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Abstract— In this paper, we propose a method of modeling for 

vehicle crash systems based on viscous and elastic properties of 

the materials. This paper covers an influence of different 

arrangement of spring and damper on the models’ response. 

Differences in simulating vehicle – to – rigid barrier collision 

and vehicle – to – pole collision are explained. Comparison of 

the models obtained from wideband (unfiltered) acceleration 

and filtered acceleration is done. At the end we propose a 

model which is suitable for localized collisions simulation. 

I. INTRODUCTION 

This paper deals with establishing an appropriate 

mathematical model representing vehicle soft impacts such 

as localized pole collisions. In simulation of the vehicle 

collision, elements which exhibit viscous and elastic 

properties are used. Models utilized by us consist of energy 

absorbing elements (EA) and masses connected to their both 

ends. We focus on finding a model with such an 

arrangement of springs, dampers and masses, which 

simulated, will give a response similar to the car’s behavior 

during the real crash. 

Due to the fact that real crash tests are complex and 

complicated events, their modeling is justified and advisable.  

Every car which is going to appear on the roads has to 

conform to the worldwide safety standards. However, crash 

tests consume a lot of effort, time and money. The 

appropriate equipment and qualified staff is needed as well. 

Therefore our goal is to make possible simulation of a 

vehicle crash on a personal computer.  

Approach presented here – mathematical modeling of a 

crash event with the equations of motion which can be 

solved explicitly with closed form solutions – is different 

that the methods which have been shown in [1] – [4]. In 

order to simulate the collision of a car the software based on 

FEM (Finite Element Method) was utilized. After the 

creation of 3D – CAD and FE models the crash simulations 

were performed. Results obtained showed good correlation 

between the test and model responses. When it comes to 

determining crush stiffness coefficients, in [5] it is presented 

a method which employs CRASH3 computer program. 

Vehicle structure was modeled as a homogenous body and 

then the comparative analysis of the crash response of 
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vehicles tested in both full – overlap and partial – overlap 

collisions was done.  

A lumped parameter modeling (LPM) is an another way 

of approximation of the vehicle crash. It is an analytical 

method of formulating a model which can be further used 

for simulation of a real event. It allows us to establish 

dynamic equations of the system – differential equations – 

which give the complete description of the model’s 

behavior, see the references [6] and [7]. 

To be able to analyze a given collision, it is often enough 

(and more efficient) not to examine the complicated crash 

pulse but just to study its approximation. Those 

approximated functions were compared to experimental 

pulses in [8]. Subsequently they were tested to obtain 

different models’ responses which were compared to the 

original pulse. Results confirmed that the crash pulse 

approximation is a reasonable method to simplify the 

collision analysis. Recently, the Haar wavelet-based 

performance analysis of the safety barrier for use in a full-

scale test was proposed in [9]. In [10], a basic mathematical 

model is proposed to represent a collision together with its 

analysis. The main part of this research is devoted to 

methods of establishing parameters of the vehicle crash 

model and to real crash data investigation, i.e. – creation of a 

Kelvin model (spring and damper connected in parallel with 

mass) for a real experiment, its analysis and validation. After 

model’s parameters extraction a quick assessment of an 

occupant crash severity is done. Finally, the dynamic 

response of such a system was similar to the car’s real 

behaviour in the time interval which corresponds to the 

collision’s duration. Parameters of this assembly (spring 

stiffness and damping coefficient) were obtained analytically 

with closed – form solutions according to [11].  

In this paper, we present a process of improving the 

accuracy of the vehicle crash model. We start with 

simulation of the vehicle to pole impact by using the Kelvin 

model (spring and damper in parallel connected to mass). 

Afterwards, by filtering the crash pulse data, more accurate 

response of the system is obtained. Model establishment is 

done one more time. This allows us to compare what are the 

crash models for both raw and filtered data and to decide 

which of them is more suitable to represent vehicle to pole 

collision. 
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II. EXPERIMENTAL SETUP 

In the experiment conducted by UiA [12] the test vehicle, 

a standard Ford Fiesta 1.1 L 1987 model was subjected to a 

central impact with a vertical, rigid cylinder at the initial 

impact velocity v0 = 35 km/h. Mass of the vehicle (together 

with the measuring equipment and dummy) was 873 kg. 

