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Abstract— This paper addresses the problem of bond graph
methodology as a graphical approach for modeling wind
turbine systems. In this case, we consider the modeling of
a wind turbine system with individual pitch control scheme
and the interaction with tower motions. Two different bond
graph models are presented, one complex and one simplified.
Furthermore, the purpose of this paper is not to validate a
specific wind turbine model, but rather show the difference
between modeling with a classical mechanical method and by
using the bond graph approach. Simulation results illustrate
the simplified system response obtained using implementation of
the governing equations in MATLAB/Simulink and is compared
with a bond graph implementation in the simulation program
20-sim.

I. INTRODUCTION

The demand for energy world wide is increasing every
day. In these green times renewable energy is a hot topic all
over the world. Wind energy is currently the most popular
energy sector. The growth in wind power industry has been
tremendous over the last decade, according to [1] it has (on
average) doubled every third year. Up to early 2010 the
world wide capacity was 159,213 MW.
Whenever we are talking about wind turbine (WT) control
systems, the turbine model becomes a critical part of the
discussion. Over the years it has been some discussions
about how to model the WT accurately. In [2]-[4] they
perform dynamic analysis on a one-mass-model, in [5]-[8]
they examine a two-mass-model. In [9] they use actual
measured data from a WT and compares it with both a
one-mass and a two-mass-model. They validate the model
using a recorded case obtained in a fixed speed, stall
regulated WT. In [10] a six, three and a two-mass model
are compared. They argue that a six mass model is needed
for the precise transient analysis of wind turbine generator
systems (WTGS), and they develop a way to transform a
six mass model into a two mass model. The goal here is
not to use the model in the control scheme, but in the use
of transient stability analysis of gridconnected WTGS.
The aforementioned references only consider WTs with
collective pitch control (CPC) or to check the transient
stability, but they give a good starting point on how to
model a WT with individual pitch control (IPC). In [11], the
modeling problem is approached in a different way. Here
they consider the turbine as a complex flexible mechanism,
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and uses the finite-element-method (FEM) multibody
approach. An aero-servo-elastic model is introduced, which
consists of the aerodynamic forces from the wind, the servo
dynamics from the different actuators and the elasticity in
the different joints and the structure.
As seen above there are many types of WT models, ranging
from single mass, one state model to multiple mass models.
In a simulation point of view it is desirable that the model
is as simple as possible and can capture as much of the
dynamics that appear in reality. This is an absolute demand,
another important issue is to keep the central processing
unit (CPU) labor to a minimum. E.g. when dealing with
hardware in the loop (HIL) simulation, it is necessary to
download the model to for example a programmable logic
controller (PLC). This argues for the importance of having
a fast C-code. This brings us to the use of the bond graph
(BG) methodology. The BG provides with a systematic way
to model dynamic systems. Things that potentially can have
a negative effect on the execution of the C-code can for
example be algebraic loops and differential causality on
the different elements in the system. It is a quite intuitive
way in setting up the bonds and connecting the elements,
this will be discussed in a later section. The outcome from
the BG is a set of first order differential equations, which
afterwards can be used for controller design.

The WTGS can be divided into several subsections,
see Fig. 1. The subsystems emphasized in this paper are the
mechanical system and the tower motion.
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Fig. 1. Setup for WTGS

The system setup is adopted from [12], where Vw is wind
speed, Vp is wind speed for power production, ż is tower
speed, Ft is force acting on the tower (thrust force), βref
is pitch angle reference, β is actual pitch angle, Ta is
aerodynamic torque, ΩH is hub speed, ΩG is generator
speed, TEMref is generator torque reference and TEM is
actual generator torque.



The expression for power produced by the wind is
given by [13]:

Pa =
1

2
ρπR2v3Cp (λ, β) (1)

And the tip-speed ratio (TSR) λ is defined as:

λ =
vb
v

(2)

From Eq. 1 we can find the aerodynamic torque and the force
acting on the tower as follows:

Ta =
1

2
ρπR3v2Cp (λ, β) (3)

Ft =
1

2
ρπR2v2CT (λ, β) (4)

where Pa is the aerodynamic power, ρ is the air density,
R is the blade radius, v is the wind speed, Cp and CT are
both functions of the tip-speed ratio and the pitch angle and
vb is the tip speed of the blade.

