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Abstract - This paper presents an application of wavelet networks (WNs) in 

identification and control design for a class of structures equipped with a type of 

semiactive actuators, which is called magnetorheological (MR) dampers. The nonlinear 

model is identified based on a WN framework. Based on the technique of feedback 

linearization, supervisory control and ∞H  control, an adaptive control strategy is 

developed to compensate for the nonlinearity in the structure so as to enhance the 

response of the system to earthquake type inputs. Furthermore, the parameter adaptive 

laws of the WN are developed. In particular, it is shown that the proposed control 

strategy offers a reasonably effective approach to semi-active control of structures. The 

applicability of the proposed method is illustrated on a building structure by computer 

simulation. 
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I. Introduction 

The protection of civil engineering structures has always been a major concern 

especially when these structures are built in places prone to hazardous weather 

conditions (e.g. hurricanes, tsunamis) or in zones of intense seismic activity or when the 

structure is subjected to heavy loadings (e.g. heavy traffic on a bridge). If a structure is 

not well protected against these phenomena, they can suffer severe damage, and as a 

consequence, produce personal injuries or death as could be seen during the earthquakes 

in Mexico City (1985), Kobe (1995), northwestern Turkey (1999), those that struck 

southern Asia in 2004 followed by the tsunamis or more recently in China (2008). 

In order to make structures more resistant against these phenomena, passive and active 

dampers were initially proposed. Passive dampers alleviate the energy dissipation of the 

main structure by absorbing part of the input energy, without the need of external power 

sources. However, once installed, they are not adaptable to different loading conditions 

[1]. Active dampers, on the other hand, can respond to variations of the loading 

conditions and structural dynamics but require large power sources and additional 

hardware like sensors and DSP’s to operate. Active dampers can also inject energy to 

the structure and may destabilize it in a bounded-input bounded-output sense [2]. 

Semiactive devices provide an effective solution to overcome the disadvantages of 

passive and active dampers [3]. They have shown to perform significantly better than 

passive devices and as well as active devices without requiring large power sources, 

thus allowing for battery operation [4]. The main characteristics of semiactive devices 

are the rapid adaptability of their dynamic properties in real time but without injecting 

any energy into the system. Among diverse semiactive devices, MR fluid dampers are 

the most attractive and useful ones. MR dampers can generate high yield strength, have 

low costs of production, require low power, and have fast response and small size. 

However, they are characterized by a complex nonlinear dynamics (typically hysteresis) 

which makes mathematical treatment challenging, especially in the modeling and 

identification of the hysteretic dynamics and the development of control laws for its 

implementation through magnetorheological (MR) dampers for vibration mitigation 

purposes. More recently, in [5] a computational algorithm was presented for the 

modelling and identification of the MR dampers by using wavelet systems to handle the 
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nonlinear terms. By taking into account the Haar wavelets, the properties of integral 

operational matrix and of product operational Matrix are introduced and utilized to 

estimate the MR damper parameters easily by considering only the algebraic equations 

instead of the differential equations of the dynamical system. 

On the other hand, wavelet theory is a relatively new and an emerging area in 

mathematical research [6]. It has been applied in a wide range of engineering disciplines 

such as signal processing, control engineering, pattern recognition and computer 

graphics. In the literature, some of the attempts are made in solving surface integral 

equations, improving the finite difference time domain method, solving linear 

differential equations and nonlinear partial differential equations, modelling nonlinear 

semiconductor devices, signal processing and pattern recognition [7]-[14]. The 

combination of soft computing and wavelet theory has lead to a number of new 

techniques: wavelet networks (WNs) and fuzzy wavelet [15]. The combination of 

wavelet theory and neural networks has lead to the development of WNs. WNs are feed 

forward neural networks using wavelets as activation function. WNs have been used in 

classification and identification problems with some success. The strength of WNs lies 

in their capabilities of catching essential features in “frequency-rich” signals. WNs have 

become popular after the works [16]-[18]. Recently, application of WNs in 

identification and control design for a class of nonlinear dynamical systems has been 

investigated in [19].  