Experiment’s scheme is shown in Fig. 1. 

 

 

 
 

Fig. 1.   Scheme of the test collision [12] 

 

Vehicle accelerations in three directions (longitudinal, 

lateral and vertical) together with the yaw rate at the center 

of gravity were measured. Using normal – speed and high – 

speed video cameras, the behavior of the obstruction and the 

test vehicle during the collision was recorded. Fig. 2 shows 

one of the stages of the crash. 

 

 
 

Fig. 2.  Car is undergoing a deformation 

III. RAW DATA ANALYSIS - KELVIN MODEL 

According to [10] the Kelvin model shown in Fig. 3 has 

been proposed to represent the vehicle to pole collision. 

Symbols used: k – spring stiffness, c – damping coefficient, 

m – mass, V0 – initial impact velocity. 

 

 

 
 

Fig. 3.  Kelvin model. 

 

Known parameters of the model are: 

m = 873 kg – mass 

V0 = 10.8 m/s – initial impact velocity. 

Parameters which we obtain from the crash pulse analysis 

(acceleration of the car in the x – direction – longitudinal) 

shown in Fig. 4 are listed in Table I. 

 

 
 

Fig. 4.  Raw data analysis 

 

By following [11] (method of calculating damping factor 

ζ and natural frequency f is covered in [10]) spring stiffness 

k and damping coefficient c of the Kelvin model are defined 

to be: 

 

mNkgHzmfk /297392873)9375.2(44 2222    
msNkgHzmfc /32238731.09375.244    

 

Validation of the model has been done in Matlab Simulink 

software – the response of the Kelvin model with above 

estimated parameters is shown in Fig. 5. 

 

 
Fig. 5.  Kelvin model’s response – raw data 

 

Comparison of dynamic crush and time of dynamic crush 

from the crash pulse analysis and Kelvin model response is 

done in Table I. 

 
TABLE 1 

COMPARISON BETWEEN CAR’S AND KELVIN  

MODEL’S RESPONSE – RAW DATA 

Parameter 
Crash pulse 

analysis 

Kelvin 

model 

Dynamic crush 

C [m] 
0.57 m 0.50 m 

Time of dynamic crush 

tm [s] 
0.08 s 0.08 s 

 



  

Remark 1. Since the raw data has been used above, the 

discrepancy between the real initial impact velocity (which 

is V0 = 9.86 m/s) and initial impact velocity obtained from 

the raw data analysis (which is V0 = 10.80 m/s) is visible. 

Therefore to eliminate inaccuracies in modeling caused by 

this velocity difference we need to filter the acceleration 

measurements. 

IV. ACCELERATION MEASUREMENTS FILTERING 

Digital filtering method has been used here – according to 

[13]. Frequency response corridors for an appropriate 

channel class are specified in this standard. Since our goal is 

to analyze the crash pulse (i.e. integration for velocity and  

displacement) we select the channel class CFC 180. Filter 

utilized by us was Butterworth 3
rd

 order lowpass digital filter 

with cut – off frequency fN = 300 Hz. Comparison between 

the wideband data and data filtered with this method is 

shown in Fig. 6. 

 

 
 

Fig. 6.  Butterworth 3rd order filtering results. 

 

In Fig. 7 the comparison in the frequency domain between 

the raw and filtered acceleration is presented. 

 

 

 
 

Fig. 7.  Frequency analysis of crash pulses. 

 

Since the scale is linear, we clearly see that the filtering 

helped us to get rid of the high frequency components of the 

crash pulse. This makes its analysis more efficient and gives 

us results which better correspond to the reality than  the 

ones obtained from wideband data (velocity and 

displacement). This has crucial influence on our further 

considerations because in order to develop a good model, we 

need to have at our disposal real parameters of the crash test 

(e.g. initial velocity). 

V. FILTERED DATA ANALYSIS 

A. Kelvin model 

Let us determine what is the maximum dynamic crush and 

the time at which it occurs for the filtered data. 

 

 

 
 

Fig. 8.  Filtered data analysis. 
 