This paper starts with an introduction to WT modeling.
Section II gives a short overview on how the BG
methodology works and the different elements. Section III
gives the tower motion and WT model. The procedure here
is to first make a simplified WT model and write down the
differential equations using Newton’s second law. Based on
this simplified model a BG is made. The argument is; if we
can make a BG of the simplified model, then we are ready
to make a BG for the more complex WT. At last in this
section a BG for the full WT is presented. Section IV states
the simulation results and section V gives the conclusion
and states some suggestions regarding future work.

II. INTRODUCTION TO BOND GRAPH

BG is a graphical way of modeling physical systems. All
these physical systems have in common the conservation
laws for mass and energy. BGs, originated by Paynter [14]
in 1961, deals with the conservation of energy. This gives
a unified approach to modeling physical systems. Further
follows a short introduction to this modeling tool, more
information can be found in [15].
Within physical systems, energy is transported from one item
to another. This energy is either stored or converted to other
forms. But the important thing is that it can not dissipate. If
the energy is changing in one place, it also changes in an
opposite way at another location. The definition of power is
the change in energy (E) relative to time:

P =
d

dt
(E) (5)

This power is transferred between the different parts in the
physical system with the use of power bonds, see Fig. 2.
In BG notation the definition of power is effort multiplied
with flow. In for example electric systems this means voltage
multiplied with current, and in mechanical systems force
multiplied with velocity.
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Fig. 2. Power bond

A. System Elements

In BG modeling there are a total amount of nine dif-
ferent elements. We will also here introduce the causality
assignments, but first we have to explore the cause and effect
for each of the basic BG elements. Only elements with its
preferred causality will be discussed.

1) Junctions: There are two different types of junctions
that connects the different parts in a BG, namely the 0-
junction and the 1-junction. The 0-junction is a effort equal-
izing connection, Fig. 3 represent Eq. 6. Since the efforts are
the same, only one bond can decide what it is. This is seen
by the causality stoke, the bond which has its causality stroke
closest to the junction decides the effort. The 1-junction is
a flow equalizing connection, Fig. 4 represent Eq. 7. Since
the flows are the same, only one bond can decide what it is.
The bond which has its causality stroke furthest away from
the junction decides the flow.
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e1 = e2 = e3 (6)
f3 = f1 + f2
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Fig. 4. 1-junction

f1 = f2 = f3 (7)
e3 = e1 + e2

2) Source Element: We can divide the source elements
into two different kinds, effort- and flow-source. The effort
source gives an effort into the system, then it is up to the
system to decide the flow. This is what is meant by cause and
effect, and its vice versa for the flow source. Fig. 5 shows
how the causality is indicated on the graphical elements. If
the vertical line is closest to the junction, then this element
decides the effort, furthest away from the junction decides
the flow. For the source elements these causality assignments
are fixed.

e

f
Se

e

f
Sf

Fig. 5. Effort and flow source with their causality assignments

3) Compliance Element: The causality assignment for the
C-element has two possibilities, but one is preferred in con-
trast to the other. This is discussed at the end of this section.
The preferred case is seen in Fig. 6 and its corresponding



equation in Eq. 8. We see from both the equation and the
figure that flow is given to the element/equation and it gives
the effort in return.
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Fig. 6. Example of compliance ele-
ment with integral causality

e =
1

C

∫
fdt (8)

=
q

C

4) Inertia Element: There are two choices for the causal-
ity assignment for the I-element, as for the C-element, also
here one is preferred over the other. The preferred case is
seen in Fig. 7 and its corresponding equation in Eq. 9.
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Fig. 7. Example of inertia element
with integral causality

f =
1

I

∫
edt (9)

