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Abstract

Renewable energy is a hot topic all over the world. Nowadays, there are several sus-

tainable renewable power solutions out there; hydro, wind, solar, wave and biomass

to name a few. Most countries have a tendency to want to become greener. Accord-

ing to the European Wind Energy Association (EWEA), the world wide capacity

increased with 44.601 [MW] in 2012. From this number, 27 % accounts for new

installed wind power, which is the second biggest contributor after solar (37 %).

In the past, all new wind parks were installed onshore. During the last decade more

and more wind parks were installed offshore, in shallow water (less than 30 [m]).

Now, some of the issues related to onshore turbines can be avoided, such as the

visual impact, noise and shadow flicker. If one is to speculate about what the fu-

ture may hold, it is evident that the next step for companies is to install floating

wind parks in deeper water (more than 30 [m]). Offshore conditions far from the

shore provide with higher and more stable wind conditions. In such deep water, it

is no longer economically viable to install bottom-fixed turbines. A solution is to

use floating turbine. A floating turbine gives new and interesting challenges to the

control community.

This dissertation mainly deals with pitch control of a floating wind turbine. The

modeling is also to some extend dealt with, e.g. it is the main topic of paper A.

Paper A deals with the bond graph methodology as a graphical approach to model

wind turbines. This is an alternative to the more classical Newtonian approach.

The purpose is not to validate a specific wind turbine system, but rather explore

how the bond graph can contribute with a model and give a better understanding



of how the overall system works. The emphasis has not been on the hydro- or

aero- dynamics, but rather on the electro-mechanical system. Papers B, C and D

are more dedicated to the control of the turbine. The models used for the control

purpose are obtained from the wind turbine simulation software FAST (Fatigue,

Aerodynamic, Structures and Turbulence). In paper B, several linear models of the

turbine are obtained, one model for each 10th azimuth angle. All these models

are made continuous based on an affine parameter-varying structure. Using upper

bounded inequalities, the parameter dependency is removed from the linear matrix

inequality (LMI) representation. Pole placement constraint is also added to the set

of LMIs before it is solved for a dynamic H∞ output-feedback controller.

Papers C and D are dealing with static H∞ output-feedback control with constrained

information. Constrained information means that not all the available information

is used by the controller. There can be different reasons for this, e.g. some of

the information is simply not needed, some of the sensors are especially prone to

failure, switching between controllers which do not need the same information, etc.

Paper C uses a model of the turbine based on a single operating point. Paper D is a

direct continuation of paper C. This paper uses a model based on several operating

points and a linear parameter-varying (LPV) model is derived. The affine model

is parameter-dependent on the wind speed, which is estimated using an extended

Kalman filter.

All simulations are carried out using Matlab/Simulink and all LMI calculations

are performed using YALMIP interfaced with Matlab.



Publications

The following four papers are appended and will be referred to by their Latin char-

acter. The papers are printed in their originally published state except for changes

in format and minor errata.

A. T. Bakka and H. R. Karimi, ”Bond graph modeling and simulation of wind

turbine systems”, Journal of Mechanical Science and Technology, vol. 24 (6),

2013.

B. T. Bakka and H. R. Karimi, ”Robust H∞ Dynamic Output Feedback Control

Synthesis with Pole Placement Constraints for Offshore Wind Turbine Sys-

tems”, Mathematical Problems in Engineering vol. 2012, Article ID 616507,

18 pages, doi:10.1155/2012/616507, 2012.

C. T. Bakka and H. R. Karimi, ”H∞ Static Output Feedback Control Design with

Constrained Information for Offshore Wind Turbine System”, Journal of The

Franklin Institute, vol. 350 (8), pages 2244-2260, 2013.

D. T. Bakka, H. R. Karimi and S. Christiansen, ”Linear Parameter-Varying Mod-

eling and Control of an Offshore Wind Turbine with Constrained Information”,

Submitted to: IET Control Theory & Applications, 2013.

The following papers are not included in the dissertation but constitute an important

part of the background.



I. H. R. Karimi and T. Bakka, ”Stochastic Stability Analysis and Output Feed-

back Control of Wind Turbine Systems with Wireless Sensor Networks”, Pro-

ceedings of the 24th International Congress on Condition Monitoring and Di-

agnostic Engineering Management, page 1086-1095, 2011.

II. T. Bakka and H. R. Karimi, ”Wind Turbine Modeling Using The Bond Graph”,

IEEE International Symposium on Computer-Aided Control System Design

(CACSD), page 1208-1213, 2011.

III. T. Bakka, H. R. Karimi and N. A. Duffie, ”Gain Scheduling for Output H∞

Control of Offshore Wind Turbine”, Proceedings of the 22nd International

Offshore and Polar Engineering Conference, page 496-501, 2012.

IV. T. Bakka and H. R. Karimi, ”Multi-objective Control Design with Pole Place-

ment Constraints for Wind Turbine Systems”, Advances on Analysis and Con-

trol of Vibrations - Theory and Applications, INTECH ISBN 978-953-51-

0699-9, page 179-194, 2012.

V. T. Bakka and H. R. Karimi, ”A Linear Parameter-Varying Approach to H∞

Control of an Offshore Wind Turbine”, Proceedings of the 23nd International

Offshore and Polar Engineering Conference, page 434-439, 2013.



Contents

Contents i

List of Figures v

List of Tables ix

1 Introduction 1
1.1 Wind Turbine Basics . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Wind Turbine Modeling . . . . . . . . . . . . . . . . . . . 8

1.4.2 Floating Wind Turbine Control Systems . . . . . . . . . . . 10

1.5 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . 11

2 Research Methodology 13
2.1 Wind Turbine Modeling . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Bond Graph Model . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 FAST Model . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Linear Parameter-Varying Model . . . . . . . . . . . . . . . 18

2.1.4 Wind Speed Estimation . . . . . . . . . . . . . . . . . . . . 20

2.2 Control Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 H∞ Control . . . . . . . . . . . . . . . . . . . . . . . . . . 22

i



2.2.2 Constrained Information . . . . . . . . . . . . . . . . . . . 31

3 Concluding Remarks 37
3.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Contribution to Knowledge . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

References 41

Appended papers 44

A Bond Graph Modeling and Simulation of Wind Turbine Systems 45
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Introduction to Bond Graph . . . . . . . . . . . . . . . . . . . . . . 51

2.1 System Elements . . . . . . . . . . . . . . . . . . . . . . . 52

3 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Pitching System . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Drive Train . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Tower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B Robust H∞ Dynamic Output Feedback Control Synthesis with Pole Place-
ment Constraints for Offshore Wind Turbine Systems 71
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2 Wind Turbine Model . . . . . . . . . . . . . . . . . . . . . . . . . 76

3 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1 System representation . . . . . . . . . . . . . . . . . . . . 78

3.2 H∞ Control . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Change of Variables . . . . . . . . . . . . . . . . . . . . . 80

ii



3.4 LMI Region . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C H∞ Static Output-Feedback Control Design with Constrained Informa-
tion for Offshore Wind Turbine System 95
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

D Linear Parameter-Varying Modeling and Control of an Offshore Wind
Turbine with Constrained Information 123
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3 Control Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.1 Extented Kalman Filter . . . . . . . . . . . . . . . . . . . . 133

3.2 Controller Design . . . . . . . . . . . . . . . . . . . . . . . 134

4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 141

6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

iii



iv



List of Figures

1.1 Hywind demonstration turbine . . . . . . . . . . . . . . . . . . . . 2

1.2 Typical CP curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Region of operation for a typical wind turbine . . . . . . . . . . . . 5

1.4 Interconnected subsystems . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Sketch of drivetrain . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Bond graph of drivetrain . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 LMI region D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.1 Setup for wind turbine generating system . . . . . . . . . . . . . . 50

A.2 Power bond with effort and flow . . . . . . . . . . . . . . . . . . . 52

A.3 0-junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.4 1-junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.5 Effort and flow source with their causality assignment . . . . . . . . 53

A.6 Example of a compliance element with integral causality . . . . . . 53

A.7 Example of an inertia element with integral causality . . . . . . . . 54

A.8 Example of resistive element . . . . . . . . . . . . . . . . . . . . . 54

A.9 Example of the two transformers . . . . . . . . . . . . . . . . . . . 54

A.10 Example of the two gyrators . . . . . . . . . . . . . . . . . . . . . 55

A.11 Two equivalent circuits . . . . . . . . . . . . . . . . . . . . . . . . 56

A.12 Bond graph of the two equivalent circuits . . . . . . . . . . . . . . 57

A.13 Block diagram of mechanical example . . . . . . . . . . . . . . . . 58

v



A.14 Modulated gyrator transforming wind speed into aerodynamic torque

and thrust force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.15 Cp curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.16 Mass spring damper . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.17 Bond graph of pitching system . . . . . . . . . . . . . . . . . . . . 61

A.18 Sketch of wind turbine . . . . . . . . . . . . . . . . . . . . . . . . 61

A.19 Bond graph of drive train . . . . . . . . . . . . . . . . . . . . . . . 62

A.20 Bond graph of drive train . . . . . . . . . . . . . . . . . . . . . . . 62

A.21 Sketch of wind turbine structure . . . . . . . . . . . . . . . . . . . 64

A.22 Bond graph of tower motion . . . . . . . . . . . . . . . . . . . . . 64

A.23 Bond graph of wind turbine generating system . . . . . . . . . . . . 65

A.24 Time behavior of the selected signals from 20-sim . . . . . . . . . . 66

A.25 Time behavior of the selected signals from Matlab/Simulink . . . . 67

B.1 Operating region of a typical wind turbine . . . . . . . . . . . . . . 75

B.2 output-feedback block diagram . . . . . . . . . . . . . . . . . . . . 78

B.3 LMI region D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.4 Wind profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.5 Rotor speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.6 Generator speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.7 Generator torque . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.8 Blade pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.9 Tower fore-aft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.10 Parameters in A-matrix row 4-6 . . . . . . . . . . . . . . . . . . . 88

B.11 Parameters in B-matrix row 4-6 . . . . . . . . . . . . . . . . . . . . 89

C.1 Total installed wind power capacity from 2001-2011 in [MW ] . . . . 98

C.2 Region of operation . . . . . . . . . . . . . . . . . . . . . . . . . . 99

C.3 Floating wind turbine (Jonkman, 2010a) . . . . . . . . . . . . . . . 104

C.4 System outputs and blade pitch angle, no faults . . . . . . . . . . . 110

C.5 System outputs and blade pitch angle, sensor 3 has failed . . . . . . 111

C.6 Wind profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.7 Generator speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

vi



C.8 Platform pitch angle . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.9 Blade pitch angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.10 Generated power . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.11 Rotor thrust force . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.12 Normalized standard deviations for selected time-series . . . . . . . 117

C.13 Normalized mean values for selected time-series . . . . . . . . . . . 118

D.1 Region of operation for a typical wind turbine . . . . . . . . . . . . 127

D.2 Block diagram of closed-loop system . . . . . . . . . . . . . . . . . 133

D.3 Time series of generator speed . . . . . . . . . . . . . . . . . . . . 138

D.4 Time series of platform pitch angle . . . . . . . . . . . . . . . . . . 139

D.5 Time series of generated power . . . . . . . . . . . . . . . . . . . . 140

D.6 Time series of blade pitch angles . . . . . . . . . . . . . . . . . . . 141

D.7 Normalized standard deviations for selected time series . . . . . . . 142

D.8 Normalized mean values for selected time series . . . . . . . . . . . 143

vii



viii



List of Tables

1.1 Tower DOFs for floating turbine . . . . . . . . . . . . . . . . . . . 6

2.1 OC3-Hywind basic specifications . . . . . . . . . . . . . . . . . . . 17

A.1 Wind turbine generating system parameters . . . . . . . . . . . . . 68

C.1 Basic facts of NREL‘s OC3 turbine . . . . . . . . . . . . . . . . . 104

C.2 γ-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.3 Normalized values for standard deviation of drive train oscillations . 112

C.4 Critical natural frequencies . . . . . . . . . . . . . . . . . . . . . . 116

D.1 Main specifications of NREL‘s OC3 turbine . . . . . . . . . . . . . 130

D.2 Normalized values for drivetrain oscillations . . . . . . . . . . . . . 139

ix



x



Chapter 1
Introduction

The wind turbine has been in use for several centuries. The first wind machines

were only used for mechanical labor, such as grinding corn or pumping water. The

first who benefited from the wind turbine in an electrical way, was James Blyth in

Scotland in 1887. He used it to charge his batteries, in order to have light in his

cabin. The modern wind power industry did not start until the late 1970s, and from

this point the research within wind power has accelerated.

Nowadays, wind energy is one of the most promising sources for renewable en-

ergy. According to The World Wind Energy Association the worldwide capacity

at the end of 2012, has reached 282,275 [MW]. Since 2001, the annual growth in

capacity has been about 21%. The top world leading countries are China, USA,

Germany, Spain and India. Together they represent 73% of the total global capac-

ity. Although the majority of the installed capacity is on land, many offshore parks

have been built in recent years. Most of these parks have turbines which are either

fixed to the soil or they stand on monopoles or other structures. Some of the major

offshore wind farms in Europe are located in the UK and Denmark, to name a few;

Greater Gabbard (UK), Whalney (UK), Sheringham Shoal (UK), Horns Rev (DK)

and Rødsand (DK). The turbines in these farms are installed in shallow waters, typ-

ical depths ranging from 10-30 [m]. For many countries such as Spain, US, Japan,

Korea and Norway it would be beneficial to also be able to install wind turbines in

deeper waters, in depths up to several hundred meters. The existing well established

bottom fixed turbines are not suited for such deep water. During the last couple of
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Introduction

years floating solutions have started to emerge. Hywind is one example of a floating

wind turbine solution. The demonstration turbine was installed back in 2009 and

is still in operation. The floating turbine is located in the North Sea, right off the

Norwegian west coast. The system uses a monopile spar buoy tower where a large

portion of the tower is extended below the surface, see Fig. 1.1. In order to stabilize

the turbine, heavy ballast is installed at the bottom of the tower, bringing the center

of gravity down. Three mooring lines attached to the seabed keep the turbine in

place in addition to adding stiffness to the system.

Figure 1.1: Hywind demonstration turbine

In the coming years the offshore wind industry is likely to see a development similar

the oil and gas industry, that is, moving installations further from the shore. In the

1970s and 1980s the oil and gas industry saw taller and taller platforms, some stand

as high as incredible 400-500 meters above the seabed. Today, no oil company in

the world would even consider building such tall platforms. A floating solution is

the obvious choice. Offshore conditions offer stronger and more stable wind con-

ditions, which in relation to power production is beneficial. Due to this fact, it is

2
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possible to have fewer and bigger turbines in offshore wind farms than in an onshore

wind farm. And, they would be out of harm’s way for most people. At the same

time, it is evident that the challenge to understand the dynamic behavior of floating

turbines are quite different than for bottom-fixed turbines. For this, demonstration

turbines need to be deployed and observed, such as Hywind. Also advanced simu-

lation softwares need to be developed and used by industry and institutions. During

the last decade, several wind turbine softwares have emerged. In this dissertation

FAST has been used. FAST has been developed by the National Renewable En-

ergy Laboratory (NREL) in Denver, US. They also provide a variety of simulation

models.

1.1 Wind Turbine Basics

The available power passing through an area A is defined as:

P =
1
2

ρAv3, (1.1)

where ρ is the air density and v is the wind speed. Obviously, it is not possible

to extract all the energy available in the area A with a wind turbine. For this to

happen, the wind would have to completely stop after hitting the turbine blades. In

(Eggleston and Stoddard, 1987) it is shown that the total useful power extracted by

a wind turbine can be formulated as:

Pa =CP (λ ,β )P =
1
2

ρπR2CP (λ ,β )v3, (1.2)

where R is the blade radius, CP (λ ,β ) is the power coefficient and depends on λ and

blade pitch angle β . λ is defined as the tip-speed-ratio and is defined as: λ =ωrR/v,

where ωr is the rotational velocity of the rotor. CP indicates the relationship between

how much power is available in the wind and how much can be converted to electri-

cal power. It can be proven that the theoretical upper limit for CP is 16/17≈ 0.59,

and is known as the Betz limit. The Betz limit is well above what is practically pos-

sible. Todays turbines can reach values of about 0.5. The behavior of a typical CP is

illustrated in Fig. 1.2, where several power coefficient values are plotted depending
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on the tip-speed-ratio (λ ) and the blade pitch angle (β ).
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Figure 1.2: Typical CP curve

Typical wind turbines are built up by five major components; tower, nacelle, ro-

tor, generator and drive train. The nacelle is on top of the tower and houses the drive

train and the generator. The drive train is divided into two parts, the low-speed-shaft

and the high-speed-shaft. The rotor is attached to the low-speed-shaft and is driven

by the wind. The velocity of the low-speed-shaft is geared up typically about hun-

dred times. The low-speed-shaft drives the induction generator and electrical power

is produced. Although lately, drive trains without gearboxes are being developed.

These are called direct drive solutions, where the wind directly drives a permanent

magnet synchronous generator.

In the early days of wind power production, wind turbines operated on fixed

speed, stall regulated control. These types of turbines are also known as the Danish-

concept. They have to operate at a fixed rotational speed in order for it to be con-

nected to the grid. The frequency of the produced power needs to match the fre-

quency of the grid, for it to be connected. The blades are rigidly fixed to the nacelle

and are designed to become aerodynamically stalled at high wind speeds. That is,

as the wind speed increases beyond the turbine’s rated value, the lift-drag-ratio be-

comes smaller. It is desirable to have a high lift force and a low drag force. With
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this operation method the power can only be maximized at one wind speed. This

limits the power output as the wind speed varies. Another disadvantage is the high

thrust force on the tower.

I II III IV

Wind Speed

P
o
w
e
r 
O
u
tp
u
t

Figure 1.3: Region of operation for a typical wind turbine

A typical modern wind turbine operates as illustrated in Fig. 1.3. These turbines

operate with variable-speed and variable-pitch. That is, in region II the generator

speed is allowed to vary while the pitch angle is kept constant at some optimal

value. The control aim is to maximize the generated power, by controlling the gen-

erator torque. By keeping the tip-speed-ratio constant, this can be achieved. When

changing the generator torque, one also allows the generator speed to vary. The

consequence is that additional power electronics are needed in order to make sure

the turbine stays connected to the grid. In region III the control aim is to keep the

generator torque constant, by means of pitching the blades. The first and last region

in Fig. 1.3 is when the wind speed is too low and too high for energy production,

respectively.

The different degrees of freedoms (DOFs) for the floating turbine with reference

to the global coordinate system are illustrated in Fig. 1.1. There are six DOFs in

total for the tower, three translational and three rotational. They are presented in

Table 1.1.

It is tempting to just take a well designed onshore controller and install it on an

offshore turbine. In principle one can do this, but there is no guarantee that the

closed-loop system will be stable. The major difference between an onshore and

an offshore turbine is the natural frequencies. The natural frequencies will decrease
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Translational Rotational
x-axis Surge Pitch
y-axis Sway Roll
z-axis Heave Yaw

Table 1.1: Tower DOFs for floating turbine

significantly once the turbine is mounted on a floating foundation. In an onshore

turbine the lowest tower natural frequency is typically 0.5 [Hz], which is the tower

fore-aft bending mode. Once this turbine is put offshore, some additional vibration

modes appear. These are much more low frequent, and the lowest natural frequen-

cies are in the area 0.01 - 0.04 [Hz]. When the turbine is designed, the designers

already know the wind and wave frequencies in the area, and design the turbine

structure accordingly. This is to make sure that the surrounding environment will

not excite any of the structure’s vibration modes. For bottom-fixed turbines, the

soil also plays a major role in relation to the natural frequencies in the structure, as

discussed in (AlHamaydeh and Hussain, 2011). A controller for the onshore tur-

bine, typically has a natural frequency of 0.1[Hz], i.e. lower than the tower fore-aft

bending mode. If this controller was implemented on the offshore turbine, then the

controller would be faster than the tower vibration modes. This can become a sta-

bility issue once the wind speed is above rated. One can quite easily visualize why

this becomes a problem. It has already been discussed that in the above rated wind

speed conditions the controlling variable is the blade pitch angle. When the wind

speed increases, the blades will pitch out of the wind in order to not gain higher

generator speed. This means that the aerodynamic forces acting on the tower will

decrease and it will start to move forward. It is noted that, it is during this motion,

that the stability issue occurs and it is directly related to the pitching frequency of

the blades. Let us consider two scenarios: 1) the onshore controller is being used,

2) the offshore controller is being used. In the first scenario, the blades are being

pitched out of the wind at a higher frequency than the tower is moving forward. The

consequence is that the tower will lose most of its aerodynamic damping, known as

negative aerodynamic damping. The result is that the tower and eventually the gen-

erator will start to oscillate and eventually become unstable. In the second scenario

the blades are being pitched out of the wind with a lower frequency than the tower
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is moving forward. Therefore, the tower will not lose as much of the aerodynamic

damping, and the overall system will maintain its stability.

1.2 Motivation

This project is carried out in conjunction with the Norwegian Center for Offshore

Wind Energy (NORCOWE). NORCOWE is an interdisciplinary resource center for

exploitation of offshore wind energy as a natural sustainable energy source. The

vision of NORCOWE is to combine Norwegian offshore technology and leading

Danish and international communities on wind energy in order to provide innova-

tive and cost efficient solutions and technology for large water depths and harsh

offshore environments. It is a goal that NORCOWE will help build strong clusters

on offshore wind energy in Norway by developing new knowledge and by providing

skilled persons for the industry.

In order to maintain and increase the interest from industry, wind turbine mod-

eling and control needs to continue moving forward. Improved models, better con-

trollers and economically feasible solutions will always be a driving force in this

industry. This dissertation tries to stay in front of the wind turbine research and

contribute with new control strategies for offshore wind turbines.

1.3 Objectives

As discussed in Section 1.1, the control of a floating wind turbine is not a straight

forward task. The control objectives in the different regions of operation (Fig. 1.3)

have been discussed. The control focus in this dissertation is limited to region III.

The focused is on developing new control strategies for a variable speed and vari-

able pitch offshore floating wind turbine. The main emphasis is on multiobjective

optimization and multivariable control schemes, which can be adjusted to varying

operating conditions and can correct unmodelled dynamics. The floating turbine can

be influenced by the coupled dynamics between the tower and the blades, known as

negative damping. This needs to be handled in order to maintain the turbine stabil-

ity. Regarding performance, the controller needs to dampen loads and oscillations
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on mechanical parts in the turbine and maintain rated values for speed and power.