In recent years, considerable attention has been paid to systematic applications of 

semiactive linear control algorithms for vibration control of building structures subject 

to natural hazards, e.g., earthquake and strong wind. A number of control techniques 

have been developed for vibration control of structures equipped with MR dampers. In 

[20], the clipped optimal control was one of the first controllers developed for this class 

of systems. An optimal controller is designed to estimate the force that mitigates the 

vibrations in the structure and the control signal takes only two values according to an 

algorithm, in which the MR damper dynamics are ignored. Control techniques based on 

Lyapunov’s stability theory have been proposed and successfully tested in structures 

such as buildings, bridges and car suspension systems [21]-[27]. The general control 

objective is achieved through the choice of control inputs that make the Lyapunov 
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function derivative as negative as possible and consequently obtain the maximum 

energy dissipation. Other control methods have also been proposed such as bang-bang 

control ([21], [28]-[29]); sliding mode control ([25], [30]-[31]); backstepping control 

([32]-[33]); and intelligent control such as fuzzy logic control ([34]) and neuro fuzzy 

control ([35]-[36]). 

One of the most important tasks in semiactive control system design for structures is the 

development of an accurate mathematical model of the system equipped with a 

semiactive control device, e.g., MR damper. However, it is a challenging problem 

because a building structure with MR dampers is a nonlinear time-varying system, not a 

linear time-invariant one.  

The first idea about combining ∞H  control and adaptive WN is related to the works 

[13]-[14]. Similar to these works, we use WNs in identification and control design for 

the building-MR damper structures. The nonlinear model is identified based on a WN 

framework. Based on the technique of feedback linearization, supervisory control and 

∞H  control, an adaptive control strategy is developed to compensate for the nonlinearity 

in the structure so as to enhance the response of the system to earthquake type inputs. 

Furthermore, the parameter adaptive laws of the WN are developed. In particular, it is 

shown that the proposed control strategy offers a reasonably effective approach to semi-

active control of structures. The applicability of the proposed method is illustrated on a 

building structure by computer simulation. 

II. Wavelet Networks 

The original objective of the theory of wavelets is to construct orthogonal bases of 

)(
2

ℜL . These bases are constituted by translation and dilation of the same function (.)ψ , 

namely wavelet function. It is preferable to take (.)ψ  localized and regular.  

The wavelet subspaces 
j

W  are defined as 

})2({ Ζ∈−= kkxW
j

j ψ                                                 (1) 

which satisfy ijWW ij ≠= ,0I . For each Ζ∈j , let us consider the closed subspaces 

12 −− ⊕⊕= jjj WWV L  of )(
2

ℜL , where ⊕  denotes the direct sum.  

The wavelet series representation of the one-dimensional function )(xf is given by 
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∑ ∑ ∑
Ζ∈ ≥ Ζ∈

+=
k jj k

jkjkkjkj xbaxf
0

00
)()( ψφ                                             (2) 

where )2(2)( 0
0

0

2 kxx
j

j

kj −= φφ , )2(2)( 2 kxx
j

j

jk −= ψψ  and the wavelet coefficients kja
0

 

and jkb  are 

>=< )(),(
00

xxfa kjkj φ ,                                                (3a) 

 >=< )(),( xxfb jkjk ψ .                                                (3b) 

While the function )(xf  is unknown, then the wavelet coefficients kja
0

 and jkb  can not 

be calculated simply by (3). Since, it is not realistic to use an infinite number of 

wavelets to represent the function )(xf , we consider the following wavelet 

representation form of the function )(xf  [13], [37]-[38]: 