=
p

I

5) Resistive Element: It is a bit more freedom when it
comes to the causality assignment for the R-element. Its
equation does not include any integration or derivation, only
an algebraic expression. The two causality choices is shown
in Fig. 8 and its corresponding equation in Eq. 10.
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Fig. 8. Example of resistive element

e = Rf (10)

f =
1

R
e

6) Transformer: The transformer element can work in
two ways; either it transforms a flow to another flow or
it transforms an effort to another effort. Fig. 9 represents
Eq. 11-12, m is the transformation ratio.
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e1 = me2 (11)
f2 = mf2

e2 =
1

m
e1 (12)

f1 =
1

m
f2

7) Gyrator: The gyrator can work in two ways; either it
transform a flow into an effort or it transform an effort into
a flow. Fig. 10 represents Eq. 13-14, r is the gyrator ratio.
The importance of integral causality is nicely explained in
[16]. First imagine a step in effort is imposed on a C-element,
this means the causality stroke in Fig. 6 needs to be changed
and we need to rewrite the corresponding equation. Now
the flow output is proportional to the derivative of the input
effort. From calculus we know that the derivative of a step
function at the beginning is infinite, i.e. this do not give any
physical meaning. We can imagine a simple electric circuit
containing a voltage source coupled with a capacitor, if a
step input were to be imposed on the voltage source the
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Fig. 10. Example of the two gyrators

e1 = rf2 (13)
e2 = rf1

f1 =
1

r
e2 (14)

f2 =
1

r
e1

capacitor would experience a very high current and it would
blow up. Another major advantage is the ability to easily
spot algebraic loops in large dynamic systems. Algebraic
loops can for example occur in a mechanical system if there
are more than two dampers and they are not independent of
each other. These loops can be hard to spot by inspecting
the governing equations or the block diagram. If we are
inspecting the BG model and we see that the causality stokes
on the R-elements are different, this implies that they are
not independent of each other, i.e there exist algebraic loops
between them. When we know exactly where these algebraic
loops are, we can fix them by for example adding an extra
I- or a C-element. And then we can give this extra element
a value such that it does not influence the rest of the system.
Algebraic loops do not necessarily mean that the simulation
will crash, but it might, especially if there are nonlinearities
in the dampers. And a smooth simulation is always preferred.
The procedure on how to extract the algebraic and dynamic
equations from a BG is not included in this short overview.
It can be done in a very systematic way and it will partly be
shown in the next section.

III. MODEL DESCRIPTION

Fig. 11 shows a sketch of a WT [10]. It consists of
six inertias which are; the three blades, hub, gearbox and
generator. The inputs are wind speed and electro magnetic
torque. To derive the dynamic equations for this model using
Newton’s second law can be quite hard, and one can easily
make some mistakes. This is why the differential equations
are derived for the simplified case. The different parameters
are explained in Tab. I. Fig. 12 shows a three mass sketch of
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Fig. 11. Wind turbine model

a WT. The sketch consists of a hub, gearbox and generator.
Inputs are aerodynamic torque and electro magnetic torque.



If the MATLAB/Simulink simulation result corresponds to
the 20-sim result, then we are ready to make our BG model
based on Fig. 11. More information about the simulation
program 20-sim can be found in [17].
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Fig. 12. Simplified wind turbine model

TABLE I
ABBREVIATIONS IN CONNECTION WITH FIG. 11

Ta Aerodynamic torque
TB1−3 Blade torque 1-3 from wind
DB1−3 Blade 1-3 damping
DHB1−3 Damping between hub and blade 1-3
KHB1−3 Stiffness between hub and blade 1-3
JH Hub inertia inertia
DH Hub damping
DHGB Damping between hub and gearbox
KHGB Stiffness between hub and gearbox
JGB1 Gearwheel 1 inertia
JGB2 Gearwheel 2 inertia
Ng Gearbox ratio
DGB Gearbox damping
DGBG Damping between gearbox and generator
KGBG Stiffness between gearbox and generator
JG Generator inertia
DG Generator damping
Tem Electro magnetic torque

