

Overcoming barriers for successfully
building an open source community

A case study of Open e -PRIOR,

an e-Procurement software project at the European Commission

By
Atle Johansen

Master Thesis in
Information Technology and Information Systems

Faculty of Economics and Social Sciences
University of Agder

Kristiansand, June 2012

 Page | ii

Preface

This thesis presents research conducted during spring of 2012, as a final delivery for a
master of information systems programme at the University of Agder in Kristiansand
Norway.

The aim of the research was to explore barriers that need to be addressed for the
Open e-PRIOR project to successfully build a sustainable community around the
project and propose measures to be taken to overcome these barriers.

I would like to thank Didier Thunus at the European Commission (EC), who has
been my personal coach for this thesis. Also thanks to Kelly Liljemo at the EC who
has been of great assistance in both discussions and facilitation of executing this
research. And of course thanks to the other people at the European Commission and
the external experts who have provided data used in this thesis.

Thanks also to Mikael Snaprud and Tom Roar Eikebrokk, who have been my
supervisors from the University of Agder and provided me with valuable feedback
throughout the progression of my work.

Kristiansand, June 2012

Atle Johansen

Page | iii

Abstract

In 2009, the European Commission (EC) released an e-Procurement platform named
e-PRIOR (electronic PRocurement Invoicing and Ordering). To support the objectives
defined in 2010 e-Government action plan, an open source-version of e-PRIOR,
called Open e-PRIOR, was also made available. Open e-PRIOR is a key enabler for
secure e-Delivery in the e-Procurement domain, and the project aims to foster
adoption of e-Procurement at European level. However, Open e-PRIOR is currently
managed by the EC, not taking advantage of its open source nature. Besides, the EC
also realized that the Open e-PRIOR project is of value both across sectors and
across borders. Therefore, to improve the communication between users and
developers, take advantage of the full potential of the software, and better allow
sharing of experiences and collaboration, Open e-PRIOR is trying to build a healthy
community around the project.

Through this study, barriers of successfully building an open source community are
explored through a case study of the Open e-PRIOR project. This was done by
analysing the Open e-PRIOR project through document analysis and interviews with
the project stakeholders. To find possible measures to overcome the barriers,
information on best practices was collected and a panel of experienced open source
experts was interviewed. The identified barriers needing addressing were then
discussed in detail against possible measures to be taken to overcome them.

The findings indicate among other things that the Open e-PRIOR project needs to
make their processes transparent to enable the community to participate in the
development. The project also needs a better way of collaborating on software
development with the external community while lowering the technical barriers of
entry.

Through applying the proposed measures to their F/OSS strategy, the Open e-
PRIOR project and the EC will be better equipped to succeed in building a
sustainable community to collaborate on developing the software further, finding
bugs and new features, discuss architecture and security and improving
documentation. Ultimately leading to a better solution for the benefit of all the
stakeholders and meeting the goals of the EC of share and re-use of F/OSS.

 Page | iv

Page | v

Table of contents

CHAPTER 1 INTRODUCTION ... 1
1.1. DOCUMENT PURPOSE .. 1
1.2. BACKGROUND AND MOTIVATION ... 1
1.3. PROBLEM STATEMENT ... 2
1.4. SCOPE ... 2
1.5. REPORT OUTLINE ... 3

CHAPTER 2 REVIEW OF LITERATURE ... 5
2.1. FREE / OPEN SOURCE SOFTWARE (F/OSS) ... 5
2.2. F/OSS ADOPTION IN THE PUBLIC SECTOR ... 5
2.3. GOVERNANCE OF F/OSS PROJECTS .. 6
2.4. COLLABORATION .. 7
2.5. ANTI-PATTERNS .. 8

CHAPTER 3 RESEARCH METHOD .. 11
3.1. CASE DESCRIPTION ... 11
3.1.1 Document analysis ... 11
3.1.2 Interviews with stakeholders of Open e-PRIOR .. 12
3.1.3 Interviews with F/OSS experts ... 13
3.2. ANALYSIS OF THE DATA ... 13
3.2.1 Discussion and recommendations .. 13

CHAPTER 4 ANALYSIS AND FINDINGS ...15
4.1. DOCUMENT ANALYSIS .. 15
4.1.1 Adoption 15
4.1.2 Distribution and release .. 15
4.1.3 Community .. 15
4.1.4 Governance ... 16
4.1.5 Technical 17
4.1.6 Documentation ... 18
4.1.7 Collaboration .. 19
4.2. INTERVIEWS WITH OPEN E-PRIOR STAKEHOLDERS 19
4.2.1 Community .. 20
4.2.2 Governance ... 20
4.2.3 Technical 21
4.2.4 Documentation ... 21
4.2.5 Collaboration .. 22
4.3. INTERVIEWS WITH F/OSS EXPERT PANEL .. 22
4.3.1 Adoption 23
4.3.2 Distribution and release .. 23
4.3.3 Community .. 24
4.3.4 Governance ... 26
4.3.5 Technical 27
4.3.6 Documentation ... 28
4.3.7 Collaboration .. 28
4.4. SUMMARY OF FINDINGS ... 30

CHAPTER 5 DISCUSSION AND RECOMMENDATIONS 35
5.1. ADOPTION ... 35
5.2. DISTRIBUTION AND RELEASE ... 36
5.3. COMMUNITY .. 36
5.4. GOVERNANCE ... 37
5.5. DOCUMENTATION .. 38

 Page | vi

5.6. TECHNICAL .. 39
5.7. COLLABORATION .. 39
5.8. ANTI-PATTERNS AND REFACTORED SOLUTIONS .. 41
5.8.1 Command and control anti-pattern .. 41
5.8.2 Water cooler anti-pattern .. 42
5.8.3 The big show anti-pattern .. 42
5.9. SUMMARY OF RECOMMENDATIONS .. 43

CHAPTER 6 CONCLUSION AND LIMITATIONS 45
6.1. CONCLUSION ... 45
6.2. LIMITATIONS ... 46

CHAPTER 7 BIBLIOGRAPHY ... 47

APPENDIX 49
ANNEX I. INTERVIEW INVITATION EMAIL ... 50
ANNEX II. INTERVIEW GUIDE ... 51

List of Figures

FIGURE 2.1: DESIGN AND ANTI-PATTERN CONCEPT (BROWN, ET AL., 1998) 8

FIGURE 3.1: BUILDING BLOCKS OF THIS STUDY .. 11

FIGURE 4.1: SYSTEM USERS AND MAIN PACKAGES (D'ORAZIO, ET AL., 2010) 17

List of Tables

TABLE 1.1: THESIS OUTLINE ... 3

TABLE 4.1: LIST OF INTERVIEWED OPEN E-PRIOR STAKEHOLDERS 19

TABLE 4.2: LIST OF INTERVIEWED F/OSS EXPERTS .. 22

TABLE 4.3: SUMMARY OF FINDINGS FROM STAKEHOLDER GROUP 30

TABLE 4.4: SUMMARY OF FINDINGS WITH F/OSS EXPERT PANEL 32

TABLE 5.1: SUMMARY OF BARRIERS AND MEASURES .. 43

Page 1 of 55

Chapter 1

Introduction

The concept of free/open source software (F/OSS) has been around for some time and
is finding its way into more and more areas of application. A growing number of
companies choose to release their software as open source, enabling users to engage in
the participation of the development of the software through an open source
community. More and more countries around the world are also having success with
F/OSS in the public sector as an alternative to proprietary software. Examples can be
found on all continents and in several areas in the public sector like educational, health
and public administration to name some. Many projects are being initiated in the public
sector, enabling sharing and re-use of F/OSS between public organizations and across
borders.

These projects engage in a distributed development model, where software development
is done through a developer community consisting of the users of the software. This
way of organizing software development poses challenges of coordination and
collaboration to succeed.

This study explores the challenges of F/OSS governance and community building in the
context of the Open e-PRIOR project at the EC, and proposes suggestions for
measures overcome the barriers involved in succeeding with building a community for
F/OSS projects.

1.1. Document Purpose

This document is the final result of research conducted as part of a master thesis
programme at the University of Agder. It has been carried out in collaboration with the
European Commission, Directorate-General Informatics (DIGIT) unit B4.