)()()(ˆ
2

1

2

1

xxbxf
T

M

Mj

N

Nk
jkjk ψθψ == ∑ ∑

−= −=

                                           (4) 

for some integers 2211 ,,, NMNM , T
NMNMNMNM bbbb ),,,,,,(

22122111
KKK=θ  and 

.))(,),(,),(,),(()(
22122111

T

NMNMNMNM xxxxx ψψψψψ KKK=  

If )(ˆ)(),,,(
2121

xfxfNNMM
f

−=Ξ is the Network Error (or approximation error), then it 

is easy to show that for arbitrary constant 0≥η , there exist some constants 

2211 ,,, NMNM  such that η≤Ξ
2

2121 ),,,( NNMMf   for all ℜ∈x  [39]. This means 

that )(xf  can be approximated to any desired accuracy as )(ˆ xf  by a WN with large 

enough 2211 ,,, NMNM .  

The wavelet series representation can be easily generalized to any dimension n. For the 

n-dimension case T
nxxxx ],,,[ 21 L= , we introduce the wavelet function ([13], [37]) 

)()()(),,,()( 2121 nn xxxxxxx ψψψψψ LK ==                                   (5) 

Now, we make a modification to replace the wavelet bases in (4). Then the modified 

WN becomes 

)()()()(ˆ
2

1

2

1

2

1

2

1 1

xxbxbxf
T

M

Mj

N

Nk

n

l
ljkjk

M

Mj

N

Nk
jkjk ψθψψ === ∑ ∑ ∏∑ ∑

−= −= =−= −=

                     (6) 

where 

T

NMNMNMNM bbbb ),,,,,,(
22122111

KKK=θ , 
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.))(,),(,),(,),(()(
22122111

T

NMNMNMNM xxxxx ψψψψψ KKK=  

 

III. System Description 

Consider an uncertain n-story building whose base is isolated by means of a passive 

frictional actuator and an MR damper, as shown in Figure 1. Consider also that the 

system is perturbed by an incoming earthquake. The system dynamics can be divided 

into two subsystems, namely, the main structure ( rS ) and the base ( cS ) [40]. 

)(]0,,0,[)(]0,,0,[)()()(:

1

1

1

1 tyktyctXKtXCtXMS T

n

T

n

r 321L
&

321L&&&

−−

+=++                  (7a) 

)()()()()()(: tftftftyktyctymS cbgbfc +=+++ &&&                            (7b) 

with  

))()(())()(()( 1111 txtyktxtyctfbf −+−= && ,                              (7c) 

))(),(()()()( tdtytdktdctfbg
&&& Φ+−−= ,                                  (7d) 

Qetdtytdty
tdtyv

][))()((sgn))(),((
)()(

max

&&&&&&
−−

∆−−−=Φ µµ ,                       (7e) 

 where nT
n txtxtxtX ℜ∈= )](,),(),([)( 21 L  is the structure horizontal absolute displacement 

vector (measured with respect to an inertial frame), ℜ∈y  is the horizontal base 

absolute displacement, )(td  and )(td&  are the seismic excitation displacement and 

velocity, respectively, and )(tf c  is the control force. Equation (7c) accounts for the 

dynamic coupling between the base and the main structure. Equation (7d) describes the 

forces introduced by the seismic excitation and the base isolation. Equation (7e) 

describes the dynamics of a frictional base isolator, where µmax is the friction coefficient 

for high sliding velocity, µ∆  is the difference between µmax and the friction coefficient 

for low sliding velocity, v  is a constant and Q is the force normal to the friction surface. 

In (7a), M, C and K are square and real matrices representing the mass, damping 

coefficients and stiffness of the structure, respectively. The structure of those matrices is 

shown as follows: 

},,,{ 21 nmmmdiagM L= , 
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Equation (7b) consists of a linear part, described by the mass m, damping coefficient c 

and stiffness k of the base. )(tfbf  represents the linear force caused by the coupling of 

the base and the main structure. This force is represented by the damping coefficient 

1ccbf = , the stiffness 1kkbf =  and the relative velocity )()( 1 txty && −  between the base and 

the first floor of the structure. 

 

              

Fig. 1. Base-isolated n-story building. 