This indicates that several control objectives should be achieved at the same time,

or if not possible, a trade-off between objectives should be achieved. Hence, the

use of advanced control techniques should be used in order to get a reliable perfor-

mance of the control system. Therefore, this dissertation is intended to contribute

with new control strategies that incorporate these issues in their formulation and

guarantee system stability, robustness and reliability.

1.4 Literature Review

This section will review the state-of-the-art within wind turbine modeling and con-

trol of floating wind turbines.

1.4.1 Wind Turbine Modeling

A wind turbine system can be divided into several interconnected subsystems, see

Fig. 1.4. The complexity of the subsystems are often related to the control strategy.

A model for control purpose should not be overly complicated, but it should still

describe the most important dynamics. Which dynamics that are important or not,

will differ depending on the control objective.

Control

System

Electrical 

System

Mechanical 

System
Aerodynamics

Tower

Motion

Pitching

System

Σ
Vw

ż

Va

βref

β

Ft

Ta

ΩH

β

ΩG
TEMrefTEM

ΩG

TEM

-

Hydro

Dynamics

Fw

Waves

Figure 1.4: Interconnected subsystems

8



Offshore Wind Turbine Control

Structure:

The pitching system, tower, mechanical system and the electrical system can essen-

tially be modeled as rigid bodies connected with springs and dampers. The mechan-

ical system is often modeled as two inertias connected with a spring, damper and

a gear. These models are in principle quite simple, but serves its purpose in pro-

viding a model usable for control design. In order to properly simulate the coupled

dynamics in a wind turbine and the dynamic response to wind and wave loading, a

more sophisticated approach is needed. During the last decade, several dedicated

wind turbine simulation softwares have emerged. These new types of softwares

are based on more advanced modeling approaches, such as: multibody dynamics,

modal representation or finite element modeling. These approaches makes them

more suitable for testing new turbine concepts and new control strategies. Exam-

ples of such softwares are FAST (Jonkman, 2010b), HAWC2 (Larsen and Hansen,

2007) and SIMO/RIFLEX. The latter is originally developed for modeling and sim-

ulation of offshore structures, but extended by (Fylling et al., 2009) to also include

wind turbines. For a more complete overview of existing software for floating wind

turbine design tools see (Cordle and Jonkman, 2011). In these softwares it is possi-

ble to perform simulations and analysis of the nonlinear equations of motion in time.

During simulation, wind turbine aerodynamics, servo dynamics and structural re-

sponses to wind-inflow conditions are determined in time. Outputs of simulations

include time-series data on the aerodynamic loads as well as loads and deflections

of the structural parts of the wind turbine. They also have the capability to extract

linearized representations of the nonlinear wind turbine model. In this way it is

possible to perform controller design on linear representations of the wind turbine

system.

Aerodynamics:

The aerodynamic of the wind turbine describes how much of the incoming wind

can be converted to electrical energy and the forces developed on the turbine. There

are two major methods to do this; the actuator disc model (Burton et al., 2001) and

the blade element theory (Freris, 1990). The first approach regards the turbine as

an actuator disk. Based on the area, wind speed and the pressure drop across of the
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disk, it is possible to calculate potential energy capture. The second approach in-

cludes the geometry of the blades and studies the forces acting on the blades by the

incoming wind. In order to get a complete picture of the aerodynamic load experi-

enced by the wind turbine a combination of the two approaches are used, known as

blade-element/momentum (BEM) theory. Most of the new available software uses

BEM theory for the calculation of the aerodynamic loads.

Hydrodynamics:

Hydrodynamics are essentially a product of the aerodynamics. There is a long term

statistical correlation between wind speed, wave height and wave period. That is,

high wind speeds are usually followed by increased wave heights, which ultimately

lead to larger loads on the floating turbine. The forces acting on the platform can be

expressed by:

FPlat f orm(t) =−Aq̈−Bq̇+FHydro(t)+FLine(t), (1.3)

where A is the added mass matrix, B is the added damping matrix, FHydro(t) rep-

resent the hydrodynamic loads and FLine(t) represent the loads from the mooring

lines. The hydrodynamic loads can be explained as a sum of three effects; hydro-

statics, diffraction and radiation (Faltinsen, 1990; Newman, 1997). Hydrostatics

include the buoyancy effect of the structure and the mooring lines. The diffraction

forces occur when the wave field near the floating structure is affected, even if the

floating structure is stationary. An unsteady fluid pressure around the structure is

the cause of this force. Radiation forces occur when the structure is in motion and

there are no incident waves present, i.e. the structure is generating waves which

change the fluid pressure around the structure. This is handled by added mass and

damping which is dependent on frequency of oscillation, speed forward, etc.

1.4.2 Floating Wind Turbine Control Systems

During the last decades a variety of model based techniques have been developed.

These techniques offer a way to formulate the control problem in specific proce-

dures, and make it possible to impose special demands and constraints to the closed
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loop system. In classical control this is not possible. Also, classical control is

restricted to Single-Input-Single-Output (SISO) systems. To get a wind turbine sys-

tem to work properly, several sensor signals are used to calculate the appropriate

generator torque and the three blade pitch angles. Indeed this makes the wind tur-

bine a Multiple-Input-Multiple-Output (MIMO) system, and modern model based

control is therefore preferred. The following section will describe a selection of the

existing floating wind turbine control solutions.

In (Jonkman, 2008) and (Larsen and Hanson, 2007) the issue with negative aero-

dynamic damping at above rated wind speed is handled simply by slowing down

the blade pitch controller. This fixes the instability problem in the platform pitch

direction, but it also causes unacceptable rotational speed and electrical power vari-

ations. The PID controller is calculated based on a simple model of the turbine and

by placing the poles of the closed loop system in a preferred area. In (Skaare et al.,

2007) and (Skaare et al., 2011) information about the platform’s motions are mea-

sured and used as an extra input signal to the conventional control system. In this

way it is possible to subtract the additional rotor speed oscillations caused by the

platform movement from the measured rotor speed. Details related to this control

system are confidential. In (Christiansen et al., 2012) a minimum thrust approach

is proposed. The thrust is reduced by minimizing the CT coefficient by means of an

LQR controller approach and state estimation. Structural control by utilizing tuned

mass damper (TMD) was introduced by (Rotea et al., 2010). The idea is to add the

TMD in the nacelle which will influence the pitch motion of the tower and reduce

the tower loads. In (Henriksen, 2007) model predictive controller (MPC) was im-

plemented mainly to an onshore wind turbine, but it was also extended to a simple

model of a floating wind turbine.

1.5 Organization of the Dissertation

An introduction to how a typical floating wind turbine works and operates, as well as

a literature review of wind turbine modeling and control have been given. Chapter

2 describes the modeling and control methods used throughout this dissertation.
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Concluding remarks, suggestions for future work and contributions are discussed in

Chapter 3. The contributing papers are found appended.
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Chapter 2
Research Methodology

This chapter deals with the different modeling and control methods used throughout

the dissertation. The formulations are given such that all LMI variables are written

with boldface font. diag{...} represents a block diagonal matrix. I and 0 represent

identity matrix and zero matrix and the superscript T stands for matrix transposition

The operator sym(A) denotes A+AT and ⊗ denotes the Kronecker product. The

notation P > 0 means that P is real symmetric and positive definite; the symbol ∗
denotes the elements below the main diagonal of a symmetric block matrix.

2.1 Wind Turbine Modeling

This section will describe the different modeling approaches performed in the dis-

sertation.

2.1.1 Bond Graph Model

Bond graph is a unified approach to model many types of physical systems, pro-

ducing both linear and nonlinear mathematical models. Engineers must work and

interact in many different disciplines. An understanding of the intersections of these

different disciplines is a valuable asset for any engineer. Using the language of bond

graph, one may construct models of electrical, magnetic, mechanical, hydraulic,

pneumatic as well as thermal systems. The bond graph approach is a systematic

way to model dynamic systems, and there are standard ways to translate them into
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Jr

Jg

Kd

Dd Ng

Ta

Te

Figure 2.1: Sketch of drivetrain

differential equations or computer simulation schemes. In an educational point of

view, bond graph provides a systematic understanding of how the different parts of

the turbine works and behaves. An introduction to bond graph modeling is given in

the introduction chapter of paper A.

The power is transferred between the different parts in the bond graph model

with the use of power bonds. In bond graph notation, the definition of power is effort

multiplied with flow. For example, in electric systems this would mean voltage

multiplied with current, in mechanical systems it is force multiplied with velocity

and in hydraulics it is pressure multiplied with flow.

As a bond graph example, a typical wind turbine drivetrain will now be modeled.

The drivetrain can be modeled as two inertias connected with a spring, a damper

and a gearbox, see Fig. 2.1. The derivation of the governing equations by utilizing

Newtons 2nd law for the drivetrain model is not too hard, since the complexity of

the model is fairly low. The equations for the drivetrain model are found to be:

Tr = Irω̇r + φ̇∆Dd +φ∆Kd, (2.1)

−TgNg = IgN2
g

ω̇g

Ng
− φ̇∆Dd−φ∆Kd, (2.2)

where

φ∆ = φr−
φg

Ng
, φ̇∆ = ωr−

ωg

Ng
. (2.3)
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The bond graph corresponding to Fig. 2.1 can be seen in Fig. 2.2.
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Figure 2.2: Bond graph of drivetrain

The bond graph model consists of three 1-junctions and one 0-junction. The 1-

junction connected to the rotor inertia describes the rotor rotational speed. Since

there are dynamics in between the rotor inertia and the generator inertia, they do

not have the same speed. This is the reason for the 0-junction, because it is known

that the transferred torque is the same (no loss included in the drivetrain). The

1-junction connected to the resistive- and the compliance element indicates the ro-

tational speed difference between the two inertias. The connection also indicates

that the compliance- and resistive element have the same rotational speed (flow),

but different torque (effort). The last 1-junction is connected to the generator in-

ertia and describes the generator rotational speed. The governing equations can be

extracted in a specific way, the procedure can also be translated into a computer

program. As long as the bond graph is drawn, then the governing equations are

relatively easy to obtain either on your own or by a computer program. From the

bond graph representation it is seen that there are three dynamic elements, two in-

ertias and one spring. This indicates that three dynamic equations must exist. The

equations are formulated in the following way:

ṗ2 = e2 = e1− e3 = Ta−
q5

C6
−R5 f5, (2.4)

q̇5 = f5 = f3− f7 =
p2

I2
− p9

NgI9
, (2.5)
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ṗ9 = e9 = e10 + e8 =−Te +
1

Ng

(
q5

C6
+R5 f5

)
. (2.6)

With some manipulations this is exactly the same as described in (2.1)-(2.2)-(2.3).

If, for some reasons, the complexity of the drivetrain model were to be increased.

That is, more inertias and more springs and dampers. Then it is not straight forward

to derive the equations in the classical way. With the bond graph approach it is not

more difficult, it will just take a bit more time.

2.1.2 FAST Model

The model under consideration is obtained from FAST (Fatigue, Aerodynamics,

Structures and Turbulence). The program is developed at the National Renewable

Energy Laboratory (NREL) in Denver, USA. The code models the wind turbine as

a combination of both rigid and flexible bodies. These bodies are then connected

via several DOFs. The code provides a nonlinear model with up to 24 DOFs. The

developers of the software have provided a wide range of wind turbine models. The

turbine model used in this dissertation is called OC3-Hywind and is an upscaled

model of the Hywind demo floating turbine in Norway. The main specifications are

summarized in Table 2.1. More detailed information about the specifications can

be found in (Jonkman et al., 2009). Fig. 1.1 shows the floating wind turbine and

the global coordinate system. The platform DOFs are also indicated on the figure,

they include; translational heave, sway and surge motion and rotational yaw, pitch

and roll motions. Heave movement is defined along the z-axis, sway is along the

y-axis, and surge is along the x-axis. Yaw motion is defined about z-axis, pitch is

about the y-axis and roll is about the x-axis. This adds up to six DOFs. Four more

DOFs are related to the tower; two for longitudinal direction and two for lateral

direction. Yawing motion of the nacelle provides one DOF. Variable generator- and

rotor speeds give another two DOFs, this also includes drivetrain flexibility. Nine

DOFs for the blades; three for blade flapwise tip motion for the first mode, three

for tip displacement of each blade for the second flapwise mode and another three

for the blade edgewise tip displacement for the first edgewise mode. The last two

DOFs are for rotor- and tail furl. In total this adds up to 24 DOFs.

A linear model is needed in order to perform linear controller design. Also, the

16



Offshore Wind Turbine Control

Rated power 5 [MW]
Rated wind speed 11.6 [m/s]
Rated rotor speed 12.1 [RPM]

Rotor radius 63 [m]
Huh height 90 [m]

Table 2.1: OC3-Hywind basic specifications

model described above is so far too complicated. A linear model with fewer DOFs

is needed. The most important dynamics should be represented in the linear model.

drivetrain, generator and platform pitch are the selected DOFs. FAST does not

include any pitch actuators, these will be added to the model at a later stage. The

objective is to obtain a model describing the floating wind turbine system in region

III (see Fig. 1.3). In this region the controlling variable is the blade pitch angle.

ẋ = Aix+Biu,

y = Cx, i = 1,2...,36. (2.7)

The matrices Ai and Bi in the state-space system are behaving in a periodic man-

ner, the matrix values depend on the rotor azimuth angle. This periodic behavior

is caused by a combination of several effects, such as aerodynamic loads, tower

shadow, gravitational loads and deflection of the tower. The C matrix is not vary-

ing since there is no periodic behavior related to the measurements. In paper B the

system in (2.7) is converted into an LPV model depending on azimuth angle, and

further used for the controller design. A common way to simplify this system, is

to take the average of all the 36 models and eventually use this for the controller

design. This is what is done in paper C and D. Although, in paper D several lin-

earization points are obtained. That is, one state-space system of the form in (2.7)

is obtained at several wind speeds. This is eventually converted into an LPV system

depending on wind speed. In this way, one ends up with a model which represents

the floating turbine in a wider range of wind speeds.

FAST does not provide any pitch actuators. In papers C and D these are included

in the wind turbine model after the linearization and after the average of the model
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described in (2.7) is calculated. A typical blade pitch actuator can be modeled as a

second order system (2.8).

ẋp = Apxp +Bpu,

y = Cpxp, (2.8)

where

Ap =

[
−2ωnζ −ω2

n

1 0

]
, Bp =

[
1

0

]
, Cp =

[
0 ω2

n

]
.

The natural frequency is ωn = 0.88 and the damping ratio is ζ = 0.9. There is a

total of three pitch actuator models in the turbine model, one for each blade. The

matrices in (2.9) represent the new state-space matrices, where the pitch actuators

are included.

At =

[
I3⊗Ap 0

B⊗Cp A

]
, Bt =

[
I3⊗Bp

0

]
, Ct =

[
0 C

]
. (2.9)

These matrices are obtained by combining the three pitch actuator state-space mod-

els and the wind turbine state-space system. The blade pitch dynamics are now

included in the model.

2.1.3 Linear Parameter-Varying Model

The wind turbine characteristics are constantly varying depending on the azimuth

angle of the rotor and the wind inflow. In this dissertation two different LPV models

are constructed. Paper B deals with the azimuth angle dependent model and paper

D deals with the wind speed dependent model. LPV control techniques are a step

in between linear control and nonlinear control. The control design is done based

on linear techniques and when it is implemented, the benefits from nonlinear con-

trol are utilized. That is, it will perform and maintain stability in a larger region of

operation.
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Azimuth angle dependent model:

In paper B a model which is parameter-dependent on the rotor azimuth angle is pre-

sented. After inspecting the set of models in (2.7), it is concluded that they can be

represented in a continuously manner by the use of sine and cosine functions. The

two periodic matrices from state-space system (2.7) are now rewritten as:

A(z) = An +∆A(z) ,

B(z) = B2n +∆B(z) , (2.10)

where An and B2n are the nominal plant matrices, ∆A(z) and ∆B(z) are contributing

with the varying terms and z is the rotor azimuth angle. ∆A(z) and ∆B(z) are defined

in the following way:

∆A(z) =
2

∑
i=1

2

∑
j=1

Fi∆ j(z)E jia,

∆B(z) =
2

∑
i=1

2

∑
j=1

Fi∆ j(z)E jib, (2.11)

where the matrices
(
Fi, E jia, E jib

)
have appropriate dimensions and values, ∆1 (z)

and ∆2 (z) are sin(ωt) and cos(ωt), respectively. In this way a continuous repre-

sentation of the state-space system in (2.7) is obtained. The reason for formulating

the LPV in such a way, is related to the controller design procedure.

Wind speed dependent model:

In paper D a model which is parameter-dependent on the wind speed is presented.

Now the wind turbine system is linearized about several operating points. A set of

nine operating points are obtained, ranging from 14 [m/s] to 22 [m/s]. The state-

space systems are of the following standard form:

ẋ = Aix+Biu,

y = Cx, i = 1,2...9. (2.12)
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The major difference between (2.7) and (2.12) is that the latter does not have any

periodic behavior and it also represents the wind turbine system in a larger region

of operation, in relation to wind speed. In (2.13) the varying matrices in (2.12) are

represented in a continuous manner where σ is the wind speed.

A(σ) = Aa +σAb,

B(σ) = Ba +σBb, (2.13)

where the scalar parameter satisfies σ ≤ σ (t)≤ σ and ρ ≤ σ̇ (t)≤ ρ . The matrices

(Aa, Ab, Ba, Bb) are found using least square method.

Pitch actuators are added to the system in the same way as in (2.9).

Aaug (σ) =

[
I3⊗Ap 0

Ba⊗Cp Aa

]
+σ

[
0 0

Bb⊗Cp Ab

]
,

Baug =

[
I3⊗Bp

0

]
,

Caug =
[

0 C
]
. (2.14)

The new model is now wind speed dependent. It is rarely possible to obtain accurate

measurements of the wind speed, this parameter will therefore be estimated. Wind

speed estimation will be discussed in the next section.

2.1.4 Wind Speed Estimation

It is possible to estimate the effective wind speed based on measurements from the

wind turbine. In this specific case the measurements are rotor speed, blade pitch

angle and generator torque. The effective wind speed represents the wind field

averaged over the rotor disc, i.e what is experienced by the blades. An extended

Kalman filter is used based on a simple model of the drivetrain and a turbulence

model, the output from the extended Kalman filter is the effective wind speed. For

the actual development of the filter readers are referred to (Knudsen et al., 2011).

Both the drivetrain and the wind model are modeled as first order systems with no
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losses.

JeqΩ̇DT = Ta−Tg, (2.15)

v̇t = −πvm

2L
+n1, (2.16)

v̇m = n2, (2.17)

σ = v = vm + vt , (2.18)

where Jeq = Jr + n2
gJg, Tg = Teng, vt is turbulence, vm is the mean wind speed and

L is the turbulence length scale parameter. The wind model is driven by Gaussian

white noise, entering the model by n1 and n2. This model is nonlinear due to the

nonlinear relationship between wind speed and aerodynamic torque. In order to

estimate the states, the time update uses information about the model dynamics and

the model uncertainties.

x̂−k = Aek f x̂k−1 +Bek f uk−1, (2.19)

P−k = Aek f Pk−1AT
ek f +Q, (2.20)

where matrices
(
Aek f , Bek f , Cek f

)
are state-space matrices of a linearized version

of (2.15)-(2.16)-(2.17), Q is incremental process noise covariance and Pk is the state

estimate error covariance. The measurement update uses information about the

model outputs and measurement noise.

Kk = P−k CT
ek f

(
Cek f P−k CT

ek f +R
)
, (2.21)

x̂k = x̂−k +Kk
(
zk−Cek f x̂−k

)
, (2.22)

Pk =
(
I−KkCek f

)
P−k , (2.23)

where R is measurement noise covariance, Kk is the Kalman gain and zk is the

measurements.
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2.2 Control Synthesis

This section describes the system representation and the different control approaches

which are used throughout the dissertation.

First of all, the model needs to be formulated on the generalized form (2.24).

As seen from Section 2.1 the model description differs depending on the control

synthesis.

ẋ = Ax+Bu+Bwω,

z = Czx+Dzu,

y = Cx+Dwω, (2.24)

where the additional terms Bw and Dw describe how the disturbance enter the sys-

tem. Cz and Dz handle the signals of interest/performance measures, i.e. the con-

troller objectives.

2.2.1 H∞ Control

The closed-loop H∞ norm of a transfer function from disturbance to signal of inter-

est is defined in (2.25).

||Tcl||∞ < γ. (2.25)

In order to formulate the H∞ norm in terms of a matrix inequality, some manipula-

tions to its original expression are needed. The ∞-norm of a closed-loop system is

the same as taking the 2-norm of the signal of interest z divided by the 2-norm of

the systems exogenous input ω . First, lets define the Lyapunov stability criteria. A

linear state-space system is asymptotically stable if all real parts of the eigenvalues

of the A-matrix are negative. The Lyapunov criteria involve searching for the matrix

P. If it exists, then the system is stable. A quadratic Lyapunov function is defined

in (2.26) and its derivative in (2.27).

V (t) = xT Px, (2.26)

V̇ (t) = ẋT Px+ xT Pẋ. (2.27)

22



Offshore Wind Turbine Control

The first crucial steps in obtaining the bounded real lemma (BRL) under zero initial

condition are shown next. Firstly, remove the roots by squaring both sides of the

inequality sign. Secondly, collect everything in one integral expression and lastly

do the trick where the Lyapunov function is added and subtracted to the inequality.

This can be done because it is known that:
∞∫
0

V̇ (t)dt−V (∞)+V (0) = 0 is true. In

this way, only an integral expression is obtained.

sup
ω 6=0

||z||2
||ω||2

< γ ⇒

 ∞∫
0

zT zdt

 1
2

< γ

 ∞∫
0

ω
T

ω dt

 1
2

⇒
∞∫

0

(
1
γ

zT z− γω
T

ω

)
dt

≤
∞∫

0

(
1
γ

zT z− γω
T

ω +V̇ (t)
)

dt− V (∞)︸ ︷︷ ︸
Always positive

+V (0)︸ ︷︷ ︸
Always zero

≤
∞∫

0

(
1
γ

zT z− γω
T

ω +V̇ (t)
)

dt. (2.28)

Now, insert both the expressions for the signal of interest z from (2.24) and the

derivative of the Lyapunov function V̇ (t) (2.27) into (2.28). With some algebraic

and matrix manipulations, the following matrix inequality is obtained. Also known

as the BRL. 
AT P+PA PBw CT

z

∗ −γI 0

∗ ∗ −γI

 < 0,

P > 0. (2.29)

State-Feedback:

Papers C and D are based on the state-feedback LMI formulation. However, an

output-feedback formulation is obtained using a change of variables. This will be

discussed in more details in Section 2.2.2. First, the state-feedback formulation will

be reviewed.