A. Tower Motion

It is assumed that the tower movement does not influence
the mechanical system, it only affects its input, i.e. the wind
speed. The BG model of the tower motion can be seen in
Fig. 14. The starting point in making the BG model is first
to identify which elements experience the same flow (1-
junction) and which experience the same effort (0-junction).
The hub is connected to ground through a spring and a
damper. The graph in Fig. 13 is a simplification of Fig. 13.
We assume zero input force from the ground and whenever
there are ”through going” bonds on a junction we can
eliminate them.
The dynamic equation from the BG model shown in Fig. 14
is:

ṗ2 = Se −R
p2
I

− q3
C

(15)

q̇3 =
p2
I

(16)
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Fig. 14. Simplified bond graph of
tower motion

We can rewrite Eq. 15-16 in a non-BG notation:

mtz̈ = Ft −Dtż −Ktz (17)

where mt is the tower mass, Ft is the force acting on the
tower from the wind, Dt is the tower damping and Kt is
the tower stiffness.

B. Dynamic Equations of Simplified WT Using Newton’s
second law

These governing equations are made by using Newton’s
second law on rotational form. They are derived by con-
sidering each individual inertia, starting with the hub and
working our way though the mechanical model. Underneath
follow the equations.
Hub:

JH ω̈H = Ta −DH ω̇H (18)
− DHGB (ω̇H − ω̇GB)

− KHGBθ1

Speed difference between hub and gearbox;

θ̇1 = ω̇H − ω̇GB (19)

Gearbox:

JGBω̈GB1 = DHGB (ω̇H − ω̇GB) (20)
+ KHGBθ1

− DGBGNg (Ngω̇H − ω̇G)

− HGBGNgθ2

Speed difference between gearbox and generator:

θ̇2 = Ngω̇GB − ω̇G (21)

Generator:

JGω̈G = −Tem (22)
+ DGBG (Ngω̇GB − ω̇G)

+ KGBGθ2 −DGω̇G



C. BG Model of Simplified WT

The starting point now is exactly the same as for the tower
motion. The 1-junctions indicate the different velocities and
the 0-junctions the different forces. For example the 0-
junction between bond nr. 4 and 8 indicate the first flexible
shaft, this junction is connected to three 1-junctions. This
means three different velocities, hub speed, gearbox speed
and their difference.
The number of state equations are equal the number of
dynamic elements in the system. We have three I-elements
and two C-elements, which give the total amount of five state
equations with the state vector x.

x = [p2 q7 p9 q14 p16]
T (23)

In a non-BG notation this is:

x = [JHΩH θ1 JGBΩGB θ2 JGΩG]
T (24)

where ΩH , ΩGB and ΩG are rotational speeds for the hub,
gearbox and generator, respectively. For small systems these
state equations are found quite fast directly from the bond
graph. But we can also choose to get them directly from the
simulation program 20-sim.
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Fig. 15. BG representation of the simplified WT model.

D. BG Model of WT

The BG model representing the mechanical system pre-
sented in Fig. 11 can be seen in Fig. 16. Here the inputs
are wind speed minus tower movement on each blade and
generator torque. The wind speed is fed through a modulated
gyrator (MGY) which transforms flow into effort according
to a formula embedded inside the gyrator (Eq. 4). This
transformation is dependent on the blades pitch angle (not a
constant), hence the modulated gyrator and not an ordinary
gyrator.
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Fig. 16. Bond graph representation of WT model

We can also note that all the R-,I and C-elements have the
same causality, respectively. This is what we desire, that each
element have their preferred causality. Since the R-element
is not a dynamic element, the causality is not that important.
But it is preferred that they have the same causality, whether
it is integral or derivative is not of major importance.

IV. SIMULATION

To validate that the MATLAB/Simulink model and the BG
model are the same interpretation of the mechanical system
(Fig. 12), we set the inputs to zero and give an initial value
for the hub rotational speed. All the other values are non
realistic WT parameters, they are assigned arbitrary values.



