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Abstract: This paper establishes an adaptive synchronization problem for the master and slave structure 
of linear systems with nonlinear perturbations and mixed time-varying delays, where the mixed delays 
comprise different discrete and distributed time-delays. Using an appropriate Lyapunov-Krasovskii 
functional, some delay-dependent sufficient conditions and an adaption law which include the master-
slave parameters are established for designing a delayed synchronization law in terms of linear matrix 
inequalities. The controller guarantees the ࡴஶ synchronization of the two coupled master and slave 
systems regardless of their initial states. Particularly, it is shown that the synchronization speed can be 
controlled by adjusting the update gain of the synchronization signal. A numerical example is given to 
show the effectiveness of the method. 
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1. INTRODUCTION 

Synchronization is a basic motion in nature that has been 
studied for a long time, ever since the discovery of Christian 
Huygens in 1665 on the synchronization of two pendulum 
clocks. The results of chaos synchronization are utilized in 
biology, chemistry, secret communication and cryptography, 
nonlinear oscillation synchronization and some other 
nonlinear fields. The first idea of synchronizing two identical 
chaotic systems with different initial conditions was 
introduced by Pecora and Carroll (1990), and the method was 
realized in electronic circuits. The methods for 
synchronization of the chaotic systems have been widely 
studied in recent years, and many different methods have 
been applied theoretically and experimentally to synchronize 
chaotic systems, such as feedback control (Alvarez and 
Curiel, 1997); Gao et al., 2006); Karimi and Maass, 2009); 
Wen et al., 2006); Lu and van Leeuwen, 2006), adaptive 
control (Cao and Lu, 2006; Liao and Tsai, 2000; Yan et al., 
2006; Fradkov et al., 2000), backstepping (Park, 2006) and 
sliding mode control (García-Valdovinos, 2007). Recently, 
the theory of incremental input-to-state stability to the 
problem of synchronization in a complex dynamical network 
of identical nodes, using chaotic nodes as a typical platform 
was studied by Cai and Chen (2006). 
On the other hand, delay systems represent a class of infinite-
dimensional systems largely used to describe propagation and 
transport phenomena or population dynamics (Hale and 
Verduyn Lunel, 1993). The presence of a delay in a system 
may be the result of some essential simplification of the 
corresponding process model. The delay effects problem on 
the stability of systems including delays in the state and/or 
input is a problem of recurring interest since the delay 
presence may induce complex behaviors (oscillation, 
instability, bad performances) for the schemes (Wang et al., 
2006; Wang et al., 2005; Gao et al., 2006). Some recent 

views and improved methods pertaining to the problems of 
determining robust stability criteria and robust control design 
of uncertain time-delay systems have been reported see for 
example (Karimi and Gao, 2008). In the past few decades 
increased attention has been devoted to the problem of robust 
delay-independent stability or delay-dependent stability and 
stabilization via different approaches (for example, model 
transformation techniques (Han, 2002), the improved 
bounding techniques (Mou et al., 2008), and the properly 
chosen LKFs (He et al., 2007)) for a number of different 
neutral systems with delayed state and/or input, parameter 
uncertainties and nonlinear perturbations (Karimi, 2008; 
Wang et al., 2006; Lam et al., 2005; Zhang et al., 2008).  
On the synchronization problems of systems with time-delays 
and nonlinear perturbation terms, we see that there have been 
some research works (Karimi and Gao, 2010; Sun et al. 2007; 
Wang and Cao, 2009). In (Yan et al., 2006), the adaptive 
decentralized synchronization of master–slave large-scale 
time-varying delayed systems with unknown signal 
propagation delays was investigated based on the Lyapunov 
stability theorem. In (Cao and Lu, 2006), based on the 
invariant principle of functional differential equations, an 
analytical and rigorous adaptive feedback scheme is proposed 
for the synchronization of almost all kinds of coupled 
identical neural networks with time-varying delay, which can 
be chaotic, periodic, etc. In (Wang et al. 2008), the 
synchronization problem is studied for a class of stochastic 
complex networks with time delays. By utilizing Lyapunov 
functional form based on the idea of ‘delay fractioning’, the 
stochastic analysis techniques and the properties of 
Kronecker product are employed to establish delay-
dependent synchronization criteria that guarantee the globally 
asymptotically mean-square synchronization of the addressed 
delayed networks with stochastic disturbances. So the 
development of synchronization methods for master-slave 
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systems with time-varying delays using delay-dependent 
adaptive synchronization is important and has not been fully 
investigated in the past and remains to be important and 
challenging. This motivates the present study. 
In this paper we contribute to the further development of the 
adaptive synchronization problem for a class of master-slave 
systems with nonlinear perturbations and mixed time-delays, 
where the mixed delays comprise different discrete and 
distributed time-delays. Some sufficient conditions and an 
adaption law which include the master-slave parameters are 
obtained by using the LKFs method and linear matrix 
inequality (LMI) techniques. Then, the controller is 
developed based on the available information of the size of 
the discrete and distributed delays so as to guarantee that the 
controlled slave system can be synchronized with the master 
system regardless of their initial states. Particularly, the 
synchronization speed can be controlled by adjusting the 
update gain of the synchronization signal. All the developed 
results are expressed in terms of convex optimization over 
LMIs and tested on a representative example to demonstrate 
the feasibility and applicability of the proposed 
synchronization approach. 
This paper is organized as follows. In Section 2, the model of 
master-slave systems with both time-varying discrete and 
distributed delays and nonlinear perturbations is described. In 
Section 3, the discrete-delay-dependent distributed-delay-
dependent adaptive synchronization is derived based on 
LMIs. In Section 4, a numerical example is given to verify 
our results. Finally, in Section 5, a conclusion is given. 