In state-feedback all states in the system are assumed measurable and available for
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feedback. If this is not possible, there are procedures to observe or estimate these

unavailable states, see for example (Grewal and Andrews, 2001). A static output-

feedback controller can be formulated in the following way:

u = Kx, (2.30)

where u is the calculated control signal, K is the gain and x is the state variable.

Before it is possible to calculate the controller gain, the closed-loop state-space

system needs to be found:(
Acl Bcl

Ccl Dw

)
=

(
A+BK Bw

Cz +DzK 0

)
. (2.31)

It is noted that in (2.31) Dw is zero. Now the system in (2.31) can be included in

(2.29). It is not yet a linear matrix inequality because of the nonlinear multiplication

which occurs when the feedback loop is closed. This can be handled by performing

congruence transformation with diag{P−1, I, I} on the BRL and performing the

substitution X = P−1 and Y = KP−1. The final LMI is as follows:
sym(AX+BY) Bw (CzX+DzY)T

∗ −γI 0

∗ ∗ −γI

 < 0,

X > 0. (2.32)

By minimizing γ , the LMI variables can be obtained and the controller gain can be

calculated from the following expression:

K = YX−1. (2.33)

Output-feedback:

In paper B a dynamic output-feedback controller is designed for the parameter-

varying system described in (2.10). The controller has the following form:

ζ̇ = Akζ +Bky,
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u = Ckζ +Dky, (2.34)

where ζ is the states, y is the outputs from the state-space system, u is the calcu-

lated control signal and the matrices (Ak, Bk, Ck, Dk) are the controller state-space

matrices.

Since the state-space system is parameter-varying, the closed-loop system is divided

into two parts, see (2.35). One part which handles the constant state-space matrices

and one part which handles the parameter-varying matrices. It must also be men-

tioned that in this formulation the disturbance is also added to the signals of interest,

denoted as Dzw.(
Acl Bcl

Ccl Dcl

)
=

(
Acl1 Bcl1

Ccl1 Dcl1

)
+

(
Acl2(z) Bcl2(z)

0 0

)

=


An +B2nDkC B2nCk Bw +B2nDkDw

BkC Ak BkDw

Cz +DzDkC DzCk Dzw +DzDkDw



+


∆A(z)+∆B(z)DkC ∆B(z)Ck ∆B(z)DkDw

0 0 0

0 0 0

 . (2.35)

Because of the parameter-varying state-space matrices an additional term to the

standard BRL is also necessary. This additional term is the second part of the sum-

mation in constraint (2.36). In order for the controller to guarantee stability and

performance, the H∞ norm of the closed-loop transfer function must not exceed γ .

This is true if and only if there exists a symmetric matrix X such that
AT

cl1X+XAcl1 XBcl1 CT
cl1

∗ −γI DT
cl1

∗ ∗ −γI



+


AT

cl2(z)X+XAcl2(z) XBcl2(z) 0

∗ 0 0

∗ ∗ 0

 < 0,

X > 0. (2.36)
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Again, the matrix inequality in (2.36) is not yet linear because of the nonlinear terms

which occur when the feedback loop is closed. A change of variables is the remedy

in the output-feedback case as well. Although, a set of slightly more sophisticated

variables are needed. A second challenge is the parameter-varying terms. A proper

LMI can not have parameters which are varying. These two issues will now be han-

dled.

First the new matrices P and P−1 are defined and partitioned in the following way

(Scherer et al., 1997):

P =

[
X N

NT #

]
, P−1 =

[
Y M

MT #

]
, (2.37)

where X and Y are symmetric matrices of dimension ℜn × n. N and M will be

calculated on the basis of X and Y. The matrices noted as # are not necessary to be

known. In addition, two additional matrices are defined:

Π1 =

[
Y I

MT 0

]
, Π2 =

[
I X
0 NT

]
(2.38)

as can be inferred from the identity PP−1 = I satisfying

PΠ1 = Π2. (2.39)

Now, the following change of controller variables are defined

Â = NAkMT +NBkC2X+YB2nCkMT

+Y(An +B2nDkC2)X, (2.40)

B̂ = NBk +YB2nDk, (2.41)

Ĉ = CkMT +DkC2X, (2.42)

D̂ = Dk. (2.43)
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To take away the nonlinearities in (2.36), a congruence transformation with

diag(Π1, I, I) on the matrix inequality (2.36) is performed. The result is the matrix

inequality in (2.44). This expression is now linear, but the issue with the parameter-

varying matrices is still present.

Σ1 + sym(G1∆1(z)H1)+ sym(G2∆1(z)H1)

+ sym(G1∆1(z)H2)+ sym(G2∆1(z)H2)

+ sym(G3∆2(z)H3)+ sym(G4∆2(z)H3)

+ sym(G3∆2(z)H4)+ sym(G4∆2(z)H4)< 0, (2.44)

where the matrix Σ1 and the vectors Gi and Hi are defined in the following way:

Σ1 =


sym

(
AX+B2nĈ

)
ÂT

+A+B2nD̂C Bw +B2nD̂Dzw XCT
z + ĈT

DT
zw

∗ sym
(
YA+ B̂C2

)
YBw + B̂Dzw CT

z +CT D̂T
+DT

z

∗ ∗ −γI DT
zw +DT

zwD̂DT
z

∗ ∗ ∗ −γI

 ,

G1 = [F1 01×8]
T , G2 = [01×6 YF1 01×2]

T ,

G3 = [F2 01×8]
T , G4 = [01×6 YF2 01×2]

T ,

H1 =
[
E11aX+E11bĈ E11a +E11bD̂C2 E11bD̂D21 0

]
,

H2 =
[
E12aX+E12bĈ E12a +E12bD̂C2 E12bD̂D21 0

]
,

H3 =
[
E21aX+E21bĈ E21a +E21bD̂C2 E21bD̂D21 0

]
,

H4 =
[
E22aX+E22bĈ E22a +E22bD̂C2 E22bD̂D21 0

]
.

To remove the parameter-varying part of the matrix inequality the following lemma

is used:

Lemma 1 (Khargonekar et al., 1990): Given Σ = ΣT , G, ∆ and H of appropriate

dimensions with ∆T ∆≤ I, then the matrix inequality

Σ+ sym(G∆H)< 0
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holds for all Σ if and only if there exists a scalar ε > 0 such that

Σ+ εGGT + ε
−1HT H < 0.

By utilizing Lemma 1 it is possible to remove the parameter-varying parts ∆i(z) in

the matrix inequality (2.44). A new matrix inequality which contains the constants

ε1 and ε2 are obtained.

Σ1 + 2ε1G1GT
1 +2ε

−1
1 HT

1 H1 +2ε1G2GT
2 +2ε

−1
1 HT

2 H2

+ 2ε2G3GT
3 +2ε

−1
2 HT

3 H3 +2ε2G2GT
4 +2ε

−1
2 HT

4 H4 < 0. (2.45)

By using the Schur complement, the inequality in (2.45) is converted into the in-

equality in (2.46). The set of LMIs needed to solve the H∞ problem are as follows:(
Σ1 Σ2

∗ Σ3

)
< 0, (2.46)(

X I

I Y

)
> 0, (2.47)

where

Σ2 =
[

ε1G1 HT
1 ε1G2 HT

2 ε2G3 HT
3 ε2G4 HT

4

]
,

Σ3 = diag{ −1
2ε1I2×2,−1

2ε1I2×2,−1
2ε1I2×2,−1

2ε1I2×2,

−1
2ε2I2×2,−1

2ε2I2×2,−1
2ε2I2×2,−1

2ε2I2×2 }. (2.48)

Pole placement:

An LMI region is any convex subset D of the complex plane that can be character-

ized as an LMI in z and z̄ (Chilali and Gahinet, 1996) as follows:

D = {z ∈C : L̄+ M̄z+ M̄T z̄ < 0}, (2.49)

for some fixed real matrices M̄ and L̄ = L̄T , where z̄ is a complex number. This

class of regions encompasses half planes, strips, conic sectors, disks, ellipses, and
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any intersection of the above. From (Chilali and Gahinet, 1996), it is found that, all

eigenvalues of the matrix A is in the LMI region {z ∈C : [l̄i j + m̄i jz+ m̄ jiz̄]i, j < 0}
if and only if there exists a symmetric matrix X such that

[
l̄i jX+ m̄i jAT X+ m̄ jiXA

]
i, j < 0, X > 0. (2.50)

The same issue appears for the pole placement constraint as for the output-feedback

constraint. The change of variables and removing the parameter-varying terms

needs to be done. This is performed in (2.51). The LMI is obtained in a manner

similar to the one that was used for the H∞ constraint.(
Σ4 Σ5

∗ Σ3

)
< 0, (2.51)

where

Σ5 =
[

ε1P1 NT
1 ε1P2 NT

2 ε2P3 NT
3 ε2P4 NT

4

]
,

Σ4 =

(
L̄⊗

(
X I

I Y

)
+ M̄⊗

(
AX+B2nĈ A+B2nD̂Cz

Â YA+ B̂Cz

)

+ M̄T ⊗

(
AX+B2nĈ A+B2nD̂Cz

Â YA+ B̂Cz

)T
 ,

G1 = [F1 01×6]
T , G2 = [01×6 YF1]

T , G3 = [F2 01×6]
T ,

G4 = [01×6 YF2]
T , H1−2 =

[
E11aX+E11bĈ E11a +E11bD̂C2

]
,

H2−2 =
[
E12aX+E12bĈ E12a +E12bD̂C2

]
,

H3−2 =
[
E21aX+E21bĈ E21a +E21bD̂C2

]
,

H4−2 =
[
E22aX+E22bĈ E22a +E22bD̂C2

]
, N1 = I2×2⊗H1−2,

N2 = I2×2⊗H2−2, N3 = I2×2⊗H3−2, N4 = I2×2⊗H4−2,

H1 = M⊗G1−2, H2 = M⊗G2−2, H3 = M⊗G3−2, H4 = M⊗G4−2.
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Remark 1. It is observed that the inequalities (2.46), (2.47) and (2.51) are linear

in
(
X, Y, Â, B̂, Ĉ, D̂

)
and thus the standard LMI techniques can be exploited to

find the LMI solutions. It is also seen from the above results that there exists much

freedom contained in the design of control law, such as the choices of appropriate ε1

and ε2. This design freedom can be exploited to achieve other desired closed-loop

properties.

The desired region D is a disk (Fig. 2.3), with center located along the x-axis

(distance q from the origin) and radius r. This determines the region

D =

(
−r q+ z

q+ z̄ −r

)
. (2.52)

From this expression the matrices L̄ and M̄ are found, which are the two matrices

that determine the LMI region.

Re

Im

Figure 2.3: LMI region D

All constraints in (2.46), (2.47) and (2.51) are now subjected to the minimization of

the objective function, which is the H∞-norm. They need to be solved in terms of(
X, Y, Â, B̂, Ĉ, D̂

)
.

Once all these matrices are obtained, the controller matrices are computed in the

following way. First, obtain M and N from the factorization problem

MNT = I−XY. (2.53)
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This relationship can be solved by utilizing the singular value decomposition (SVD).

It is known that sd is a diagonal matrix and a new matrix s̄d is defined, which is the

square root of all the entries in sd . In this way it is possible to find the matrices M

and N as shown below.

svd(I−XY) = usdvT , (2.54)

s̄d = diag{sqrt(sd)}, (2.55)

M = us̄d, (2.56)

NT = s̄dvT . (2.57)

Second, the controller matrices are computed from the following relationship:

Dk = D̂, (2.58)

Ck =
(
Ĉ−DkC2X

)(
MT)−1

, (2.59)

Bk = N−1 (B̂−YB2nDk
)
, (2.60)

Ak = N−1 (Â−NBkC2X−YB2nCkMT

− Y(An +B2nDkC2)X)
(
MT)−1

. (2.61)

Once the controller matrices are obtained, the closed-loop system can be formed

and simulations can be carried out.

2.2.2 Constrained Information

Constrained information means that not all the information available in the feed-

back loop is used by the controller. There can be several reasons for this, e.g. some

of the information is simply not needed, some of the sensors are especially prone to

failure, switching between controllers and they do not need the same information,

etc. This can be achieved by forcing the LMI variables to possess a prescribed zero-

nonzero structure. In papers C and D this issue is discussed. The controller is a

static output-feedback H∞ controller. As discussed in Section 2.2.1, state-feedback

is relatively easy to handle. However, the output gain matrix is not computed as

easily. In the output-feedback case, the gain matrix is not directly isolated from the
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other LMI variables. In (Zečević and Šiljak, 2004, 2008, 2010) they propose an

explicit solution for the gain matrix and in (Rubió-Massegú et al., 2012) they have

found an even simpler solution. With the solution found in (Rubió-Massegú et al.,

2012), it is possible to impose zero-nonzero constraints on the LMI variables.

Given a state-space system with matrices as in (2.9), the following representation

of the H∞ constraint can be used:(
sym(AtX+BtY)+ γ−2BwBT

w (CzX+DzY)T

∗ −I

)
< 0,

X > 0. (2.62)

The formulation is exactly the same as the inequality in (2.32). This can be checked

utilizing the Schur complement. For the state-feedback case, the gain matrix is

calculated as K̃ = YX−1. In the output-feedback case, the state gain matrix factors

as the product K̃ = KCt . Now, when the output gain matrix is required, a solution

to (2.62) needs to be found such that the product YX−1 factors as

YX−1 = KCt . (2.63)

To solve this, (Rubió-Massegú et al., 2012) suggests the following change of vari-

ables

X = QXQQT +RXRRT , (2.64)

Y = YRRT , (2.65)

where XQ and XR are symmetric matrices with dimensions ℜ(n−m)×(n−m) and ℜm×m,

respectively, and YR has dimension ℜp×m. The matrix Q is the nullspace of Ct and

R can be calculated as follows:

R =CT
t
(
CtCT

t
)−1

+QL, (2.66)

where L is an arbitrary matrix with dimensions ℜ(n−m)×m.

In papers C and D the main focus is to calculate a gain matrix with diagonal struc-
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ture, it is completely up to the designer to decide on the zero-nonzero pattern in the

matrix. In order to obtain a diagonal structure on the gain, simply force a diagonal

structure on XR and YR, that is:

XR = diag{XR1,XR2,XR3} , (2.67)

YR = diag{YR1,YR2,YR3} . (2.68)

When these structure constraints are imposed on the LMI variables, XQ is a full

matrix.

In order to solve the LMI (2.62), first define ν = γ−2. Then maximize ν and solve

the LMI in terms of XQ,XR,YR. Once X and Y from (2.64-2.65) are calculated it

is possible to find the gain matrix K = YRX−1
R , satisfying YX−1 = KCt . Additional

information and proofs about this can be found in the aforementioned references.

In paper D this methodology is extended to LPV systems. The control methodol-

ogy is now performed based on an LPV representation of the floating wind turbine

system, given in (2.14). The state-space system is parameter-dependent on the wind

speed σ and the Lyapunov matrices need to depend on the same parameter. The

new Lyapunov matrices (2.69) are now partitioned in the same affine way as the

matrices A(σ) and B(σ) in (2.13).

XQ (σ) = XQ0 +σXQ1,

XR (σ) = XR0 +σXR1,

YR (σ) = YR0 +σYR1. (2.69)

In order to guarantee the controller stability and performance within the bounds

of the scheduling parameter, some additional LMIs are required. The system is

depending on one parameter and as indicated earlier this parameter has an upper

and a lower bound, both on the parameter itself and on the derivative. One LMI is

needed to check each vertex, i.e. this gives an addition of 2i LMIs, where i is the

number of vertices. As a consequence of the parameter dependency, at the upper left

position in the H∞ constraint (2.62), the expression is quadratic in σ . By imposing
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the definiteness of the terms involving σ2, that is

sym
(
Aaug,bQXQ1

)
+ sym

(
Aaug,bRXR1

)
≥ 0 (2.70)

the quadratic function of σ is convex. Once again, by changing ν = γ−2 in the

LMIs (2.62), the problem becomes convex and by maximizing ν it is possible to

find the Lyapunov matrices in (2.69). In order to obtain the diagonal structure for

the output-feedback gain the LMI variables XR (σ) and YR (σ) also have to have a

diagonal structure, i.e. XR0, XR1, YR0 and YR1 need to have diagonal structure.

The total set of LMIs needed to solve the LPV constrained static output-feedback

problem are as follows:(
sym(Aaug (σi)X(σi))+ sym(Baug (σi)Y(σi))+νBaug,wBT

aug,w±ρp
∂X
∂σ

∗

(CzX(σi)+DzY(σi))
T

−I

)
< 0, i = p = 1,2 (2.71)

sym
(
Aaug,bQXQ1

)
+ sym

(
Aaug,bRXR1

)
≥ 0, (2.72)(

XQ0 0

0 XQ1

)
> 0, (2.73)(

XR0 0

0 XR1

)
> 0, (2.74)

∂X
∂σ

= QXQ1QT +RXR1RT . (2.75)

From the optimization problem, the matrices (XQ0, XQ1, XR0, XR1, YR0, YR1) are

obtained. At each time step during the simulation, a new values for Aaug(σ),XR(σ)

and YR(σ) are calculated. The output-feedback controller K(σ) is calculated from

the expression K(σ) = YR(σ)X−1
R (σ). In this way the controller K will change

depending on σ .

This chapter started with a presentation of the modeling approaches used through-

out the dissertation. The presentation covers the bond graph model, a constant state-
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space model and two LPV state-space models. The second topic in this chapter has

been dedicated to the control approaches. It is described how the developed models

are used for the control design purpose.
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Chapter 3
Concluding Remarks

3.1 Conclusions

This dissertation has mainly dealt with multiobjective optimization and multivari-

able control of an offshore floating wind turbine. In paper A a basic model of the

turbine is developed using bond graph methodology. The model consists of iner-

tias, a gearbox, a spring and a damper. The topic of wind turbine modeling acts as

a valid starting point for this project. Although the paper was published in 2013,

it was actually written late in 2011. By gaining knowledge about the basic com-

ponents of the turbine using bond graph modeling approach first, the next step was

to start with the control. It was decided not to continue with bond graph modeling

since the emphasis in this dissertation was not going to be on the modeling part.

The author also believes that utilizing publicly available wind turbine simulations

software, in this case FAST, would be more academically acceptable. This freed the

author to be more dedicated to the control of the wind turbine. Papers B, C and D

deal mainly with pitch control of a floating wind turbine. The models in each of the

papers are all based on the nonlinear representation of the Hywind turbine. FAST’s

Hywind model consists of 24 degrees of freedom, but only a handful are selected

for the linarized model. It is important that also the low-frequent degrees of free-

dom are represented in the linear model. In this way it is possible to have a linear

model that represents the most important degrees of freedom, and the designed con-

troller is able to stabilize the nonlinear turbine and maintain performance objectives.
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All three control related papers deal with variations of H∞ output-feedback control.

And all control problems are represented using LMI formulation and solved using

YALMIP interfaced with Matlab.

3.2 Contribution to Knowledge

Underneath follows a short statement about what the contributions are in the four

appended papers and in which journals they are published.

Paper A: Bond Graph Modeling and Simulation of Wind Turbine Systems.

Paper A deals with the bond graph methodology as a graphical approach to model

wind turbines systems. The purpose of the paper is not to validate a specific wind

turbine system, but rather explore how the bond graph approach can contribute with

a model and give a better understanding of how the overall system works. This pa-

per served the author as a good starting point in getting familiar with the principles

of wind turbine systems. The paper was published in Journal of Mechanical Sci-

ence and Technology, vol. 24 (6), 2013.

Paper B: Robust H∞ Dynamic Output-Feedback Control Synthesis with Pole Place-

ment Constraints for Offshore Wind Turbine Systems.

Paper B deals with the problem of robust H∞ dynamic output-feedback control de-

sign with pole placement constraints. A model of Hywind is linearized using FAST.

The linear model of the floating wind turbine is represented based on an affine

parameter-varying model structure, where the varying parameter is the rotor az-

imuth angle. The controller is designed based on a linear matrix inequality (LMI)

formulation of the problem and the bounded parameter-varying parameters are re-

moved using an upper bounded inequality technique. The closed-loop poles are

placed in a selected area in the left half plane. The simulation result illustrates the

effectiveness of the developed approach for the nonlinear OC3-Hywind model and

is compared with FAST’s baseline controller. The paper was published in Mathe-

matical Problems in Engineering, 2012.
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Paper C: H∞ Static Output-Feedback Control Design with Constrained Informa-

tion for Offshore Wind Turbine System.

Paper C deals with the problem of constrained information in the feedback loop.

This is handled by a static output-feedback controller with a zero-nonzero pattern.

The usefulness of this approach comes into play if a failure occurs. In this way the

failure will only directly influence one of the control signals in the feedback loop.

Simulation result shows that the controller behaves in a satisfactory manner and the

overall system is stable, even if one of the sensors has stopped working. The paper

was published in Journal of the Franklin Institute, vol. 350 (8), pages 2244-2260,

2013.

Paper D: Linear Parameter-Varying Modeling and Control of an Offshore Wind

Turbine with Constrained Information.

Paper D deals with how it is possible to design a controller for a linear parameter-

varying (LPV) system with constrained information in the feedback loop. The

model of the floating wind turbine is represented based on an affine parameter-

varying model structure. The model is varying with the wind speed, which is es-

timated using an extended Kalman filter (EKF). The constrained controller is ob-

tained based on parameter-dependent Lyapunov functions and formulated in terms

of linear matrix inequalities (LMIs). Simulation result shows that the closed-loop

system behaves in a satisfactory manner and the overall system is stable, even if one

of the sensors has stopped working. This paper has been submitted to IET Control

Theory & Applications, 2013.

3.3 Future Work

A number of research directions can be proposed to improve the development of the

modeling, control synthesis and system performance of the wind turbines.

