾𝑒 (𝑡) ,

̇𝑒 (𝑡) = 𝑆
−1

[𝐴 − 𝐿
𝑃
𝐶] 𝑒 (𝑡) − Δ𝐴 (𝑡) 𝑥 (𝑡) + 𝑁𝑑 (𝑡) + 𝑓 (𝑡, 𝑒) .

(22)

In system (22), recall that 𝑆 = (𝐸 + 𝐿
𝐷
𝐶). We decompose

𝐿
𝐷
as 𝐿
𝐷
= [
𝐿𝐷1

𝐿𝐷2

] with 𝐿
𝐷1
∈ 𝑅
𝑛×𝑝, 𝐿

𝐷2
∈ 𝑅
𝑃×𝑃. In this

paper, let 𝐿
𝐷1
= 0, 𝐿

𝐷2
= diag{𝛽

1
, . . . , 𝛽

𝑃
}, where 𝛽

1
⋅ ⋅ ⋅ 𝛽
𝑃

are reasonable large numbers. In this setting, the derivative
gain 𝐿

𝐷
= [
0

𝐿𝐷2

] can thus guarantee that 𝑆 = 𝐸 + 𝐿
𝐷
𝐶 is

nonsingular and reduce the effect of disturbance 𝑓(𝑡) at the
same time. In addition, design the state feedback gain 𝐾 ∈
𝑅
𝑚×𝑛, such that 𝐴 + 𝐵𝐾 is Hurwitz. The following theorem

provides a sufficient condition for the stability analysis of the
overall closed-loop system (22).

Theorem 1. Consider the overall closed-loop system (22),
where the observer gain 𝐿

𝐷
and feedback gain 𝐾 have been

designed as previously discussed. If there exist positive and
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definite matrices 𝑃 ∈ 𝑅𝑛×𝑛, 𝑅 ∈ 𝑅(𝑛+𝑝)×(𝑛+𝑝), and matrices
𝐿
𝑝
∈ 𝑅
(𝑛+𝑝)×𝑝, such that the following matrix condition:

[
[
[
[
[
[
[
[
[
[
[

[

Φ
11
𝑃𝐵𝐾 0 𝑃𝐷

1
𝜃𝑃 0

∗ Φ
22
𝑅𝑆
−1

𝐷
1
0 0 𝑅𝑆

−1

∗ ∗ −𝜀
1
𝐼
𝑛
0 0 0

∗ ∗ ∗ −𝜀
2
𝐼
𝑛+𝑝
0 0

∗ ∗ ∗ ∗ −𝐼
𝑛
0

∗ ∗ ∗ ∗ ∗ −𝐼
𝑛+𝑝

]
]
]
]
]
]
]
]
]
]
]

]

< 0, (23)

with Φ
11
= (𝐴 + 𝐵𝐾)

T
𝑃 + 𝑃(𝐴 + 𝐵𝐾) + 𝐼

𝑛
+ 𝜃𝐼
𝑛
+ 𝜀
2
𝐷

T
2
𝐷
2
,

Φ
22
= 𝑅𝑆
−1

(𝐴 − 𝐿
𝑃
𝐶) + (𝐴 − 𝐿

𝑃
𝐶)𝑆
−𝑇

𝑅.

Proof. We define the following Lyapunov function: 𝑉(𝑡) =
𝑉
1
(𝑡) + 𝑉

2
(𝑡) with 𝑉

1
(𝑡) = 𝑥

𝑇

(𝑡)𝑃𝑥(𝑡), 𝑉
2
(𝑡) = 𝑒

𝑇

(𝑡)𝑅𝑒(𝑡) for
system (22). Along the trajectory of system (22), it follows that

�̇�
1
(𝑡) = 2𝑥

𝑇

(𝑡) 𝑃 [(𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡) + 𝐵𝐾𝑥 (𝑡) + 𝑓 (𝑡)]