 

The term )(tfc  in (7b) accounts for the dynamics of the semiactive actuator (MR 

damper). Such dynamics are given by the Bouc-Wen model, shown in Figure 2, as 

follows: 

)())(()())(()( tztvtytvtf c αδ −−= &                                             (8a) 

)()()()()()()( 2

1

1 tyAtztytztztytz
nn

&&&& +−−=
−

ββ                               (8b) 
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where )())((),())(( tvtvtvtv baba αααδδδ +=+=  and )(tz  is an unmeasurable 

evolutionary variable, the parameters n,, 21 ββ  and A  are constant values that can be 

used to adjust the shape of the hysteresis loop. The voltage )(tv  is the control signal to 

be generated: it is the input to a PWM system that generates the current, which in turn 

creates the magnetic filed, used to control the MR damper. The force-velocity 

relationship of MR dampers exhibits a hysteretic behaviour which is not mathematically 

easy to model. Fig. 3 shows the typical response of an MR damper under sinusoidal 

excitation at different levels of magnetic field. Hysteresis can cause serious problems in 

controlled systems such as instability and loss of robustness. 

 

 

 

Fig. 2. Bouc-Wen mechanical model. 

 

 

Fig. 3. Typical force-displacement and force-velocity curves of an MR damper. 

 

Due to the base isolation, the movement of the main structure ( rS ) is very close to the 

one of a rigid body. Then it is reasonable to assume that the inter-story motion of the 

main structure will be much smaller than the absolute motion of the base. Consequently, 

the following simplified equation of motion of the first floor is obtained: 

)()()()()( 1111111 tyktyctkxtxctxm +=++ &&&&                                 (9) 
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In this work, it is assumed that only state variables of the base and the first floor system 

are measurable and the unknown seismic excitation )(td  and )(td& are bounded and thus 

the unknown force )(tfbg  in (7d) is bounded. 

The following propositions about the intrinsic stability of the structure will be used in 

formulating the control law [40]. 

Proposition 1. The unforced main structure subsystem, i.e. (7a) with the null coupling 

term: 

[ ] [ ] 0  ,0)(0,...,0,)(0,...,0, 11 ≥≡+ ttyktyc
TT &  

is globally exponentially stable for any bounded initial conditions. 

Proposition 2. If the coordinates ))(),(( tyty &  of the base and the coupling term 

[ ] [ ] )(0,...,0,)(0,...,0, 11 tyktyc
TT

+&  are uniformly bounded, then the main structure subsystem 

is stable and the coordinates ))(),(( txtx & of the main structure are uniformly bounded for 

all 0≥t  and any bounded initial conditions. 

 

3.1 RTHT System 

The experimental testing of the control performance in civil engineering structures is an 

important issue in structural control. It is well known that testing vibration reduction 

systems at large scale structures such as buildings or bridges is rather prohibitive 

because of the dimensions, the power required to do so and the costs that such tests 

imply. This is why experiments are usually run at small or mid scale laboratory 

specimens. Experiments can be performed in one of three ways: shaking table tests, 

quasi-static tests and pseudo-dynamic or hybrid tests [41]. 

One significant advantage of hybrid simulation is that it removes a large source of 

epistemic uncertainty compared to pure numerical simulations by replacing structural 

element models that are not well understood with physical specimens on the laboratory 

test floor [42]. There are two main drawbacks with the hybrid test method. Firstly, the 

method relies on the assumption that the mass of the structure is concentrated at discrete 

points. Secondly, the loading is applied over a greatly expanded time scale so that time-

dependent non-linear behaviour is not correctly reproduced in the physical component. 
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In hybrid testing, the displacements are imposed on an extended time-scale which 

typically ranges from 100 to 1000 times the actual earthquake duration to allow for the 

use of larger actuators without high hydraulic flow requirements, careful observation of 

the response of the structure during the test, and the ability to pause and resume the 

experiment. In particular, the method cannot be applied to the testing of highly rate-

sensitive components such as visco-elastic dampers and certain active or semi-active 

structural control devices [43]. 