One research direction is to continue with bond graph and try to make a bond

graph-based controller for floating turbine and compare the dynamic response with

for example FAST. At a point during the PhD period it was considered to make

hardware-in-the-loop (HIL) simulations of a wind turbine model, but this was never
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finished due to the project plan. By developing a bond graph model of a floating

wind turbine and by substituting parts of the model by actual hardware, e.g. pitch

actuator, one could perform HIL simulations. This would also be a good topic for

implementation of an advanced controller into a micro-controller or a PLC (Pro-

grammable Logic Controller).

Another research direction is to focus more on the effects of wind and wave

disturbances in the modeling and control parts. Incorporating knowledge about the

specific behavior of these effects, e.g. wave frequencies, wind frequencies or ampli-

tudes, could be utilized in the controller design and possibly get better performance.

The exception is in paper D, where wind speed estimation is used to schedule the

LPV controller.

Another topic that has not been directly emphasized in the dissertation is fatigue.

There has been much focus on the damping of selected parts of the turbine, but not

on the fatigue itself, although this is very much related. Fatigue calculations such as

fatigue life or damage equivalent loads could be calculated either online or offline.

It would be very interesting to have access to these (or other) values online, in this

way one could have constant surveillance of the wellbeing of the turbine.

Finally, it could also be interesting to combine the modeling approaches from

papers B and D. The LPV model in paper B is dependent on the azimuth angle and

not wind speed. The LPV model from paper D is dependent on wind speed but not

on the azimuth angle. By combining the two modeling approaches one could have

a model which is more accurate at each specific wind speed.
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Bond graph modeling and simulation

of wind turbine systems

T. Bakka and H. R. Karimi
Department of Engineering

Faculty of Engineering and Science, University of Agder

Jon Lilletunsvei 9, 4879 Grimstad, Norway.

Abstract — This paper addresses the problem of bond graph methodology as a
graphical approach for the modeling of wind turbine generating systems. The
purpose of this paper is to show some of the benefits the bond graph approach
has, in contributing a model for wind turbine systems. We will present a non-
linear model of a wind turbine generating system, containing blade pitch, drive
train, tower motion and generator. All which will be modeled by means of bond
graph. We will especially focus on the drive train, and show the difference be-
tween modeling with a classical mechanical method and by using bond graph.
The model consists of realistic parameters, but we are not trying to validate
a specific wind turbine generating system. Simulations are carried out in the
bond graph simulation software 20-sim (Kleijn, 2009).

Keywords — Bond graph, modeling, wind turbine.

1 Introduction

The demand for energy world wide is increasing every day. And in these green times

renewable energy is a hot topic all over the world. Wind energy is currently the most

popular energy sector. The growth in wind power industry has been tremendous

over the last decade. As of June 2012 the global wind capacity is 254,000 MW,

according to the World Wind Energy Association World Wind Energy Association.

Whenever we are talking about models of wind turbine systems, the turbine model

becomes a critical part of the discussion. Over the years it has been some discussion

about how to model the wind turbine accurately. In (Tamura et al., 2001; Zubia

et al., 2001) they perform dynamic analysis on a one-mass-model, in (Petru and
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Thiringer, 2002; Akhmatov and Knudsen, 1999) they examine a two-mass-model.

In (Martins et al., 2007) they use actual measured data from a wind turbine and

compare it with both a one-mass and a two-mass-model. They validate the model

using a recorded case obtained in a fixed speed, stall regulated wind turbine. In

(Muyeen et al., 2007) a six-, three- and a two-mass model are compared with each

other. They argue that a six-mass model is needed for the precise transient analysis

of the wind turbine system, and they develop a way to transform a six-mass model

into a two-mass model. The goal of that paper is not to use the model in the control

scheme, but in the use of transient stability analysis of grid connected system.

The pitching of the blades are usually executed by means of a hydraulic system, but

for system modeling purposes it is often considered as a first or second order sys-

tem. We are here dealing with variable speed generating system, therefore a wound

machine or a double fed induction generator is needed. These can be modeled in

different ways, ranging from complex electric equivalent circuits to a first order

system.

Several advanced wind turbine simulation softwares have emerged during the last

decade. HAWC2 (Larsen and Hansen, 2007), Cp-Lambda (Bottasso and Croce,

2009) and FAST (Jonkman and Buhl, 2005) are a few examples. They are de-

veloped at RISØ in Denmark, POLI-Wind in Italy and NREL in the US, respec-

tively. In these codes the turbine and structure is considered as complex flexible

mechanisms, and uses the finite-element-method (FEM) multibody approach. An

aeroservo- elastic model is introduced, which consists of aerodynamic forces from

the wind, the servo dynamics from the different actuators and the elasticity in the

different joints and the structure. Both FAST and HAWC2 can simulate offshore

and onshore cases while Cp-Lambda is limited to the onshore case.

As seen above there are many ways to model a wind turbine generating system,

some are simple and some are very complex. In a simulation point of view it is

desirable that the model is as simple as possible and can capture as much of the

dynamics as appear in reality. This is an absolute demand, another important is-

sue is to keep the central processing unit (CPU) labor to a minimum. For example

if we are dealing with hardware in the loop (HIL) simulation, then it is necessary

to download the model to a programmable logic controller (PLC). This argues in

48



Bond Graph Modeling

favor of the importance in having a fast C-code. Things that can potentially have

a negative effect on the execution of our C-code are for example; algebraic loops

and differential causality on thedifferent elements in the system. These topics bring

us to the use of the bond graph methodology. This is a unified approach to model

all types of physical systems, producing both linear and nonlinear mathematical

models. Engineers must work and interact in many different disciplines. An un-

derstanding of the intersections of these different disciplines is a valuable asset for

any engineer. Using the language of bond graphs, one may construct models of

electrical-, magnetic-, mechanical-, hydraulic-, pneumatic- as well as thermal sys-

tems. It is a systematic way to model these dynamic systems, and there are standard

ways to translate them into differential equations or computer simulation schemes.

After constructing the bond graph one can easily spot algebraic loops and whether

you have integral causality on the dynamic elements by inspecting the bond graph.

There are various ways to spot these things in typical simulation software such as

MatLab (MATLAB, 2010), but it is beneficial to spot them before the implementa-

tion. It is a quite intuitive way in setting up the bonds and connecting the elements,

this will be discussed in a later section. The outcome from the bond graph model is

a set of first order differential equations, which afterwards can be used for systems

response analysis or for example controller design. After constructing the bond

graph one gets a better understanding of what actually happens in the system. In an

educational point of view one can easily understand which element decides what in

the system. For example in a simple mass-spring-damper system, one can easily see

which component decides the speed and which component decides the force. With

these arguments in mind we are motivated to explore the possibilities there are with

the use of bond graph.

The wind turbine generating system can be divided into several subsystems, see

Fig. A.1. The system setup is adopted from (Hammerum et al., 2007), where Vw

is the wind speed, Va is the wind speed for power production, ż is the tower speed,

Ft is the thrust force acting on the tower, βre f is the pitch angle reference, β is the

actual pitch angle, Ta is the aerodynamic torque, ΩH is the hub speed, ΩG is the

generator speed, TEMre f is the generator torque reference and TEM is the actual gen-

erator torque.
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Figure A.1: Setup for wind turbine generating system

The expression for power produced by the wind is given by (Eggleston and Stod-

dard, 1987)

Pa =
1
2

ρπR2v3Cp (λ ,β ) . (A.1)

The dimensionless tip-speed ratio (TSR) λ is defined as

λ =
vb

v
, (A.2)

where vb is the tip speed of the blade and v is the wind speed. From (A.3) we can

find the aerodynamic torque and the thrust force acting on the tower

Ta =
1
2

ρπR3v2Cp (λ ,β ) , (A.3)

Ft =
1
2

ρπR2v2CT (λ ,β ) , (A.4)

where Pa is the aerodynamic power, ρ is the air density and R is the blade radius.

Cp gives the relationship between how much power is available in the wind and

how much can be converted to electrical power. Not all the available power can

be converted, this is due to the fact that the wind cannot be completely drained of

energy, otherwise the wind speed at the rotor front would reduce to zero and the

rotation of the rotor would stop. It can be proven that the theoretical upper limit of

Cp is 16/27≈ 0.59, this is known as the Betz limit. A general modern wind turbine

has a maximum power coefficient of about 0.5. Ct is the thrust force coefficient,
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both these coefficients are dependent on the TSR λ and the pitch angle β .

This paper is organized as follows. Section 2 gives a short overview on the bond

graph methodology and its different elements. Section 3 describes the different parts

of our system model; aerodynamics, pitch, drive train, tower motion and generator.

In Section 4 the simulation results are presented and Section 5 gives the conclusion

and states some suggestions regarding future work.

2 Introduction to Bond Graph

Bond graph is a graphical way of modeling physical systems. All these physical

systems have in common the conservation laws for mass and energy. Bond graph,

originated by Paynter (Paynter, 1961) in 1961, deals with the conservation of en-

ergy. This gives a unified approach to model physical systems. This section gives

a short introduction to this modeling tool, the interested reader can find more in-

formation in (Karnopp et al., 2006; Borutzky, 2010). The bond graph approach has

several advantages over conventional methods, i.e.: 1) providing a visual represen-

tation of the design; 2) controlling the consistency of the topological settings of the

design; 3) providing the hierarchical modeling of designs; 4) extracting the system

equations symbolically in a structured way.

Within physical systems, energy is transported from one item to another. This en-

ergy is either stored or converted to other forms. But the important thing is that

it does not dissipate. If the energy is changing in one place, it also changes in an

opposite way at another location. The definition of power is the change in energy

(E) with respect to time:

P =
d
dt

(E) . (A.5)

The power is transferred between the different parts in the bond graph model with

the use of power bonds, see Fig. A.2. In bond graph notation the definition of

power is effort multiplied with flow. For example, in electric systems this would

mean voltage multiplied with current, in mechanical systems it is force multiplied

with velocity and in hydraulics it is pressure multiplied with flow.
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e

f

Figure A.2: Power bond with effort and flow

2.1 System Elements

In bond graph modeling there are a total amount of nine different elements. We will

here introduce the causality assignments, but first we have to explore the cause and

effect for each of the basic bond graph elements. Only elements with its preferred

causality will be discussed. The importance of causality will be dealt with later in

the paper.

Junctions:

There are two different types of junctions that connects the different parts in a bond

graph model, the 0- junction and the 1-junction. The 0-junction is an effort equal-

izing connection, see Fig.. A.3 and its corresponding equation in (A.6). Since the

efforts are the same, only one bond can decide what it is. The 1-junction is a flow

equalizing connection, see Fig. A.4 and its corresponding equation in (A.7). Since

the flows are the same, only one bond can decide what it is. Which bond decides the

flow and which one decides the effort is indicated with the vertical causality stroke.

If the vertical line is closest to the junction, then this element decides the effort,

furthest away from the junction decides the flow.

Source element:

We can divide the source elements into two different kinds, effort- and flow-source.

The effort source gives an effort into the system, then it is up to the system to decide

the flow. This is what is meant with cause and effect, and its vice versa for the flow

source. Fig. A.5 shows how the causality is indicated on the graphical elements.

For the source elements these causality assignments are fixed.

Compliance Element:

The causality assignment for the C-element has two possibilities, but one is pre-
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0
e1

f1

e3

f3

e2 f2

Figure A.3: 0-junction

e1 = e2 = e3, (A.6)
f3 = f1 + f2.

1
e1

f1

e3

f3

e2 f2

Figure A.4: 1-junction

f1 = f2 = f3, (A.7)
e3 = e1 + e2.

e

f
Se

e

f
Sf

Figure A.5: Effort and flow source with their causality assignment

ferred in contrast to the other. This is discussed at the end of this section. The

preferred case is seen in Fig. A.6 and its corresponding equation in (A.8). We see

from both the equation and the figure that flow is given to the element/equation and

it gives the effort in return.

e

f
C

Figure A.6: Example of a compliance el-
ement with integral causality

e =
1
C

∫
f dt (A.8)

=
q
C
.

The variable q is called the generalized displacement. For example, this can be ro-

tational position of the rotor in a wind turbine.

Inertia Element:

There are two choices for the causality assignment for the I-element, also here one

is preferred in contrast to the other. The preferred case is seen in Fig. A.7 and its
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corresponding equation in (A.9).

e

f
I

Figure A.7: Example of an inertia ele-
ment with integral causality

f =
1
I

∫
edt (A.9)

=
p
I
.

The variable p is called the generalized momentum. For example, this can be rotor

inertia times rotor velocity in a wind turbine.

Resistive Element:

It is a bit more freedom when it comes to the causality assignment for the R-element.

Its equation do not include any dynamics, it is only an algebraic expression. The two

causality choices are shown in Fig. A.8 and its corresponding equation in (A.10).

e

f
e

f

R

R

Figure A.8: Example of resistive element

e = R f , (A.10)

f =
1
R

e.

Transformer:

The transformer element can work in two ways; either it transforms a flow into

another flow or it transforms an effort into another effort. Fig. A.9 corresponds to

(A.11)-(A.12), where m is the transformation ratio.

e1

f1

e2

f2
e1

f1
TF

e2

f2

TF

Figure A.9: Example of the two trans-
formers

e1 = me2, (A.11)
f2 = m f2.

e2 =
1
m

e1, (A.12)

f1 =
1
m

f2.

For example, this can represent a mechanical gearing or an electric transformer.
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Gyrator:

The gyrator can also work in two ways; either it transforms a flow into an effort or

it transforms an effort into a flow. Fig. A.10 corresponds to (A.13)-(A.14), where r

is the gyrator ratio.

e1

f1
GY

e2

f2
e1

f1
GY

e2

f2

Figure A.10: Example of the two gyrators

e1 = r f2, (A.13)
e2 = r f1.

f1 =
1
r

e2, (A.14)

f2 =
1
r

e1.

This can for example be an electric motor, where you have voltage as input and a

rotational speed as output.

The importance of integral causality is nicely explained in (Pedersen and Engja,

2003). First imagine a step in effort is imposed on a C-element, then the causality

assignment will be opposite of what is shown in Fig. A.6. This means the flow

output is proportional to the derivative of the input effort. From calculus we know

that the derivative of the step function at the beginning is infinite, i.e. this do not

give any physical meaning. We can imagine a simple electric circuit containing a

voltage source coupled with a capacitor, if a step input were to be imposed on the

voltage source, the capacitor would experience a very high current and it would

blow up. From this we can conclude that nature integrates and only mathematicians

differentiate! On the other hand, the ability to spot algebraic loops is one of the

benefits with the use of bond graph as a modeling tool. These loops can be spotted

simply by inspection of the bond graph representation, if the causality assignment

on the R-elements are different from each other, then we have algebraic loops in the

system. If they have the same causality, there are no algebraic loops. These loops

occur for example if you have two resistors in series. In this circuit both resistors

will try to decide what the current should be, i.e. they depend on each other. This

will not necessarily cause problems to the simulation, but it might. Especially if

the resistors are nonlinear, then the simulation could easily crash. The simulation
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program will also be forced to spend time to solve this algebraic loop. If we can

easily spot these loops early in the modeling process, then we can try to fix them by

simply adding an element. For example, regarding our circuit with two resistors in

series, we can add an inductive element to the circuit. Then it would be the inductive

element which decides what the current should be and not the resistive elements.

The resistive elements would simply have to take what current the inductive element

lets through. We can give the inductive element a value such that the voltage drop

over the element is very low, i.e. it does not play any major role in the circuit. Now

when our model has no algebraic loops and all the dynamic elements have integral

causality, the simulation should go smooth. If we have a large set of equations or a

large block diagram it is not easy to spot these things right away, but with a bond

graph representation of the model we can spot them simply by inspection.

We will end this section with a small example. We want to show how to set up a

bond graph of a simple system, and also show the difference in relation to block

diagrams. Fig. A.11 shows two equivalent circuits in two different domains, and

they have exactly the same governing equations. The corresponding bond graph is

shown in Fig. A.12 The easiest way to set up a bond graph when having a mechan-

m2

KD F

x2

L1

R

CV

m1

x1

L2

Figure A.11: Two equivalent circuits

ical system, is to start with setting up 1-junctions. One junction for each mass, this

gives two 1-junctions in our example. We add a 0-junction in between, because we

56



Bond Graph Modeling

1
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Figure A.12: Bond graph of the two equivalent circuits

know the speed is different but the force is the same. Force is transfered through

the C-element (spring). The right side of the damper has the same speed as m1,

R-element and I-element is therefore connected to the left 1-junction.

Regarding the electric circuit, we know that the source and L1 have the same current

i1. We know that L2 and R have the same i2, and we know that the parallel branches

have the same voltage. In this way we end up with the exact same bond graph. We

also note that the graph has integral causality. The two I-elements receive effort and

give flow in return, the C-element receives flow and gives effort in return.

We will now find the governing equations. First we find ṗi, second we find q̇i. In

mechanical terms this is mẍi and ẋ, respectively. Subscript i corresponds to in which

bond we are at.

ṗ2 = e2 = e1− e3 = Se− e4 = Se−
q4

C4
, (A.15a)

ṗ6 = e6 = e5− e7 = e4−R7 f7 =
q4

C4
−R7 f6 (A.15b)

=
q4

C4
−R7

p6

I6
,

q̇4 = f4 = f3− f5 = f2− f6 =
p2

I2
− p6

I6
. (A.15c)

In mechanical domain terms, (A.15) correspond to (A.16).

m2ẍ2 = F−Kx0, (A.16a)

m1ẍ1 = kx0−Dx1, (A.16b)

x0 = x2− x1. (A.16c)
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These are exactly the same equations we will end up with if we do it in the classical

Newtons 2nd law approach. The block diagram for these equations are shown in

Fig. A.13. Block diagrams represent the structure of the mathematical model and

displays which variables must be known in order to compute others. They do not

reflect the physical structure. The reason is that feedback is represented in separate

feedback loops.

By using bond graph as the modeling tool we get a good overview of the model’s

physical structure and we can do simulations in one step, instead of first deriving

the equations and then drawing the block diagram.

1
s

1
s

1
s

1
s

D

K

1/m_2

1/m_1

F

Figure A.13: Block diagram of mechanical example

3 Model Description

In the following section, the bond graph based modeling for the different subsys-

tems shown in Fig. A.1, will be presented. It is shown that the bond graph method

provides a hierarchical modeling for the entire wind turbine generating system as

well as the system equations can be extracted symbolically in a structured way.
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3.1 Aerodynamics

In the aerodynamics part we need to find a way to convert the wind into torque and

thrust force, i.e. transform a flow into efforts. This is done by means of a modulated

gyrator. We use the torque and thrust equations given in (A.3)-(A.4). The only

difference between a MGY and a GY is that the gyrator ratio is not a constant

parameter, but it is a varying parameter. In this case the transformation is dependent

on two varying parameters, the pitch angle β and the rotor rotational speed ωr. A

v

Ta

omega_h

betta

Ft

MGY
MGY

Figure A.14: Modulated gyrator transforming wind speed into aerodynamic torque
and thrust force

generic equation is used to model Cp. This equation, based on the modeling turbine

characteristics of (Heier, 1998), is shown in (A.17). The power coefficient used in

the calculation of the torque is given in (A.17). A plot of the Cp curve is shown in

Fig. A.15, the plot is made with different pitch- and λ - values. Similar formulas can

be found regarding the thrust force coefficient CT , in our calculations only a simple

relation is used.

λ =
ωrR

v
, (A.17a)

λi =
1

1
λ+0.08β

− 0.035
β 2+1

(A.17b)

Cp = c1

(
c2

λi
− c3β − c4

)
e−

c5
λi + c6λ , (A.17c)

where c1 = 0.5176, c2 = 116, c3 = 0.4, c4 =, c5 = 21, c6 = 0.0068.
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Figure A.15: Cp curve

3.2 Pitching System

The pitching mechanism can be modeled as a second order system;

ω
2
n θre f = θ̈ +2ζ θ̇ +ω

2
n θ , (A.18)

where θre f is the reference pitch angle, ωn is the natural frequency and ζ is the

damping ratio. By setting up the dynamic equation of the mass spring damper

system in Fig. A.16, we can compare the elements in the equation with (A.18). In

this way we can set up the bond graph in Fig. A.17 with appropriate coefficients.

F = θre f , M =
1

ω2
n

, D =
2ζ

ω2
n

, K = 1.

3.3 Drive Train

A sketch of a two-mass drive train model is seen in Fig. A.18. As discussed in the

introduction there are many types of drive train models, ranging from for exam-

ple one- to six mass models. For simplicity we will assume a two-mass-model is
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Figure A.16: Mass spring damper
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Figure A.17: Bond graph of pitching sys-
tem
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Kd

Dd Ng

Ta

Te

Figure A.18: Sketch of wind turbine

enough. To derive the governing equations from a two-mass model is not too hard.

If we are talking about a six-mass model the work can be quite extensive, and the

possibility of making a mistake in the process is high. This is one of the reasons

bond graph is a safer choice. As the complexity of the mechanical system grows,

our work as modelers stays about the same. If we have a six-mass model with many

springs and dampers, this gives us many equations and to translate this into a block

diagram can take quite some time. As for dealing with bond graph, the work is to

set up the graphical representation. If we want to see the equations, these can be

derived in a very specific way. Or, off course, we can choose to get them from the

bond graph simulation program 20-sim. By utilizing Newton’s second law on rota-

tional form of the wind turbine sketch in Fig. A.18, we end up with the following

differential equations:
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Tr = Irω̇r + φ̇∆Dd +φ∆Kd, (A.19a)

−TgNg = IgN2
g

ω̇g

Ng
− φ̇∆Dd−φ∆Kd, (A.19b)

where

φ∆ = φr−
φg

Ng
, φ̇∆ = ωr−

ωg

Ng
.

In a quite intuitive way we can translate the mechanical system in Fig. A.18 into

a bond graph representation, as shown in Fig. A.19. This can again be simplified

a bit in order to make a minimal bond graph representation, see Fig. A.20. The

bond graph model consists of three 1-junctions and one 0-junction. The 1-junction

connected to the rotor inertia describes the rotor rotational speed. Since there are

dynamics in between the rotor inertia and the generator inertia, they do not have the

same speed. This is the reason for the 0-junction, because we know the transferred

torque is the same (no loss included in the drive train). The 1-junction connected to

the resistive- and the compliance element indicates the rotational speed difference

between the two inertias. This connection also indicates that the compliance- and

resistive element have the same rotational speed (flow), but different torque (effort).

