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Generally, this paper deals with the problem of autonomy in logistics. Specifically here, a complex problem in inbound logistics is 

considered as real-time scheduling in a stochastic shop floor problem. Recently, in order to comply with real-time decisions, 

autonomous logistic objects have been suggested as an alternative. Since pallets are common used objects in carrying materials 

(finished or semi-finished), so they have the possibility to undertake the responsibility of real time dispatching jobs to machines in a 

shop-floor problem. By insisting on the role of pallets for this task, their sustainment’s advantage in manufacturing systems motivated 

the idea of developing learning pallets. These pallets may deal with uncertainties and sudden changes in the assembly system. Here, 

among some intelligent techniques artificial neural network is selected to transmit the ability of decision making as well as learning to 

the pallets, as distributed objects. Besides, pallets make decisions based on their own experiences about the entire system and local 

situations. Consequently, the considered scheduling problem resembles an open shop problem with three alternative finished products. 

Finally, a discrete event simulation model is developed to solve this problem and defined the results of this transmission paradigm.  

 
Index Terms— Assembly Systems, Learning, Neural Networks, Real Time Systems.  

 

I. INTRODUCTION 

N GENERAL, logistics can be explained as the science of 

organizing and handling material flows with a wide range of 

operations and processes that has a crucial role in sustaining 

industries. Accordingly, the vast scope of activities in logistics 

makes it one of the most cost drivers and complex missions in 

production businesses. Although all activities in logistics are 

pertinent to and correlated for generic goals, but for the sake 

of simplicity logistics tasks are generally split up into inbound 

and outbound operations. Commonly, the outbound logistics 

consist of those operations and planning that organize the flow 

of materials between members of logistics networks, from 

point of origin to the point of consumption. On the other hand, 

inbound logistics covers every kind of activity and scheduling 

in production logistics which has direct or indirect effect on 

material flow and handling inside factories. Meanwhile 

scheduling and control of production operations can be 

considered as the core of the inbound logistics problem. 

Universally, scheduling processes concentrate on 

optimizing material routing as well as allocation of jobs to 

some resources, so that all existing constrains are satisfied 

[1].This mission is conventionally done by identifying some 

limitations and assumptions in advance which includes 

processing times, release times of jobs, due dates, number of 

orders, and etc. In other words, the number of jobs and their 

characteristics as well as shop-floor circumstance in a 

scheduling problem are given or assumed to be known in the 

problem. In doing so, the scheduling solutions are derived in 

offline manners, thus, mostly can be considered as rough 

solutions or the idealistic targets for scheduling real problems. 

However, it can be seen in practice that several changes 

happen during a running system which are not perceivable 

(predictable) or difficult to consider them beforehand, e.g., 

breakdowns, urgent jobs, delayed supply. In fact, these 

changes and disturbances, called dynamics, are the causes of 

increasing the intricacy of practice oriented problems. 

Nevertheless, several arguments are reported concerning the 

inability of conventional scheduling methods, by offline 

approach, to feasibly solving problems in practice. 

Alternatively, online scheduling, dynamic scheduling, and 

real-time scheduling problems are introduced to defeat the 

impediments in the way of defining a feasible solution [1] 

[2].For example, online scheduling makes its decisions when 

the system is running, without any precise information about 

the prospective inputs [3]. However, online scheduling does 

adapt its solution to the current situation within an interval 

rather than deciding in real-time states.  

Similarly, in real-time scheduling the jobs come to an 

assembly system in various instances and they are supposed to 

be allocated to machines in real-times, usually by means of 

available dispatching rules. Thus, real time scheduling 

requires employing the advantages of online scheduling while 

it makes decisions in real times. In this manner, in case of 

technical and methodical availability, the real time scheduling 

problem is the prominent choice that covers the characteristics 

of the other choices. At the same time, it is the most suitable 

solution in the presence of nondeterministic events 

(dynamics), happening in a very short period of time with on 

time decision making request [4]. 

