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Abstract— In this paper we consider general autonomously
controlled production networks. A production network consists
of geographically distributed plants, which are connected by
transport routes such that transportation times (time-delays)
have to be taken into account. In autonomous controlled
production networks logistic objects (e.g., parts, orders) route
themselves through a network based on local information. In
this paper these kinds of logistic networks are investigated
in view of stability to avoid negative outcomes such as high
inventory costs or loss of customers. We use the local input-
to-state stability (LISS) property and the tool of an LISS
Lyapunov-Krasovskii functional for the stability investigation.
By the application of the LISS Lyapunov-Krasovskii small-gain
theorem we derive conditions, which guarantee stability of the
production network.

I. INTRODUCTION

Production, supply networks and other logistic structures
are typical examples of complex systems with a nonlinear
and sometimes chaotic behavior.

Their dynamics is subject to many different perturbations
due to changes on market, changes in customers behavior,
information and transport congestions, unreliable elements
of the network etc. One of the approaches to handle such
complex systems is to shift from centralized to decentralized
or autonomous control.

The term production network is used to describe company
or cross-company owned networks with geographically dis-
persed plants.

The main idea of autonomous cooperating logistic pro-
cesses is to enable intelligent logistic objects to route them-
selves through a logistic network according to their own
objectives and to make and execute decisions, based on local
information [22], [23]. In this context intelligent logistic
objects may be physical or material objects, e.g., parts or
machines, as well as immaterial objects (e.g., production or-
ders, information). For further investigations on autonomous
control methods see for example [15], [16].

However a system emerging in this way may become
unstable and hence be not effective.

Typical examples of unstable behavior are unbounded
growth of unsatisfied orders or unbounded growth of the
queue of the workload to be processed by a machine which
cause high inventory costs or loss of customers. To avoid
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instability of a network it is worth to investigate its behav-
ior in advance. In particular mathematical modelling and
analysis provide helpful tools for design, optimization and
control of such networks and for deeper understanding of
their dynamical properties.

Roughly speaking, for production networks stability means
that the state of the network remains bounded over time in
spite of disturbances.

The state is the set of parameters, which we are interested
in, for example the queue length of the workload to be
processed by a machine, the work in progress (WIP) or the
number of unsatisfied orders. In this contribution we identify
the state as the number of unprocessed parts, which is the
sum of the queue length and the WIP. Thus stable behavior
of the network is decisive for the performance and vitality of
a network. To design stable logistic networks we are going
to apply tools from mathematical systems theory.

In this paper a production network is described as an
interconnection of many dynamical subsystems that are lo-
gistic locations, which are described by retarded functional
differential equations. These equations take into account
time-delays, which are interpreted here as transportation
times. Based on these equations we apply Lyapunov tools to
investigate the subsystems in view of stability, where we use
the stability property input-to-state stability (ISS), introduced
in [19].

For time-delay systems there are two types of Lyapunov
functions: ISS Lyapunov-Razumikhin functions ([21]) and
ISS Lyapunov-Krasovskii functionals ([12]). Taking a net-
work of many subsystems into account, it was proved in
[6], that the whole network is stable provided that each
subsystem has an ISS Lyapunov-Razumikhin function or ISS
Lyapunov-Krasovskii functional and that the property of the
small-gain condition in matrix form (see [7]) is satisfied. The
used matrix in this condition describes the interconnection
structure of the network.

In practical reality it may happen that the subsystems or
the network are not ISS, but locally ISS, which means that
the ISS property only holds for certain initial values and
external inputs. This property was introduced in [20] for
single systems and investigated for networks in [8].

For manufacturing systems stable parameters can be found
by using fluid models [2], re-entrant lines [3] or manufactur-
ing systems with different job types [4]. An approach with
flows of multiple fluids was used to analyse the stability
region of an autonomously controlled shop floor scenario
[17]. Scholz-Reiter et al. [18] presented a fluid model of
a production network and obtained a stability region for



a scenario with two locations and three types of products.
A special case of such networks, where a certain type of
topology was used, and no transportation times (time-delays)
were considered, has been already investigated in [5].