The last 1-junction is connected to the generator inertia and describes the generator

rotational speed. Once the bond graph representation is made, the procedure for

C
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I

I
I1

1 1 1

R
R

Se
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Se1
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0

0
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1

Figure A.19: Bond graph of drive train
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Figure A.20: Bond graph of drive train

extracting its governing equations is quite straight forward. One has to follow some

certain rules, and at the end the equations will be the outcome. We can also choose
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to get the equations from the simulation software. The equations can be derived as

follows.

From the bond graph representation we see there are three dynamic elements, two

inertias and one spring, i.e. three dynamic equations must exist. These first order

differential equations are given in (A.20).

ṗ2 = e2 = e1− e3

= Ta−
q5

C6
−R5 f5, (A.20a)

q̇5 = f5 = f3− f7

=
p2

I2
− p9

NgI9
, (A.20b)

ṗ9 = e9 = e8 + e10

=−Te +
1

Ng

(
q5

C6
+R5 f5

)
. (A.20c)

With some manipulations this is exactly the same as in (A.19).

3.4 Generator

There are many ways to model the generator dynamics. One of the recurring ways

is with an equivalent circuit. In this system we assume that a first order transfer

function will capture its dynamics. We do this in the same way as for the pitching

system, but since it is first order we do not include the spring.

Tre f = τṪe +Te, (A.21)

where Tre f is the reference torque and τ is the time constant. In this way we can set

up the bond graph similar to Fig. A.17 with appropriate coefficients.

F = Tre f , M = τ , D = 1.
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Figure A.21: Sketch of wind turbine
structure
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Figure A.22: Bond graph of tower motion

3.5 Tower

In Fig. A.21 we see the turbine sketch and where the thrust force is acting on the

structure. It is assumed that the tower movement will not influence the mechanical

system, it only affects its input, i.e. the wind speed. The bond graph model of the

tower can be seen in Fig. A.22. Since the deflections of the tower are assumed to be

small, we assume tower movement only in horizontal direction.

The dynamic equation from the bond graph model, shown in Fig. A.22, is given in

(A.22).

ṗ2 = Se−R
p2

I
− q3

C
, (A.22a)

q̇3 =
p2

I
. (A.22b)

We can rewrite (A.22) in a non bond graph notation:

mt z̈ = Ft−Dt ż−Ktz, (A.23)
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where mt is the tower mass, Ft is the thrust force acting on the tower, Dt is the tower

damping and Kt is the tower stiffness.

4 Simulation Results

In this section we want to validate the bond graph design. The procedure is to first

connected together all the subsystems from Section III. Second, the same model is

implemented as block diagrams in Matlab/Simulink. This software is widely es-

tablished throughout the academic community and the result from Matlab/Simulink

will act as a reference output for validation purpose.

The bond graph representation of the system setup in Fig. A.1 is shown in Fig. A.23.

The inputs to the systems are pitch angle, reference power and wind speed. The

Aerodynamic

Beta

Se

Drivetrain GeneratorMSf

MTF Pitch

Effective_wind Se
Tem

Tower

wind

Figure A.23: Bond graph of wind turbine generating system

simulations are made with maximum pitch angle, maximum wind condition, maxi-

mum power and with initial conditions on the rotor and generator. All wind turbine

parameters used in the simulations are found in (Henriksen, 2007). Once the sim-

ulations are carried out in the two softwares, time behavior of the most important

dynamics are inspected. As seen in Figs. A.24-A.25, the behavior of the two sys-

tems are identical. This confirms the fact that we eventually end up with the same

governing equations whether one uses the classical Newtons 2nd law or the bond

graph approach.
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Figure A.24: Time behavior of the selected signals from 20-sim

5 Conclusion

The purpose of this paper is to make a nonlinear model of a wind turbine generating

system by using the bond graph approach. We are not looking to validate a specific

turbine system, but we want to show a simple and suitable way to model it. The non-

linear wind turbine consists of drive train, pitching system, tower and generator. To

model dynamic systems in the classical way and the bond graph way is quite differ-

ent, but the outcome is a model with exactly the same governing equations. We have

tried to emphasize that the bond graph approach will give a better understanding of

what actually happens in the system. This include; spotting algebraic loops right

away and maintaining integral causality, to name a few. The approach is unified,

which means one can model all types of physical systems with the same method-

ology. Today, most engineers must work and interact in many different disciplines.

An understanding of the intersections of these different disciplines is a valuable as-

set for any engineer. Based on the results in this paper, interesting future research
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Figure A.25: Time behavior of the selected signals from Matlab/Simulink

include performing control design using bond graph and possibly constructing an

offshore wind turbine model. Simulations can be carried out in the software 20-

sim, or if one prefer, it is also possible to export the model to MatLab/Simulink via

S-function.

6 Appendix

The wind turbine parameters used for this study in the model system are given in

Table A.1.
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Table A.1: Wind turbine generating system parameters

Pitch
Natural frequency ωn = 0.88

[ rad
s

]
Damping ratio ζ = 0.9 [−]
Maximum pitch angle βmax = 25 [◦]
Minimum pitch angle βmin =−5 [◦]

Drive Train
Nominel power Pnom = 5e6 [W ]
Rotor inertia Ir = 5.9154e7

[
Kg ·m2]

Generator inertia Ig = 500
[
Kg ·m2]

Drive train stiffness Kd = 8.7354e8
[ N

rad

]
Drive train damping Dd = 8.3478e7

[ N
rad·s

]
Gear ratio Ng = 97 [−]

Generator
Time constant τ = 0.1 [s]
Nominal generator speed ωgmax = 122.91

[ rad
s

]
Minimum generator speed ωgmin = 70.16

[ rad
s

]
Structure/Tower

Rotor radius R = 63 [m]
Hub height h = 90 [m]
Tower mass mt = 4.2278e5 [Kg]
Tower stiffness Kt = 1.6547e6

[N
m

]
Tower damping Dt = 2.0213e3

[ N
m·s
]
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Robust H∞ Dynamic output-feedback Control

Synthesis with Pole Placement Constraints for

Offshore Wind Turbine Systems
T. Bakka and H. R. Karimi

Department of Engineering

Faculty of Engineering and Science, University of Agder

Jon Lilletunsvei 9, 4879 Grimstad, Norway.

Abstract — The problem of robust H∞ dynamic output-feedback control de-
sign with pole placement constraints is studied for a linear parameter-varying
model of a floating wind turbine. A nonlinear model is obtained and linearized
using the FAST software developed for wind turbines. The main contributions
of this paper are threefold. Firstly, a family of linear models are represented
based on an affine parameter-varying model structure for a wind turbine sys-
tem. Secondly, the bounded parameter-varying parameters are removed using
upper bounded inequalities in the control design process. Thirdly, the control
problem is formulated in terms of linear matrix inequalities (LMIs). The simu-
lation results show a comparison between controller design based on a constant
linear model and a controller design for the linear parameter-varying model.
The results show the effectiveness of our proposed design technique.

Keywords — Wind turbine, H∞ control, LPV.

1 Introduction

Wind energy is nowadays one of the fastest growing renewable industries. As a

consequence of the oil crises in the early 1970s and a general interest of renew-

able energy, the wind energy sector has had a tremendous growth over the last

decades. With Europe leading the global market, the turbine capacity has had an

annual growth rate of up to 30% (World Wind Energy Association).

Wind turbines are complex mechanical systems and they are highly nonlinear due

to the conversion of wind speed to mechanical torque. This makes the wind turbine
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a challenging task both to model and control. In literature, linear and nonlinear

controllers have been extensively used for power regulation through the control of

blade pitch angle (see for instance (Song and Dhinakaran, 2000; Melı́cio et al.,

2011; Kusiak et al., 2010; Kusiak and Zhang, 2012; Eide and Karimi, 2011; Karimi

and Bakka, 2011; Karimi, 2011; Bianchi et al., 2007; Mullane et al., 2001; Valen-

ciaga and Puleston, 2000; Steinbuch and Bosgra, 1988; Rocha et al., 2005) and the

references therein). Recently, the problem of gain scheduling and output-feedback

H∞ control design for an offshore floating wind turbine was studied in (Bakka et al.,

2012). Furthermore, a mixed H2/H∞ control design was proposed for an offshore

floating wind turbine system was investigated in (Bakka and Karimi, 2012). How-

ever, the performance of these controllers are limited by the highly nonlinear char-

acteristics of wind turbine. These controllers are designed on the basis of one op-

erating condition, and therefore can only guarantee performance and stability at

this point. By designing the controller on the basis of a Linear-Parameter-Varying

(LPV) model, it is possible to overcome these limitations. So, in order to sustain the

growth in the wind industry sector, design of advanced control methodologies is one

research area where such improvement can be achieved. In recent years, several ad-

vanced wind turbine simulation softwares have emerged, such as HAWC2 (Larsen

and Hansen, 2007), FAST (Jonkman and Buhl, 2005) and Cp-Lambda (Bottasso

and Croce, 2009). In this paper we will use FAST interfaced with Matlab for all

the simulations. The operation region of a wind turbine is often divided into four

regions (Fig. B.1). In region I (v < vcut−in) the wind speed is lower than the cut-in

wind speed and no power can be produced. In region II (vcut−in ≤ v < vrated) the

pitch is usually kept constant while the generator torque is the controlling variable.

In region III (vrated ≤ v < vcut−out) the main concern is to keep the rated power and

to limit loads on critical parts of the structure by pitching the blades. In region IV

(v > vcut−out) the wind speed is too high, and the turbine is shut down. In this paper

we will focus on the above rated wind speed scenario, i.e. region III.

This paper makes three specific contributions. First, it suggests a family of linear

models for a wind turbin system based on an affine parameter-varying model struc-

ture. Second, robust stabilization and disturbance attenuation of such parameter-

varying models are investigated using H∞ method such that the bounded parameter-
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Figure B.1: Operating region of a typical wind turbine

varying parameters are removed using upper bounded inequalities in the control

design procedure. Third, the control problem is formulated in terms of linear ma-

trix inequalities (LMIs) and a dynamic output-feedback controller is computed. Fi-

nally, the simulation results show that the obtained controller can achieve the robust

stability and disturbance attenuation, simultaneously.

This paper is organized as follows: Section II describes the model under consid-

eration and how to include the parameter-varying terms in the closed loop system.

Section III is devoted to the control design technique. Simulation results are pre-

sented in section IV. Finally, concluding remarks and suggestions to future works

are discussed in Section V.

The notations used throughout the paper are fairly standard. I and 0 represent iden-

tity matrix and zero matrix; the superscript T stands for matrix transposition; ℜn de-

notes the n-dimensional Euclidean space; ℜn×m is the set of all real m by n matrices.

‖.‖ refers to the Euclidean vector norm or the induced matrix 2-norm. diag{· · ·}
represents a block diagonal matrix. The operator sym(A) denotes A+AT and ⊗
denotes the kronecker product. The notation P > 0 means that P is real symmetric

and positive definite; the symbol ∗ denotes the elements below the main diagonal of

a symmetric block matrix. Finally given a signal x(t),‖x(t)‖2 denotes the L2 norm

of x(t); i.e., ‖x(t)‖2
2 =

∫
∞

0 xT (t)x(t) dt.

75



Paper B

2 Wind Turbine Model

The wind turbine model is obtained from the wind turbine simulation software

FAST (Jonkman and Buhl, 2005). The simulation model is an upscaled version

of Statoil’s Hywind 2.3 [MW] turbine, which is located off the Norwegian west

coast. This upscaled version is also a floating turbine and has the capacity 5 [MW].

For specifications see (Jonkman et al., 2009).

FAST provides a fully nonlinear wind turbine model with up to 24 degrees of free-

dom (DOF). For the controller design we need a linear model, and we want the lin-

ear model to be as simple as possible. All the DOFs available can not be included,

so we choose the ones we think will represent the most important dynamics. Lin-

earization routines are available in the FAST package. The model is now linearized

at each desired azimuth angle. We find this angle in the plane of rotor rotation. One

linear model at each 10th angle is obtained, i.e. the total amount of 36 models are

obtained. The models are of the following standard state space form.

ẋ = Aix+Biu

y = Cix, i = 1,2...36 (B.1)

where x is the state vector with dimensions ℜn×1, u is the control signal with di-

mensions ℜp×1, y is the model outputs with dimensions ℜm×1 and A, B, C are the

system matrices with dimensions ℜn×n, ℜn×p and ℜm×n respectively. The states in

this linear model are tower fore-aft displacement (x1), generator position (x2), rotor

position (x3) and the last three states are the first derivative of x1−3. The model in-

put u, which will eventually be calculated by the controller, is the blade pitch angle.

The model outputs in y are tower fore-aft displacement, generator speed and rotor

speed.

A common way to simplify these models are to take the average of all the 36 mod-

els and use this as basis for the controller design. By doing this simplification,

important information is easily lost. This is why in this paper we will try to do the

controller design based on a model representation which tries to include as much

as possible of the information in the 36 models. The matrices A and B are behav-

ing in a periodic way, the matrix values depend on the rotor azimuth angle. Several
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things are the cause of this periodic behavior, i.e. aerodynamic loads, tower shadow,

gravitational loads and deflections of the tower due to thrust loading. The matrices

associated with the output y are not varying. C is constant since it only handles the

measurements. In (B.2) we define the varying matrices in an affine way, A(z) and

B(z) vary in a continuous manner.

A(z) = An +∆A(z) ,

B(z) = B2n +∆B(z) , (B.2)

where An and B2n are the nominal plant matrices, ∆A(z) and ∆B(z) contributes

with the varying terms and z represent the rotor azimuth angle. We are looking to

represent the parameter-varying terms in this way: ∆A(z) = F∆(z)E, and a similar

expression for ∆B(z). After analyzing the 36 models we find appropriate matrices

F and E, but we also find out that more than one scheduling parameter is needed.

The periodic matrices A(z) and B(z) can now be represented in a continuous way

with the use of sine and cosine functions. The parameter-varying terms in (B.2) are

defined in the following way:

∆A(z) =
2

∑
i=1

2

∑
j=1

Fi∆ j(z)E jia,

∆B(z) =
2

∑
i=1

2

∑
j=1

Fi∆ j(z)E jib,

where the vectors F and E have appropriate dimensions, the scheduling variables

∆1 (z) and ∆2 (z) are found to be sin(ωt) and cos(ωt) respectively. A plot which

shows what the different parameters are in the original matrices A1..36 and B1..36 and

in the new representation An +∆A(z) and B2n +∆B(z) are found in the appendix.

3 Control Design

The purpose of H∞ control is to minimize the effect of disturbances on the con-

trolled output. The control design is formulated in terms of linear matrix inequali-

ties (LMIs). After manipulating the linear model obtained from FAST, we end up

77



Paper B

with a state space system with parameter-varying A and B matrices. This model is

more accurate than if we just took the average of all the 36 models. By using a LPV

model of the system we are able to catch some of the dynamics thats is lost under

the linearization. The challenge is now to incorporate these additional terms into

the control design.

These robust control designs mostly deal with frequency domain aspects of the

closed loop system, but it is well known that the location of the closed loop poles

play a large role in the transient behavior of the controlled system. By adding pole

placement to the list of constraints we can prevent large poles and we can end up

with a system which can respond in a realistic way. The controller we are searching

for will try to keep the generator speed at its rated value while mitigating oscilla-

tions in the drive train and in the tower.

The LMIs for the control design are solved using YALMIP (Löfberg, 2004) inter-

faced with Matlab and we are using the solver SeDuMi. This solver is searching

for two positive definite matrices X and Y which stabilities the LTI system. If these

matrices exist we can calculate the controller. The next sections presents how to

obtain the LMIs for the controller design and also how to incorporate the parameter-

varying part of the state space system.

3.1 System representation

Fig. B.2 shows the output-feedback control scheme, where P(s) is the generalized

P(s)

K(s)

w z∞

u y

Figure B.2: output-feedback block diagram

plant and K(s) is the controller. The two blocks represent the equations in (B.3)-
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(B.4). P(s) includes the wind turbine model and the signals of interest.

ẋ = Ax+B1w+B2u,

z∞ = C1ix+D1iw+D2iu, (B.3)

y = C2x+D21w,

where A, B2 and C2 represent the matrices from the standard state space form in

(B.1). To include the parameter-varying matrices, A is substituted with A(z) and B2

with B(z). The other matrices are considered with appropriate dimensions. u is the

control input, w is the disturbance signal and y is the measured output. The signal

z∞ is the controlled output for H∞ performances measure. For system (B.3), the

dynamic output-feedback, u(s) = K(s)y(s), is of the following form:

K(s)

{
ζ̇ = Akζ +Bky,

u =Ckζ +Dky.
(B.4)

The closed loop system is given in (B.5) with the states xcl = [x ζ ]T .

ẋcl = Aclx+Bclw,

z∞ = Cclx+Dclw. (B.5)

The closed loop system is divided into two parts, one with constant state space

matrices and one where the parameter-varying matrices are.(
Acl Bcl

Ccl Dcl

)
=

(
Acl1 Bcl1

Ccl1 Dcl1

)
+

(
Acl2(z) Bcl2(z)

0 0

)

=


An +B2nDkC2 B2nCk B1 +B2nDkD21

BkC2 Ak BkD21

C1i +D2iDkC2 D2iCk D1i +D2iDkD21

 (B.6)

+


∆A(z)+∆B(z)DkC2 ∆B(z)Ck ∆B(z)DkD21

0 0 0

0 0 0

 .
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3.2 H∞ Control

Because of the parameter-varying state space system we now get an additional term

to the standard Bounded Real Lemma (BRL). This additional term is the second

part of the summation in constraint (B.7). We want to make sure that the closed-

loop H∞ norm of the closed loop transfer function does not exceed γ . This is true

if and only if there exist a symmetric matrix X such that
AT

cl1X +XAcl1 XBcl1 CT
cl1

∗ −γI DT
cl1

∗ ∗ −γI

+


AT

cl2(z)X +XAcl2(z) XBcl2(z) 0

∗ 0 0

∗ ∗ 0

 < 0, (B.7)

X > 0. (B.8)

3.3 Change of Variables

Obviously, the H∞ constraint (B.7) is not an LMI because of the nonlinear terms

which occur when we close the loop. In order to transform these nonlinear terms

into proper LMIs we need to do two things. First, we need to linearize them with

the use of change of variables. Second, we need to remove the parameter-varying

terms. The linearization part is not as straight forward as for the state-feedback

case, additional information about this can be found in (Scherer et al., 1997).

The new Lyapunov matrix is partitioned in the following form.

X =

[
Y N

NT #

]
, X −1 =

[
X M

MT #

]
, (B.9)

where X and Y are symmetric matrices of dimension n × n. It is not necessary to

know the matrices noted as #.
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In addition, we define the following two matrices

Π1 =

[
X I

MT 0

]
, Π2 =

[
I Y

0 NT

]
, (B.10)

that, as can be inferred from the identity X X −1 = I, satisfies

X Π1 = Π2. (B.11)

Then, the following change of controller variables are defined

Â = NAkMT +NBkC2X +Y B2nCkMT

+Y (An +B2nDkC2)X , (B.12)

B̂ = NBk +Y B2nDk, (B.13)

Ĉ = CkMT +DkC2X , (B.14)

D̂ = Dk. (B.15)

Now we are ready to convert our nonlinear matrix inequalities into LMIs. By per-

forming congruence transformation with diag(Π1, I, I) on the obtained inequality

(B.7), we end up with following matrix inequality:

Σ1 + sym(G1∆1(z)H1)+ sym(G2∆1(z)H1)

+ sym(G1∆1(z)H2)+ sym(G2∆1(z)H2)

+ sym(G3∆2(z)H3)+ sym(G4∆2(z)H3)

+ sym(G3∆2(z)H4)+ sym(G4∆2(z)H4)< 0, (B.16)

where the matrix Σ1 and the vectors Gi and Hi are defined in the appendix.

Lemma 1 (Khargonekar et al., 1990): Given Σ = ΣT , G, ∆ and H of appropriate

dimensions with ∆T ∆≤ I, then the matrix inequality

Σ+ sym(G∆H)< 0
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holds for all Σ if and only if there exist a scalar ε > 0 such that

Σ+ εGGT + ε
−1HT H < 0.

By using Lemma 1 we are able to remove the parameter-varying parts ∆i(z) in the

matrix inequality (B.16). We end up with a new LMI which contains the constants

ε1 and ε2.

Σ1 + 2ε1G1GT
1 +2ε

−1
1 HT

1 H1 +2ε1G2GT
2 +2ε

−1
1 HT

2 H2 (B.17)

+ 2ε2G3GT
3 +2ε

−1
2 HT

3 H3 +2ε2G2GT
4 +2ε

−1
2 HT

4 H4 < 0.

By using the Schur complement we can convert (B.17) into the following LMIs:(
Σ1 Σ2

∗ Σ3

)
< 0, (B.18)(

X I

I Y

)
> 0, (B.19)

where

Σ2 =
[

ε1G1 HT
1 ε1G2 HT

2 ε2G3 HT
3 ε2G4 HT

4

]
,

Σ3 = diag{ −1
2ε1I2×2,−1

2ε1I2×2,−1
2ε1I2×2,−1

2ε1I2×2,

−1
2ε2I2×2,−1

2ε2I2×2,−1
2ε2I2×2,−1

2ε2I2×2 }. (B.20)

3.4 LMI Region

An LMI region is any convex subset D of the complex plane that can be character-

ized as an LMI in z and z̄ (Chilali and Gahinet, 1996) as follows:

D = {z ∈C : L̄+ M̄z+ M̄T z̄ < 0}, (B.21)

for some fixed real matrices M̄ and L̄ = L̄T , where z̄ is a complex number. This

class of regions encompasses half planes, strips, conic sectors, disks, ellipses, and

any intersection of the above. From (Chilali and Gahinet, 1996), we find that, all
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eigenvalues of the matrix A is in the LMI region {z ∈C : [l̄i j + m̄i jz+ m̄ jiz̄]i, j < 0}
if and only if there exists a symmetric matrix X such that

[
l̄i jX + m̄i jAT X + m̄ jiXA

]
i, j < 0, X > 0. (B.22)

Also, here we need to include the change of variables and remove the parameter-

varying terms, this is done in (B.23). The LMI is obtained in a manner similar to

the one that was used for the H∞ constraint.(
Σ4 Σ5

∗ Σ3

)
< 0, (B.23)

where

Σ5 =
[

ε1P1 NT
1 ε1P2 NT

2 ε2P3 NT
3 ε2P4 NT

4

]
,

and Σ4 and the other terms in Σ5 are defined in Appendix.