�̇�
2
(𝑡) = 2𝑒

𝑇

(𝑡) 𝑅 [𝑆
−1

(𝐴 − 𝐿
𝑃
𝐶) − Δ𝐴 (𝑡) 𝑥 (𝑡)

+𝑁𝑑 (𝑡) + 𝑓 (𝑡, 𝑒)]

= 2𝑒
𝑇

(𝑡) 𝑅 [𝑆
−1

(𝐴 − 𝐿
𝑃
𝐶) 𝑒 (𝑡) − Δ𝐴 (𝑡) 𝑥 (𝑡)]

− 2𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝑁𝑑 (𝑡) + 2𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝑓 (𝑡, 𝑒) .

(24)

Since 𝑆 = [ 𝐼𝑛+𝐿𝐷1𝐶 𝐿𝐷1
𝐿𝐷2𝐶 𝐿𝐷2

], one can calculate that 𝑆−1 =

[
𝐼𝑛 0

−𝐶 (𝐿𝐷2)
−1 ].

Hence, it is calculated that 𝑆−1𝑁𝑑(𝑡) =

[
𝐼𝑛 0

−𝐶 (𝐿𝐷2)
−1 ] [
0

𝐼𝑃
] 𝑑(𝑡) = [

0

(𝐿𝐷2)
−1 ] 𝑑(𝑡). Since (𝐿

𝐷2
)
−1

=

diag{𝛽
1

−1

, . . . , 𝛽
𝑝

−1

}, the term 𝑆−1𝑁𝑑(𝑡) is prevailed suc-
cessfully and can be ignored in �̇�

2
(𝑡). Therefore, �̇�

2
(𝑡)

becomes

�̇�
2
(𝑡) = 2𝑒

𝑇

(𝑡) 𝑅 [𝑆
−1

(𝐴 − 𝐿
𝑃
𝐶) 𝑒
𝑇

(𝑡) − Δ𝐴 (𝑡) 𝑥 (𝑡)]

+ 2𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝑓 (𝑡, 𝑒) .

(25)

Notice that

2𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝑓 (𝑡, 𝑒)≤2𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝑆
−𝑇

𝑅𝑒 (𝑡)+𝑓
𝑇

(𝑡, 𝑒) 𝑓 (𝑡, 𝑒)

≤2𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝑆
−𝑇

𝑅𝑒
𝑇

(𝑡)+𝑓
𝑇

(𝑡, 𝑒) 𝑓 (𝑡, 𝑒)

≤2𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝑆
−𝑇

𝑅𝑒 (𝑡)+𝜃
2

⋅𝑥
𝑇

(𝑡) 𝑥 (𝑡) .

(26)

It is thus derived from (25) and (26) that

�̇�
2
(𝑡) ≤ 2𝑒

𝑇

(𝑡) 𝑅 [𝑆
−1

(𝐴 − 𝐿
𝑃
𝐶) 𝑒 (𝑡) − 𝑆

−1

Δ𝐴 (𝑡) 𝑥 (𝑡)]

+ 2𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝑆
−𝑇

𝑅𝑒 (𝑡) + 𝜃
2

⋅ 𝑥
𝑇

(𝑡) 𝑥 (𝑡) .

(27)
Notice that

Δ𝐴 (𝑡) 𝑥 (𝑡) = [
Δ𝐴 (𝑡) 0

0 0
] [
𝑥 (𝑡)

𝐶
𝑠
𝑑 (𝑡)
]

= [
𝐷
1
𝐹 (𝑡)𝐷

2
0
𝑛×𝑝

0
𝑝×𝑛

0
𝑝×𝑝

] [
𝑥 (𝑡)