In this paper we apply ISS or LISS Lyapunov-Krasovskii
functionals to autonomously controlled production networks
with transportation times to perform a stability analysis for
such networks and derive parameter conditions under which
the whole network is stable.

The structure of the paper is as follows. In Section II
we give some basic notions used in the whole paper. The
modelling method, retarded functional differential equations,
the stability notions and the stability tool are described
in Section II-A. In Section III autonomously controlled
production networks are modeled and the stability analysis
is performed. We derive conditions which guarantee stability
of the network and illustrate the results in a certain scenario
of a production network. Finally Section IV concludes the
paper.

II. PRELIMINARIES
By xT we denote the transposition of a vector x ∈ RN ,

N ∈ N, furthermore R+ := [0,∞) and RN+ denotes the
positive orthant

{
x ∈ RN : x ≥ 0

}
where we use the partial

order for x, y ∈ RN given by

x ≥ y ⇔ xi ≥ yi, i = 1, . . . , N and x 6≥ y ⇔ ∃i : xi < yi,

x > y ⇔ xi > yi, i = 1, . . . , N and x 6> y ⇔ ∃i : xi ≤ yi.

We denote the Euclidean norm in RN by |·|. For x =
(x1, . . . , xN )T defined on an interval I ⊂ R, we define
‖x‖I := maxi maxt∈I{|xi(t)|}. L∞(R+,RM ) denotes the
set of essentially bounded measurable functions from R+

into RM , M ∈ N.
Let θ ∈ R+ be the maximum involved delay. The function

xt : [−θ, 0]→ RN is given by xt(τ) := x(t+τ), τ ∈ [−θ, 0]
and we define ‖xt‖ := maxt−θ≤s≤t |x(s)|. For a, b ∈ R,
a < b, let C

(
[a, b] ; RN

)
denote the Banach space of

continuous functions defined on [a, b] equipped with the
norm ‖·‖[a,b] and taking values in RN .

In general production networks are modeled by nonlinear
functional differential equations. We call a production loca-
tion within a production network subsystem and the produc-
tion network whole system. Consider n ∈ N interconnected
subsystems with time-delays, where the ith subsystem can
be written as

ẋi(t) = fi(xt1, . . . , x
t
n, ui(t)), (1)

where t ∈ R+ is the (continuous) time, xti(τ) := xi(t+τ) ∈
C([−θ, 0]; RNi) and ui ∈ L∞(R+,RMi) are external inputs.
θ denotes the maximal involved delay and xti can be inter-
preted as the internal inputs of a subsystem. The functionals
fi : C

(
[−θ, 0] ; RN1

)
×. . .×C

(
[−θ, 0] ; RNn

)
×RMi → RNi

are locally Lipschitz continuous on any bounded set to
guarantee that the ith subsystem admits a unique locally
absolutely continuous solution xi(t) on a maximal interval
[−θ, b), 0 < b ≤ +∞, satisfying the initial condition x0

i = ξi
for any ξi ∈ C([−θ, 0],RNi), i = 1, . . . , n (see [9], [10]).

If we define N :=
∑
Ni, M :=

∑
Mi,

x := (xT1 , . . . , x
T
n )T , u := (uT1 , . . . , u

T
n )T and f :=

(fT1 , . . . , f
T
n )T , then the network (1) becomes the system

of the form

ẋ(t) = f(xt, u), (2)

which we call the whole system.
The upper right-hand side derivative D+V of a locally

Lipschitz continuous functional V : C
(
[−θ, 0] ; RN

)
→ R+

is given by (see [1], Definition 4.2.4, pp. 258)

D+V (φ, u) = lim sup
h→0+

1
h

(V (φ?h)− V (φ))

where φ?h ∈ C
(
[−θ, 0] ; RN

)
is given by

φ?h(s) =
{
φ(s+ h), s ∈ [−θ,−h] ,
φ(0) + f(φ, u)(h+ s), s ∈ [−h, 0] .