Remark 1. It is observed that the inequalities (B.18), (B.19) and (B.23) are linear

in
(
X , Y, Â, B̂, Ĉ, D̂

)
and thus the standard LMI techniques can be exploited to

find the LMI solutions. It is also seen from the above results that there exists much

freedom contained in the design of control law, such as the choices of appropriate ε1

and ε2. This design freedom can be exploited to achieve other desired closed-loop

properties.

The desired region D is a disk (Fig. B.3), with center located along the x-axis (dis-

tance q from the origin) and radius r. This determines the region

D =

(
−r q+ z

q+ z̄ −r

)
. (B.24)

From this we can find the matrices L̄ and M̄, which is the two matrices that deter-

mines the LMI region.

All constraints in (B.18), (B.19) and (B.23) are now subjected to the minimization

of the objective function, which is the H∞-norm. They need to be solved in terms

of
(
X , Y, Â, B̂, Ĉ, D̂

)
.
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Re

Im

Figure B.3: LMI region D

Once all these matrices are obtained, the controller matrices are computed in the

following way. First we obtain M and N from the factorization problem

MNT = I−XY. (B.25)

Second, the controller matrices are computed from the following relationship;

Dk = D̂, (B.26)

Ck =
(
Ĉ−DkC2X

)(
MT)−1

, (B.27)

Bk = N−1 (B̂−Y B2nDk
)
, (B.28)

Ak = N−1 (Â−NBkC2X−Y B2nCkMT

− Y (An +B2nDkC2)X)
(
MT)−1

. (B.29)

4 Simulation Results

The simulations are carried out with FAST software interfaced with Matlab/Simulink.

The controllers are tested on the fully nonlinear system with 22 out of 24 DOFs en-

abled. Yaw - and platform surge - motion are left out. The wind turbine system is

subjected to extreme wind conditions. The wind profile is a 50 year extreme case

with an average speed of 18 [m/s] (Fig. B.4) and a turbulence intensity of 17%.

Significant wave hight is 6 [m] with a peak wave period of 10 [s] The wind profile is

obtained from the software Turbsim (Jonkman, 2009).
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Figure B.4: Wind profile

Suitable results are found with the following H∞ performance measure

z∞ = x1 + x2 + x6 +u. (B.30)

The blue line in the plots is the result where the parameter-varying terms are taken

into consideration in the controller design. The red line shows the result where the

parameter-varying terms are left out. We also show NREL’s PI gain scheduled con-

troller (cyan colored line) as a reference plot. Our two controllers are designed and

tested on exactly the same operating conditions, i.e. same performance measure,

same pole placement constraint and same wind condition. From Figs. (B.5)-(B.6)

we see that the blue line is operating more steady around the rated values for the

rotor and generator, which are 12.1 [RPM] and 1173.7 [RPM], respectively. This

will in turn result in a smother torque output, as seen in Fig. (B.7).

Our two controller designs show a large increment in pitching activity. If we inspect

the pitching rate, we see that it is not more than 5−10 [deg/s], and hence should be

withing the wind turbine’s limit. The blue line in Fig. (B.9) shows that the ampli-

tude of the oscillations are lower in the fore-aft direction than in the other two plots.

From these plots we see that the results are according to the controller objectives.
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Figure B.5: Rotor speed
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Figure B.6: Generator speed
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Figure B.7: Generator torque
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Figure B.8: Blade pitch
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Figure B.9: Tower fore-aft

5 Conclusions

In this paper we have obtained and linearized a wind turbine model using the com-

mercial software FAST. The output from the linearization is a family of models

describing the turbine system at each 10th azimuth angle. This family of models

are converted into one parameter-varying model. The new model now depends on

the azimuth angle. In this way we can make the control design based on a model

consisting of more information than if we had done it the conventional way, which

is to use the average of the family of models. The controller is tested on the fully

nonlinear system subjected to 50 year extreme wind conditions. The simulation re-

sults show a comparison between controller design done with the new method and

done the conventional way. The plots show that the simulation results meet our

control objectives.

Based on the results in the paper, interesting future research may be prospective as

follows:

1. it is worth noting that in this paper a constant controller is designed for a

parameter-varying model. A next step could be to design a parameter-varying

controller, where the scheduling parameter is the azimuth angle.
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2. the methods presented in (Wang et al., 2010) and (Dong et al., 2010b) can

be used for a stochastic model of a wind turbine system with constrained

information exchange, and a partial knowledge of the state variables.

3. fault detection and control design for wind turbine systems over a network

(see for instance (Dong et al., 2010a) and (Shen et al., 2010)) can be studied

in the framework of this paper.

4. though the addressed issue is the control problem, the methods proposed in

the paper can be extended to filtering problem (see for instance (Shen et al.,

2009)).

6 Appendix

The size of the A matrix is 6×6 and the B matrix has size 6×1. Only the last three

rows are shown in Figs. (B.10) and (B.11), respectively. The first three rows contain

either constant- or zeros-values. The blue line shows how the 36 linear models are

distributed along the 360 azimuth angles. The red line shows our attempt to emulate

these periodic matrix values with a function on the form An+∆A(z) for the A-matrix

and B2n +∆B(z) for the B-matrix.

0 200 400
−5.427

−5.4268

−5.4266

−5.4264

−5.4262

−5.426

−5.4258

M
at

rix
 v

al
ue

 a
t A

(4
,1

)

Azimuth angle
0 200 400

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

M
at

rix
 v

al
ue

 a
t A

(4
,2

)

Azimuth angle
0 200 400

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

M
at

rix
 v

al
ue

 a
t A

(4
,3

)

Azimuth angle
0 200 400

−0.293

−0.2925

−0.292

−0.2915

−0.291

M
at

rix
 v

al
ue

 a
t A

(4
,4

)

Azimuth angle
0 200 400

−2.386

−2.384

−2.382

−2.38

−2.378

−2.376

−2.374

−2.372

M
at

rix
 v

al
ue

 a
t A

(4
,5

)

Azimuth angle
0 200 400

−2.386

−2.384

−2.382

−2.38

−2.378

−2.376

−2.374

−2.372

M
at

rix
 v

al
ue

 a
t A

(4
,6

)

Azimuth angle

0 200 400
−8

−6

−4

−2

0

2

4

6
x 10

−10

M
at

rix
 v

al
ue

 a
t A

(5
,1

)

Azimuth angle
0 200 400

−3

−2

−1

0

1

2
x 10

−10

M
at

rix
 v

al
ue

 a
t A

(5
,2

)

Azimuth angle
0 200 400

171.5

172

172.5

173

173.5

174

M
at

rix
 v

al
ue

 a
t A

(5
,3

)

Azimuth angle
0 200 400

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−8

M
at

rix
 v

al
ue

 a
t A

(5
,4

)

Azimuth angle
0 200 400

1.206

1.207

1.208

1.209

1.21

1.211
x 10

−4

M
at

rix
 v

al
ue

 a
t A

(5
,5

)

Azimuth angle
0 200 400

0

0.5

1

1.5

2

2.5

M
at

rix
 v

al
ue

 a
t A

(5
,6

)

Azimuth angle

0 200 400

−1.08

−1.075

−1.07

−1.065

−1.06

−1.055
x 10

−3

M
at

rix
 v

al
ue

 a
t A

(6
,1

)

Azimuth angle
0 200 400

−8

−6

−4

−2

0

2

4

6
x 10

−5

M
at

rix
 v

al
ue

 a
t A

(6
,2

)

Azimuth angle
0 200 400

−196

−195.5

−195

−194.5

−194

M
at

rix
 v

al
ue

 a
t A

(6
,3

)

Azimuth angle
0 200 400

−0.0277

−0.0277

−0.0276

−0.0276

−0.0275

−0.0275

−0.0274

M
at

rix
 v

al
ue

 a
t A

(6
,4

)

Azimuth angle
0 200 400

−0.3794

−0.3792

−0.379

−0.3788

−0.3786

−0.3784

−0.3782

M
at

rix
 v

al
ue

 a
t A

(6
,5

)

Azimuth angle
0 200 400

−1.776

−1.7758

−1.7756

−1.7754

−1.7752

−1.775

−1.7748

−1.7746

M
at

rix
 v

al
ue

 a
t A

(6
,6

)

Azimuth angle

Figure B.10: Parameters in A-matrix row 4-6
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Figure B.11: Parameters in B-matrix row 4-6

Σ1 =


sym

(
AX +B2nĈ

)
ÂT +A+Bn2D̂C2 B1 +B2nD̂D21 XCT

1i +ĈT DT
21

∗ sym
(
YA+ B̂C2

)
Y B1 + B̂D21 CT

1i +CT
2 D̂T +DT

2i

∗ ∗ −γI DT
1i +DT

21D̂DT
2i

∗ ∗ ∗ −γI

 ,

G1 = [F1 01×8]
T , G2 = [01×6 Y F1 01×2]

T ,

G3 = [F2 01×8]
T , G4 = [01×6 Y F2 01×2]

T ,

H1 =
[
E11aX +E11bĈ E11a +E11bD̂C2 E11bD̂D21 0

]
,

H2 =
[
E12aX +E12bĈ E12a +E12bD̂C2 E12bD̂D21 0

]
,

H3 =
[
E21aX +E21bĈ E21a +E21bD̂C2 E21bD̂D21 0

]
,

H4 =
[
E22aX +E22bĈ E22a +E22bD̂C2 E22bD̂D21 0

]
,

Σ4 =

(
L̄⊗

(
X I

I Y

)
+ M̄⊗

(
AX+B2nĈ A+B2nD̂Cz

Â YA+ B̂Cz

)
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+ M̄T ⊗

(
AX+B2nĈ A+B2nD̂Cz

Â YA+ B̂Cz

)T
 ,

G1 = [F1 01×6]
T , G2 = [01×6 YF1]

T , G3 = [F2 01×6]
T ,

G4 = [01×6 YF2]
T , H1−2 =

[
E11aX+E11bĈ E11a +E11bD̂C2

]
,

H2−2 =
[
E12aX+E12bĈ E12a +E12bD̂C2

]
,

H3−2 =
[
E21aX+E21bĈ E21a +E21bD̂C2

]
,

H4−2 =
[
E22aX+E22bĈ E22a +E22bD̂C2

]
, N1 = I2×2⊗H1−2,

N2 = I2×2⊗H2−2, N3 = I2×2⊗H3−2, N4 = I2×2⊗H4−2,

H1 = M⊗G1−2, H2 = M⊗G2−2, H3 = M⊗G3−2, H4 = M⊗G4−2.

Acknowledgment

This work has been (partially) funded by Norwegian Centre for Offshore Wind

Energy (NORCOWE) under grant 193821/S60 from Research Council of Norway

(RCN). NORCOWE is a consortium with partners from industry and science, hosted

by Christian Michelsen Research.

REFERENCES

Bakka, T. and Karimi, H. R. (2012). Mixed H2/H∞ control design for wind turbine

system with pole placement constraints. pages 4775–4780. Proceedings of the

31st Chinese Control Conference.

Bakka, T., Karimi, H. R., and Duffie, N. A. (2012). Gain scheduling for output

H∞ control of offshore wind turbine. pages 496–501. Proceedings of the 22nd

International Offshore and Polar Engineering Conference.

Bianchi, F., Battista, H., and Mantz, R. (2007). Wind Turbine Control Systems:

Principles, Modelling and Gain Scheduling Design. Springer.

90



Robust H∞ Control

Bottasso, C. L. and Croce, A. (2009). Cp-lambda user manual. Technical report,

Dipartimento di Ingnegneria Aerospaziale, Politecnico di Milano.

Chilali, M. and Gahinet, P. (1996). H∞ design with pole placement constraints: An

LMI approach. IEEE Transactions on Automatic Control, 41(3):358–367.

Dong, H., Wang, Z., and Gao, H. (2010a). Robust H∞ filtering for a class of nonlin-

ear networked systems with multiple stochastic communication delays and packet

dropouts. IEEE Transactions on Signal Processing, 58(4):1957–1966.

Dong, H., Wang, Z., Ho, D. W. C., and Gao, H. (2010b). Robust H∞ fuzzy output-

feedback control with multiple probabilistic delays and multiple missing mea-

surements. IEEE Transactions on Fuzzy Systems, 18(4):712–725.

Eide, R. and Karimi, H. R. (2011). Control design methodologies for vibration

mitigation on wind turbine systems. In Vibration Analysis and Control - New

Trends and Developments. InTech, Chichester, UK.

Jonkman, B. (2009). Turbsim users guide: Version1.50. Technical report, National

Renewable Energy Laboratory.

Jonkman, J. and Buhl, M. L. J. (2005). FAST users guide. Technical report

NREL/EL-500-38230, National Renewable Energy Laboratory.

Jonkman, J., Butterfield, S., Musial, W., and Scott, G. (2009). Definition of a 5-

MW reference wind turbine for offshore system development. Technical report

NREL/TP-500-38060, National Renewable Energy Laboratory.

Karimi, H. R. (2011). Wavelet-based optimal control of a wind turbine system: A

computational approach. Journal of Advanced Mechanical Design, Systems, and

Manufacturing, 5(3):171–186.

Karimi, H. R. and Bakka, T. (2011). Stochastic analysis and h∞ control of wind

turbine systems with wireless sensor networks. pages 1086–1095. Proceedings

of the 24th International Congress on Condition Monitoring and Diagnostic En-

gineering Management.

91



Paper B

Khargonekar, P. P., Petersen, I. R., and Zhou, K. (1990). Robust stabilization of un-

certain linear systems: Quadratic stabilizability and control theory. IEEE Trans-

actions on Automatic Control, 35(3):356–361.

Kusiak, A., Li, W., and Song, Z. (2010). Dynamic control of wind turbines. Renew-

able Energy, 35(2):456463.

Kusiak, A. and Zhang, Z. (2012). Control of wind turbine power and vibration with

a data-driven approach. Renewable Energy, 43:7382.

Larsen, T. J. and Hansen, A. M. (2007). How 2 HAWC2, The user’s manual. Tech-

nical report, Risø.
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Abstract — This paper deals with H∞ static output-feedback control design with

constrained information for offshore wind turbines. Constrained information indi-

cates that a special zero-nonzero structure is imposed on the static output-feedback

gain matrix. A practical use of such an approach is to design a decentralized con-

troller for a wind turbine. This will also benefit the controller in such a way that

it is more tolerant to sensor failure. Furthermore, the model under consideration is

obtained by using the wind turbine simulation software FAST. Sufficient conditions

to design an H∞ controller are given in terms of Linear Matrix Inequalities (LMIs).

Simulation results are given to illustrate the effectiveness of the proposed method-

ology for different cases of the control gain structures.

Keywords — Wind turbine, H∞ control, constrained information.

1 Introduction

In these green times, renewable power sources are a popular topic all over the world.

The growth in the wind power industry has been tremendous over the last decade

and it is nowadays one of the most promising sources for renewable energy. Since

the early 1990s wind power industry has enjoyed a renewed interest, and the total

installed capacity is increasing heavily every year. According to The World Wind

Energy Association’s (WWEA) 2012 half-year report, the top world leading coun-

tries are China, USA, Germany, Spain and India. Together they represent 74% of

the total global capacity. Fig. C.1 illustrates the total installed capacity world wide
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since 2001, the figure shows an increase of about 21% each year. In order to sus-

tain this growth in the wind industry sector, advanced control is one area where

this can be achieved. Although the majority of the world wide installed wind parks

are situated onshore, there is an interest to install new offshore wind parks. The

wind velocities are both higher and more stable in offshore environments. Offshore

turbines are often either fixed to the soil or they stand on monopoles or other struc-

tures. These structures are installed in shallow waters, typical depths up to 60[m].

For many countries it would be beneficial to also be able to install wind turbines in

deeper waters, in depths up to 1000 [m]. Hywind is one example for a floating wind

turbine solution. This is a turbine which is currently in operation and is located right

off the Norwegian west coast. It is a model of Hywind this paper is dealing with.

Figure C.1: Total installed wind power capacity from 2001-2011 in [MW ]

Wind turbines are complex mechanisms. In general, they consist of four major

components: rotor, transmission, generator and a support structure. In addition,

there is a control system causing the turbine to behave in a suitable manner. Over the

years, there have been presented many ways to model the wind turbine, for instance,

single mass models (Abdin and Xu, 2000), multiple mass models (Muyeen et al.,

2007) and complex flexible multi-body models. The latter seems to have gained a lot

of interest in recent years, much because these methods are incorporated into special

wind turbine simulation software, such as HAWC2 (Larsen and Hansen, 2007), Cp-
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Lambda (Bottasso and Croce, 2009) and FAST (Jonkman and Buhl, 2005).

The region of operation for a typical wind turbine is often divided into four regions,

shown in Fig. C.2. In region I (v < vcut−in) the wind speed is lower than the cut-in

wind speed and no power can be produced. In region II (vcut−in < v < vrated) the

blade pitch is usually kept constant while the generator torque is the controlling

variable. In region III (vrated < v < vcut−out) the main concern is to keep the rated

power and generator speed by pitching the blades. In region IV (v > vcut−out) the

wind speed is too high, and the turbine is shut down. This paper is focused on the

above rated wind speed scenario, i.e. region III.

I II III IV

[MW]

[m/s]

5

2.5

11.43 25

Figure C.2: Region of operation

It is tempting to just put a well designed onshore controller and install it on an

offshore turbine. In principle one can do this, but there is no guarantee that the

closed-loop system will be stable. The major difference between the onshore and

the offshore turbine is the natural frequencies. The natural frequencies will decrease

significantly once the turbine is mounted on a floating foundation. First, lets say the

turbine is located onshore. Then the lowest tower frequency is typically 0.5[Hz],

which is the tower fore-aft bending mode. Once this turbine is put offshore, some

additional vibration modes appear, see Fig. C.3. These are much more low frequent,

and the lowest frequencies are in the area 0.01−0.04[Hz]. When the turbine is de-

signed the designers already know the wind and wave frequencies in the area, and

design the turbine structure accordingly. This is to make sure that the surrounding

environment will not excite any of the structural vibration modes. For non-floating
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turbines, the soil also plays a major role in relation to the structural natural frequen-

cies, as discussed in (AlHamaydeh and Hussain, 2011). A controller for an onshore

turbine, typically has a frequency of 0.1[Hz], i.e. lower than the tower fore-aft

bending mode. If this controller was implemented on the offshore turbine, then the

controller would be faster than the tower vibration modes. This can cause a stability

issue once the wind speed is above rated. One can quite easily visualize why this

becomes a problem. It is known that, in the above rated wind speed conditions the

controlling variable is the blade pitch angle. When the wind speed increases, the

blades will pitch out of the wind in order not to gain higher generator speed. This

means that the aerodynamic forces acting on the tower will decrease and it will start

to move forward. It is during this motion the stability issue occurs and it is directly

related to the pitching frequency of the blades. Let’s consider two scenarios: 1) the

onshore controller is being used, 2) the offshore controller is being used. In the first

scenario, the blades are being pitched out of the wind at a higher frequency than the

tower is moving forward. The consequence is that the tower will lose most of its

aerodynamic damping. The result is that the tower and eventually the generator will

start to oscillate and eventually become unstable. In the second scenario the blades

are being pitched out of the wind with a lower frequency than the tower is moving

forward. Therefore, the tower will not loose as much of the aerodynamic damping,

and the overall system will maintain its stability.

In today’s industry, PI or PID controllers are commonly used. These are designed

by keeping in mind these critical frequencies. Pole placement is one way of getting

the closed-loop system poles at the right locations. The control design proposed

in this paper does not directly include these stability constraints, but they are indi-

rectly included since the proposed controller design is model-based and guarantees

stability. This problem will be demonstrated in the simulation results.

The wind turbine is a highly nonlinear system. The nonlinearity is caused by the

conversion of wind to electrical power. According to (Eggleston and Stoddard,

1987) the extracted electrical power from the wind can be formulated as

Pa =
1
2

ρπR2v3Cp (λ ,β ) . (C.1)
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The dimensionless tip-speed-ratio (TSR) λ is defined as

λ =
ωrR

v
, (C.2)

where ωr is the rotational speed of the rotor, R is the rotor radius and v is the wind

speed acting on the blades. From (C.1) the expressions for the aerodynamic torque

and thrust force are found as follows:

Ta =
1
2

ρπR3v2Cp (λ ,β )

λ
, (C.3)

Ft =
1
2

ρπR2v2CT (λ ,β ) . (C.4)

where Ta is the aerodynamic torque, Ft is the thrust force, ρ is the air density and

β is the blade pitch angle. Cp is known as the power coefficient and depends on

how the turbine is designed. It is an expression describing the relationship between

power available in the wind and how much it is possible to extract. It is not pos-

sible to extract all the wind. If this were to happen, then the wind would have to

completely stop after hitting the blades. The theoretical upper limit for the power

extraction is known as the Betz limit. Albert Betz showed that only 59.3% of the

theoretical power can be extracted, no matter how well designed the turbine is. In

reality, after all the losses and friction are accounted for, only about 40− 50% is

actually extracted. CT has a similar explanation, but dealing with thrust force. Both

expressions depend on the TSR λ and the blade pitch angle β .

A variety of control techniques are often solved by formulating the problem in terms

of Linear Matrix Inequalities (LMIs) (Boyd et al., 1994). Formulating the problem

in such a way gives an opportunity to impose a special structure on the LMI vari-

ables. This comes in very handy when it comes to constrained information systems.

This means that it is possible to design a controller which can handle the fact that

not all the information in the feedback loop is used. There can be several reasons

for this, i.e. some of the information is simply not needed, some of the sensors are

especially prone to failure, switching between controllers and they do not need the

same information, etc. State-feedback is widely used in control applications, but in

practice full state measurement is usually not possible. A more practical approach
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is output-feedback. However, the output gain matrix is not computed as easily as in

the state-feedback case, where a simple change of variables converts a non-convex

problem into a convex problem. In the output-feedback case, the gain matrix is not

directly isolated from the other LMI variables. In (Zečević and Šiljak, 2004, 2008,

2010) they proposed an explicit solution to calculate the gain matrix. In (Rubió-

Massegú et al., 2012), an even simpler solution is found. With the solution found in

(Rubió-Massegú et al., 2012), it is possible to impose zero-nonzero constraints on

the LMI variables. Other solutions to make the system more tolerant to failures have

been suggested in (Sloth et al., 2011) and (Kamal et al., 2012). Faults in the grid

can also cause the turbine to behave in a non-satisfactory manner, this is discussed

and dealt with in (Zhang et al., 2011).