The document audience is meant to be:

 The Open e-PRIOR management and development teams

 External examiners and supervisors at the University of Agder

 Other F/OSS project managers in the public sector

1.2. Background and Motivation

The Open e-PRIOR project would benefit from a clear strategy to further exploit the
benefits of F/OSS according to a previous study of the project (Dar, Forsbakk,
Johansen, & Liljemo, 2011). This study departs from this result and seeks to explore
barriers that need to be addressed for the Open e-PRIOR project to successfully build a

 Page 2 of 55

sustainable community around the project and propose a set of measures which then
can be systematically implemented by the Open e-PRIOR project and hopefully be of
help to other open source projects.

1.3. Problem Statement

In line with the EC's policy of the sharing and re-use of F/OSS in Europe, the goal of
Open e-PRIOR project is to build a sustainable community around the project, to
enable adopting public organizations to participate in the further development of the
software.

However the Open e-PRIOR project has not yet succeeded in doing this. The objective
of this study is to remove barriers of achieving this goal.

As a result this research will propose to answer the following research questions:

 What possible barriers need to be addressed for building an open source

community?

 What measures should be taken to overcome these barriers?

To answer the research questions, this study takes the perspective of change. Looking

into barriers and enablers of F/OSS in the public sector and seeks to find solutions to

these through a proposed change of processes, activities and technical solutions.

1.4. Scope

Some restrictions are made in order for the project to be feasible. The following lists the
items that are regarded as out of scope.

• The assessment of the barriers and possible measures are focusing on the
building of a community and related aspects, and activities such as conducting a
cost/benefit analysis are left out of scope.

• In order for the Open e-PRIOR project to apply the measures proposed, clear
implementation plans are needed. Such plans along with actual implementation
are left to the EC to define and carry out, and are not in scope of this study.

• Similar to implementation, any operation or review is left to the EC and not in
scope of this study.

• Any activities that span across the whole life-cycle of a project are also left out
of scope. This includes aspects such as change management, training of staff,
project management, etc.

Page 3 of 55

1.5. Report Outline

The remainder of this report is organized like this:

Table 1.1: Thesis Outline

Chapter Description

Chapter Chapter 2,
Review of Literature

This section presents review of relevant literature on the subjects for this
study.

Chapter Chapter 3,
Research Method

Presentation of the methods applied in order to reach the project goal.

Chapter Chapter 4,
Analysis and findings

Document analysis, interviews with Open e-PRIOR project stakeholders and
interviews with F/OSS experts. Summary of the findings

Chapter Chapter 5,
Discussion and
Recommendations

Discussion of the identified barriers that need addressing and possible
measures to overcome them.

Chapter Chapter 6,
Conclusion and
Limitations

Summarizes the discussions and recommendations.

 Page 4 of 55

Page 5 of 55

Chapter 2

Review of Literature

The purpose of the literature review is to identify perspectives that can shed light on
possible barriers of creating an open source community.

2.1. Free / Open Source Software (F/OSS)

Free and open-source software (F/OSS) is defined as software that is both free software
and open source. In this context, free refers the software being licensed in a way that
grants the user the freedom to use, copy, study and modify the software, rather than to
the price of the software (Perens, 2007). Due to the nature of its liberal licensing,
F/OSS’ potential benefits has been increasingly recognized by both individuals and
organizations. The development processes of F/OSS are fundamentally different from
traditional software development models. The full source code is made available to the
public and it is developed by a community of programmers collaborating over the
internet. Participants are not directly compensated for their work and participation is
voluntary (Hars & Ou, 2001).

2.2. F/OSS adoption in the public sector

In general terms, arguments exist that democratic governments have a public
accountability to all of its citizens. The basic philosophy of F/OSS is congruent with
this approach, and therefore F/OSS could benefit all.

In many countries, including China, India and Brazil, the use of F/OSS is widely
established and many countries have passed, or are considering, laws encouraging
F/OSS use (Applewhite, 2003). Germany in particular is seen as a leader, including the
public sector, and also large businesses. Also in Australia and New Zealand successful
F/OSS initiatives exist (Dougiamas & Taylor, 2003). The EU is increasingly adopting
more F/OSS as awareness of its potential benefits is growing (Giacomo, Goedertier,
Liljemo, Frade, & Hee, 2012)

Some suggests that although increasing availability of F/OSS applications on the
market, the public sector is reluctant to investigate their potential use even though
(Peeling & Satchell, 2001) indicate that flexibility that is offered by F/OSS could help to
reduce some of the problems faced when replacing or integrating with old legacy
systems considerably.

According to some studies (Giacomo, et al., 2012; OFE, 2011), public administrations
tend to not trust a F/OSS solution to the same degree as a commercial one. If a F/OSS
project is not backed by a commercial vendor, then public administrations tend to be
reluctant to adopt the project due to security concerns. This sense of security by

 Page 6 of 55

obscurity has been shown to be an illusion, as one of the major benefits of F/OSS is the
auditability made possible through the availability of the source code.

Some also point to the fact that F/OSS is not being as widely adopted in the public
sectors as administrations would like because of ‘comfort’ factors. This is manifested in
the fact that IT managers are sticking to software that they already know and disregard
possibilities of innovation or change. McDonald et al. (2003) believes that these views
are so engrained in the culture of public sectors that these institutions will continue
acquiring enterprise-wide IS from traditional large vendors for the foreseeable future.
Further explanation of the lack of open source adoption might be found in the field of
institutional theory, which attends to the deeper aspects of social structure including
how schemas, rules, norms and routines become established as authoritative guidelines
for social behavior. DiMaggio & Powell (1983) states that mimetic isomorphism may be
reflected on environmentally constructed uncertainties. When the goals are ambiguous,
or when the environment creates symbolic uncertainty, organizations may model
themselves on other organizations.

2.3. Governance of F/OSS projects

Early literature on open source software development focused mainly on individual
based participation in F/OSS communities based on a community-founded governance
model. However this model has later been adopted by organizational entities like public
and private corporations, transnational organizations like the EC as well as nation states
(O’Mahony, 2007). From this, a new governance model has emerged, where
organizations release internally developed code to a public forum in hope of growing a
community to improve and maintain the future code base (West & O'Mahony, 2005).

According to O’Mahony (2007), projects from such organizations are likely to face
different challenges than community-founded projects, especially if they are trying to
build a community around code that has already been developed. Not developing code
and community in parallel can affect external developers’ ability and motivation to
contribute by making the learning curve too steep.

These post-hoc communities also face considerable problems of motivation and
coordination. Since the external community members have not been part of building the
system from the ground up, they might have trouble developing a sense of ownership
for the technology.

As the external community and the organization may have different visions, goals and
priorities, such projects also face a struggle for control over the future direction of the
project. If the organization fails to relinquish some degree of control of the direction of
the project, the result might resemble proprietary development conducted in a glass
house. Outsiders observe but only participate at the margins of the organization’s
development (West & O'Mahony, 2005).

Further literature on this way of organizing software development can be found in
Victor and Boynton (1998), who have coined the term ‘co-configurative work’ for these
new, technology-enabled forms of 21st-century, post-bureaucratic, networked
conglomerates, wherein organizations, users and other external actors share resources,
and collaborate. Kristen Nygård (2012) defines related methods of co-operative work as

Page 7 of 55

“participatory design”, a term used in a variety of fields, including software design.
Participatory design is a way of creating more responsive and appropriate environments
for their inhabitants’ and users’ cultural, emotional, spiritual and practical needs.

Engeström (2004) integrated the concept of co-configuration work into activity theory.
Co-configuration is a participatory model that is not confined to collaboration between
professionals, and integrates users as active subjects. Users are active in the shaping and
reshaping of products and eventually become experts themselves. F/OSS projects are
prototypical examples of co-configurative work, including professionals, experts and
users. Collaboration among people with such varying expertise necessitates a dynamic,
dialogic relationship between multiple actors; it is a relationship characterized by
collaborative and discursive construction of tasks (Engeström, 2004). Such groups are
radically different from conventional teams or communities of practice (Lave and
Wenger 1991; Nardi et al. 2000) in that membership at the periphery are fluid; current
members can leave the community and new members can also join at any time.

Literature also goes on to point out the importance of scoping authority, access rights
and participation, into different levels; i.e. users and developers. Criteria for membership
should exist while the participants need to have the opportunity to assume greater
responsibilities (Von Krogh, Spaeth, & Lakhani, 2003).

In another study, O’Mahony and West (2008) found that when organizations design a
community, they are likely to offer only transparency, rather than to offer accessibility to
external community members. They underline the presence of a control vs. growth
tension. Organizations seeking to leverage the resources of communities to contribute
to their bottom line, will try to maintain control over the community’s strategic
direction. However, organizations soon discovered that restricting access to community
processes, limited their community’s ability to attract new members and grow.