In addition, when a problem is enough complex, like 

scheduling, then simultaneously monitoring of each operation 

with every detail, by means of a central master, seems a very 

sophisticated duty. On the other hand, recently, a promising 

alternative is being developed that can deal with material flow 

and scheduling problems in a decentralized and distributed 

manner. The approach proposes application of self-organizing 

and autonomous objects to face such problems by themselves 

in real-time, instead of following offline schedules. This 

decentralized tactic is being enthusiastically suggested and, to 

some extent, its performance examined [4]. Competently, the 

real-time scheduling procedure can properly adopt the notion 
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of distributed autonomous objects, called holons or agents in 

different context, and enhance its performance [5] [6] [7]. 

Furthermore, inspired by pull manufacturing systems, in 

particular Conwip system, the carts of conveying products in 

an assembly system (pallets here) are retained and circulated 

in a closed loop system. This specification raises the concept 

of using pallets as distributed objects to make real-time 

decisions for allocation and dispatching, concerning their 

vicinity to the single products in manufacturing logistics. 

Appropriately, these autonomous pallets even can comply 

with the notion of customization in manufacturing, as a 

growing appealed contribution in manufacturing logistics [8]. 

However, to make pallets autonomous an implementing 

strategy and methodology are required to be employed. 

Basically, there are several ways to make pallets autonomous. 

Among them, the pallets can be considered as agents with the 

capability of simultaneous negotiation and transaction by 

means of bids and tenders, as a common solution in multi-

agent approaches [9] [10]. Nevertheless, this alternative 

requires some competent negotiation protocols that in complex 

systems may be difficult to operate. Instead here, the pallets 

are rather assumed as single entities with no direct negotiation 

with each other, but they are able to record relevant data and 

learn from previous behaviors in the system. 

This type of pallets contributes to the general concept of 

autonomous pallets, called learning pallets (Lpallets), in the 

frame work of our study. This research topic is a contributing 

input to a universal research over autonomy in logistics at 

Bremen University, for more information about autonomy in 

logistics see: www.sfb637.uni-bremen.de. Extensively, the 

ability of Lpallets can be extended into negotiation level 

between pallets, the products, and machines, (like multi-

agents) in case of requirement. Consequently, the idea of 

Lpallets enhances the new approach in logistics as 

autonomous logistic control by means of autonomous logistic 

objects [11]. 

Practically, on the merit of Lpallets, intelligent methods are 

required in order to fulfill the learning and decision making 

competencies. To this aim, among several possibilities, the 

radial basis function network (RBFN), as an artificial neural 

network (ANN) technique, is selected to carry out this task. 

This type of ANN has some privileges that later follow in 

details. Finally, for evaluating the performance of Lpallets in 

real-time scheduling an assembly scenario is modeled by a 

discrete event simulation structure which employs Lpalltes. 

The rest of the paper covers the assembly scenario, the applied 

RBFN technique, and evaluation of the results. 

II. LPALLETS 

Lpallets as unique objects in logistics have several aspects 

to be covered which are following: 

A. Autonomy for Lpallets 

Generally, it is claimed that the prominent specification of 

autonomous objects is their independency in making their own 

decisions, in case of alternating circumstances [11]. To realize 

this, the autonomous objects within a global (an entire) system 

are arranged in a distributed configuration with rather 

decentralized authority in a heterarchical structure. In this 

respect, each object is able to proceed with its local problems, 

while the threat may be deficits in global awareness of the 

entire system. In other words, this individuality can be 

advantageous but sometimes accompanied by some lacks of 

required information. However, it is claimed here that 

employment of Lpallets within a closed loop system can partly 

compensate the missed information in the era of decision 

making. Since the pallets embedded in assembly systems are 

constant transport objects, they can collect some data within 

their rather circulating trips. It means, if the assembly system 

does not have a strict transient behavior, the individual 

Lpallets are able to experience the recent performance of the 

global system by crossing all stations. 

This gives the opportunity to the Lpallets to learn the 

current pattern of the systems’ behavior and proceed with that. 

In spite of the fact that each Lpallets are individual entities, 

they have their interactions with the system by recording the 

waiting and processing times in each instance. Assuming the 

closed system, after a while every individual Lpallet perceives 

the general attitude of the assembly system as well as other 

Lpallets. This occurs due to indirect effects of Lpallets’ 

decisions on each other through the system performance. In 

addition, Lpallets may negotiate with each other, which this 

case is to be undertaken in further papers. 