 

 

Fig. 4. RTHT system schematic. 

 

Figure 4 shows the experimental environment where the system (1) can be tested. 

Experiments are executed in a real-time hybrid testing (RTHT) configuration available 

at the Smart Structures Laboratory, University of Illinois Urbana - Champaign (USA). It 

consists of a computer that simulates the structure to be controlled and generates the 

commanding signals (displacements and control signals); a small-scale MR damper that 

is driven by a hydraulic actuator which in turn is controlled by a servo-hydraulic 

controller; and DSP, A/D and D/A hardware for signal processing. Sensors available 

include a linear variable displacement transformer (LVDT) for displacement 

measurements and a load cell to measure the MR damper force. In Figure 4, cmdx  is the 

commanded displacement, mrf  is the MR damper force measured by the load cell, measx  

is the displacement measured by the LVDT and i  is the control current sent to the 

hydraulic actuator.  
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Fig. 5. Adaptive ∞H  control strategy. 

 

 

IV. Control Design 

In this section, it is assumed that the building-MR damper system shown in Figure 5 can 

be modeled as a single-input-single-output (SISO) nonlinear equation 

)()())(())(()(
)(

twtutyGtyFty
r ++=                                        (10) 

where rm <  and )((.) i  denotes the ith derivative of (.)  and )(tu , )(ty  and )(tw  are the 

control input, the measured output, and disturbance, respectively. (.)F  and (.)G  are 

smooth functions of Tr
tytytyty ))(,),(),(()(

)1()1( −= K .  

According to Appendix, taking )()(1 tytx = , )()( )1(
2 tytx =  up to )()( )1(

tytx
r

r
−=  yields the 

extended system model 

11),()( 1 −≤≤= + ritxtx ii
&                                              (11a) 

)()())(())(()( twtutxGtxFtxr ++=&                                        (11b) 

MR 

damper 
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u  
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)()( 1 txty =                                                           (11c) 

where T
r txtxtx ))(,),(()( 1 K= . We need to know the bounds of (.)F  and (.)G . That is, we 

have to make the following assumption. 

Assumption 1. There exist functions ))(( txF
u , ))(( txG

u  and ))(( txGl  such that 

))(())(( txFtxF
u≤  and ))(())(())(( txGtxGtxG

u
l ≤≤ , where ∞<))(( txF

u , ∞<))(( txG
u   

and 0))(( >txGl  for all xUx ∈ . 

All the elements of the state vector )(tx  are assumed to be available. The objective is to 

combine the characteristics of wavelets, adaptive control scheme which guarantee that 

the output )(ty  and its derivatives up to order 1−r  track a given reference signal )(ty
r

 

and its corresponding derivatives up to the order 1−r , which are assumed all derivatives 

of the signal )(tyr  to be bounded.  

To begin with, the reference signal vector )(tyr  and the tracking error vector )(te  will 

be defined, respectively, as 

Tr
rrrr

yyyy ],,,[ )1()1( −= K ,                                               (12a) 

.],,,[ )1()1( Tr

r
eeeyxe

−=−= K                                          (12b) 

If the functions (.)F  and (.)G  are known, then by employing the technique of feedback 

linearization we can choose the controller )(tu
∗  to cancel the nonlinearity and achieve 

the tracking control goal. Specially, let ],,,[ 21 nkkkk K=  to be chosen such that all roots 

of the polynomial 1
1)( kskssp

n
n

n +++= − K  are in the open left-half side of the complex 

plane and the final control law, shown in Figure 5, is obtained as 

)()()( tututu
se +=                                                    (13) 

where 

)]()()())(([
))((

1
)( )(

tektytutxF
txG

tu
n

r
ae −++−=                         (14) 

and )(tu
a , )(tu

s  are two auxiliary controls yet to be specified and the main objective of 

)(tu
a  is to attenuate the effect of disturbance on the tracking error vector and the 

additional control term )(tu
s  is called a supervisory control for the reasons given at the 

end of this section. 
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Substituting (13)-(14) into (11) and using (12), we obtain the closed-loop system 

governed by 

)(1
)1()(

tuekeke
an

n
n =+++ − K                                         (15) 