2.4. Collaboration

In open source community projects not all developers and users necessarily work on the
project in the same location, but scattered over a wide area spanning often national
borders and multiple time zones. Communication channels then require some kind of
electronic means of communication. The most common forms of communication
among open source developers and users are email and electronic mailing lists. For real
time communication, an instant messaging method such as IRC (Internet Relay Chat) or
similar is often used. Web forums are another common way for users to get help with
problems they encounter when using an open source product. Also wikis are becoming
more common as a communication medium for users and developers (Wikipedia, 2012).

In his studies of information quality in open source communities, Neus (2001) observed
three typical issues of information quality : 1. Ignored altogether: There is little structure
and everyone can post freely, making it difficult to obtain quality and re-use the
information. 2. Over-controlled: All communication has to be approved by a leader or
moderator before it is made available to the community. 3. Buried inside an unwieldy
tool: The lively discussion that characterizes open source communities is squelched by a
tool that was designed for information storage and retrieval, not for discourse and
collaboration. This indicates the importance of finding a good balance between the ease

 Page 8 of 55

of collaborating on producing information, and the quality assurance of this
information.

O’Mahony and West (2005) emphasized that enabling collaborative software
development among organization’s programmers and external community requires three
types technical infrastructural tools that be common to the two groups. Source code
repository for collaborating on the code, an issue tracking database for monitoring “to-
do” lists and desired enhancements , and finally discussion groups often in the form of
email lists i.e.

2.5. Anti-patterns

Anti-patterns offer a pragmatic way of describing problematic areas and also illustrating
a way to solve them. It is unclear who first coined the term anti-patterns. In 1995
Andrew Koenig published a short article in the Journal of Object-Oriented
Programming using the term, and in 1996 Michael Akroyd presented a paper at the
Object World West Conference that documented harmful software constructs. Credit
for promoting the term, however, must go to the authors of the anti-patterns book by
Brown et al. (1998). They expanded the scope of anti-patterns to include software
project management.

Figure 2.1: Design and Anti-pattern concept (Brown, et al., 1998)

An anti-pattern is a form of pattern that has two solutions. First a solution that
describes commonly occurring outcome where negative consequences are present. This
might be the result of lack of experience with a particular problem, or using an
otherwise good pattern in the wrong context, resulting in negative consequences. To
remedy this, the anti-pattern is documented, describing it in general, the primary forces
in effect, the symptoms to help recognize it and the possible consequences resulting
from it. It is then refactored into a version which describes how to change the anti-

Page 9 of 55

pattern into a healthy solution (Brown, et al., 1998). Anti-patterns in F/OSS projects
have some additional commonly occurring patterns mostly at a community level. These
describe social and managerial issues regarding communication, interaction and
coordination among developers and participants (Settas & Cerone, 2011).

In a talk at the MeeGo Conference (Neary, 2010), David Neary talked about
Community Anti-patterns where he listed anti-patterns relevant for F/OSS community
projects and possible cures/treatments for them. These anti-patterns are also listed at
the Community Management Wiki and include anti-patterns like; Command and
control, big show, bike shedding, black hole, water cooler, cookie licking and many
more (CommunityManagementWiki, 2012).

 Page 10 of 55

Page 11 of 55

Chapter 3

Research Method

A qualitative method was the natural choice for the project as this study is an
exploratory investigation where the goal is to explore the context around the Open e-
PRIOR project and its stakeholders, identifying possible barriers and measures for
successfully building a F/OSS community.

To reach the goal of proposing measures to build a successful open source community
for Open e-PRIOR, the study is broken down into several pieces. The study collects
data from multiple sources which is analysed and discussed. Then derived from
discussing the findings, a concluding set of measures for use in a F/OSS strategy is
proposed.

Figure 3.1: Building blocks of this study

3.1. Case description

3.1.1 Document analysis

As part of this study, several documents were provided by the EC, describing the
complete project development plan (Thunus, 2012), detailed software architecture
(D'Orazio, Fichera, Rodrigues, & Daniels, 2010) and other technical documentation for
the Open e-PRIOR project.

What possible barriers need to be addressed for building an open source community?

What measures should be taken to overcome these barriers?

Discussion and Recommendation

(to-be situation)

Stakeholder analysis
(Open e-PRIOR project)

Document analysis

Interviews with project
stakeholders

F/OSS Expert panel

Interviews with experts
on F/OSS community

development

Literature

F/OSS in the public sector

Governance of F/OSS
Communication

Technical
Anti-patterns

 Page 12 of 55

These documents gave a detailed insight into the management of the e-Procurement
section of DIGIT.B4 and how the Open e-PRIOR project is related to other on-going
projects. Documents were also helpful in gaining a good understanding of the technical
aspects of the project, its software architecture and how it connects to other systems
like the PEPPOL network and customer back-office systems.

Through the document analysis, an understanding of the complexity of the whole
solution was obtained and it was possible to have an impression of what skills are
needed to pick up the project and get started on using it and developing it further.

Previous evaluations of different aspects of the Open e-PRIOR project (Dar, et al.,
2011; Teinum, 2012) was also consulted. Using this previous analysis in the document
analysis and collaboration with members of the Open e-PRIOR team at DIGIT.B4, a
good picture of the state of the project eco-system was established. Then potential
improvement areas were identified for further investigation.

3.1.2 Interviews with stakeholders of Open e-PRIOR

This phase of the project consisted of data gathering through interviews with different
stakeholders of the Open e-PRIOR project. The interviews with this group were kind of
inward-facing, looking at the Open e-PRIOR project from within, and the data gathered
through the interviews aimed to supply more information to the insight and current
state and help identify evidence of barriers and anti-patterns that cause
counterproductive behaviour.

The group consisted of members of the ISA unit at the EC, which is providing the
JoinUp platform, a forge for open communities within the EU, and of course members
of the Open e-PRIOR project team.

In total 7 informants were invited to participate in this group. 4 ended up participating
as the others did not have the opportunity because they were not available in the
scheduled window. 1 of the informants participated through email and answered the
questions in writing.

The interviews were carried out in a semi-structured fashion. The informants received
an e-mail with an invitation to participate. Short description about the research project
was also in the email. Interview dates were then scheduled via mail. In front of the
interview the informants received an email (Annex I) with detailed information about
the research project and the interview.

The informants were located in Belgium, and the interviews were conducted through
Skype. This was done either by direct Skype call, or calling a landline phone. The
interviews were, after getting the consent of the informant, recorded using software, and
then transcribed for analysis.

An interview guide (Annex II) was used to help guide the interview through several
different topics; An introduction of the informant, a series of questions on governance,
followed by a section on communication, then a series of questions of technical nature.

In total 4.5 hours of speech was recorded during the interviews. The recordings were
then deleted after transcription as stated in the information sent to informants.

Page 13 of 55

3.1.3 Interviews with F/OSS experts

Also a panel of external F/OSS experts was interviewed. In this group, there were
several prominent F/OSS experts, authors, community managers and other informants
with a strong background in F/OSS and community building. All the informants were
or had been involved in one or several successful F/OSS community projects. The data
gathered through these interviews aimed to supply more information around measures
to the potential improvement areas to overcome identified barriers.

In total 13 informants were invited to participate in interviews. 7 agreed to participate. 1
of these informants replied to the questions through email. 3 declined because of busy
schedules while the remaining 3 never replied to invitations.

As most informants were spread all over locations in different cities in Norway, UK,
France and the USA, these interviews were also conducted through Skype, either by
direct Skype call, or calling a landline in the informants’ country from Skype. These
interviews were also recorded and then transcribed for analysis after getting the consent
of the informant. One of the interviews was conducted in person in the office of that
informant.

An interview guide (Annex II) was used for informants to help guide the interview
through the different topics; an introduction of the informant, a series of questions on
governance, followed by a section on communication, then a series of questions of
technical nature.

In total 8 hours of speech was recorded during the interviews. The recordings were then
deleted after transcription as stated in the information sent to informants.

3.2. Analysis of the data

The data gathered from document analysis and interviews was then analysed. The data
consisted of collected documents and accompanying notes, recordings of the interviews
with Open e-PRIOR stakeholders and expert panel, and notes taken during the
interviews. The recordings were then transcribed into written language. Findings were
then extracted from the document analysis and interviews. Two of the interviews were
held in Norwegian and findings from these were freely translated into English. The
findings were then structured and categorized according to the main findings with
statements from the data supporting the finds.