 

Parameters which we obtain from the crash pulse analysis 

(acceleration of the car in the x – direction – longitudinal) 

shown in Fig. 8 are listed in Table II. 

Proceeding in the same manner as in Section 3, we obtain 

the following parameters of the Kelvin model: 

 

mNmfk /3441504 22    
msNmfc /24274    

 

Kelvin model response for those parametrs is shown in 

Fig. 9. 

 

Comparison between the model and reality for the filtered 

data is done in Table II. 

 
TABLE II 

COMPARISON BETWEEN CAR’S AND KELVIN MODEL’S  
RESPONSE – FILTERED DATA 

Parameter 
Crash pulse 

analysis 

Kelvin 

model 

Dynamic crush 

C [m] 
0.520 m 0.430 m 

Time of dynamic crush 

tm [s] 
0.076 s 0.076 s 

 

 

Filtering the data has improved our calculations – we have 

obtained the real value of the initial velocity V0 = 9.86 m/s. 

However, we observe a larger discrepancy between the 

dynamic crush from the acceleration’s integration and 

model’s prediction than for the raw data. This allows us to 



  

claim that since the method utilized in both of those cases 

remains the same and accuracy of our calculations has 

increased because of the data filtering, the Kelvin model is 

not suitable for modeling the impact examined by us. For 

that reason we investigate a simpler model which consists of 

spring and mass only. 

 

 

 
Fig. 9.  Kelvin model’s response – filtered data. 

 

B. Spring – mass  model 

The motion of this system is a non – decayed oscillatory 

one (sinusoidal) because there is no damping in it [11]. This 

arrangement is shown in Fig. 10. Symbols: k – spring 

stiffness, m – mass, a – absolute displacement of mass m. 

 

 
 

Fig.10.  Spring – mass model. 

 

Let us introduce the following denotation: 

V – initial barrier impact velocity [m/s] 

f – structural natural frequency [Hz]. 

Response of this system is characterized by the following 

equations: 
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which represent deceleration, velocity and displacement, 

respectively. Furthermore we define: 
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as maximum dynamic crush, time of maximum dynamic 

crush and system’s circular natural frequency, respectively. 

To investigate what are parameters C and tm of such a model, 

first we need to find the spring stiffness k. By substituting 

(6) to (4) and rearranging one gets: 
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From Fig. 8 it is obtained C = 0.52 m and V = 9.86 m/s for 

filtered data. Therefore, 
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Spring – mass model’s response for above spring stiffness 

k (initial velocity and mass of the car remain the same) is 

shown in Fig. 11. 

 

 
Fig. 11.  Spring – mass model’s response. 

 

Let us again compare what is the dynamic crush and the 

time at which it occurs for the data analysis and model. 

 
TABLE III 

COMPARISON BETWEEN CAR’S AND SPRING  

– MASS MODEL’S RESPONSE – FILTERED DATA 

Parameter 
Crash pulse 

analysis 

Spring - mass 

model 

Dynamic crush 

C [m] 
0.520 m 0.520 m 

Time of dynamic crush 

tm [s] 
0.076 s 0.082 s 

 

Results obtained in this step are the best. The dynamic crush 

estimated by the spring – mass model is exactly the same as 

the reference dynamic crush of a real car. When it comes to 

the time when it occurs, the difference between the model 

and reality is less than 1%. This model gives us good 

approximation of the car’s behavior during the crash. It is a 



  

particular case of a Kelvin model in which damping has 

been set to zero as well as of a Maxwell model in which 

damping is going to infinity. Since the method for finding 

the parameters of the Kelvin model does not provide 

satisfactory results, it is advisable to use a different model. 

VI. MAXWELL MODEL 

The arrangement in which spring and damper are 

connected in series to mass is called Maxwell model – Fig. 

12. 

 

 
 

Fig. 12.  Maxwell model – m’ designates Zero Mass. 