𝐶
𝑠
𝑑 (𝑡)
] ,

(28)

and also recall that 𝐷
1
= [
𝐷1 0𝑛×𝑝

0𝑝×𝑛 0𝑝×𝑝

], 𝐷
2
= [
𝐷2 0𝑛×𝑝

0𝑝×𝑛 0𝑝×𝑝

], then it
is shown that

Δ𝐴 (𝑡) 𝑥 (𝑡) = [
𝐷
1
0
𝑛×𝑝

0
𝑝×𝑛
0
𝑝×𝑝

] [
𝐹 (𝑡) 0

𝑛×𝑝

0
𝑝×𝑛
0
𝑝×𝑝

]

× [
𝐷
2
0
𝑛×𝑝

0
𝑝×𝑛
0
𝑝×𝑝

] = 𝐷
1
𝐹 (𝑡)𝐷

2
.

(29)

And there exists 𝜀
1
> 0, such that

−2𝑒
𝑇

(𝑡) 𝑅𝑆
−1

Δ𝐴 (𝑡) 𝑥 (𝑡) = −2𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝐷
1
𝐹 (𝑡)𝐷

2
𝑥 (𝑡)

≤ 𝜀
1
𝑥
𝑇

(𝑡) 𝐷
𝑇

2
𝐷
2
𝑥 (𝑡)

+ 𝜀
1

−1

𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝐷
1
𝐷
𝑇

1
𝑆
−𝑇

𝑅𝑒 (𝑡)

≤ 𝜀
1
𝑥
𝑇

(𝑡) 𝐷
𝑇

2
𝐷
2
𝑥 (𝑡)

+ 𝜀
1

−1

𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝐷
1
𝐷
𝑇

1
𝑆
−𝑇

𝑅𝑒 (𝑡).

(30)
As a result, it is derived from (27) and (30) that

�̇�
2
(𝑡) ≤ 2𝑒

𝑇

(𝑡) 𝑅𝑆
−1

(𝐴 − 𝐿
𝑃
𝐶) + 𝜀

1
𝑥
𝑇

(𝑡) 𝐷
𝑇

2
𝐷
2
𝑥 (𝑡)

+ 𝜀
−1

1
𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝐷
1
𝐷
𝑇

1
𝑆
−𝑇

𝑅𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝑆
−𝑇

𝑅𝑒 (𝑡) + 𝜃
2

⋅ 𝑥
𝑇

(𝑡) 𝑥 (𝑡) .

(31)

On the other hand, for �̇�
1
(𝑡), we have

2𝑥
𝑇

(𝑡) 𝑃Δ𝐴 (𝑡) 𝑥 (𝑡) = 2𝑥
𝑇

(𝑡) 𝑃𝐷
1
𝐹 (𝑡)𝐷

2
𝑥 (𝑡)

≤ 𝜀
2
𝑥
𝑇

(𝑡) 𝐷
𝑇

2
𝐷
2
𝑥 (𝑡)

+ 𝜀
2

−1

𝑥
𝑇

(𝑡) 𝑃𝐷
1
𝐷
𝑇

1
𝑃𝑥 (𝑡) ,

(32)

and 2𝑥𝑇(𝑡)𝑃𝑓(𝑡) ≤ 2‖𝑥(𝑡)‖2‖𝑃‖ ⋅ 𝜃 ≤ 𝜃2 ⋅ 𝑥𝑇(𝑡)𝑃𝑃𝑥(𝑡) +
𝑥
𝑇

(𝑡)𝑥(𝑡).
Then
�̇�
1
(𝑡) ≤ 2𝑥

𝑇

(𝑡) 𝑃 (𝐴 + 𝐵𝐾) 𝑥 (𝑡) + 𝜀
2
𝑥
𝑇

(𝑡) 𝐷
𝑇

2
𝐷
2
𝑥 (𝑡)

+ 𝜀
2

−1

𝑥 (𝑡) 𝑃𝐷
1
𝐷
𝑇

1
𝑃𝑥
1
(𝑡)

+ 𝜃
2

⋅ 𝑥
𝑇

(𝑡) 𝑃𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑃𝐵𝐾𝑥 (𝑡) .