With the symbol ‖·‖a we indicate any norm in
C
(
[−θ, 0] ; RN

)
such that for some positive reals b, c

the following inequalities hold

b |φ(0)| ≤ ‖φ‖a ≤ c ‖φ‖[−θ,0] , ∀φ ∈ C
(
[−θ, 0] ; RN

)
.

See also [12].
Definition 2.1: Classes of comparison functions are:

K := {γ : R+ → R+ | γ is continuous, γ(0) = 0
and strictly increasing} ,

K∞ := {γ ∈ K | γ is unbounded} ,
L := {γ : R+ → R+ | γ is continuous and decreasing

with limt→∞ γ(t) = 0},
KL := {β : R+ × R+ → R+ | β is continuous,

β(·, t) ∈ K, β(r, ·) ∈ L, ∀t, r ≥ 0} .
Note that for γ ∈ K∞ the inverse function γ−1 always exists
and γ−1 ∈ K∞.

A. Stability analysis

In this section we present the stability notions and tools
to verify stability.

We define the stability notion for the system of the form
(1) used in this paper as follows:

Definition 2.2: The ith subsystem of (1) is called lo-
cally input-to-state stable (LISS) if there exist constants
ρi, ρij , ρ

u
i > 0 and functions βi ∈ KL and γdij , γ

u
i ∈

K, j = 1, . . . , n, i 6= j such that for all initial functions
‖ξi‖[−θ,0] ≤ ρi, for all inputs ‖xj‖[−θ,∞) ≤ ρij , j 6=
i, ‖ui‖[0,∞) ≤ ρui and for all t ∈ R+ it holds

‖xi(t)‖ ≤ max{βi(‖ξi‖[−θ,0], t), γui (‖ui‖[0,∞)),

max
j,j 6=i

γdij(‖xj‖[−θ,∞))}.
(3)

Note that if ρi = ρij = ρui = ∞, then the ith subsystem of
(1) is called (globally) input-to-state stable (ISS).

The notion of LISS for systems of the form (2) is the
following:

Definition 2.3: System (2) is called LISS if there exist
constants ρ, ρu > 0 and functions β ∈ KL and γ ∈ K such



that for every initial condition ‖ξ‖[−θ,0] ≤ ρ, every external
input ‖u‖[0,∞) ≤ ρu and for all t ∈ R+ it holds

‖x(t)‖ ≤ max{β(‖ξ‖[−θ,0] , t), γ(‖u‖[0,∞))}.
Note that if ρ = ρu = ∞, then the whole system is called
(globally) ISS.

We investigate under which conditions the whole system
has the LISS property. A useful tool to verify LISS of a
system is a Lyapunov function or functional. For time-delay
systems of the form (2) one can use Lyapunov-Razumikhin
functions (see [21]) or Lyapunov-Krasovskii functionals (see
[12]). It was shown in [21], [12] that the existence of a
(L)ISS Lyapunov-Razumikhin function or (L)ISS Lyapunov-
Krasovskii functional implies the (L)ISS property.

In this paper we utilize Lyapunov-Krasovskii functionals,
which are defined as follows:

Definition 2.4: A locally Lipschitz continuous functional
Vi : C([−θ, 0]; RNi) → R+ is called an LISS Lyapunov-
Krasovskii functional of the ith subsystem of (1) if there
exist a given functional Vj , which is continuous, proper
and positive definite and locally Lipschitz continuous on
C([−θ, 0]; RNj )\{0}, j = 1, . . . , n and there exist constants
ρi, ρij , ρ

u
i > 0 and functions χij ∈ K∪{0} and χi, µi ∈ K,

j = 1, . . . , n, i 6= j such that

Vi (φi) ≥ max{max
j,j 6=i

χij(Vj(φj)), χi (|ui|)}

⇒ D+Vi (φi, ui) ≤ −µi (Vi (φi)) ,
(4)

∀φi ∈ C
(
[−θ, 0] ,RNi

)
, for all initial functions ‖ξi‖[−θ,0] ≤

ρi and all inputs ‖φj‖[−θ,∞) ≤ ρij , ‖ui‖[0,∞) ≤ ρui ,
χii ≡ 0. Functions χij , χi are called (nonlinear) Lyapunov-
Krasovskii gains. The gain-matrix is defined by Γ :=
(χij)ni,j=1 and the map Γ : Rn+ → Rn+ by

Γ(s) :=
(

max
j
χ1j(sj), . . . ,max

j
χnj(sj)

)T
, s ∈ Rn+.