If the dynamic behavior of the different rotational speeds
are the same, then the two models are considered equal. The
plots for ΩH ,ΩGB and ΩG are shown in Fig. 17-18.
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Fig. 17. Simulation with 20-sim
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Fig. 18. Simulation with MATLAB/Simulink

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

The purpose of this paper was to make a bond graph (BG)
model for a wind turbine (WT) system. This is done by first
making a BG model for a simplified WT, the result from
this simulation is then compared with the model made with
a classical approach. The simulation results from the two
approaches are the same and this confirms one of the benefits
of BG approach as a generally usable approach to modeling
physical systems of arbitrary types.

B. Future Works

A natural next step will be to expand the model to
also include the pitching system, electric system and the

aerodynamics. When the entire model of the WTGS is made
we are ready to explore how to mix BG with control theory.

REFERENCES

[1] http://renewableenergyarticles.blogspot.com/2010/03/global-wind-
energygrowth-and-future.html

[2] J. Tamura, T. Yamajaki, M. Ueno, Y. Matsumura, and S. Ki-
moto,Transient stability simulation of power system including wind
generator by PSCAD/EMTDC, IEEE Porto Power Tech Proc., 2001,
vol. 4, EMT-108

[3] E. S. Abdin and W. Xu,Control design and dynamic performance
analysis of a wind turbine induction generator unit, IEEE Trans Energy
Convers., 2000, 15, (1), p. 91

[4] I. Zubia, X. Ostolaza, G. Tapia, A. Tapia, and J. R. Saenz,,Electrical
fault simulation and dynamic response of a wind farm, Proc. IASTED
Int. Conf. on Power and Energy System, No.337-095, 2001, p. 595

[5] T. Petru and T. Thiringer,Modeling of wind turbines for power system
studies, IEEE Trans Power Systems 2002;17(4):11329.

[6] P. Ledesma, J. Usaola and J. L. Rodrguez,Transient stability of a fixed
speed wind farm, Renewable Energy 2003;28/9:134155.

[7] C. Carrillo, A. E. Feijoo, J. Cidras and J. Gonzalez,Power fluc-
tuations in an isolated wind plant, IEEE Trans Energy Convers
2004;19(1):21721.

[8] V. Akhmatov and H. Knudsen,Modeling of windmill induction gen-
erators in dynamic simulation programs, International conference on
electric power engineering, PowerTech Budapest 1999, 29 August2
September 1999. p. 108.

[9] M. Martins, A. Perdana, P. Ledesma, E. Agneholm and O. Carl-
son,Validation of fixed speed wind turbine dynamic models with
measured data, Renewable Energy 32 (2007), 13011316.

[10] S.M. Muyeen, Md. Hasan Ali, R. Takahashi, T. Murata, J. Tamura, Y.
Tomaki, A. Sakahara and E. Sasano, Comparative study on transient
stability analysis of wind turbine generator system using different drive
train models IET Renew. Power Gener., Vol. 1, No. 2, June 2007.

[11] C.L. Bottasso, Short Course on Wind Turbine Modeling and Control-
Part I: Wind Turbine Modeling, Korea Institute of Machinery and
Materials & Kangwon National University, Taejon, Korea, October18-
19, 2007.

[12] K. Hammerum, P. Brath and N. K. Poulsen,”A fatigue approach to
wind turbine control”, Journal of Physics, Conference Series 75 (2007)
012081.

[13] D. M. Eggleston and F. S. Stoddard,Wind Turbine Engineering Design,
New York: Van Nostrand Reinhold Co., 1987.

[14] H. M. Paynter, ”Analysis and Design of Engineering Systems”, MIT
press, 1961.

[15] D. C. Karnopp, D. L. Margolis and R. C. Rosenberg, ”System
Dynamics: Modeling and Simulation of Mechatronic Systems”, fourth
edition, John Wiley and Sons, New Jersey, 2006.

[16] E. Pedersen and H. Engja, ”Mathematical Modeling and Simulation
of Physical Systems”, Lecture notes in course TMR4275 Modeling,
Simulation and Analysis of Dynamic Systems at NTNU, Trondheim,
Norway, 2003.

[17] Kleijn, C. 20-sim 4.1, ”Reference Manual”, Enschede, Controllab
Products B.V., 2009, ISBN 978-90-79499-05-2