(33)
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As a result, it is derived that

�̇� (𝑡) = �̇�
1
(𝑡) + �̇�

2
(𝑡)

≤ 2𝑥
𝑇

(𝑡) 𝑃 (𝐴 + 𝐵𝐾) 𝑥 (𝑡) + 𝜀
2
𝑥
𝑇

(𝑡) 𝐷
𝑇

2
𝐷
2
𝑥 (𝑡)

+ 𝜀
2

−1

𝑥
𝑇

(𝑡) 𝑃𝐷
1
𝐷
𝑇

1
𝑃𝑥
1
(𝑡) + 𝜃

2

⋅ 𝑥
𝑇

(𝑡) 𝑃𝑃𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑥 (𝑡) + 2𝑥
𝑇

(𝑡) 𝑃𝐵𝐾𝑥 (𝑡)

+ 2𝑒
𝑇

(𝑡) 𝑅𝑆
−1

(𝐴 − 𝐿
𝑃
𝐶) + 𝜀

1
𝑥
𝑇

(𝑡)

× 𝐷
𝑇

2
𝐷
2
𝑥 (𝑡) + 𝜀

−1

1
𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝐷
1
𝐷
𝑇

1
𝑆
−𝑇

𝑅𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) 𝑅𝑆
−1

𝑆
−𝑇

𝑅𝑒 (𝑡) + 𝜃
2

⋅ 𝑥
𝑇

(𝑡) 𝑥 (𝑡)

≤ [𝑥
𝑇

(𝑡) 𝑒
𝑇

(𝑡)] [
ΙΙ
11
ΙΙ
12

∗ ΙΙ
22

] [
𝑥 (𝑡)

𝑒 (𝑡)
] ,

(34)

with

ΙΙ
11
= (𝐴 + 𝐵𝐾)

𝑇

𝑃 + 𝑃 (𝐴 + 𝐵𝐾) + 𝜀
2
𝐷
𝑇

2
𝐷
2

+ 𝜀
2

−1

𝑃𝐷
1
𝐷
𝑇

1
𝑃 + 𝜃
2

𝑃𝑃 + 𝐼
𝑛
+ 𝜃
2

𝐼
𝑛
,

ΙΙ
22
= 𝑅𝑆
−1

(𝐴 − 𝐿
𝑃
𝐶) + (𝐴 − 𝐿

𝑃
𝐶)
𝑇

𝑆
−𝑇

𝑅

+ 𝜀
−1

1
𝑅𝑆
−1

𝐷
1
𝐷
𝑇

1
𝑆
−𝑇

𝑅 + 𝑅𝑆
−1

𝑆
−𝑇

𝑅.

(35)

By Schur complement lemma, ΙΙ < 0 is equivalent to
the matrix condition (23) in Theorem 1. This completes the
proof.

It is noted that the matrix condition (23) in Theorem 1
is a nonlinear one since the observer gain 𝐿

𝑃
has not been

designed. To this end, we provide the following theorem to
design 𝐿

𝑃
and transform the condition of Theorem 1 into a

linear version.

Theorem 2. For the closed-loop system (22), let the gain
matrices 𝐿

𝐷
and𝐾 be designed as previously discussed, if there

exist positive and definite matrix 𝑃 ∈ 𝑅𝑛×𝑛, 𝑅 ∈ 𝑅(𝑛+𝑝)×(𝑛+𝑝),
and matrices 𝑌 ∈ 𝑅(𝑛+𝑝)×𝑝such that the following LMI holds:

[
[
[
[
[
[
[

[

Ψ
11
𝑃𝐵𝐾 0 𝑃𝐷

1
𝜃𝑃 0

∗ Ψ
22
𝑅𝑆
−1

𝐷
1
0 0 𝑅𝑆

−1

∗ ∗ −𝜀
1
𝐼
𝑛
0 0 0

∗ ∗ ∗ −𝜀
2
𝐼
𝑛+𝑝
0 0

∗ ∗ ∗ ∗ −𝐼
𝑛
0

∗ ∗ ∗ ∗ ∗ −𝐼
𝑛+𝑝

]
]
]
]
]
]
]