3.2.1 Discussion and recommendations

The findings from the previous section were then discussed in the context of Open e-
PRIOR and prior research, discussing the identified barriers that need attention and
possible measures for overcoming them. Finally proposing a set of measures to help
Open e-PRIOR successfully build a F/OSS community for the project.

 Page 14 of 55

Page 15 of 55

Chapter 4

Analysis and findings

The purpose of this chapter is to describe the current state of the Open e-PRIOR
project with regards to potential barriers that need addressing based on document
analysis, online resources and interviews with relevant Open e-PRIOR stakeholders.
Secondly, identify potential measures and best practices on F/OSS development and
community building from a panel of experienced F/OSS experts in order to propose
measures to be taken by the Open e-PRIOR project.

4.1. Document analysis

4.1.1 Adoption

The Open e-PRIOR software is intended for use by public administrations in the EU
member states. Currently the install base for Open e-PRIOR is just a handful of
installations (i.e. Greece, Spain, Norway and Ireland), even though the software has
been downloaded by more.

However, this is not materializing in a corresponding growing of the current
community. There is no tracking of who downloads the software, so the opportunity to
follow up downloads is not present.

4.1.2 Distribution and release

The Open e-PRIOR project is made available to the public as Open Source so that
public administrations in EU member states can freely use the software and become
part of the community being built around the project. Distribution of the software is
done through binary deliverables available for download through the projects site at
JoinUp (2012). The source code of the current release is also available through this site,
but the internal e-PRIOR repository that EC developers are working on is not made
available to the community. Relevant changes in the e-PRIOR software used internally
at the EC are pushed to the Open e-PRIOR source tree before each release. This
prevents the community from monitoring the progress of the intermediate source code
between releases. In practice, there is two development threads, one for the internal e-
PRIOR and one for Open e-PRIOR, with the internal being the main development
thread.

4.1.3 Community

JoinUp is a natural meeting place for the community, although according to the JoinUp
site’s member list, the community has less than 20 members as of today (JoinUp, 2012).

 Page 16 of 55

The site provides communication through mailing lists and forums, but the activity level
on the site is rather low.

Open e-PRIOR has a role defined in an Open Source Gardener, which covers several
open-source projects in the organization and works as a community facilitator. The
responsibility of the facilitator is to tend to the project site at JoinUp and organizing the
repository available to the public.

The JoinUp platform also provides a set of services for community development
collaboration. The idea is that JoinUp is the hub for community activity in the project,
providing access to source code, binary distributions, documentation and
communication between developers. In collaboration terms, these features are not in
active use by the community today, and serve as a one-way communication channel of
distributing software releases and documentation from the Open e-PRIOR project to
the public.

4.1.4 Governance

The roadmap for the project is documented in an internal document (Thunus, 2012)
covering a detailed long term plan stretching into Q4 of 2013. Further in Q2 of 2012,
the completion of an e-Procurement post-award feature is planned. This will provide
electronic notifications of delivery and goods receipt. Also the implementation of the
post-award process of e-Payment is planned to be delivered in Q2 of 2012. Finally, the
pre-award process will be supported, starting in 2012 with e-Submission, continuing in
2013 with e-Award, and so on.

These planning and decision making processes of the EC is a slow and time consuming
process and involve several stakeholders in different levels of the EC organization.

There is a subset of the development plan present on the JoinUp site reflecting the near-
future plans for the project. But the rest of the plans are only available through internal
documentation. The planning of new features is done internally within the EC by the
Open e-PRIOR engineers and is this process is not visible to the external community.

Development model

The Open e-PRIOR project uses a tailored version the Rational Unified Process (RUP)
for iterative development cycles. This process is defined through internal guidelines for
RUP development in the EC.

Since the initial development of Open e-PRIOR was done solely by the EC, there is an
established routine of working internally at the EC, having face-to-face meetings and
discussions. The result of these meetings is then documented in internal documents.

The process is a closed process used internally in the EC organization and the
development process exists more or less separately from the activity on the Open e-
PRIOR JoinUp site. Some output from the internal process is published to the JoinUp
site.

Page 17 of 55

4.1.5 Technical

Technological solution

Technologically, Open e-PRIOR is an integration point with external web services
(SOAP API) that are accessible for suppliers and an internal API for connecting to
back-office systems optionally through an Enterprise Service Bus (ESB) or directly
through the Spring integration framework. In addition, the platform has a built-in
PEPPOL access point that enables it to connect to the PEPPOL network (D'Orazio, et
al., 2010).

Software architecture

Open e-PRIOR is modularized into several different components, according to best
practices in systems development. This part explains some of the most important
components of the Open e-PRIOR software.

Figure 4.1: System Users and Main Packages (D'Orazio, et al., 2010)

Supplier Integration Bus or Spring Integration layer: Provides management of
services in the SOA architecture. The component is the system entry point to services
and calls the Process Manager that orchestrates services interactions. It includes
functionalities like access management and logging. This component is reached from
Internet and is also the entry point for messages coming from the PEPPOL Network.

Access Management: Covers authentication and authorization of all calls to the
system services. The access management prevents unauthorized users from accessing
certain services.

Logging: Provides logging services for each component in the system. This component
logs information about who does what when and with which role. It also covers logging
of specific business information during workflows' activities.

 Page 18 of 55

Process Manager: Does orchestration of services. The module provides infrastructure
to manage implementations of workflows, correlation between message exchanges,
asynchronous messaging, etc.

Customer Integration Bus: This module is a mirror of the Supplier Integration Bus,
only for the customer side. It provides similar entry points to the system for the
Customers and its back office systems.

Persistant Data: This module provides persistence of data to keep track of exchanged
messages, information relative to Suppliers, configuration of back-office interfaces,
internationalized codes and legal information.

Technical entry-level

Previous studies have indicated difficulties in getting the Open e-PRIOR software up
and running quickly.

In January 2012 an evaluation of the software was conducted by a student at the
University of Agder (Teinum, 2012). Though inexperienced in the field of e-
Procurement systems, the student is a software developer by trade and his goal was to
contribute to the project. During this evaluation he, however, experienced that getting
Open e-PRIOR to work was a complex task, and expresses in his report that;

“The initial goal of this project was to build an administration console. Because
of problems encountered during the installation process, the scope has been
narrowed down to only include the setup of a development environment, the
documentation, and the testing capabilities. Thus, this report is about challenges
faced during the phase of getting into the project, and proposed solutions to the
encountered problems. “

With the narrowed scope, and consequent longer timeframe, the student was able to
successfully have the software up and running in his test environment.

Another evaluation of deploying the Open e-PRIOR software in a test environment was
completed by two software development companies in Norway in spring 2011. Both
companies had, similar to the aforementioned student, difficulties getting the software
up and running quickly. Within the given timeframe the software developers were only
able to partly get the software to work (Dar, et al., 2011).

4.1.6 Documentation

Based on document analysis of the available documentation, it’s clear that the software
is intended for fairly technical personnel and requires some detailed knowledge about
the deployment environment that Open e-PRIOR is intended for to deploy the software
solution. This involves the JBoss application server, Service oriented architecture and
RDBMS database servers.

Through analysing the available project documentation, the project site at JoinUp has all
the relevant project documentation organized in rather comprehensive office

Page 19 of 55

documents which makes it difficult for the user to find information quickly. This was
also pointed out in both of the previous evaluations of Open e-PRIOR.

4.1.7 Collaboration

For organizing and planning of day-to-day development of Open e-PRIOR, the EC
uses Atlassian JIRA (Atlassian, 2012a), which is a popular issue tracking and project
management system. In addition to the internal JIRA system, the project has an issue
tracker for the external communication of the project at JoinUp which is meant for use
by the Open Source community for reporting bugs and improvement suggestions.

As source control, the Open e-PRIOR project uses Subversion, and the development
on the code is done internally at the EC. The code is currently made available through
the JoinUp platform, but as mentioned before is not easily accessible.

The project also uses an internal Confluence site. This is an enterprise wiki for content
management which is used to collaborate on content within the project.

In addition to these tools, other tools are also used internally like RequisitePro and MS
Project for project management, SoapUI for web service testing, TOAD for Oracle
database management. Most of these are proprietary software and not much used in
open source software development.