2. PROBLEM DESCRIPTION 
Consider a model of master and slave systems with mixed 
discrete and distributed time-varying delays and nonlinear 
perturbations as 
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where },h{max: mM τ=κ , )t(x),t(x sm  are the 1n ×  state 
vector of the master and slave systems, respectively and )t(u  
is the 1r ×  control input. The time-varying vector valued 
initial functions )t(φ  and )t(ϕ  are continuously differentiable 
functionals and (.,.)f i  are also time-varying vector-valued 
functions. The time-varying delays are satisfying 

.h)t(h,h)t(h0 DM ≤≤<                      (3a) 
.)t(,)t(0 DM τ≤ττ≤τ<                        (3b) 

Assumption 1. The functions nn
i :f ′+ ℜ→ℜ×ℜ  are 

continuous and satisfy 0)0,t(fi =  and the Lipschitz 
conditions, i.e., 

)yx()y,t(f)x,t(f 00i0i0i −Γ≤−  

for all t  and for all n
00 y,x ℜ∈  such that iΓ  are some known 

matrices. 
Remark 1. The model (1)-(2) can describe a large amount of 
well-known dynamical systems with time-delays, such as the 
Logistic model, the chaotic models with time-delays and the 
artificial neural network model with discrete time-delays. In 
real application, these coupled systems can be regarded as 
interacting dynamical elements in the entire system, such as 
physical particles, biological neurons, ecological populations, 
genic oscillations, and even automatic machines and robots. 
A feasible coupling design for successful synchronization 
leads us to fully command the intrinsic mechanism regulating 
the evolution of real systems, to fabricate emulate systems, 
and even to remotely control the machines and nodes in 
networks with large scales (Pecora and Carroll, 1990; Gao et 
al. 2006; Park, 2006; Gao et al. 2008). 
Assumption 2. The full state variables )t(x s  and )t(x m  are 
available for measurement. 
Now, it is required to synchronize the slave system with the 
master system at the same time. The synchronization error of 
the master and slave systems (1)-(2) is defined as 

)t(x)t(x)t(e sm −= , then the error dynamics between (1)-(2), 
namely synchronization error system, can be expressed by 
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where ))t(e)t(x;t(f))t(x;t(f:))t(e;t(f̂ m1m11 −−= and )))t(ht(e;t(f̂2 −   
)))t(ht(e))t(ht(x;t(f)))t(ht(x;t(f: m2m2 −−−−−= .  