]

< 0, (36)

where

Ψ
11
= (𝐴 + 𝐵𝐾)

𝑇

𝑃 + 𝑃 (𝐴 + 𝐵𝐾) + 𝐼
𝑛
+ 𝜃𝐼
𝑛
+ 𝜀
2
𝐷
𝑇

2
𝐷
2
,

Ψ
22
= 𝑅𝑆𝐴 − 𝑌𝐶 + 𝐴

𝑇

𝑆
𝑇

𝑅 − 𝐶
𝑇

𝑌
𝑇

.

(37)

Furthermore, the observer gain 𝐿
𝑃
is calculated as 𝐿

𝑃
=

𝑆𝑅
−1

𝑌.

Table 1: Miscellaneous coefficient value.

Coefficients Value Unit
𝐾
𝑖

1𝑒 − 3 A/V
𝐾
𝑠

1.5 m/A
𝐴
𝑔

1.8𝑒 − 3 m2

𝛽
𝑒

1𝑒9 Pa
𝐶
𝑖𝑐

2.4𝑒 − 11 m⋅N/s
𝐶
𝑒𝑐

7.3𝑒 − 13 m⋅N/s
𝑉
𝑡

1𝑒 − 4 m3

𝑚 3.75 kg
𝐵
𝑐

500 N⋅s/m
𝐾 1.66𝑒5 N/m
𝐷max 2.39𝑒 − 5 m3/rad
𝑦max 0.015 m
𝐶
𝑡𝑐

2.4𝑒 − 11 m⋅N/s
𝐵 0.09 N⋅m/(rad/s)
𝐽
𝑝/𝑚

0.52 kg⋅m2

𝐾
𝑞

5.56𝑒 − 3 (m3/s)/m
𝐾
𝑐

8𝑒 − 12 m5/N⋅s
𝑟 145.2 —
𝑃
𝑠

15𝑒6 Pa

Proof. In the matrix condition ofTheorem 1, let 𝑌 = 𝑅𝑆−1𝐿
𝑝
,

and substituting it into the matrix condition of Theorem 1,
one can easily obtain the LMI of Theorem 2. This completes
the proof.

4. Simulation Results

Consider the plant and augmented form (8), the system data
are chosen as shown in Table 1 as follows:

𝐴 = (

−0.173 4.59 × 10
4

0 0

0 0 1 0

0 −4.43 × 10
4

−133.3 4.8 × 10
−4

0 0 −7.14 × 10
10

−1.28 × 10
3

),

𝐵 = (

0

0

0

3.3 × 10
8

), 𝐶 = (

1

0

0

0

)

𝑇

,

𝐷
1
=

[
[
[

[

0.1 0.2 0.05 0.1

0 0.2 0.1 0.1

0 0.1 0.13 0.1

0.13 0.12 0.14 0.15

]
]
]

]

,

𝐷
2
=

[
[
[

[

0.2 0.1 0.07 0.02

0 0.1 0.2 0.3

0.1 0.1 0.13 0.1

0.14 0.12 0.14 0.15

]
]
]

]

,

𝐹 (𝑡) =

[
[
[

[

0.1 sin (𝑡) 0 0 0

0 0.15 sin (𝑡) 0 0

0 0 0.14 sin (𝑡) 0

0 0 0 0.1 sin (𝑡)

]
]
]

]

,

(38)
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and the Lipschitz condition is selected as

𝑓 (𝑡, 𝑥) = 0.131

[
[
[

[

sin (−0.2𝑥
1
(𝑡) + 𝑥

2
(𝑡) + 𝑥

3
(𝑡))

sin (𝑥
1
(𝑡) − 2𝑥

2
(𝑡) + 𝑥

3
(𝑡))

0

0

]
]
]

]

. (39)

It is easy to check that (𝐴, 𝐶) is observable pair, and the
Lipschitz condition is given as 𝜃 = 0.420. It is assumed that
𝑑(𝑡) has the following form.