4.2. Interviews with Open e-PRIOR stakeholders

Table 4.1: List of interviewed Open e-PRIOR stakeholders

Stakeholder A

Stakeholder A works at the EC representing DIGIT covering multiple roles, including architect and
project manager for projects related to e-procurement. The stakeholder has also worked as a developer
and architect for the Open e-PRIOR project.

Stakeholder B

Stakeholder B is a consultant for a large consulting company working as a contractor for the ISA program
for the EC. This is the program funding the Open e-PRIOR project. The stakeholder works on F/OSS
related projects for ISA and is involved in open source research for the EC.

Stakeholder C

Stakeholder C works as a functionary and project manager for a number of actions for the EC and the
ISA program, including the development of the community platform used by the Open e-PRIOR project;
JoinUp.

Stakeholder D

Stakeholder D is working as an enterprise architect consultant at the EC.

 Page 20 of 55

4.2.1 Community

Most of the planning of new features and requirements is being controlled by the EC,
leaving the community with limited influence over what new features to be
implemented and the EC deciding all new features that go into the software. This is
illustrated by a couple of statements from Stakeholder A.

“[…] if they want to commit something, it’s important they do it according to some best
practices which are Europe wise. And for users they have to understand that they cannot ask
for features that are too much customized for their solution.”

 “[…] the developers will contribute to commit the features that they have implemented
according to the project plan, so we have a project plan in the beginning where there are some
features that the external contributors can implement. They will implement that, commit on the
SVN, and then we will test it internally. If everything is ok, we will release the new feature.
So it will be release feature based, but the implementation of the features will be done outside,
but under a common control.”

The stakeholder also described how the internal project manager and the development
team was pretty much in control over managing the feature requirements for what gets
implemented.

“If we talk about activities, what has to be done when we set up and we have to communicate
with developers are: Clearly stating what is needed. So, on activities to collect all the
requirements, to collect all the features that have to be implemented by our project manager
[…]”

4.2.2 Governance

Continuing, the stakeholder illustrates how the planning and meeting activity was done
internally at the EC.

“Yes, we did it, we did it internally. We didn’t do it online, but internally in internal meetings.
So we decided what had to be done, what are the features that have to be implemented. Several
people was involved in this, but not online. I mean, because it was all internal in the initial
phases.”

Also the stakeholder explained that it had been like this from the beginning when there
were only EC developers on the project, so since everything was mostly done internally
at the EC.

“[…] everything was almost internal here at the European Commission. Me and the people
were working here, we didn’t need forums and online tools to synchronize the development and
things like that. So the open source community was used mostly for people who wanted to
download and install the Open e-PRIOR product. So in that case we didn’t need an online
transparent process to be followed by other developers, because we were all here”

This made the development process hidden from the external community. As the
informant explains, the community site as JoinUp was only used for release distribution
of downloads and installation documentation etc.

Page 21 of 55

On the topic of support, there were some posts in the forums with information about
answers to questions, but as Stakeholder A explained, support was not primarily run
through public communication channel at JoinUp, but through email and a support
inbox for use by the EC team. So there was no good re-use of support requests in form
of an archive for the community.

“We should move to giving all the answers in the JoinUp community which we did for
some users. So we did it, but sometimes it’s easier to go through email and we start
discussing through email. This is something that we should avoid because the answers we
give to someone, if we publish it on the website, can be useful for other people who wants
to download the application”

4.2.3 Technical

Stakeholder A mentions that developing on the Open e-PRIOR software can be a
complex technical endeavor, meaning that potential contributors must have a good
understanding of many factors of e-commerce in addition to technical software
development skills.

“[…] if people want to develop things for this is that they are aware of the interoperability
factors, meaning that they will not be developing something that will only be usable for
themselves, or only for their needs. So they have to listen to the complex environment that is all
the member states of the European Union, so they have to be aware of all the standards that
are in place, the best practice thing, and of course they must have clear developing skills in Java,
and all the technologies that are used in the project.”

Focus is already on keeping a good design on the software architecture of the Open e-
PRIOR software and some improvements have been done already, but there is still
room for improving the modularization.

“Before, everything was together. It was kind of a not easy for people to understand where what
is […] we separated the domains, and we are also trying to separate the layers, meaning that
the integration part is being done in a separate package […]All the database classes are now
grouped together. So it’s clearer, but we still have to improve it. We still have to continue
working on this…”

4.2.4 Documentation

Documentation for installation and deployment of Open e-PRIOR software is
organized in documents today. Keeping this documentation up to date can be a
challenge, as Stakeholder A illustrates:

“[…] we develop something new, we have to update that document and this document. Maybe
this document is a previous version, and the software is another version. So people say, okay, I
read this in the document, but actually this is not that, so we have to say, yes ok, we forgot to
update the documentation […]”

 Page 22 of 55

4.2.5 Collaboration

The JoinUp platform has some collaboration tools included, mainly for communication
purposes, like mailing lists and forums etc. The very simple features of the bug tracker
do not include the necessary coordination features needed for community development.

Stakeholder B confirms this and admits that the JoinUp platform might not be at the
forefront in collaboration tools.

“We won’t say that JoinUp now joins the best of breed in these kinds of tools, so again I think,
this is based on Drupal, and modules that have been thrown together. So the issue tracker is not
the best issue tracker, the JIRA issue tracker is much better. What we see on JoinUp is that the
issue tracker on Google code is much more user friendly, so that’s unfortunate, but that’s now the
situation.”

4.3. Interviews with F/OSS expert panel

Table 4.2: List of interviewed F/OSS experts

Expert A

Expert A is on the board of directors for several open source software foundations and groups, like the
Perl foundation and Python foundation to mention a few. The expert is also on the FLOSS foundation
group, which is a meeting ground for leaders of open source software foundations with 150-200 members
from about 100 different software foundations. The expert also has broad experience from open source
project management and has worked as a contributing developer for various successful open source
projects.

Expert B

Expert B is a community manager for a successful open source content management system with a large
community of over 40 000 members. The role of this expert is to lead the community and leverage the
community as capacity for innovation and as a marketing vector. The expert has experience with open
source from school through a computer science and telecommunication education. The expert had
worked with open source projects from the Linux kernels to webservers and web languages. The expert
also communicates in several open source communities and is an active contributor to some of them

Expert C

Expert C works with consulting governments and corporations on open source policy and processes. This
expert has founded several open source projects and has experience in project leading of these projects.
The expert has also been a contributing developer to several successful open source projects, like Debian,
and also been central in open source licensing.

Expert D

Expert D is an open source consultant that works for a company that consults the public and private
sector in adopting open source software. The expert has worked in the ICT industry over a decade and
with open source about half of that time, both in sales and project leadership.

Expert E

Expert E is head of technical group in a project involved in managing and developing a service portal for
open source software for the public sector. The expert has experience with project management and
development of open source content management systems.

Page 23 of 55

Expert F

Expert F is a surface manager for an organization that provides advice on use, development and licensing
of open source for the higher education sector. The expert has been involved in lots of open source
projects for a number of years. This expert has experience as a contributing developer on some Java
based open source projects, and is involved in research of open source communities and advising open
source projects that develop software on how to build their communities.

4.3.1 Adoption

Several experts in the group weigh the importance of boundary spanning when raising
awareness of an open source project, a well-known technique where you find other
communities that have similar or overlapping areas of interest.

Expert F explains:

“[…] there are usually mailing lists for communities, other communities. So you need to
be aware of what other systems there are in this sphere that you’re operating in, and
what communities are there out there already. And then make them aware of what you
do.”

Expert C pointed out that “Well I think that all the ways that companies marked projects are
applicable to open source projects”. With this the expert meant that companies have a better ability to
market themselves to their target groups, for example simple and readable websites that have scoped
information that is relevant to the visitors. Separating the information for users from developers for
example. The same expert goes on to say that open source projects often don’t have
focus on anyone but the people that are already a member of the community and is
often characterized by being by developers for developers only.

“Well, I think there is a very big problem in open source in that maybe the open source
projects are inward-facing. They do their development for each other, they feel that their
users are each other, and they don’t really care that much about an outside community.”

4.3.2 Distribution and release

The experts’ answers indicates that how to organize source code and repository-trees
vary a lot on different factors from project to project. Source management strategies in
open source have a lot in common with proprietary software projects and best practices
apply to them both in general.

“I think this is also dependent of the size of the software and the size of the community
and the frequency of releases. But in general, the best practice in software development is
also valid here.”