(5)
The Lyapunov-Krasovskii functionals are chosen to be lo-
cally Lipschitz continuous according to the results in [11],
[13].

We say that the gain-matrix Γ satisfies the local small-gain
condition (LSGC) if ∃w∗ ∈ Rn+, such that it holds

Γ(w∗) < w∗ and Γ(s) 6≥ s, ∀s ∈ [0, w∗] , s 6= 0. (6)

Lemma 2.5: Let Γ be a gain matrix as in (5) and let w∗ ∈
Rn+ satisfy Γ(w∗) < w∗. Consider the trajectory {w(k)} of
the discrete monotone system w(k + 1) = Γ(w(k)), k =
0, 1, 2, . . . with w(0) = w∗. Then w(k) → 0 for k → ∞ if
and only if Γ satisfies the LSGC (6).
The proof and more information about the LSGC can be
found in [8].

Note that if ρi = ρij = ρui = ∞, ∀i, j = 1, . . . , n
in the Definition 2.4, then Vi is called an ISS Lyapunov-
Krasovskii functional of the ith subsystem. The (global)
small-gain condition (SGC) is denoted as

Γ(s) 6≥ s, ∀s ∈ Rn+, s 6= 0. (7)

Fig. 1. Scheme of the stability analysis procedure

More details about the global SGC can be found in [7], [14].
Note that (7) is equivalent to the cycle condition (see [14],
Lemma 2.3.14): for all (k1, ..., kp) ∈ {1, ..., n}p, where k1 =
kp, it holds

χk1k2 ◦ χk2k3 ◦ ... ◦ χkp−1kp
< Id . (8)

Now we state the main theorem we are going to apply to
production networks in this paper.

Theorem 2.6: (LISS Lyapunov-Krasovskii theorem for
general networks with time-delays)
Consider the interconnected system (1). Assume that each
subsystem has an LISS Lyapunov-Krasovskii functional Vi,
which satisfies the conditions in Definition 2.4, i = 1, . . . , n.
If the corresponding gain-matrix Γ, given by (5) satisfies the
LSGC (6), then the whole system of the form (2) is LISS
from u to x.
The proof can be found in [6] with corresponding changes
according to the LISS property.

Note that if the functionals Vi in Theorem 2.6 are ISS
Lyapunov-Krasovskii functionals and Γ satisfies the SGC (7),
then the whole network is ISS (see [6]).

With these considerations we can perform a stability
analysis for production networks, which will be done in the
following section. We apply the tools and the Theorem 2.6
presented in this section. The procedure of the stability
analysis is summarized in the Figure 1.

III. STABILITY ANALYSIS OF PRODUCTION
NETWORKS

In this section we perform the stability analysis of produc-
tion networks and apply the tools presented in the previous
section.

We consider a general production network, consisting of
n market entities: raw material suppliers (e.g. extracting
or agricultural companies), producers, logistic companies,
consumers etc. and denote each entity as a subsystem of
the whole network. The state of each subsystem xi is the
number of unprocessed material within the i-th subsystem. A



subsystem can get material from an external source, which is
denoted by ui, and from subsystems of the network (internal
inputs). We assume, that there is only one type of material.

An entity handles the material with a certain rate, called
the process or production rate and transports the processed
material to another subsystem or external customers ac-
cording to the topology of the network with a rate, called
distribution rate. This distribution rate can be constant or
it changes, depending on the behavior of the network. We
interpret the constant distribution rates as central planning
and on the other hand changeable distribution rates can be
used for some autonomous control method.

We model production networks as an interconnection of
many dynamical subsystems that describe the dynamics of
market entities, where we use functional differential equa-
tions as in (1). The state of the i-th entity or subsystem,
respectively, is denoted by xi(t) ∈ R+, where t ∈ R+ is the
continuous time. The production rate of the i-th subsystem
is referred to as pi(xi(t)) ≥ 0 and depends on the state.
By cij(t) ≥ 0, i 6= j we denote the distribution rate of
material from subsystem j to i. Note that we can also write
cij(x1(t), . . . , xn(t)) and use cij(t) for short, which means
that the distribution rate depends on the state of the whole
network.