From Assumption 1, the corresponding uncertainty set is 
denoted by 

}e))t(e,t(f̂:))t(e,t(f̂{:))t(e( iiii Γ≤=Ξ                 (5) 

The problem to be addressed in this paper is formulated as 
follows: given the master-slave systems (1)-(2) with both 
discrete and distributed time-delays, find a delay-dependent 
adaptive synchronization control )t(u for the slave system (2) 
so that the state of the slave system can follow that of a 
master model, i.e., 0)t(elim

t
=

∞→
. 

3. MAIN RESULTS 
In this section, we propose sufficient conditions for the 
solvability of the adaptive synchronization problem of the 
master-slave systems (1)-(2) using the Lyapunov method.  
Define the following Lyapunov-Krasovskii functional 

2
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where ℜ∈ρ )t(  denotes the adaptation errors which will be 
defined later. Define the ∞H  performance measure 
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Now, to establish the ∞H  performance measure for the 
system (1)-(2), assume zero initial condition, then we have 
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is called a Hamiltonian function. It is well known that a 
sufficient condition for achieving robust disturbance 
attenuation, i.e. 0J <∞ , is that the inequality 
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results in an )t(V which is strictly radially unbounded. 
Theorem 1. Under Assumptions 1-2, the master-slave 
systems (1)-(2) with the different discrete and distributed 
time-varying delays can be synchronized if there exist the 
scalar 0>γ , matrices 321 L,L,L  and positive-definite 
matrices X , S

~ , R~ , 1U~ such that the following LMI holds 
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the adaptive synchronization controller is given by 
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adaptation law 
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where 1
ii XLK −= , 3,2,1i =  and the positive constants q  and 

0ρ  are specified by the designer. 
Proof. We will prove the Theorem by showing that the 
control law (11) will guarantee the inequality of (10).  
By using the Jensen’s Inequality, Lemma 3 in Appendix, and 
the properties of the time delays, derivatives of )t(Vi , 
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Then, the synchronization of master-slave systems with 
mixed time-delays and nonlinear perturbations is achieved 
under the neutral-delay-dependent adaptive synchronization 
law (11). Moreover, it is clear that the Lyapunov function (6) 
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which shows that the difference operator of the 
synchronization error system )t(e

 
is globally exponentially 

bounded with an exponential decay rate 2ϖ , which depends 
on the matrices 1C  and P . Therefore, synchronization speed 
can be controlled by adjusting positive constants q  and 0ρ . 
Furthermore, from inequality (21), it is observed that )t(V  in 

)t()t(q2
)t(ePB
)t(ePBBP)t(e)t(2

)t()t()))]t(ht(e,t(f̂)),t(e,t(f̂),t(w),t(u[H

T

T
T

T
21

ρρ+ρ+

χΠχ≤−
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(6) is bounded since )0(V  is finite. This implies that )t(e  and 
)t(ρ  are bounded for all 0t > . Moreover, the state )t(xm  of 

the master model is always bounded, then it is concluded that 
the state )t(xs  is also bounded. This completes the proof. ■ 
Corollary 1. Consider the following two master and slave 
systems without time delays: 

⎩
⎨
⎧

=
+=

)t(xC)t(z
)),t(x;t(fN)t(xA)t(x

m1m

m11m1m                                   (32) 

and 

        
⎩
⎨
⎧

=
+++=

)t(xC)t(z
),t(wD)t(uB))t(x;t(fN)t(xA)t(x

s1s

s11s1s

  

          (33) 

Under Assumptions 1-2 and for a given scalar 0>γ , the 
master-slave systems (32)-(33) can be synchronized when the 
adaptive synchronization controller is given by 

)t(eXB
)t(eXB)t()t(eK)t(u

1T

1T

1 −

−
ρ−=                   (34) 

for all 0)t(eXB 1T ≠− , otherwise 0)t(u = , with the 

adaptation law 

0
1T1 )0(,)t(eXBq)t( ρ=ρ=ρ −−                    (35) 

where 1
11 XLK −= and the positive constants q  and 0ρ  are 

specified by the designer and the matrix 1L  and the positive-
definite matrix X  are solutions of the following LMI  

0

I
0I
00I
000I

XXCDN

2

T
1

T
1111

<

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−∗∗∗∗
−∗∗∗

γ−∗∗
−∗

Γ−Π

                   

(36)

 

with TT
11

T
1111 BLBLXAXA −−+=Π .  