Keeping the code visible is important for the general public to be able to inspect it at
will. Expert A illustrates this with in a quick summary. “I’ll do the quick summary. Keep the
code visible, keep the community practices visible, behaviors visible […]”.

Expert F also points this out as having quick access to the source code increases the
motivation of potential new members to contribute.

 Page 24 of 55

“[…] additional benefits of that is that you always have a current state of your code which can
be examined by people who are new to your project. So if I am new to a certain project and
would like to try it out, being able to just download it or just check out the source code and
being able to build it just by pressing one button. That would increase the likelihood that I will
be interested in a project.”

Expert C points out that even though you have two branches of source code, having
only one thread of development will reduce the amount of work needed to merge
between the two as they diverge.

“[…]once you have two different threads of development, you always have this problem
that they diverge and the problem of getting them back together is a very, very difficult,
time consuming and expensive. So once in a while I think just taking from the
community version, fixing bugs, putting the bug fixes back into the community version
making sure they are in the certified version as well, and you know, releasing that and
six months later going back to the community for a new version.”

The same expert also explains why Git, which is a very popular distributed revision
control and source code management system, is good for decentralizing community
development, creating more flexibility for contributors. Commits to the external
branches can then be pulled back in to the central repository by a ruling body for the
project that decides what to take on in the next version.

“I would base any new project on Git, because of that, and you know, let people do their
work and not concern myself that there are little forks out there. I think that having a
central repository that gets pulled into though, is absolutely critical. And that having that
operated by high status developers so that all the other developers are watching that one and
in general doing their development in a way that it’s intended to be merged with that one.
That’s important.”

4.3.3 Community

Experts also give answers that play on the importance of rewarding the community to
keep motivation up and engage the community members, promoting participation in the
project.

Expert B revisits the topic of transparency as a motivational tool to engage the
community and promote contribution by giving access to the team of engineers in the
organization governing the open source community.

“[…] the more visible your community is as a community vector, the higher the
engagement of the people in the community. It’s motivating to see experts from […]
highly recognized to be working in open mode, you can learn from them. You are kind
of aspired and inspired by these guys. It’s really a motivational driver”

Expert F weights the importance of being friendly to community members, especially
newcomers to encourage them to stick around and get more involved in the community,
and ultimately become more valuable contributors.

“And I think that in the way that you engage with people that are new to a project you
can either encourage them or discourage them from becoming more involved. […] I

Page 25 of 55

think it’s important to even if someone asks a very simple question that have already
been answered earlier or that’s already on the website. By being friendly to them and
pointing them to the right resource rather than, you know, slacking them off or
something, I think that’s very important, so you need to be friendly.”

Expert C emphasized that community developers should be able to do whatever they
want and take the project in any direction they want, even if it is contradictory to the
direction of the corporation that runs the project. He argues that by doing this, it will
motivate community members and they come up with new ideas that the corporation
would not expect, important to the community members.

“The developers must be able to take the project in the direction they wish, especially when that
is not the direction desired by the corporation. And the reason is that you get very serendipitous
results that way. You get things that the company did not expect important, and indeed are.
And what you get from this really is that governance of developers is the enemy of innovation”

Expert F focused on the importance of being welcoming to new members because of
the barrier some will have to take that first step and start their first contribution.

“[…] for people that are for the first time engaging with your project, sometimes that’s a
bit scary for people. Not everyone is used to working in a public environment, so for
some people there is a threshold that they have to overcome before they send the first
email to a mailing list, so you might be even a bit more friendly that you would be in
other circumstances”

Several other experts also points out the need to be including and welcoming to
community members and not letting them become 2nd class citizens. Expert A points
out an example where the organization behind the project is preventing community
members from working on the central repository, and where there is no other branches
or open repositories available for the community members.

“[…] makes the volunteers and the community developers feel like 2nd class citizens and
that really kills motivation. If you just have one central repository and everyone has to
work on that central repository, but the community volunteers don’t have any access to
commit to it, then it doesn’t make them feel like they’re really part of the project.”

The same expert also describes another situation where the engineering team of the
organization is using a private bug-tracker that excludes the community members from
taking part in the development process fully.

“Well the biggest problem is transparency. You know for every bug that is in the private
bug tracker, you’re not getting public contributions to that bug so. The internal team is
totally responsible for it. And again it’s like that 2nd class citizen thing”

Another Expert, D, raises concerns for when an organization takes too much control
over the development of a project and cares little about further development and
suggestions coming from the community. He references a good example from a project.

“The supplier has been too strong in the development. So suggestions and development
has been neglected by the supplier so that the community is also neglected to some degree.

 Page 26 of 55

The supplier feels too much responsibility for the software solution. And then it’s not
very pleasant to contribute to a project where you feel your suggestions are neglected.”

There were answers from several experts that emphasize the need for a community
project to have a clear mission statement that clearly states the goal of the project. This
way no one is in doubt about the direction of the project, and this will increase
motivation among the members of the community. But as expert B pointed out as very
important is that if there is a strong organization or company running the project, the
mission statement must be unified and commonly interesting for both the community
and the organization.

“In order for a community to be motivated, to be united, there needs to be a strong, we
call that mission statement. […] And with the mission statement, you need to have the
community members adhere to it, and also the company needs to adhere to it. So
basically it’s a very classical social pattern that you can find in history many times, also
in kind of war situations. People are united behind one struggle, one cause, one fight.
And this mission statement here is the case that everyone is chasing, aiming at; the
community members, and also the company”

4.3.4 Governance

A lot of the experts mentioned that it’s very important that the processes in an open
source project are transparent to the community for the reason of being able to engage
new members in distributed development in a community. They also emphasize that the
whole process needs to be transparent, meaning all planning and decision-making in
addition to the development activities and distribution processes. Expert F says:

“[…] that’s very important. It’s one of the main aspects of open communities that we
preach actually. If you make your project transparent, that would mean that people who
are not part of the project can see everything that happens and how decisions are made.
And since an important goal of projects usually is to increase uptake and to increase
level of engagement from users and development, being transparent is one of the key
aspects of engaging new users. As long as people are not able to see what’s going on, and
how decisions are made for example, or how processes are run, it’s much more difficult
for them to become involved.”

Expert A indicated that the lack of transparency would demotivate potential members
from engaging in the community: “so I would say for running a project that’s really, really
important. It’s extremely demotivating to come into a project where you have no idea why things are the
way they are”. Expert B also mentioned the importance of process transparency and states
that the transparency would additionally also be important to generate trust and the
adoption of the open source software.

“[…] it is one of the cornerstones of open source development […] also development
process, but also decision processes and governance. So I think it is key to generate trust,
creating a strong feeling of belonging in the community, and in terms of adoption of the
product and the project and engagement.”

Expert C explained that he had never seen an open source project succeed, that tries to
keep their development separate from its community and explained why:

Page 27 of 55

“[…] there are companies that have tried to keep their development separate from their
community, and they always fail. And the reason is because they go out and do months and
months of development, and meanwhile the community is going in a different direction and they
can never merge the two pieces together.”

4.3.5 Technical

Common for informants in this group was the emphasis on having as low entry-barriers
as possible for both users and developers. Most important is the entry-barriers of users.
Expert A put it into words quite well:

“[…] it’s important for both. It’s especially important for users. Like if your users can’t figure
out how to get started, you’ll bounce quite a lot of them. They’ll come, they’ll try out your
project a little bit, but then they’ll just give up and go away. And they won’t always tell you
what frustrated them, and that’s what’s hard to improve is if they aren’t leaving any trace of
why they didn’t use your software. Sometimes they won’t even bother complaining, it’s just too
frustrating. Developers have a higher tolerance for pain. If you make it really easy for users,
you can require a certain level of knowledge for developers to really get involved. It is helpful if
you can have the easy, how to compile instructions. You know, the easy how to report a bug
instructions. Those are really good sort of easy on-ramps but it’s ok if they do have to spend a
few weeks reading some more technical documentation before they can really make a good patch
to your software”

Expert B went on to focus more on the development side of things, and the importance
of lowering the technical barriers for developers seeking to extend and change the
software. In the project that the expert is currently working, they are doing exactly this
by rewriting the software, separating the code in modules and creating clear layers in the
software architecture:

“[…] it’s a key requirement. And it needs to be reflected in the way the project is built.
That’s what we’re doing today […]. We are rewriting the API so it’s easier for anyone
to learn more quickly. I think it’s VERY important.”