The internal input of subsystem i from subsystem j, j 6= i
is denoted by cij(t)pj(xj(t − Tij)), where Tij ≥ 0 is the
time-delay and can be interpreted as the time needed for the
transportation of the material from subsystem j to i. The
external input from external suppliers (not considered in the
network) is denoted by ui ∈ L∞(R+,R). The i-th entity
processes the material with rate c̃ii(t)pi(xi(t)) and delivers
the ready-made material further, where c̃ii > 0. Then the
dynamics of the subsystems can be described by differential
equations as follows:

ẋi(t) =
n∑
j=1

cij(t− Tij)pj(xj(t− Tij)) + ui(t), (9)

i = 1, . . . , n, where we denote cii := −c̃ii with Tii = 0.
For the stability analysis we apply the framework shown

in Figure 1. At first we choose a Lyapunov-Krasovskii
functional for each subsystem described in (9) and the
corresponding Lyapunov-Krasovskii gains.

Consider the case where all functions pi ∈ K∞, in
particular pi, i = 1, . . . , n are unbounded. Later we show
how with minimal modifications the same method can be
applied for bounded pi ∈ K \ K∞.

Note, that the conditions pi ∈ K∞, cii(t) < 0 and
cij(t) ≥ 0, i 6= j imply, that if x0

i = ξi ≥ 0 for any
ξi ∈ C([−θ, 0],R+), ∀i = 1, . . . , n), then xti ≥ 0 for all
t > 0, where θ := maxij{Tij}.

We choose Vi(xti) = xi(t) as the ISS Lyapunov-
Krasovskii functional candidate for the i-th entity. Obviously,
Vi(xti) is continuous, proper and positive definite and locally
Lipschitz continuous on C([−θ, 0]; R+)\{0}. To prove, that

the condition (4) is satisfied, we choose the gains

χij(Vj(xtj)) := p−1
i

(
ai
aj

1
1 + εi

pj(‖Vj(xtj)‖[t−Tij ,t])
)
,

χi(|ui|) := p−1
i

(
1
ri
|ui|
)
,

where aj , j = 1, . . . , n and εi, ri are some posi-
tive real numbers (see the certain scenario below for
an explicit choice). From the assumption Vi(xti) ≥
max{maxχij(Vj(xtj)), χi(|ui(t)|)} it follows

xi ≥ χij(Vj(xtj))⇒ pj(‖xj‖[t−Tij ,t]) ≤
aj
ai

(1 + εi)pi(xi),

xi ≥ χi(|ui|)⇒ |ui| ≤ ripi(xi).

Using these inequalities and assuming that the condition

n∑
j=1

cij(t− Tij)
aj
ai

(1 + εi) + ri ≤ −ρi (10)

holds true, where ρi > 0, we obtain

D+Vi
(
xti, ui

)
=

n∑
j=1

cij(t− Tij)pj(xj(t− Tij)) + ui(t)

≤

 n∑
j=1

cij(t− Tij)
aj
ai

(1 + εi) + ri

 pi(xi(t))

≤ − µi(Vi(xti)),

where µi(r) := ρipi(r), r > 0 and we conclude that
the condition (4) is satisfied for the ith subsystem. Thus,
under condition (10), Vi(xti) = xi(t) is the ISS Lyapunov-
Krasovskii functional for the i-th entity. These calculations
hold true for all i = 1, . . . , n.

Now we check if the SGC (7) is satisfied, where we use
the cycle condition (8). Consider a composition χk1k2 ◦χk2k3
and s > 0:

χk1k2 ◦ χk2k3(s)

= p−1
k1

(
ak1
ak2

1
1 + εk3

pk2

(
p−1
k2

(
ak2
ak3

1
1 + εk3

pk3 (s)
)))

= p−1
k1

(
ak1
ak3

1
(1 + εk3) (1 + εk2)

pk3 (s)
)
.