Case 1. Consider

𝑑 (𝑡) = {
0.1 cos (8𝑡) , 𝑡 < 2,

0.1 sin (10𝑡) + 0.2 cos (10𝑡) , 2 ≤ 𝑡 < 5.
(40)

Case 2. Consider

𝑑 (𝑡) = {
0.5, 𝑡 < 3,

0.3 sin (4𝑡) + 0.1, 3 ≤ 𝑡 < 5.
(41)

We select 𝛿 = 0.4, which is the norm upper bound
of 𝑑(𝑡) as defined in assumption (iii). In order to design the
estimator, we choose the derivative gain 𝐿

𝐷
as

𝐿
𝐷
=

[
[
[

[

0

0

0

1

]
]
]

]

, such that the system matrix

𝑆 =

[
[
[
[
[

[

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 1

]
]
]
]
]

]

is nonsingular.

(42)

Design the state feedback gain as 𝐾 = [−1.413, −0.286,
−2.854, −0.423] such that 𝐴 + 𝐵𝐾 is Hurwitz. Solving the
LMI condition of Theorem 2, one can obtain the following
solution:

𝑃 =

[
[
[

[

369.0123 −254.7902 −107.2517 −184.3887

254.7902 352.6723 −104.8523 75.6133

−107.2517 −104.8523 502.8899 134.2559

−184.3887 75.6133 134.2559 212.2635

]
]
]

]

,

𝑅 =

[
[
[
[
[

[

3.6029 −3.7781 5.8391 −1.3649 1.2867

−3.7781 9.2899 −13.8548 0.7897 −3.7774

5.8391 −13.8548 29.0279 −0.2689 6.1213

−1.3649 0.7897 −0.2689 1.0889 0.3238

1.2867 −3.7774 6.1213 0.3238 2.2892

]
]
]
]
]

]

.

(43)

According toTheorem 2, the proportional gain is selected as

𝐿
𝑝
= 10
2

×

[
[
[
[
[

[

0.0000

0.0000

0.0000

6.3696

0.0000

]
]
]
]
]

]

. (44)
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Figure 2: Trajectory of the closed-loop system.
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Figure 3: 𝑑(𝑡) and the estimation: Case 1.

The initial condition is chosen as 𝑒(1) =

[0 0 0 0 0], 𝑥(1) = [1 − 1 − 1.5 1]. The simulation
results are provided in Figures 1–3. The state trajectory of
𝑥(𝑡) of the closed-loop system is shown in Figure 2. The
trajectories of disturbances 𝑑(𝑡) and their estimation in Case
1 are shown in Figure 3. The trajectories of disturbances 𝑑(𝑡)
and their estimation in Case 2 are shown in Figure 4. It can be
seen that the asymptotic stability of the closed-loop system
is guaranteed, and the tracking performance of system states
and disturbances has achieved an ideal performance.

5. Conclusion

In this paper, the problem of robust control has been
studied for the velocity control system based on CPR with
parameters uncertainty and load disturbance. The hydraulic
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Figure 4: 𝑑(𝑡) and the estimation: Case 2.

velocity control system model has been built firstly for
the control design objective. By constructing a Luenberger
observer and using Lyapunov stability theory, the observer-
based controller has been designed such that the closed-loop
system is asymptotically stable and satisfies the disturbance
attenuation level. Finally, simulation results have shown the
effectiveness of the proposed method. The future work will
focus on constructing one test rig and trying to prove the
effective performance for the proposed control method. And
the long research object of the project is to apply this method
to hydraulic velocity control system design for getting a good
performance of construction machinery.
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