Expert C also pointed out that modularizing and layering the architecture of the
software is important. So a developer that is starting out as a contributor doesn’t have to
learn the whole system, but can focus only on the part that he wants to make changes
to:“Ok, so the low learning curves. So what is the lowest learning curve necessary to start using this
project? And then what is the learning curve necessary to be a developer on some corner of the project?”

Another scenario that an Expert D mentioned was that with some open source projects
you’re often left to yourself for installation and deployment. And automatic setup and
configuration is important to counteract this entry-barrier.

“[...]if an open source project is just dumped online, then you’re 100% left to yourself to install
it, and then it’s critical that it’s easy to do an install. Ideally you should be spared doing
compilations and lots of technical configurations of configuration files, so ideally this should be a
streamlined wizard. This should be the goal for anyone who runs an open source project.”

 Page 28 of 55

4.3.6 Documentation

Expert D illustrates the benefit of having documentation in a collaborative form, like a
wiki, compared to documents that follow the software. “[…] it can of course follow the
software, but it will quickly become outdated, the wiki is always updated with documentation on
installation, use and everything.”

Expert A points out that even though a wiki can be useful, there needs to be active
content management. “Wikis often run to garbage after a while, you really have to have periodic
cleanup processes, to clear out all the wiki pages, otherwise they end up being largely junk.”.

4.3.7 Collaboration

There was a broad agreement among experts that the importance of the availability of
well-functioning collaboration tools for the community is essential for an open source
project. According to Expert B, the most important tools mentioned were bug-tracker
with simple project management tools and forums, or mailing lists. And the expert also
emphasizes that the tools and processes used need to be intuitive to the developer:

“[…] basically an issue tracker with light project management tools is what people need. In many
communities people don’t have loads of time to spend on the project; it’s maybe an over-
generalization after my experience with […], where most members contribute to the project after
hours in the night and on weekends. So people need to be able to jump into the processes and
understand them in like 10 minutes. […] So the widespread tools for that is a bug tracker or an
issue tracker in general with simple product management tools […] And then you mostly see
forums and mailing lists. Mailing lists I think are good for small team collaborations, like max
20, and then it gets a mess.”

This expert also points out the importance of also having good processes that are
supported by these tools. It’s claimed that the tools themselves have limited value
without well-defined workflows that involves the people and tasks at hand.

“Most important stuff are workflows and processes. So the first work is to define the
processes and find the workflows. Which group of persons is going to work with what
other group of persons. What are the steps involved in approval, or review etc. and then
how do you support the processes you have defined with proper tools.”

Expert A points to the fact that the bug-tracker is usually the first tool new users meet
when they start interacting with the project.

“Yep, those are essential. I mean you can make your choices, not every project has a
wiki. The bug tracker, having a public bug tracker that is easy to submit to is very
important. New contributors often come in that way, you know, the first thing they do is
just report a bug and then someone responds and shows them how to solve their problem
and they end up seeing an improvement going into the software, that can be a good
motivation to go on to like the next step where they get deeper and deeper into the
project”

This expert also mentions the importance of them being easy to use and indicates that
familiarity is important when starting to use new tools by drawing on the example of
sending an email.

Page 29 of 55

“I would say anything that slows the user down or distracts the user is going to be a big hindrance.
That’s very generic but basically making it possible to get the most value out of the tool as quickly
as possible. So whether that’s finding the answer to your question very quickly, or submitting a
bug very quickly, I think that’s why email has become such a popular standard, because although
the email clients aren’t very good, submitting an email message they don’t have to spend a week
learning the system”

The interview with Expert C also mentions the need for facilitation when new users are
involved and goes on to suggest that if there are a high population of novice users, other
more familiar tools can be evaluated.

“[…] that especially for what I would call the naive user, the one that isn’t really a programmer,
that they have to be led into this system. There has to be some degree of facilitation on the inside to
use their input effectively. They won’t write a good bug report on their own, and that thus you
might want to have channels that they are more familiar with, like chat or telephone”

This is backed up by Expert F who says that it’s important with some facilitation when
employing these tools to help the new members use them and help both them and the
community take advantage of their benefits.

“For example if a user posts a question to the list and it turns out it’s a bug, ask them
to fill it out in the issue tracker themselves, rather than doing that for them. So engage
them and try to, just as an example, involve them by pointing them to the tools that you
have. And only set up tools that you use. If you’re not using a tool, don’t set it up.”

Experts mentioned in a case of a vendor or supplier backed community the importance
of using the same tools for the community as for the internal engineers that are working
on an open source project. Expert F said that there are only a handful of reasons why
information should be hidden from the public community, like reporting security issues
and discussions about people. But in these cases it’s better to have features in the tool-
chain that enables hiding certain information from the public and only give privileged
team members access, than to have a whole separate toolset for this purpose.

“Well there could be some issues with security sometimes, for examples we have private
communication lists for if you want to report vulnerabilities in the code or something like
that, or if you have discussions about people. You want to vote in a new committer for
example or in the community, you will have that discussion in a private environment so
people can speak freely. But that are probably the only reasons where you have private
communications and I think all the rest should be as public as possible”

Expert B had also seen this problem before, and was in the process of changing a big
project to use the same tools for engineers and community members.

“[…] the need for collaboration between […] engineering and the community is also
increasing consequently. What we’ve set up at the moment, is that we’re going to have
the community to use the exact same tools as our engineering team. Meaning; the
engineering team is using an issue tracker and Github. Then everyone has his own ID
at Github, and that’s the baseline. Then they have Campfire as an online chat, they
have Review Board as a code review tool. This is for advanced, this is daily 8 hours a
day work. For community needs, we just need to have an issue tracker and Github,

 Page 30 of 55

period. So then that’s going to be JIRA by the way, and Github, and these 2 tools are
going to be used by both […] engineering and the community.”

Expert C had an interesting comment about competing tools, that if you want a group
of people to start using a certain toolset, it needs to be better than the other toolset it’s
competing against.

“[…] when you want to attract those people to […] rather than JIRA and Subversion
etc. you have to actually provide them with features that are more desirable than the
tools that they are currently running”

Expert D points out a scenario where keeping things separate would make sense. If the
community members are mostly non-technical users, having them use the same tools as
developing engineers would possibly generate a lot of noise for the developers, so
assigning a super user to filter the content from the community tool over to the private
one.

“[…] you can think that if you would give the users access to the community site, it could generate
a lot of unnecessary noise because the users don’t have the competence. Like is it me that has an
error or is it the software? Or that the users don’t know how to use features. Then such private
solutions would have some value, where you would have a super-user that report this back to the
community. But yes, it can vary […] if you have sufficient technical skills; you understand what
you can and cannot ask, and what you should try first.”

4.4. Summary of findings

The following table summarizes the identified barriers that need addressing and
supporting findings from the data collected from the document analysis and interviews
with project stakeholder group.

Table 4.3: Summary of findings from stakeholder group

Categories Barriers Findings
(D: Document analysis / I: Interview with Stakeholder)

Adoption Few public
administrations
adopt the
software.

D:Install base for Open e-PRIOR is just a handful of installations

Distribution
and release

Source code
visibility is low

D: The only link to source code of Open e-PRIOR found on the
JoinUp site is in a thread in the forum

D:JoinUp features are not in active use by the community today,
and serve as a one-way communication channel of documentation
and source code

Community Community’s
influence on
project is low

I:” they have to understand that they cannot ask for features that are too much
customized for their solution”

I:“So, on activities to collect all the requirements, to collect all the features that
has to be implemented by our project manager”

Page 31 of 55

 Recruitment to
the developer
community is
low

D:Downloads not materializing in a corresponding growing of the
current community

D:Community has less than 20 members

D:Activity level on the JoinUp site is rather low

Governance Development
process is
hidden from
community

D:Detailed project plan for the project is documented in an internal
document

D:Development process is a closed process used internally in the
EC organization and the development process exists more or less
separately from the activity on the Open e-PRIOR JoinUp site

I:“We didn’t do it online, but internally in internal meetings”

I:“we didn’t need an online transparent process to be followed by other
developers, because we were all here”

I:“sometimes it’s easier to go through email and we start discussing through
email”

 Decision
making
process of EC
is slow

D: planning and decision making processes of the EC is a slow

Documentation Access to
documentation
is unwieldy

D:Project documentation organized in rather comprehensive office
documents

I: “[…] we develop something new, we have to update that document and this
document. Maybe this document is a previous version, and the software is
another version.”