Note that the control signal (13) is useful only if (.)F  and (.)G  are known exactly. If 

(.)F  and (.)G  are unknown, then adaptive strategies must be employed. We employ two 

adaptive WNs 

))(()())(),((ˆ txtttxF
f

T

ff ψθθ =                                                (16) 

))(()())(),((ˆ txtttxG
g

T

gg ψθθ =                                                (17) 

to approximate the nonlinear functions (.)F  and (.)G  of the system, respectively. The 

optimal weight vectors 
∗

f
θ  and 

∗

gθ  are chosen as 

}))(()())((max{minarg txttxF f

T

f
xf

f ψθθ
θ

−=
∗

                                  (18) 

}))(()())((max{minarg txttxG
g

T

g
xg

g ψθθ
θ

−=
∗

.                                 (19) 

and the functions (.)F  and (.)G  which are valid for all xUx ∈ , which n
xU ℜ⊂  is the 

compact set of )(tx , have the following representation 

))(())(())(()),((ˆ))(( txtxtxtxFtxF ff

T

fff Ξ+=Ξ+=
∗∗ ψθθ                         (20) 

))(())(())(()),((ˆ))(( txtxtxtxGtxG gg

T

ggg Ξ+=Ξ+=
∗∗ ψθθ .                        (21) 

By using definitions (18)-(19) and the equations (20)-(21), one finds 

)}()())((

))(()()()())(())(({)()( )(

twtutx

txtytektutxtxbteAte

g

f
n

rg

T

gf

T

fm

+Ξ+

Ξ+−+++=
∗∗ ψθψθ&

              (22) 

where  









=

−×

−×−

)1(1

11)1(

00

0

r

rr I
A , T

rb ]10[ )1(1 −×= . 

Also, ),( bA  and ),( 11 bA  are controllable canonical pairs and it is clear from polynomial 

)(sp  that kbAAm −=  is Hurwitz. In order to derive the control law, we need the 

following assumption hold for all xUx ∈ , bf Ω∈θ  and 
bg

Ω∈θ , where the constraint set 

bΩ  for TT

g

T

f ],[ θθθ =  is defined as }{
22

ggffb and Μ≤Μ≤=Ω θθ . 
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Assumption 2. There exists a finite constant 0>wB , such that ∫ ≤
T

wBdttw
0

2)( . 

Remark 2. The effect of )(tw , denoting the external disturbance, will be attenuated by 

the control signal )(tu
a , such that the ∞H  control design efficiently deals with the 

attenuation of )(tw  in the error dynamic system (22). Then, the problem under 

consideration becomes that of finding an adaptive scheme for )(tu
a , )(tfθ  and )(tgθ  to 

achieve the following ∞H  tracking performance: 

∞<≤∀+++≤ ∫∫ TdtwwtrtrePedteQe
T

TT

gg

T
T

ff

TT
0))0(

~
)0(

~
())0(

~
)0(

~
()0()0(

0

2

0

γθθθθ   

                (23) 

where γ  is a prescribed attenuation level, and QP,  are arbitrary positive definite 

weighting matrices. 