In the same way we obtain for k1 = kp

χk1k2 ◦ χk2k3 ◦ ... ◦ χkp−1kp
(s)

= p−1
k1

(
1∏p

i=2 (1 + εki
)
pk1 (s)

)
< s

Thus the cycle condition (8) and therefor the SGC (7) is
satisfied for all εi > 0 and by Theorem 2.6 for the ISS
property the whole network is ISS. We summarize these
considerations in

Proposition 3.1: Consider a network as in (9) with pi ∈
K∞ and assume that the conditions (10) holds ∀t > 0 and
all i = 1, . . . , n, then the whole network is ISS.



Remark 3.2: The inequality (10) can be simplified, if
∃M > 0 : cij(t − Tij) ≤ M for all i, j = 1, . . . , n, i 6= j.
Really, ∀wi > 0 ∃εj , j = 1, . . . , n such that

n∑
j=1,j 6=i

cij(t− Tij)
aj
ai
εj ≤M(

n∑
j=1,j 6=i

aj
ai
εj) < wi.

Using these estimates, we can rewrite (10) as
n∑
j=1

cij(t− Tij)aj ≤ ε̃i,

where ε̃i = −ai(ri + ρi +wi). In matrix notation, with a =
(a1, . . . , an)T , ε̃ = (ε̃1, . . . , ε̃n)T and C(t) := (ctij)n×n,
where ctij := cij(t− Tij), it takes the form

C(t)a < ε̃ (11)

and we get the following proposition.
Proposition 3.3: Consider a network as in (9) with pi ∈

K∞ and assume that ∃M > 0 : cij(t) ≤ M for all i, j =
1, . . . , n, i 6= j. If ∃a ∈ Rn, ε̃ ∈ Rn, ai > 0, ε̃i < 0, i =
1, . . . , n such that the condition C(t)a < ε̃ holds ∀t > 0,
then the whole network is ISS.

Remark 3.4: If the matrix C does not depend on t, then
condition Ca < ε̃ can be replaced by Ca < 0. In the case,
when C = C(t), it cannot be done.

Now we consider pi ∈ K \ K∞, i.e., function pi is
monotone increasing, but only up to a certain limit αi :=
supxi

{pi(xi)}. For such pi the ISS property cannot be
achieved, but we can establish the LISS property. We choose
again Vi(xti) = xi(t) as the LISS Lyapunov-Krasovskii func-
tional candidate for the i-th subsystem and the corresponding
gains as follows

χij(Vj(xtj)) := p−1
i

(
αi
αj

1
1 + εi

pj(‖xj‖[t−Tij ,t])
)
,

χi(|ui|) := p−1
i

(
αi

‖ui‖∞ri
|ui|
)
.

Note, that in contrast to the previous case, where the coeffi-
cients ai involved in the gain functions were chosen arbitrar-
ily, the αj are taken from the boundedness assumptions of
the functions pi. The reason is to obtain a range of a function
αi

αj
pj(s) equal to the region where p−1

i is defined.
Applying the same methods as for pi ∈ K∞, where we use

the LSGC (6) and Lemma 2.5, we can prove that Vi, i =
1, . . . , n are the LISS Lyapunov-Krasovskii functionals of
the subsystems.

Proposition 3.5: Consider a network as in (9) with pi ∈
K\K∞. Define ‖u‖∞ := (‖u1‖∞, . . . , ‖un‖∞)T and αj :=
supxi∈R{pi(xi)}, i = 1, . . . n, α := (α1, . . . , αn)T . If ∃ε̃ ∈
Rn, ε̃i < 0, i = 1, . . . , n such that

C(t)α+ ‖u‖∞ < ε̃, (12)

holds, then the whole network is LISS.
Remark 3.6: The stability analysis for functions pi ∈ K

is skipped here, because some more technical details are
necessary, which will blast the size of the paper. The result
is similar to the previous cases.