Nowadays, modern wind turbines are getting bigger and bigger and are often lo-

cated in harsh environments. This leads to larger loads on critical parts and the

possibility of sensor failure is always present. This paper tries to alleviate these two

issues. A traditional controller might force the turbine to shut down completely, if a

sensor in the feedback loop should fail. With the controller designed in this paper,

the turbine is able to stay in operation, although the failed sensor should of course

be fixed as soon as possible. This is not managed without consequences, as will be

discussed later in the paper.

First, an H∞ controller is designed to minimize the effect of disturbance on the con-

trolled output, practically this means it is possible to dampen unwanted oscillations

on critical parts due to turbulent wind. Second, the controller is designed a priori

to reduce effects of sensor failures that might occur.

This paper is organized as follows. Section II describes the model under considera-

tion and how the wind turbine model and blade pitch actuators are interconnected.

Section III goes into the control design and how it is possible to calculate the con-

strained gain matrix. Simulation results for both the linear model and the nonlinear

model are presented in Section VI. Finally, concluding remarks and suggestions to

future work are discussed in Section V.

Notation. Throughout this paper, the notations ℜn and ℜn×m denote, respectively,

the n dimensional Euclidean space and the set of all n×m real matrices. Superscript

“T” denotes matrix transposition and I and 0 are the identity matrix and the zero
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matrix with compatible dimensions, respectively. The symbol⊗ denotes Kronecker

product. The notation P> 0 means that P is real symmetric and positive definite and

the symbol ∗ denotes the transpose elements in the symmetric positions. diag{· · ·}
represents a block diagonal matrix and the operator sym(A) represents A+AT . All

LMI variables are written with boldface font.

2 Model Description

The model under consideration is obtained from FAST (Fatigue, Aerodynamics,

Structures, and Turbulence) (Jonkman and Buhl, 2005), which is a fully nonlin-

ear wind turbine simulation software developed at the National Renewable Energy

Laboratory (NREL) in Denver, USA. The code models the wind turbine as a com-

bination of both rigid and flexible bodies. These bodies are then connected with

several degrees of freedoms (DOFs). The code provides with a nonlinear model

with up to 24 DOFs. The turbine model is floating and is rated for 5 [MW], the

main specifications are summarized in Table C.1. More detailed information about

the specifications can be found in (Jonkman et al., 2009). Fig. C.3 shows the float-

ing wind turbine. The platform DOFs are also indicated on the figure, they include;

translational heave, sway and surge motion and rotational yaw, pitch and roll mo-

tion. Heave movement is defined along the z-axis, sway is along the y-axis, and

surge is along the x-axis. Yaw motion is defined about z-axis, pitch is about the

y-axis and roll is about the x-axis. This gives six DOFs.

Four more DOFs are related to the tower, two for longitudinal direction and two for

lateral direction. Yaw motion of the nacelle provides one DOF. Variable generator-

and rotor speeds gives another two DOFs, this also includes drive train flexibility.

Nine DOFs for the blades, that is; three for blade flapwise tip motion for the first

mode, three for tip displacement for each blade for the second flapwise mode and

another three for the blade edgewise tip displacement for the first edgewise mode.

The last two DOFs are for rotor- and tail furl. In total this adds up to 24 DOFs.

In order to utilize linear control techniques, a linear model is needed. The linear

model is also obtained form FAST. A model with a low number of DOFs is pre-

ferred for the controller design, otherwise the model is simply too complicated in
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Figure C.3: Floating wind turbine (Jonkman, 2010)

Rated power 5 [MW ]
Rated wind speed 11.6 [m/s]
Rated rotor speed 12.1 [RPM]

Rotor radius 63 [m]
Hub hight 90 [m]

Table C.1: Basic facts of NREL‘s OC3 turbine

104



Static Output Feedback Control

order to get a feasible solution. Three DOFs are selected for the linear model, they

are; platform pitch (1 DOF) and drive train (2 DOFs). The drive train includes the

rotor and generator inertia, which are connected with springs, dampers and a gear-

ing. FAST is not equipped with any blade pitch actuators, these are therefore added

to the model after the linearization. A blade pitch actuator is the mechanism that

physically rotates the turbine blade. The linear model obtained from FAST without

any pitch actuators is in the following standard state-space form.

ẋ = Ax+Bu,

y = Cx, (C.5)

where x is the state vector with dimensions ℜn×1, u is the control signal with di-

mensions ℜp×1, y is the model outputs with dimensions ℜm×1 and A,B and C are

the state-space matrices with dimensions ℜn×n, ℜn×p and ℜm×n, respectively. y

contains measurements for platform pitch angle, rotor speed and generator speed.

The specific dimensions for system (C.5) are; n = 6, p = 3 and m = 3.

This paper deals with individual pitch control, therefore three blade pitch actuators

are added to the linear model. The three second order actuators are considered to be

equal to each other, their properties are specified in the appendix. The DOFs for the

updated model are; blade I actuator, blade II actuator, blade III actuator, platform

pitch, drive train and generator. This gives a total of six DOFs with twelve states, i.e.

one position- and velocity- state for each degree of freedom. Then, an augmented

system can be derived and represented in the following state-space formulation

Ẋ = AtX +B1ω +Btu,

z = CzX +Dzu, (C.6)

y = CtX ,

where X is an augmented state vector which contains all the aforementioned twelve

states and ω and z are disturbance and controlled output, respectively. The updated

dimensions for system (C.6) are; n = 12, p = 3 and m = 3. The state-space matrices
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At , Bt and Ct are defined as follows:

At =

[
I3⊗Aa 0

B⊗Ca A

]
, Bt =

[
I3⊗Ba

0

]
,

Ct =
[

0 C
]
, (C.7)

where Aa, Ba and Ca are the state-space matrices for the pitch actuator, the matrix

values can be found in the appendix. The rest of the state-space matrices B1,Cz and

Dz are defined in Section IV.

In this paper, a static output-feedback controller u = Ky is to be determined under

constrained information, i.e. a zero-nonzero structure on the control gain matrix by

utilizing LMIs such that the following requirements are met:

1. The following closed-loop system is asymptotically stable;(
Acl Bcl

Ccl 0

)
=

(
At +BtKCt B1

Cz +DzKCt 0

)
. (C.8)

2. Under zero initial condition, the closed-loop system satisfies ‖z(t)‖2 < γ ‖ω(t)‖2

for any non-zero ω(t) ∈ L2 [0,∞] where γ is a positive scalar.

3 Controller Design

H∞ control is chosen because of its ability to minimize any energy-bounded distur-

bance on the controlled output. Also, since the linear model is of low order and the

nonlinear model is of high order, this so-called advanced control design technique

can catch a part of the unmodeled dynamics. The main issue in this section is to

design a controller which is able to handle constrained information, i.e. only a part

of the available information will be used to calculate the control signal. In this case,

that is to design a decentralized controller. What is meant with decentralized con-

trol, is that none of the calculated control signals should directly interfere with each

other. The considered system consists of three inputs and three outputs, this indi-

cates that the gain matrix is square and of dimension ℜ3×3. By imposing a diagonal
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structure on the gain matrix, this is possible. The solution found in (Rubió-Massegú

et al., 2012), makes it possible to impose zero-nonzero constraints on the LMI vari-

ables. The control problem is formulated in terms of LMIs, and are solved using

YALMIP (Löfberg, 2004) interfaced with Matlab.

The H∞ performance constraints for a state-feedback system formulated in terms of

LMIs are as follows:(
sym(AtX+BtY)+ γ−2B1BT

1 ∗
CzX+DzY −I

)
< 0,

X > 0. (C.9)

Remark 1. In a manner similar to (Bakka et al., 2012), it is possible to present a new

H∞ performance criterion for the robust stability analysis of the system (C.6) with

norm-bounded time-varying parameter uncertainties in the state-space matrices.

Remark 2. It is worth noting that the number of variables to be determined in the

LMIs (C.9) are: n× (1+n)/2+ p×n+1. It is also observed that the LMIs (C.9) is

linear in the set of matrices X and Y, and the scalar γ−2.

For the state-feedback case, the gain matrix is calculated as K̃ = YX−1. In the

output-feedback case, the state gain matrix factors as the product K̃ =KCt , where Ct

is given from the state-space system. Now, when the output gain matrix is required,

a solution to (C.9) needs to be found such that the product YX−1 factors as

YX−1 = KCt . (C.10)

To solve this, (Rubió-Massegú et al., 2012) suggests the following change of vari-

ables

X = QXQQT +RXRRT , (C.11)

Y = YRRT , (C.12)

where XQ and XR are symmetric matrices with dimensions ℜ(n−m)×(n−m) and ℜm×m,

respectively, and YR has dimension ℜp×m. The matrix Q is the nullspace of Ct and
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R can be calculated as follows:

R =CT
t
(
CtCT

t
)−1

+QL, (C.13)

where L is an arbitrary matrix with dimensions ℜ(n−m)×m.

In order to obtain a diagonal structure on the gain matrix K, simply force a diagonal

structure on XR and YR, while XQ is a full matrix.

XR = diag{XR1,XR2,XR3} , (C.14)

YR = diag{YR1,YR2,YR3} . (C.15)

Remark 3. In the output-feedback constrained case, the number of variables to be

determined in the corresponding LMIs are: (n−m)× ((n−m)+1)/2+m+(p×
m)/3+1.

In order to solve the LMIs (C.9), first define ν = γ−2. Then maximize ν and solve

the LMIs in terms of XQ,XR,YR. Once X and Y from (C.11)-(C.12) are calculated it

is possible to find the gain matrix K = YRX−1
R , satisfying YX−1 = KCt . Additional

information and proofs about this can be found in the aforementioned references.

4 Simulation Results

In this section the proposed control design methodology is applied to the wind tur-

bine system. The simulation is divided into two parts, one dealing with the linear

model and one dealing with the nonlinear model. First, both the full information

gain and the constrained gain are tested with the linear model. Second, the con-

strained gain controller is tested with the nonlinear model. The figures contain plots

for simulations done with the constrained controller and with the baseline controller.

The baseline is intended as a reference plot and is included in the FAST package.

But first of all, suitable matrix values for B1, Cz and Dz needs to be found.

The effect of disturbance on the linear model is assumed to affect the platform pitch

angle and the rotor- and generator speed. In this analysis the disturbance vector is

chosen to be:

B1 =
[

01×9 0.1 1 1
]T

. (C.16)

108



Static Output Feedback Control

This means that the platform pitch speed will not be as influenced by the disturbance

as the rotor- and generator speed. The performance measure matrices are considered

as

Cz =


97Ct1−Ct2

Ct3

(.)

 , (C.17)

Dz = diag{100,80,10}, (C.18)

where (.) = [10 0 10 0 10 0 01×6] and Cti represent the i-th row of Ct . The first

row of Cz handles drive train oscillations. Rotor speed times the gearing ratio minus

the generator speed should be kept zero, i.e. minimizing oscillations. In row 2 the

platform pitch movement is penalized and row 3 handles the blade pitch motion.

Suitable results were found with a diagonal structure on the matrix Dz.

Figs. C.4 and C.5 show the outputs (first column) and the blade pitch angles (second

column) for the closed-loop linear system. Simulation is carried out with initial

values for platform pitch angle, generator speed and rotor speed. In Fig. C.4 no

faults occur in the system and both controllers achieve an acceptable performance.

In Fig. C.5 a sensor failure is imposed on the system. For the full structure of

the control gain K, values for all three blades are calculated and the output values

are not too different from the results in Fig. C.4. For the diagonal structure of the

control gain K, only values for blades 1 and 2 are calculated, the value for blade 3 is

depending on a working sensor nr. 3. In the case of a failure in sensor nr. 3, the two

systems do not behave too different. It is worth mentioning that scenarios where

sensor nr. 1 and nr. 2 fails have also been investigated. Only one sensor fails at the

time. Now, the behavior of the two systems become very different. Results from

these scenarios show that the system with the diagonal gain is stable regardless of

which of the sensors that fails. In contrast to tests done with the full gain, where the

system becomes unstable if sensor nr. 1 or nr. 2 fails, but as the figure shows, stays

stable when sensor nr. 3 fails.

The full and the diagonal controllers are given in (C.19) and (C.20), respectively,

and the γ-values for the two cases are compared in Table C.2.
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Figure C.4: System outputs and blade pitch angle, no faults

γ-value for full gain γ-value diagonal gain
208 6331

Table C.2: γ-values
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Figure C.5: System outputs and blade pitch angle, sensor 3 has failed
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K f ull =


−0.9676 0.01 0

0.0037 0 −0.0125

0.1988 −0.0021 0.0043

 , (C.19)

Kdiagonal = diag{0.0470,0.0003,−0.0042}. (C.20)

Simulation of the nonlinear model is carried out in Matlab/Simulink interfaced with

FAST. 27 DOFs are now available, counting the 24 DOFs from FAST and the 3

DOFs extra from the pitch actuators. The input to the model is turbulent wind, and

the wind profile is obtained from the software Turbsim (Jonkman, 2009), which also

is a software developed at the NREL. The profile is a 1-year extreme case with an

average speed of 18 [m/s] and a turbulence intensity of 6%, see Fig. C.6. Signif-

icant wave height is 6 [m] with a peak wave period of 10 [s]. The time-series are

of 600 [s], but the first 200 [s] are taken out due to transient behavior. The gain

matrix in the feedback loop is now constrained to have diagonal structure. A fault

is introduced to the system after 200 [s]. This fault causes sensor nr. 3 to stop work-

ing, i.e. blade nr. 3 is not moving. This fault only happens to simulations with the

constrained controller, and not for the baseline simulation. It may be noted that the

γ-value is considerably higher when the diagonal structure constraint is imposed.

This makes sense because the number of LMI variables have now decreased and

there are a lower number of variables available when it comes to finding the low-

est γ-value, as indicated by Remark 2 and Remark 3. Simulation done with the

baseline controller is also included in the figures as a reference plot. This baseline

controller comes with the FAST package and is a gain-scheduled PI-controller. The

controller proposed in this paper is individual pitch in contrast to the baseline which

is a collective pitch controller.

In order to evaluate the drive train oscillations, the standard deviation of the speed

difference between rotor - and generator - speed is calculated. The values are nor-

malized in such a way that the value for the baseline controller is used as reference

and given value 1, see Tab. C.3. This means, in terms of standard deviation, the

Baseline Constrained gain
1 0.93

Table C.3: Normalized values for standard deviation of drive train oscillations
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Figure C.6: Wind profile
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Figure C.7: Generator speed
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constrained gain is 7% better than the baseline.
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Figure C.8: Platform pitch angle

By using an individual pitch controller, it is possible to have a controller which

handles events such as sensor failure in a good way. That is; if one of the sensors in

the feedback loop fails, only one of the blades will directly experience this failure.

This can be achieved with a decentralized individual pitch controller. It is seen from

Figs. C.7-C.11 that the controller behaves in a satisfactory manner and the overall

system is stable, even if blade 3 is not moving. The behavior of the system is not as

steady as in the references (Bakka and Karimi, 2012a,b; Bakka et al., 2012), but the

main advantage with the approach proposed in this paper is that the system is much

more robust when it comes to sensor failures.

From Fig. C.11 it is seen that the thrust force has some peaks below zero, this means

the tower is moving forward. That is, the tower experiences negative aerodynamic

damping. This issue was discussed in the introduction of this paper. As the plots

show, and Table C.4 imply, enough aerodynamic damping is acting on the tower.

Hence, the overall system remains stable.
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Figure C.9: Blade pitch angle
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Figure C.10: Generated power

115



Paper C

350 400 450 500 550
−400

−200

0

200

400

600

800

[Time]

[N
]

Rotor Thrust

 

 
Constrained controller
Baseline controller

Figure C.11: Rotor thrust force

Fig. C.12 shows the normalized standard deviations from selected time-series. By

allowing the turbine to stay in operation even if one of the sensors fail, is not without

consequence. The force acting on the structure is now much more unsymmetrical

than if all three blades were pitching. This will introduce additional fluctuations in

the yaw moment, as seen from the histogram. Although, the mean value is almost

40% lower than the baseline value, see Fig. C.13.

A table describing the most critical natural frequencies are shown in Table C.4.

These are found by calculating the Fast Fourier Transform (FFT) from the closed-

loop time-series. From the discussion about critical frequencies in the introduction,

it is seen from the table that the natural frequencies are where they should be.

Platform surge 0.015 [Hz]
Platform pitch 0.049 [Hz]
Platform heave 0.1 [Hz]

Blade pitch 0.03 [Hz]

Table C.4: Critical natural frequencies
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Figure C.12: Normalized standard deviations for selected time-series
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5 Conclusions

This paper proposes an individual pitch static output-feedback controller for a off-

shore floating wind turbine system. A constrained control gain matrix is designed,

this means that a special zero-nonzero structure is imposed on the output-feedback

gain matrix. The usefulness of the approach proposed in this paper comes into play

if failures occur. In the considered system there are three inputs and three outputs.

If one sensor fails, only one blade pitch actuator will be influenced. The model un-

der consideration is obtained from the software FAST. The model is fully nonlinear

and in addition to the added pitch actuators the model consists of 27 DOFs. A linear

model is obtained in order to perform the controller design, and simulations are car-

ried out to verify the design. Simulation results performed both on the linear model

and on the fully nonlinear system are presented in order to show the effectiveness

of the controller design methodology.

Future work will investigate fault detection and linear parameter-varying (LPV)

control design for a range of operating conditions.

6 Appendix

A dynamic model is constructed for each of the three linear pitch actuators:

ẋa =

[
−2ωnζ −ω2

n

1 0

]
︸ ︷︷ ︸

Aa

xa +

[
1

0

]
︸ ︷︷ ︸

Ba

u1, (C.21)

y =
[

0 ω2
n

]
︸ ︷︷ ︸

Ca

xa, (C.22)

where the natural frequency is ωn = 0.88 and the damping ratio is ζ = 0.9.
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Abstract — This paper deals with linear parameter-varying (LPV) modeling and

output-feedback H∞ control design for an offshore wind turbine. The controller is

designed with consideration that not all the information in the feedback loop will

be used. This constraint is incorporated into the design procedure. Constrained

information means that a special zero-nonzero pattern is forced upon the gain ma-

trix. The constrained controller is obtained based on parameter-dependent Lya-

punov functions and formulated in terms of linear matrix inequalities (LMIs). Since

the functions are dependent on the wind speed and accurate wind speed measure-

ments are rarely available in practice, an Extended Kalman filter (EKF) is used to

estimate the wind speed. The controller is designed in such a way that it should

maintain its stability and performance even if one of the sensors in the feedback

loop should malfunction. The control objectives are to mitigate oscillations in the

structure and drivetrain, to smoothen power/torque output in addition to keep the

closed-loop system stable. This should be achieved by means of individual blade

pitch. A traditional procedure for designing a controller for such a system is to

choose an operating point and assume it works in a suitable way under the influ-

ence of turbulent wind. In this paper, the wind turbine model is obtained from the

software FAST. To design the controller, the model is linearized about several oper-

ating points. The degrees of freedom in the linearized model are chosen according

to the controller objectives. The linear models are valid within the span of operat-

ing points. Finally, the controller is tested on the fully nonlinear system under the
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influence of turbulent wind and a scenario where one of the sensors in the feed-

back loop is malfunctioning. The closed-loop response of the presented controller

is compared to the closed-loop response of the baseline controller included in the

FAST package along with a controller designed based on a single linearized model.

Keywords — LPV modeling, constrained information, H∞ control, wind turbine.

1 Introduction

In recent years there has been an increasing interest in wind energy. According to

The World Wind Energy Association the worldwide wind energy reached a capac-

ity of 254,000 MW in June 2012. Although the majority of the installed capacity is

on land, many offshore parks have been built in recent years. Most of these parks

have turbines which are either fixed to the soil or they stand on monopoles or other

structures. Some of the major offshore wind farms in Europe are located in the

United Kingdom (UK) and Denmark (DK), to name a few; Greater Gabbard (UK),

Whalney (UK), Sheringham Shoal (UK), Horns Rev (DK) and Rødsand (DK). The

turbines in these farms are installed in shallow waters, typical depths ranging from

10-30 [m]. For many countries such as Spain, United States, Japan, Korea and Nor-

way it would be beneficial to also be able to install wind turbines in deeper waters,

in depths up to several hundred meters. The existing offshore fixed-bottom wind

turbines are not suited for such deep water. Hywind (Skaare et al., 2007) is one

example of a floating wind turbine solution. This turbine was installed back in 2009

and is still in operation. It is located in the north sea, right off the Norwegian west

coast. To be able to control these turbines in a suitable way is important, in order

to keep them stable and in operation, simultaneously, for as long as possible. The

region of operation for a typical wind turbine is often divided into four regions,

see Fig. D.1. In region I (v < vcut−in) the wind speed is lower than the cut-in wind

speed and no power can be produced. In region II (vcut−in < v < vrated) the blade

pitch is usually kept constant while the generator torque is the controlling variable.

In this region the main objective is to maximize the power output. In region III

(vrated < v < vcut−out) the main concern is to keep the rated power and speed simul-
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Figure D.1: Region of operation for a typical wind turbine

taneously. This is achieved by means of pitching the blades into or out of the wind,

depending on the wind situation. In region IV (v > vcut−out) the wind speed is too

high, and the turbine is shut down. This paper is focused on the above rated wind

speed scenario, i.e. region III.

Advanced control techniques are often solved by formulating the problem in terms

of Linear Matrix Inequalities (LMIs) (Boyd et al., 1994). By formulating the prob-

lem in such a way, gives an opportunity to impose a special zero-nonzero structure

on the LMI variables. This comes in very handy when dealing with constrained

information systems. Linear parameter-varying (LPV) systems can also be handled

within the LMI framework. Recently, linear controllers have been extensively used

for power regulation through the control of blade pitch angle in wind turbine sys-

tems. However, the performance of these linear controllers is limited by the highly

nonlinear characteristics of the wind turbine. Advanced control is one research area

where such improvement can be achieved. On the other hand, over the last three

decades, considerable attention has been paid to robustness analysis and control of

linear systems affected by structured real parameters, so-called LPV systems. An

LPV system can be viewed as a nonlinear system that is linearized along a trajectory

determined by the parameter vector. Hence, the parameter vector of an LPV system

corresponds to the operating points of the nonlinear system. In the LPV frame-

work, it is assumed that the parameter vector is measurable or non-measurable. In

the latter case the parameter vector can be estimated. In many industrial applica-
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tions, like flight control and process control, the operating point can indeed be de-

termined from measurement, making the LPV approach viable. Interesting works

where LPV control is used in relation to wind turbines can be found in references

such as (Bianchi et al., 2007) and (Østergaard et al., 2009). A nice collection of

LPV related papers can be found in (Mohammadpour and Scherer, 2012). Previous

related works from the authors which are dealing with wind turbine control can be

found in (Bakka and Karimi, 2012) and (Bakka et al., 2012).