 

 To derive its equation of motion it is proposed to place 

small mass m’ between spring and damper. By doing this, 

the inertia effect which occurs for the spring and damper is 

neglected and the system becomes third order differential 

equation which can be solved explicitly [11]. According to 

Fig. 12 we define d and d’ as absolute displacement of mass 

m and absolute displacement of mass m’, respectively. We 

establish the following equations of motion (EOM): 
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By differentiating (8) and (9) w.r.t. time and setting m’ = 0 

we obtain:  
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We sum up both sides of (10) and (11) and rearrange: 
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We substitute (12) into (8) and finally obtain the 

undermentioned EOM: 
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Therefore, characteristic equation of the Maxwell model is: 
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 In this system, the rebound of the mass depends on the 

sign of the discriminant Δ of the quadratic equation in 

brackets. For positive Δ there is no rebound, i.e. 
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On the other hand for negative Δ the rebound occurs when 
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 In a Maxwell model, the mass may not rebound from the 

obstacle. It means that its displacement increases with time 

to an asymptotic value. The parameter which determines 

whether the rebound will occur or not is damping 

coefficient. When it is less than a limiting one (named 

transition damping coefficient c
*
), the mass will be 

constantly approaching an obstacle, whereas when it is 

higher, there will exist a dynamic crush at a finite time. 

Another boundary situation is for damping coefficient c = ∞. 

Then the Maxwell model degenerates into spring – mass 

system. To determine the value of transition damping 

coefficient we assume that Δ=0, or equivalently 
m

k

c

k
2 , 

and 

2

* km
c                      (15) 

Indeed, for *cc   we have 0  – it means no dynamic 

crush at a finite time. 

 

 

 
 

Fig. 13.  Maxwell model responses for different values of damping. 

 

 

We are able to assess what should be the minimal 

damping, which we add to the simple spring – mass model 

mentioned above, which will produce the dynamic crush not 

extended in infinite period of time. According to (15), for 

model and crash test being analyzed in Section 5B, we 

calculate the transition damping coefficient: 
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For every damping greater than this value, the Maxwell 

model formed from the spring – mass model from Section 

5B, will give us the response more and more similar to the 

spring – mass model characteristics presented in Fig. 11, as 

it is shown in Fig. 13. 

It is noting that the final displacement (or asymptotic 

value – for transition damping coefficient) achieved by the 

mass in this model is characterized by the equation (V0 – 

initial impact velocity, m – mass, c – damping coefficient): 

 

c

mV
crush 0                           (16) 

 

This system is appropriate for simulating soft impacts or 

offset impacts because the time of dynamic crush is longer 

than for Kelvin model. If we assume the same parameters for 

both models, e.g.: 

 

 k = 100 N/m, c = 15 N-s/m, m = 5 kg, v0 = 10 m/s 

 

In Fig. 14, it is seen that for the Maxwell model the dynamic 

crush occurs later than for the Kelvin model. 

 

 

 
 

Fig. 14.  Maxwell and Kelvin models’ responses comparison. 
 

 

This is an analog situation to the real crash: in a vehicle – 

to – rigid barrier collision (Kelvin model) the whole impact 

energy is being consumed faster, therefore the crash is more 

dynamic than the vehicle – to – pole collision (Maxwell 

model) – under the assumption that we compare the same 

cars with the same initial impact velocities – as in the 

example above. It is noting that we do not investigate here 

the magnitude of the displacement of both models – as we 

can see for the same parameters it is higher for the Maxwell 

model. Above example just illustrates the dynamic response 

of those two systems and in order to apply those two models 

to the real crash one needs to assess what is spring stiffness 

and damping coefficient of both of them separately. 

VII. CONCLUSION 

In this paper, we studied a process of improving the 

accuracy of the vehicle crash model. First, we simulated the 

vehicle under a pole impact by using the Kelvin model 

(spring and damper in parallel connected to mass). 

Afterwards, by filtering the crash pulse data, more accurate 

response of the system was obtained. Model establishment 

was done one more time. Finally, we compared the crash 

models for both raw and filtered data and it was concluded 

which of them is more suitable to represent vehicle to pole 

collision.  

The obtained results indicate that the Kelvin model is not 

appropriate for simulation of the collision which we deal 

with. Based on the Section 6 for the data prepared in the 

proper way, we establish a proper model. An extension of 

our analysis to the Maxwell model is still under 

consideration as a part of our further work plan. Due to the 

fact that the comparative analysis of a spring – mass system 

and car’s behavior in the collision turned out to be 

appropriate, further improvement of the model is advisable. 
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