However, the recognition of patterns by Lpallets can be 

simply done by use of neural networks, as an intelligent 

technique for learning the patterns to classify or approximate 

them later. 

B. Artificial Neural Networks 

To present the application ANN in supporting the concept 

of autonomy in logistics, it is enough to consider their learning 

ability and capability in classifying data as well as 

approximating functions [12].   

ANN span a huge range of networks types which 

introduction of them is not in the scope of this paper. 

However, it can be noticed that for studying Lpallets two types 

of ANN were considered to be examined. First RBFN and 

second multilayer perceptron networks (MLP). Both networks 

have some similarities e.g., both are useful for problems in 

function approximation, data classification, and modeling 

dynamic systems and time series. Additionally, both networks 

have iterative training algorithms and both start with initial 

parameters and get trained by different algorithms e.g., Gauss-

Newton, steepest-descent, backpropagation. Furthermore, 

MLP has defined neurons in its layer while RBFN for each 

new training pattern requires a new neuron in the hidden layer. 

However, requirement of several neurons is the weakness of 

RBFN in comparison with MLP, but RBFN can be trained 

relatively faster than MLP which is a crucial factor in real-

time assembly systems. Finally, in the current paper just 

RBFN is introduced in details and applied. 

C. Radial Basis Function Network 

In this work, RBFN is selected to represent the application 
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of neural networks in Lpallets. RBFN is a two layer neural 

network with rather Gaussian transfer functions in layer one 

(hidden) and sigmoid or linear functions in the second layer 

(output), to aggregate the outputs of the first layer. This type 

of neural network has a quicker training phase in comparison 

with other feed-forward networks [13]. Fig. 1 shows the 

general shape of used RBFN. 
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my =Output of the thm  neuron, 

x =The input vector, 
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mw  = Connecting weight vector of input to thm  neuron,  

m  =Standard deviation in the thm Gaussian function.  
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Where: 

kz = thk Output of the network, 

2
mw = Connecting weight of the thm  neuron to the output 

k  of the network. 

While the Lpallets move within the closed loop system they 

check waiting plus processing times of each station in the 

system. These times and the station number are the inputs of 

the neural network. In the training phase of RBFN, for each 

pallet, every new recognized pattern is distinguished by a new 

Gaussian function. The new patterns are put to the center of 

the Gaussian functions, known as kern vectors. Equation (1) 

defines the output of the hidden layer while (2) shows the 

output of the output layer. As mentioned, in the hidden layer 

for each new recognized pattern a new neuron has to be 

devised. This holds true, whereas in the output layer just three 

neurons are embedded to classify the inputs into three 

linguistic terms as good, normal, and bad with their respective 

membership degrees, inspired by fuzzy system. It is assumed 

that after some rounds (about ten) each pallet perceives the 

possible patterns that the system may reflect. In this manner, 

training of the output layer has a crucial role, since they 

classify the hidden layer neurons. 

In the second layer of RBFN (output layer) the outputs of 

the first layer (hidden layer) neurons are multiplied by their 

respective weights and then aggregated together to give the 

output of the network. After the training phase, when the main 

possible patterns are recognized, the Lpallets are ready to have 

a local and, to some extent, global impression of the system. 

This ability is achieved by training the input weights, the 

spread of each Gaussian hidden neuron and specifically the 

outputs weights. The equation (3), (4) defines the applied 

algorithm, called backpropagation, adjusted to RBFN. 

 

 


















 

M

m
m

m
kkkmkm

y

y
za()t(w)t(w

1

1
22

21
 (3) 

Where: 
2

kmw =Output weight of the thm  hidden neuron to thk  

output neuron, 

t =Training number   

 kz = Real output of the thk   output layer, 

 ka = Training output of the   output layer when   is the 

input, 

 1 = Learning speed. 
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2 ,∀ K,...,k 1 , 

nx =The thn input vector, 

 2 = Learning speed. 