State-feedback is widely used in control applications, but in practice full state mea-

surements are rarely possible. A more practical approach is output-feedback. How-

ever, the output gain matrix is not computed as easy as in the state-feedback case,

where a simple change of variables converts a non-convex problem into a convex

problem. In the output-feedback case, the gain matrix is not directly isolated from

the other LMI variables. In (Zečević and Šiljak, 2004), (Zečević and Šiljak, 2008)

and (Zečević and Šiljak, 2010) the authors propose an explicit solution for the gain

matrix and in (Rubió-Massegú et al., 2012) the authors develop a more effective and

efficient method for computational feasibility issues of static output-feedback con-

troller gains. With the method found in (Rubió-Massegú et al., 2012), it is possible

to impose zero-nonzero constraints on the LMI variables. Other methods to make

the system more tolerant to failures have been investigated in (Sloth et al., 2011)

and (Kamal et al., 2012).

This paper is dealing with an offshore floating turbine, now the control design be-

comes even more important. The wrong control design could easily force the turbine

to be shut down. Nowadays, modern wind turbines are getting bigger and bigger

and are often located in harsh environments, such as offshore conditions. This leads

to larger loads and there is always the possibility of sensor failure. Since immediate

maintenance for these turbines are not possible, a way to keep them in operation ac-

cording to prescribed performance measures would be beneficial. This paper tries

to include four concrete issues in the controller design. 1) Limit oscillations in driv-

etrain and platform. 2) Keep generator speed at its rated value. 3) Limit influence

on the control loop in case of sensor failure. 4) The controller is designed within

the LPV framework. In this relation an individual pitch with constrained gain con-

trol scheme is suggested. The ability to impose special structure on the gain matrix
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come in handy if for example; there are some sensors in the feedback loop which

are especially prone to failure. In this way one can isolate the faulty measurement

to only impact one of the pitch actuators, instead of all three. A diagonal structure

for the gain matrix will be used, in this way, none of the pitch actuator signals will

directly interfere with each other. In conventional control, in the worst case, the tur-

bine might have to shut down because a sensor is malfunctioning. With the control

proposed in this paper, the turbine can continue operating properly in the event of

a failure. Even though, the failure should be fixed as soon as possible. The main

contribution of this paper is to design an LPV controller under a constrained gain

matrix for a floating wind turbine system.

This paper is organized as follows. In Section 2, an LPV model of the wind turbine

system is proposed. The controller design is discussed in detail in Section 3, where

it will be shown how it is possible to obtain a diagonal structure for the gain matrix.

In Section 4 the simulation results are presented. Conclusions and suggestions for

future work are described in Section 5.

Notation. Throughout this paper, the notations ℜn and ℜn×m denote, respectively,

the n dimensional Euclidean space and the set of all n×m real matrices. Superscript

T denotes matrix transposition and I and 0 are the identity matrix and the zero

matrix with compatible dimensions, respectively. The symbol⊗ denotes Kronecker

product of two matrices. The notation P > 0 means that P is real symmetric and

positive definite and the symbol ∗ denotes the transpose elements in the symmetric

positions, diag{...} represents a block diagonal matrix and the operator sym(A)

represents A+AT . All LMI variables are written with boldface.

2 Model Description

The model used in this paper is obtained from the software FAST (Fatigue, aerody-

namic, structural and turbulence) (Jonkman, 2010), which is a fully nonlinear wind

turbine simulation software. The OC3-Hywind model is a 5 [MW] offshore floating

turbine (Jonkman et al., 2009), its main specifications are listed in Tab. D.1. This

turbine model is an up scaled version of Statoil’s 2.3 [MW] Hywind Demo turbine.
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Rated power 5 [MW ]
Rated wind speed 11.6 [m/s]
Rated rotor speed 12.1 [RPM]

Rotor radius 63 [m]
Hub hight 90 [m]

Table D.1: Main specifications of NREL‘s OC3 turbine

The nonlinear model obtained from FAST, is linearized around several operating

conditions. All conditions are above rated wind speed, this indicates that the con-

troller objectives are the same for each point. The objectives should be achieved

by means of individual pitching of the blades. The nonlinear model consists of 24

degrees of freedom (DOF). This is all the available DOFs in FAST, if one desires, it

is easy to switch the different DOFs on and off. This is convenient if just a simple

model is necessary, and this is what is needed for the linearized model. The DOFs

for the linear model are selected while keeping the controller objectives in mind,

these include; platform pitch, generator and rotor dynamics. Pitch actuators will be

added later in this section. This will add three additional DOFs to the linear model.

In total there are 9 DOFs with 18 states, two for each DOF (position and velocity).

With this linear model, most of the dynamics which are relevant for the controller

objectives should be reflected. There are three measured signals in the feedback

loop; generator speed, rotor speed and platform pitch angle. By using these three

signals in the feedback loop, the three blade pitch angles can be calculated. A set

of nine linearization points, ranging from 14 [m/s] to 22 [m/s], are obtained. The

linearized models obtained from FAST are on the following standard state-space

form

ẋ = Aix+Biu, i = 1, ...,9

y = Cx, (D.1)

where the state-space matrices Ai, Bi and C are of dimensions Rn×n, Rn×m and Rq×n,

respectively, where n, m and q are 6, 3 and 3, respectively. From system (D.1) it is

seen that Ai and Bi vary, depending on the operating point, i.e. wind speed. While

the C matrix is constant since it only handles the measurements. The system can
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now be formulated on a generalized form in (D.2).

ẋ = Aix+Biu+Bwω, i = 1, ...,9

z = Czx+Dzu,

y = Cx, (D.2)

where the additional term Bw describes how the disturbance enters the system, Cz

and Dz handle the performance measures, i.e. the controller objectives.

So far, one state-space system for each operating point is obtained. In order to

utilize the suggested control technique a continuous model of the set of state-space

systems is needed. Least mean square method is used to construct this continuous

affine model. The two parameter-dependent matrices are defined in the following

affine way

A(σ) = Aa +σAb, (D.3)

B(σ) = Ba +σBb, (D.4)

where the scalar parameter σ satisfies σ ≤ σ (t) ≤ σ and ρ ≤ σ̇ (t) ≤ ρ , that is

σ ∈ [σ σ ] and ρ ∈
[
ρ ρ

]
.

From (D.3)-(D.4) it is seen that the state-space system is now parameter-dependent

on σ , which is the wind speed. The wind speed will later in the paper be estimated

for this purpose.

As FAST does not include any pitch actuators, these are added to the parameter-

dependent state-space system. One pitch actuator system is considered for each

blade. As seen in the combined system (D.5), all the parameter dependency is

limited to the A matrix.

ẋaug = Aaug (σ)xaug +Baugu+Baug,wω,

y = Caugxaug, (D.5)

where the new augmented state xaug =
[
xT

p xT ]T has the following corresponding
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state-space matrices:

Aaug (σ) =

[
I3⊗Ap 0

Ba⊗Cp Aa

]
︸ ︷︷ ︸

Aaug,a

+σ

[
0 0

Bb⊗Cp Ab

]
︸ ︷︷ ︸

Aaug,b

, (D.6)

Baug =

[
I3⊗Bp

0

]
, (D.7)

Caug =
[

0 C
]
, (D.8)

where Ap, Bp and Cp, are the blade pitch actuator state-space matrices (See appendix

for matrix values), Baug,w is defined in Section IV, Aaug,a and Aaug,b are the new

augmented matrices of (D.3)-(D.4).

3 Control Synthesis

This section mainly deals with the controller design process and briefly discusses

the extended Kalman filter. The main objective is to design an output-feedback

LPV controller which is able to handle structure constraints on the output-feedback

gain matrix. The LPV controller depends on the wind speed parameter, which is

estimated by the extended Kalman filter. Fig. D.2 shows a block diagram, this block

diagram describes the basics of the closed-loop system. In the first feedback loop,

three values (y1) are used to estimate the effective wind speed (σ ). In the second

feedback loop, three sensor values (y2) are used to calculate the three blade pitch

angles (β ). These output values correspond to (D.5). As discussed in Section II,

this means the feedback gain is a 3 by 3 matrix. This section considers calculation

of an output-feedback gain matrix with a diagonal structure. In this way not all

the available information will be used to calculate each of the blade pitch angles

and none of the three control signals will directly interfere with each other. That

is, should a failure happen to for instance sensor one, then this will not directly

influence control signal two or three.
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Wind Turbine

Extended Kalman Filter

LPV Controller

y1

�

β y2

Figure D.2: Block diagram of closed-loop system

3.1 Extented Kalman Filter

It is possible to estimate the effective wind speed based on measurements of rotor

speed, blade pitch angle and generator torque. The effective wind speed represents

the average wind field over the rotor disc, i.e what is experienced by the blades.

An extended Kalman filter is used based on a simple model of the drivetrain and a

turbulence model, the output from the extended Kalman filter is the effective wind

speed. For the actual development of the filter readers are referred to (Knudsen

et al., 2011).

The drivetrain and wind model is modeled as first-order systems with no losses.

JeqΩ̇DT = Ta−Tg, (D.9)

v̇t = −πvm

2L
+n1, (D.10)

v̇m = n2, (D.11)

σ = v = vm + vt , (D.12)

where Jeq = Jr + n2
gJg, Tg = Teng, vt is turbulence, vm is the mean wind speed and

L is the turbulence length scale parameter. The wind model is driven by Gaussian

white noise, entering the model by n1 and n2. This model is nonlinear due to the

nonlinear relationship between wind speed and aerodynamic torque. In order to
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estimate the states, the time update uses information about the model dynamics and

the model uncertainties.

x̂−k = Aek f x̂k−1 +Bek f uk−1, (D.13)

P−k = Aek f Pk−1AT
ek f +Q, (D.14)

where matrices
(
Aek f ,Bek f ,Cek f

)
are state-space matrices of a linearized version

of (D.9)-(D.10), Q is incremental process noise covariance and Pk is the state esti-

mate error covariance. The measurement update uses information about the model

outputs and measurement noise.

Kk = P−k CT
ek f

(
Cek f P−k CT

ek f +R
)
, (D.15)

x̂k = x̂−k +Kk
(
zk−Cek f x̂−k

)
, (D.16)

Pk =
(
I−KkCek f

)
P−k , (D.17)

where R is measurement noise covariance, Kk is the Kalman gain and zk is the

measurements.

3.2 Controller Design

For obtaining the results of H∞ controller synthesis, the wind speed parameter in

(D.5) needs to be estimated according to subsection 3.1. As described in (Boyd

et al., 1994), the H∞ constraint for a linear time-invariant (LTI) system with state-

feedback is formulated as follows:(
sym(AaugX +BaugY )+ γ−2Baug,wBT

aug,w (CZX +DZY )T

∗ −I

)
< 0, (D.18)

X > 0. (D.19)

In the state-feedback case the gain matrix is calculated from K = Y X−1. In the

output-feedback case, the gain matrix factors as the product K̃ = KCaug, where Caug

is given from (D.8). In order to get the output-feedback gain, a solution to (D.18)-
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(D.19) needs to be found such that the product Y X−1 factors as

KCaug = Y X−1. (D.20)

In a recent work by (Rubió-Massegú et al., 2012), a procedure which handles this

problem in a very systematic way is developed. Another benefit with this approach

is that it is possible to impose structural constraints on the gain matrix. It is intro-

duced to use the following change of variables

X = QXQQT +RXRRT , (D.21)

Y = YRRT , (D.22)

where XQ (σ) and XR (σ) are R(n−q)×(n−q) and R(q×q) symmetric matrices, respec-

tively, and YR (σ) is a R(m×q) matrix. The Q matrix is the nullspace of C, and R can

be calculated from the following expression

R =CT
aug
(
CaugCT

aug
)−1

+QL, (D.23)

where L is an arbitrary matrix with dimensions R(n−q)×q. One of the main contribu-

tions in this paper is to force the Lyapunov matrices to be parameter-dependent. The

Lyapunov matrices (D.24) are now portioned in the same affine way as the matrices

A(σ) and B(σ) in (D.3)-(D.4).

XQ (σ) = XQ0 +σXQ1,

XR (σ) = XR0 +σXR1,

YR (σ) = YR0 +σYR1. (D.24)

By changing ν = γ−2 in the LMIs (D.18)-(D.19), the problem becomes convex

and by maximizing ν it is possible to find the Lyapunov matrices in (D.24). In

order to obtain the diagonal structure for the output-feedback gain the LMI variables

XR (σ) and YR (σ) also have to have a diagonal structure. Choosing the Lyapunov

matrices as described, the output-feedback gain can be calculated from K (σ) =

YR (σ)X−1
R (σ). The interested reader can read the proofs in (Rubió-Massegú et al.,
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2012). In order to guarantee the controller stability and performance within the

bounds of the scheduling parameter, some additional LMIs are required. The system

is depending on one parameter and as indicated earlier this parameter has an upper

and a lower bound, both on the parameter itself and on the derivative. One LMI is

needed to check each vertex, i.e. this gives an addition of 2i LMIs, where i is the

number of vertices. As a consequence of the parameter dependency, at the upper left

position in the H∞ constraint (D.18), the expression is quadratic in σ . By imposing

the definiteness of the terms involving σ2, that is

sym
(
Aaug,bQXQ1QT)+ sym

(
Aaug,bRXR1RT)≥ 0 (D.25)

the quadratic function of σ is convex.

The total set of LMIs needed to solve the LPV constrained static output-feedback

problem are as follows:(
sym(Aaug (σi)X (σi))+ sym(Baug (σi)Y (σi))+νBaug,wBT

aug,w±ρp
∂X
∂σ

∗

(CZX (σi)+DZY (σi))
T

−I

)
< 0, i = p = 1,2 (D.26)

sym
(
Aaug,bQXQ1QT)+ sym

(
Aaug,bRXR1RT)≥ 0, (D.27)(

XQ0 0

0 XQ1

)
> 0, (D.28)(

XR0 0

0 XR1

)
> 0, (D.29)

where i is the number of vertices. The derivative term of the Lyapunov function is

found to be

∂X
∂σ

= QXQ1QT +RXR1RT . (D.30)

From the optimization the matrices XQ0,XQ1,XR0,XR1,YR0 and YR1 are obtained. At

each time step during the simulation, a new value for Aaug(σ),XR(σ) and YR(σ)

are calculated. The controller gain matrix K(σ) is calculated from the expression
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K(σ) = YR(σ)X−1
R (σ). In this way the output-feedback controller will change de-

pending on σ .

4 Simulation Results

In this section the different simulation results will be discussed and presented. The

controllers are tested on the fully nonlinear system, where all the available DOFs

are enabled. The input to the system is a turbulent wind profile with an average wind

speed of 18 [m/s] with a turbulence intensity of 6 % with corresponding waves. The

wind profile is obtained from Turbsim (Jonkman, 2009), and is emulating a one

year extreme wind speed condition. In the simulation example the plots concerning

the two controllers designed in this paper experiences a fault after 500 [s]. This is

not the case for the baseline controller, where no fault occurs. The gain scheduled

PI controller is not designed to handle such an event. The fault causes sensor three

to stop working, i.e. blade three has stopped moving, see Fig. D.6. The system is

made in such a way that the actuator which controls blade number three keeps its

last value prior the fault. In this way, the value does not drop to zero. Time series

of 1000 [s] are obtained, but the first 400 [s] are removed due to transient behavior.

Each of the figures show simulations done with three different controllers. The blue

curve shows simulations done with the constant constrained gain controller. The

red curve is for the LPV constrained gain controller and the green curve is FASTs

baseline controller. The baseline controller is intended as a reference plot and comes

with the FAST package.

As mentioned in Section 2, the controller objectives are to mitigate oscillations on

critical parts of the system, to damp any movement which potentially can make

the system unstable, such as platform pitch movement, and keep the overall system

stable. These objectives are given as the performance measure z, as in (D.2) with

the following matrices:

Baug,w = [112×1] , (D.31)
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Figure D.3: Time series of generator speed

CZ =


C1−C2/ng

C3

10 0 10 0 10 0 01×6

 , (D.32)

DZ = diag{103, 103, 103}, (D.33)

Bw is the disturbance matrix, and indicates which states that are disturbed. By giv-

ing this matrix only ones, the idea is to simulate a situation which is tougher than

reality. The first row of CZ handles the drivetrain oscillation, by subtracting the

generator speed (C2) divided by the gearing ratio ng from the rotor speed (C1). The

second and third row handle platform pitch - and blade pitch movement, respec-

tively. Suitable results were found with a diagonal structure for the DZ matrix. The

same performance measures are used for both the blue and the red curve. The out-

come from the LMI calculations are listed in the appendix, that is, the Lyapunov

matrices used online to calculate the LPV constrained controller and the constant

constrained controller. In order to check the drivetrain oscillations, the standard

deviation for the speed difference between rotor speed and generator speed is calcu-
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Figure D.4: Time series of platform pitch angle

lated. The values are normalized. That is, the reference value is the baseline result,

which is given value 1. For the remaining two controllers, a value below 1 indicates

better and vice versa. Multiply by 100 to get the percentage.

Baseline Constant controller LPV controller
1 0.98 0.96

Table D.2: Normalized values for drivetrain oscillations

From the Table D.2 it is seen that the two controllers designed in this paper does

damp the drivetrain oscillations slightly better than the baseline controller.

A time series plot of the generator speed with different controllers is presented in

Fig. D.3. It is seen that the constant constrained gain controller (blue) is slightly bet-

ter than FASTs gain scheduled PI controller (green). But the controller that gives

the better responds is the LPV constrained gain controller (red). Several observa-

tions indicate this. Firstly, it is operating more closely to the rated condition for the
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generator. Secondly, the power output does not fluctuate as much as the two others

(Fig. D.5). See also the mean and standard deviation plots in Figs. D.7-D.8. With

these performance measures and with the fault present in the system, is was not

possible to dampen the platform pitch movement (Fig. D.4) more than indicated in

these plots.

After 700 [s] the platform is starting to gain a bit more amplitude in the pitch di-

rection, but it does not become unstable. Control simulations of 2000 [s] are done

to check this. The major consequence for introducing a failure to the closed-loop

system is the nonsymmetrical loading on the tower. This is especially prominent

in the yaw direction, where the standard deviations are considerably larger than the

values for the baseline controller (no fault occurs with baseline), while the mean

values are lower. See the histogram in Figs. D.7-D.8. The blade pitch movement

for the LPV controller is shown in Fig. D.6. It is seen that the three blades are more

or less following each other until the fault occurs. At time equals 500 [s] the third

blade pitch actuator stops moving. This is emulating a sensor failure. As the plot

shows, only one pitch actuator is influenced by the fault.
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Figure D.5: Time series of generated power
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Figure D.6: Time series of blade pitch angles

From the histogram in Fig. D.7, it is seen that the LPV controller has a lower stan-

dard deviation for generator speed and for generator power. The large yaw moment

value is because of the fault which is introduced in the system. The constant con-

troller also causes the system to experience a large standard deviation in the yaw

moment, due to the fault. But it has a better performance for the generator speed.

The corresponding mean values can be seen in Fig. D.8.

5 Conclusion and Future Work

The purpose of this paper was to design an output-feedback linear parameter-varying

(LPV) controller for an offshore wind turbine with constrained information. The

scheduling parameter for the LPV controller is the effective wind speed. Based

on available measurement an extended Kalman filter is used to estimate the effec-

tive wind speed. The wind turbine model is obtained from the software FAST and

all simulations are done in Matlab/Simulink. A wind turbine is a highly nonlinear

141



Paper D

0

0.5

1

1.5

2

2.5

3
Standard deviation for selected time series (normalized)

 

 

Plat
fo

rm
 p

itc
h

Thr
us

t f
or

ce

For
e−

af
t m

om
en

t

Yaw
 m

om
en

t

Gen
er

at
or

 sp
ee

d

Gen
er

at
or

 p
ow

er

Baseline

Constant controller

LPV controller

Figure D.7: Normalized standard deviations for selected time series

mechanism, and in order to use the controller design techniques proposed in this

paper, a linearized model is needed. To linearize the model at only one operating

point is a bit optimistic, therefore an LPV control approach is suggested. LPV con-

trol is a step in between linear control and nonlinear control. The design is done on

the basis of linear techniques and when it is implemented, the benefits from nonlin-

ear control are utilized. That is, it will perform and maintain stability in the whole

operation region. With this method, LPV controller with constrained gain is con-

structed. Constrained gain means a special zero-nonzero pattern can be imposed on

the gain matrix. In this paper, a controller gain with a diagonal structure is designed.

From the simulation results it is seen that closed-loop system do behave according

to the controller objectives and it maintains stability when a fault occurs to one of

the sensors in the feedback loop.

Regarding the constrained gain matrix, this paper has focused on a diagonal struc-
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Figure D.8: Normalized mean values for selected time series

ture. It is completely up to the designer to choose the zero-nonzero pattern for the

gain matrix. In other cases different patterns than diagonal may be appropriate.
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6 Appendix

Blade pitch actuator model:

ẋp = Apxp +Bpu,

y = Cpxp,

where

Ap =

[
−2ωnζ −ω2

n

1 0

]
, Bp =

[
1

0

]
, Cp =

[
0 ω2

n

]
.

The natural frequency is ωn = 0.88 and the damping ratio is ζ = 0.9. There is a total

of three of these pitch actuators models in the turbine model, one for each blade.

Constant constrained gain: Kconstant = diag{0.0315, 0.0008, 0.00017}

Lyapunov matrices used online to calculate the LPV constrained gain:

Yr0 = diag{0.0006, −0.3788, 0.0005}×10−3,

Yr1 = diag{0.0008, 1.2192, −0.0002}×10−2,

Xr0 = diag{1.9527×10−4, 13.9305, 0.0012},

Xr! = diag{7.7424×10−8, 0.0231, 1.5532×10−6}.
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