Remark 2. The results presented in Theorem 1 are depended 
on the upper bounds of the time-varying discrete and the 
distributed delays and the upper bounds of their derivative, as 
well. These give a less conservative design than the available 
delay-independent results in Yan et al. (2006). Therefore, the 
treatment in the present paper is more general. 

4. SIMULATION RESULTS 
In this section, we will verify the proposed methodology by 
giving an illustrative example. We solved LMI (10) by using 
Matlab LMI Control Toolbox, which implements state-of-
the-art interior-point algorithms and is significantly faster 
than classical convex optimization algorithms. The example 
is given below.  
Consider the master-slave systems (1)-(2) with the following 
state-space matrices for an aircraft model 

⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=

5.01.0
01.02.0

A1 ; ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

1.001.0
2.01.0

A2 ; ⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=
15.01.0
1.03.0

A3 ;

⎥
⎦

⎤
⎢
⎣

⎡
==

1
1

DB ; ⎥
⎦

⎤
⎢
⎣

⎡
==

10
01

NN 21 ; ]11[C1 = ; ]11[CC 32 == ; 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−+
−−+

==
)1)t(x1)t(x(5.0
)1)t(x1)t(x(5.0

))t(x,t(f))t(x,t(f
22

11
21 . 

The delays )e1()e1()t()t(h tt −− +−=τ=  satisfy 
1)t()t(h0 ≤τ=≤  and 5.0)t()t(h ≤τ= , where 

T
m2m1m )]t(x),t(x[)t(x = , T

s2s1s )]t(x),t(x[)t(x = .  
It is required to design the synchronization signal (11) with 
the adaptive law (12) such that the trajectories of the slave 
subsystem and master subsystem (1)-(2) can be synchronized. 
To this end, in light of Theorem 1, we solved the LMI (10) 
for 8.0=γ  and obtained  

⎥
⎦

⎤
⎢
⎣

⎡
=

0.03640.0076
0.00760.0042

X . 

 
Fig. 1. Time responses of the first state of the master-slave 
systems and the related synchronization error. 

 
Fig. 2. Time responses of the second state of the master-slave 
systems and the related synchronization error. 
 
For simulation purposes, we set values of the designed 
parameters as 10q = , 10 =ρ  with the following initial 
conditions  

[ ]0,1t,]1,1[)t(x T
m −∈−= , 

[ ]0,1t,0)t(xs −∈= . 
and an exogenous disturbance input is set as 

0t,
t1

1)t(w ≥
+

= . 

Now, by applying the synchronization signal (11) with the 
adaptive law (12) and the parameters above, the temporal 
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evolution of each variable of the mas
)t(x),t(x m2m1 , )t(x s1 , )t(x s2 with the relate

errors, i.e., )t(x)t(x)t(e ms −= , are shown in
seen that the synchronization errors )t(e1 =

)t(x)t(x)t(e 2m2s2 −=  converge to zero
adaptation parameter )t(ρ  is depicted in Fig

Fig. 3. Time response of the adaptation para

5. COCLUSION 
In this paper an adaptive ܪஶ synchronizat
proposed for the master and slave structure
with nonlinear perturbations and mixed tim
where the mixed delays comprise differ
distributed time-delays. Using an approp
Krasovskii functional, some delay-depe
conditions and an adaption law which inc
slave parameters were established for des
synchronization law in terms of linear m
The controller guarantees the ܪஶ synchron
coupled master and slave systems regardle
states. Particularly, it was shown that the
speed can be controlled by adjusting the u
synchronization signal. 
 

APPENDIX 
Lemma 1. (Park, 1999) (Jensen’s Ine
positive-definite matrix nnP ×ℜ∈  and two
for any vector n)t(x ℜ∈ , we have 

P)d)(x(
ab

1d)(xP)(x T
at

bt

at

bt

T ∫∫
−

−

−

−
ωω

−
≥ωωω

Lemma 2. (Barbalat lemma (Popov, 1973))
uniformly continuous function for 0≥t and
integral 

λλ∫∞→
d)(wlim t

0t
 

exists and is finite, then 0)t(wlim
t

=
∞→

.  
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