Theorem 1. Consider the nonlinear system in (9) with unknown or uncertain (.)F  and 

(.)G , according to Assumption 1. The ∞H  tracking performance in (23) is achieved for 

a prescribed attenuation level γ  if the following adaptive WN control law is adopted: 

[ ] )()()())(),((ˆ)(
))(),((ˆ

1

)()()(

)(
tutektyttxFtu

ttxG

tututu

sn
rf

a

g

se

+−+−=

+=

θ
θ

                (24) 

with 

)(
1

)(
2

tePbtu
Ta

β

−
=                                                   (25) 

and 

))())(),((ˆ)())(())(),((ˆ))(((
))((

))((sgn
)( tuttxGtutxGttxFtxF

txG

bPte
tu

e

f

eU

f

U

L

T

ss θθ
µ

+++−=

      (26) 

where 





<

≥
=

Eteif

Eteif
s

)(0

)(1
µ                                        (27) 

and 

)())(),((Pr)( tttojt Π=Π= θθ& ,                                               (28) 
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where β  is an arbitrary parameter and E  is a constant specified by the designer and 

[ ]TT

g

T

f ttt )(),()( θθθ = , [ ]TT

g

T

f ttt )(),()( ΠΠ=Π , ))()(()(2)( tytebPtet
rf

T

f +=Π ψ , 

)())()(()(2)( tutytebPtet
rg

T

g +=Π ψ  and the positive definite matrix P  is the solution of 

the following equation 

0)
21

(
22

=+−++ QPbbPPAAP
TT

mm
βγ

.                                      (29) 

Remark 3. If the norm of error vector tends to increase, i.e., Ete ≥)( , then the 

supervisory control begins to operate to force Ete <)( . In this way, the control is like a 

supervisor. In this strategy, because of the signal )(tu
s  is prepositional to the upper 

bounds ))(( txF
u  and ))(( txG

u  which are usually very large, we choose the signal )(tu
s  

to operate in the preceding supervisory fashion.   

Remark 4. According to Theorem 1 and the compact set xU , the designer can specify 

the positive constant E  as 5.0
)(

)0( )(
min Q

VE λ= . 

 

 

Fig. 6. Time history of the acceleration of the EI Centro earthquake. 

 

V. Numerical Results 

The system equations of a seismically excited 10-story building and controllers are 

implemented in MATLAB/Simulink to evaluate the performance. The horizontal 

seismic motion is a replica of that of Taft’s earthquake shown in Figure 6. The mass and 

stiffness of the base are 5106 ×=m  kg, 710184.1 ×=k N/m, and the base damping 
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coefficient is 0.1, respectively; the main structure stiffness varies linearly from the first 

floor 8

1
109 ×=k N/m to the top floor 8

10 105.4 ×=k  N/m, the damping coefficient is 0.05 

and the passive actuator has the following values: ∑ ==
10

1i imQ , µmax = 0.185, ∆µ = 0.09, 

and ν = 2.0. The parameters of the MR damper are: 12
21 103 −×== cmββ , 120=A , 1=n , 

m
kNs

a
2103×=δ , m

kNs
b

2108.1 ×=δ , m
kNs

a
4105.4 ×=α  and m

kNs
b

2106.3 ×=α . 

 

            

                                (a)                                                                      (b) 

Fig. 7. (a) Schematic of the NN for training, (b) Schematic of the NN model. 

 

5.1 Neural Network Models 

The identification of the MR damper system can be replicated using the following four-

step procedure: (1) collection of input/output date; (2) selection of a network structure; 

(3) training of the network; and (4) validation of the trained network. The quality of the 

trained network is directly related to the quality of the training date. In order to evaluate 

the feasibility of modeling the MR damper with a neural network, it was trained using 

data representing different frequencies and voltages. The network takes four inputs: 

displacement, velocity, voltage and force. The fourth input (force) is fed back from the 

output. Additionally, the network is dynamic, and the inputs are stored in memory 

(tapped delay lines, TDL) for a period of time and are updated after each output 

computation. The structure of the network during the training session is shown in Figure 

7(a). This structure allows for fast and more reliable training. Basically, given four 

inputs, the network must reproduce only the fourth one. The final model is shown in 

Figure 7(b). Thus, training the network is a two-step procedure in which the first one is 

to train the network of Figure 7(a) and the second one is to test the network of Figure 

7(b) with the same data until a desired performance is achieved. After a trial and error 

process, it was found that a network with 3 layers (10 neurons in the first layer, 4 
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neurons in the second one and 1 neuron in the last one) and 4 units-of-time length TDL 

is good enough to model the MR damper. Sigmoid tangent transfer functions are used in 

the first two layers while a purely linear transfer function is used in output neuron. 