Here, a quick (half) training system is adopted to adjust just 

the weights of the network, but not the spread and learning 

speeds. However, the trainable factors are always exposed to 

learn new changes. In other words, throughout the running 

simulation each time a pallet meets a station the respective 

kern vector adapt itself to the new possible condition. This 

adaption occurs by substituting the average of the last 3 

recorded times of that station to the kern vector. However, 

since each new recognized pattern built a new RBF neuron, in 

hidden layer, with embedding the input value as the center of 

its function, when an input vector is not covered by the range 

of existing RBF (starting from first neurons to the last one) 

then this is assumed as a new pattern to the network.   

III. ASSEMBLY SCENARIO 

In order to reflect the necessity of real-time scheduling and 

 
Fig. 1.  Topology of the applied RBF neural network.  
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decision making within a distributed system, an exemplary 

assembly network is considered to be simulated. However, the 

assembly network is based on a real platform as a prototype 

for CRC 637 research cluster at the lab of BIBA GmbH/ 

University Bremen. Within this simulation model the 

performance of Lpallets in general allocation (dispatching) 

decisions is evaluated. In the scenario six working stations are 

devised that five of them do some operations on products and 

the last one is the un/loading station of pallets. When the 

pallets are unloaded from products they wait in a stock for 

another corresponding products.  

There are three types of products each movable by its 

respective pallets. The semi-finished products come 

stochastically to the un/loading station and if the pallets are 

available there they will be released to the system, otherwise 

wait for available pallets. Number of pallets is constant (12 

pallets) throughout the simulation run. This is inspired by 

Conwip system, which is pre-defined based on the capacity of 

machines and their buffers [14]. All products must be 

processed on every station but the sequence of the operations 

is not fixed. This type of floor operation resembles the open 

shop problem with fixed number of operations for all products 

[15]. Except station five and one the sequence of all other 

stations is changeable. However, either station five or station 

one is the finalizing operation by considering that if station 

one is the last operation station five is its predecessor. 

However, at the entrance of each station there is a choice of 

getting in or over taking that. After training RBFNs each pallet 

as an individual module decides over its own sequence of 

operations. Fig. 2 represents the modeled assembly system. 

Nonetheless, the distributed structure of this problem in 

terms of machines and pallets besides the stochastic nature of 

all processes make this allocation problem a case of complex 

real-time scheduling over time horizon. Every time an 

individual Lpallet visits a station the waiting time plus 

processing time together with the station number are recorded 

to the Lpallat. Then these are the inputs of RBFN to train the 

system in case of any new pattern recognition. Furthermore, 

here, the decision making procedure is following. 

At the entrance of each station every pallet is a decision 

maker for its respective operations’ sequence. After several 

round trips of pallets instead of the actual waiting time as 

input the average of last three records for the corresponding 

station is taken as the real input to the RBFN. This results in a 

smoother perception to the dynamic waiting times. However, 

these inputs through the RBFN are mapped to three categories 

of outputs, as good, normal, and bad. Each of these terms has 

its connecting weights (from hidden to output layer) which 

defines their membership degrees to that judgment. Finally, by 

summing up the outputs of all stations, in the same Lpallet, the 

least values of stations, the more priority gets. By doing so, 

the Lpallet defines its operations’ sequence. 

It is noticeable that, during the entire simulation each RBFN 

is trained and by observing any new patter (a value out of the 

so far covered range) a new neuron is added to the hidden 

layer. However, for the current problem each pallet may face 

different patterns, thus, may have alternative number of 

neurons to the others. Nonetheless, it is seen here that the most 

getting neurons did not violate the number ten. 

IV. SIMULATION RESULTS 

In this section by comparing the performance of Lpallets 

against a conventional flow shop scheduling, by using first in 

first out (FIFO) dispatching rule throughout the assembly 

system, is analyzed. Different scenarios are examined here. 

Stochastic replenishments (variable intervals) as well as 

constant intervals in supply of semi-finished products to the 

entrance (un/load station), besides balanced operation times in 

every station against unbalanced times, are two variants 

considered for depicting the performances of such alternating 

assembly system with the use of Lpallets.  

Furthermore, working time, waiting time, and blocked time 

of each station as well as average flow time (AFT) of finished 

products and makespan (completion time) of all orders (150 

each type) are some criteria to be compared. Here, the blocked 

time is the time that a product is asking for operation on a 

machine but machine is busy. In contrary, the waiting time is 

the time that machine is waiting for a product to be processed 

on. Table 1 defines the specification of the three alternative 

scenarios. 