Fig. 2. A certain scenario of a production network

The conditions (10), (11) or (12) in the Propositions 3.1
and 3.3 and Remark 3.4 are based on the parameters of the
network: the distribution rates cij and inputs ui to guarantee
ISS or LISS. This means that for a general production
network one has to check if one of the conditions (10), (11)
or (12) for the special kind of production rates pi is satisfied
to guarantee stability of the network.

A. Stability analysis of a certain scenario of a production
network

In this section we provide a certain scenario of a produc-
tion network to demonstrate the application of the stability
analysis.

We consider a production network, consisting of three
production locations as shown in Figure 2. Subsystems one
and three get some raw material from external sources,
denoted by u1 and u3 ∈ R+. xi(t) ∈ R+, i = 1, 2, 3,
denotes the amount of unprocessed parts within subsystem
i. 50% of the production of subsystem three will be sent to
subsystem one and two in each case (c13 = c23 = 0.5). There
the parts enter the subsystems with the time-delay T13 and
T23, which denotes the transportation time from subsystem
three to one and two, respectively.

Subsystem one processes the parts with the rate p1(x1(t))
and sends the processed parts to subsystem two (c21 = 1),
where they arrive with the time-delay T21 and will be
processed with the rate p2(x2(t)). 50% of the processed
parts of subsystem two will be sent to subsystem three
(c32 = 0.5) with T32 and 50% will leave the system. This can
be interpreted as customer supply. Note that cii = −1, i =
1, 2, 3.

The production rates are given by pi(xi) := x2
i and the

subsystems are modeled by

ẋ1(t) = u1(t) + 1
2p3(x3(t− T13))− p1(x1(t)),

ẋ2(t) = p1(x1(t− T21)) + 1
2p3(x3(t− T23))− p2(x2(t)),

ẋ3(t) = u3(t) + 1
2p2(x2(t− T32))− p3(x3(t)).

By a1 = 0.6, a2 = 1.2, a3 = 1 we have

Ca =

 −1 0 1
2

1 −1 1
2

0 1
2 −1

 0.6
1.2
1

 < 0,



such that the condition (11) above (or in Remark 3.4) to
guarantee stability of the network is satisfied. To illustrate
this we do the following calculations:

We choose Vi(xti) = xi(t), i = 1, 2, 3 as the ISS
Lyapunov-Krasovskii functional candidates. By

χ1(|u1(t)|) :=
√
|u1(t)|
r1

, χ13(V3(xt3)) :=

√
a1(‖x3‖[t−T13,t])

2

a3(1+ε1)
,

where we choose r1 = 0.1, ε1 = 0.01 and the assumption
V1(xt1) ≥ max{χ13(V3(xt3)), χ1(|u1(t)|)} we get

D+V1(xt1) = u1(t) + 1
2 (x3(t− T31))2 − (x1(t))2

≤ −α1(V1(xt1))

for subsystem one, where α1(r) := 5
100r

2 ∈ K, r ≥ 0. By

χij(Vj(xtj)) :=

√
ai(‖xj‖[t−Tij,t])

2

aj(1+εi)
,

χ3(|u3(t)|) :=
√
|u3(t)|
r3

,

with (i, j) ∈ {(2, 1), (2, 3), (3, 2)}, where we choose ε2 =
ε3 = 0.01, r3 = 0.3 and similar calculations for the other
subsystems as for the first subsystem, we conclude that
Vi(xti) = xi(t), i = 1, 2, 3 are the ISS Lyapunov-Krasovskii
functionals for the subsystems.

The small-gain condition is satisfied, because it holds

χ13 ◦ χ32 ◦ χ21(s) =
√

1
(1+ε1)(1+ε2)(1+ε3)

s < s,

χ23 ◦ χ32(s) =
√

1
(1+ε2)(1+ε3)

s < s,

and by application of Theorem 2.6 for the ISS property the
whole network is ISS.

IV. CONCLUSIONS

We applied stability notions and LISS Lyapunov-
Krasovskii functionals to check if a general autonomously
controlled production network, modeled by retarded func-
tional differential equations is stable. We derive conditions,
which guarantee the stability of the whole production net-
work. A certain scenario of a production network was
investigated to demonstrate the derived conditions.
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