Following the training procedure, the estimation of the neural model for a 4 Hz 

sinusoidal displacement at 3 V is shown in Figure 8 where good performance can be 

observed. 
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Fig. 8. Predicted and experimental force using a neural network. 

 

 

5.2 Wavelet Network Models 

It is assumed that the coupled building-MR damper structure will be of order 3 as 

wuyGyFy ++= )()(
)3(  with 0)( =tyr . We use the adaptive WN to construct the 

functions (.)F  and (.)G  such that the Gaussian wavelet of order 8 is chosen to be the 

basis of the WN and the constant WN parameters are chosen as 721 == MM and 

621 == NN . Figure 9 shows the time behaviours of the horizontal base absolute 

displacement of the first story. It is clear that in the presence of modelling errors the 

stability of the overall identification scheme is guaranteed and a reduction in absolute 

displacement is achieved with better results when the active control device is integrated.  
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Fig. 9. Horizontal base absolute displacement. 

VI. Conclusions 

This paper proposed an application of wavelet networks (WNs) in identification and 

control design for a class of building structures with MR dampers such that stability and 

a performance on transient response are satisfied simultaneously. The nonlinear model 

is identified based on a WN framework. By combining the technique of feedback 

linearization, supervisory control and ∞H  control, an adaptive control strategy with 

some parameter adaptive laws were developed to compensate for the nonlinearity in the 

structure so as to enhance the response of the system to earthquake type inputs.  It was 

demonstrated from numerical simulation that the suggested WN methodology was 

effective to identify and control behaviour of a building-MR damper system.  

 

Appendix 

A1. Input-output feedback linearization [44] 

Consider the nonlinear single-input-single-output (SISO) plant in the form of 

))(()(

)())(())(())(

txhty

tutxgtxftx

=

+=&
                                              (A1) 
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where n
x ℜ∈ , ℜ∈u , and ℜ∈y  denote the state vector, the control input scalar, and the 

output scalar, respectively. The term )(xf  represents the nonlinearities of the plant, 

)(xg  and )(xh  the nonlinear output distribution scalar. It is assumed that )(xf , )(xg  

and )(xh  are sufficiently continuous functions of x . 

In the input-output feedback linearization procedure, the output is differentiated with 

respect to time several times until the control input u  appears. Assume that r  is the 

smallest integer such that the input appears in )(r
y , then 

uxhLLxhLy
r
fg

r
f

r
)))((())((

1)( −+=                                        (A2) 

where (.)fL  and (.)gL  stand for the Lie derivative of (.) with respect to )(xf  and )(xg , 

respectively, 

)())((
0

xhxhL f =  

)())](([))(( 1
xfxhL

x
xhL

k
f

k
f

−

∂

∂
=                                         (A3) 

)())](([)))((( xgxhL
x

xhLL
k
f

k
fg

∂

∂
=  

When the relative degree nr < , the nonlinear plant (A1) can be transformed, using 

Tr
yyyz ],,,[ )1( −= L&  as a part of the new state components, into a normal form as 

)(

])()([

x

zCy

uxbxaBzEz r

ωη =

=

++=

&

&

                                       (A4a-c) 

with 

},,,{ )1( −= r
yyycolz L& , 
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E

1

)1(1)1(

0

0 M
, 

 







=

×−

1

0 1)1(r
B , ]01[ )1(1 −×= rC M , 

where r
z ℜ∈  and rn−ℜ∈η represent an external part and internal part of the plant 

dynamics (A1), respectively. Note that the subsystem in a phase variable form (A4a) is 

simply another expression of (A2), while the subsystem (A4c) does not contain the plant 

input. 
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