 

 
Fig. 2.  Description of assembly scenario with 6 stations. 

TABLE I 

EXAMINED SCENARIOS WITH THREE ALTERNATIVES 

Scenari
o 

PROCESS TIME OF 

EACH STATION 

Supply Inter-

arrival Time 
for each 

Product Type 

Setup Time 

 

1 2 3 4 5 1 2 3 1 2 3 4 5 

1 Neg. Exp with ß=10 
min, for all 

Neg. Exp 
with ß=50 

min, for all 

5 min, for all  

    
2 Neg. Exp with ß=10 

min, for all 

Constant 50 

min 

5 min, for all  

    
 3 ß1=8, ß2=8, ß3=8, 

ß4=10, ß5=8 

Constant 45 

min 

5 min, for all  
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Fig. 3 and Fig. 4 depict the percentage of each time for 

RBFN and flow shop FIFO respectively, for scenario 1. Fig. 4 

and Fig. 5 present the AFT of each product type in RBFN and 

flow shop FIFO respectively, for scenario 1. Fig. 7 and Fig. 8 

show the percentage of each time for RBFN and flow shop 

FIFO respectively, for scenario 2. Fig. 9 and Fig. 10 reflect the 

AFT of each product type in RBFN and flow shop FIFO 

respectively, for scenario 2. Fig. 11 and Fig. 12 present the 

percentage of each time for RBFN and flow shop FIFO 

respectively, for scenario 3. Fig. 13 and Fig. 14 depict the 

AFT of each product type in RBFN and flow shop FIFO, 

respectively, for scenario 3. 

 
Fig. 6.  AFT with Flow-Shop FIFO in scenario 1.  

 
Fig. 3.  Processing Times with RBFN in scenario 1.  

 
Fig. 4.  Processing Times with Flow-Shop FIFO in scenario 1.  

 
Fig. 5.  AFT With RBFN in scenario 1.  

 
Fig. 7.  Processing Times with RBFN in scenario 2. 

 
Fig. 8.  Processing Times with Flow-Shop FIFO in scenario 2. 
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As it can be seen in all figures, the performance of RBFN in 

all scenarios is better in terms of more working time and less 

blocked or waiting time. In addition, in AFT the use of RBFN 

shows a convergence in higher experiences which reflects the 

learning procedure of ANN during the simulation. However, 

in all FIFO scenarios the AFT exponentially increases. 

V. CONCLUSION 

In this paper, a new approach to autonomous logistic 

objects as Lpallets is introduced that uses artificial neural 

network for learning technique. The specific chosen network 

is RBFN that recognizes new patterns and adjusts its 

parameters to new conditions via learning. The Lpallets 

concept can comply with the requirements of real-time 

scheduling in practical problems. The concept bears the notion 

of distributed and decentralized control towards autonomous 

logistic objects research.  

Here, several simulation scenarios were experimented in 

this paper to show the superior performance of Lpallets 

against the conventional flow shop FIFO strategy. This was 

evaluated by some criteria in case of real-time distributed 

dispatching problem. In all scenarios it was configured that 

usage of Lpallets result in convergence of AFT as well as 

higher utilization for stations (more working time and less 

waiting time). 

In this paper a quick training algorithm is undertaken to 

train the RBFN that trains just the weights. However, in a 

complete training algorithm the spread of Gaussian functions 

as well as training rates are tuned as well. 

In conclusion, several intelligent learning and decision 

 
Fig. 14.  AFT with Flow-Shop FIFO in scenario 3. 

 
Fig. 9.  AFT With RBFN in scenario 2. 

 
Fig. 10.  AFT with Flow-Shop FIFO in scenario 2. 

 
Fig. 11.  Processing Times with RBFN in scenario 3. 

 
Fig. 12.  Processing Times with Flow-Shop FIFO in scenario 3. 

 
Fig. 13.  AFT With RBFN in scenario 3. 
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making techniques are available to be integrated to Lpallet like 

fuzzy inference system, genetic algorithm. At the same time 

by tuning more intelligently the parameters of ANN more 

accurate performances are more likely. 
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