Technical Technical
entry-level is
high for
beginners

D:Student struggled to get Open e-PRIOR working despite being
software developer by trade

D:These [companies] also had difficulties getting everything up and
running

I: “All the database classes are now grouped together. So it’s clearer, but we still
have to improve it”

I: “[..] they have to listen to the complex environment that is all the member
states of the European Union, so they have to be aware of all the standards that
are in place.”

Collaboration Collaborative
tools for
community
development is
insufficient

I:“We won’t say that JoinUp now joins the best of breed in these kinds of tools,
so again I think, this is based on Drupal, and modules that have been thrown
together”

 Page 32 of 55

The following table summarizes the potential measures to overcome the barriers and
supporting findings from the interviews with the F/OSS expert panel.

Table 4.4: Summary of findings with F/OSS expert panel

Categories Measures Findings (I: Interviews with F/OSS expert)

Adoption Learn from commercial
marketing

I:“[…] the ways that companies marked projects are applicable to
open source projects”

 Raise awareness with
boundary spanning

I:” […] you need to be aware of what other systems there are in
this sphere that you’re operating in, and what communities are
there out there already. And then make them aware of what you
do”

Distribution and
release

Make source code more
accessible

I:” […]Keep the code visible.”

I:” […] always have a current state of your code which can be
examined by people who are new to your project[…]”

 Organize source code
according to best
practices

I:” […] once you have two different threads of development, you
always have this problem that they diverge and the problem of
getting them back together is a very, very difficult, time consuming
and expensive”

I:” […] base any new project on Git, because of that, and you
know, let people do their work and not concern myself that there
are little forks out there. I think that having a central repository
that gets pulled into though, is absolutely critical”

I:” But in general, the best practice in software development is also
valid here”

Community Let community have
influence on the project

I:” […] developers must be able to take the project in the direction
they wish […]”

I:”So suggestions and development has been neglected by the
supplier so that the community is also neglected to some degree.
The supplier feels too much responsibility for the software solution”

 A clear unified mission
statement for
organization and
community

I:” […] for a community to be motivated, to be united, there
needs to be a strong, we call that mission statement […] And
with the mission statement, you need to have the community
members adhere to it, and also the company needs to adhere to it”

 Rewarded and motivate
community members to
get engaged and join

I:” […] the more visible your community is as a community
vector, the higher the engagement of the people in the
community.[..] It’s really a motivational driver”

 Don’t treat members
like 2nd class citizens

I:” […]community developers feel like 2nd class citizens and that
really kills motivation.”

I:” The internal team is totally responsible for it. And again it’s
like that 2nd class citizen thing”

 Be welcoming to new
members

I:” […] the way that you engage with people that are new to a
project you can either encourage them or discourage them from
becoming more involved […] that’s very important, so you need to

Page 33 of 55

be friendly”

I: “for people that are for the first time engaging with your project,
sometimes that’s a bit scary for people […]might be even a bit
more friendly that you would be in other circumstances”

Governance Open up process and
make visible to
community

I:” […] that’s very important. It’s one of the main aspects of open
communities that we preach actually […]”

I:” I would say for running a project that’s really, really
important. It’s extremely demotivating to come into a project where
you have no idea why things are the way they are”

I:” […] it is one of the cornerstones of open source development
[…] also development process, but also decision processes and
governance.”

I:”[…] there are companies that have tried to keep their
development separate from their community, and they always fail”

Documentation Make documentation
easily accessible

I: “[…] the wiki is always updated with documentation on
installation, use and everything.”

I: “Wikis often run to garbage after a while, you really have to
have periodic cleanup processes”

Technical Lower entry-barriers as
much as possible for all
roles

I: ”It’s especially important for users. Like if your users can’t
figure out how to get started, you’ll bounce quite a lot of them”

I:” […] it’s a key requirement. And it needs to be reflected in the
way the project is built.”

I:” […] low learning curves. So what is the lowest learning curve
necessary to start using this project. And then what is the learning
curve necessary to be a developer on some corner the project.”

I:” [...] if an open source project is just dumped online, then you’re
100% left to yourself to install it, and then it’s critical that it’s
easy to do an install.”

Collaboration Provide well-
functioning
collaboration tools

I:” […] an issue tracker with light project management tools is
what people need.”

I:” Most important stuff are workflows and processes […]then
how do you support the processes you have defined with proper
tools”

I:” Yep, those are essential […] having a public bug tracker that
is easy to submit to is very important. New contributors often come
in that way.”

I:” […] anything that slows the user down or distracts the user is
going to be a big hindrance.[…] making it possible to get the most
value out of the tool as quickly as possible”

I:” […] the naive user, the one that isn’t really a programmer,
that they have to be led into this system. There has to be some
degree of facilitation”

 Page 34 of 55

I:” […] try to involve them by pointing them to the tools that you
have. And only set up tools that you use. If you’re not using a tool,
don’t set it up.”

 Unify tool-chain for
community and
vendor’s engineering
team

I:” […] the need for collaboration between […] engineering and
the community is also increasing consequently. What we’ve set up
at the moment, is that we’re going to have the community to use
the exact same tools as our engineering team.”

I:” […] when you want to attract those people to […] have to
actually provide them with features that are more desirable than
the tools that they are currently running.”

I:” […] it could generate a lot of unnecessary noise […] But yes,
it can vary […] if you have sufficient technical skills”

Page 35 of 55

Chapter 5

Discussion and recommendations

In this section the challenges identified through the analysis is discussed against relevant
literature on the subject and the possible measures for overcoming them is
recommended.

5.1. Adoption

Even though there is an increased awareness of the benefits of F/OSS in the public
sector and governments are considering laws to promote its use, there are still
challenges. Despite the expected benefits, the reluctance described by Peeling and
Satchell (2001) seems to prevail, exemplified by low rate of adoption of Open e-PRIOR.
This is likely to change as more governments pass laws encouraging the use of F/OSS
(Applewhite, 2003). The persevering reluctance of F/OSS adoption in the public sector
agrees with the suggestions of McDonald et al. (2003), who believes that IT managers
stick to software they already know. The behaviour and perceived uncertainties these
managers have of adopting F/OSS is backed up by institutional theory. DiMaggio &
Powell (1983) describes that organizations will, when faced with ambiguous goals and an
uncertain environment, choose to model themselves on other organizations. This means
that as long as aspects around using open source software are unclear, and similar
organizations are not using F/OSS, public organizations will likely not choose to adopt
F/OSS.

Overcoming these barriers is possible by addressing the uncertainties in the public
sector, raising the awareness of open source alternatives to public organizations and
their benefits. For example addressing the security concerns that some public
administrations might have against F/OSS, indicated in the EnFeOSS study (Giacomo,
et al., 2012). One informant from the expert group points out that F/OSS has proven
itself to be more secure than its proprietary alternatives in recent years. This is much due
to auditability benefit of F/OSS that is mentioned in literature (GBDirect, 2001). It is
therefore important to make public administrations aware of the benefits of F/OSS.
Also helping is government’s policies towards increased use of F/OSS.

A technique for communicating to the outside world is the use of boundary-spanning
when raising awareness of an open source project. The Open e-PRIOR project is
already doing boundary-spanning techniques in that they are going to conferences and
speaking to people at events and also doing boundary-spanning online. The literature
also mentions that this is a very effective technique when used on the internet (Hars &
Ou, 2001). Open e-PRIOR could approach organizations with common interests like
Difi (Agency for Public Management and eGovernment), and the corresponding
agencies across Europe to a workshop discuss a draft proposal on how to collaborate
on the further development of the project The expert group also mentions other

 Page 36 of 55

boundary-spanning techniques that are widely used today. Getting publicity in the press
by being interviewed by reporters is relatively easy if you have something interesting to
communicate. Besides, getting an article in the paper is very valuable if you compare it
to what an advertising campaign with the same coverage would cost. Also blogging and
guest-blogging was mentioned several times by informants. From these it’s also possible
to derive a social-media strategy that leverages social media channels to get publicity
around the project. In addition, case descriptions in online platforms like the
ePractice.eu (ePractice, 2012) or reports like the European eGovernment surveys or the
United Nations e-Government survey can also help spread the awareness.

5.2. Distribution and release

The Open e-PRIOR software is today made available through the JoinUp platform
where you can download the latest and previous releases of the software. However, the
intermediate source code is not available to the community on the JoinUp project site.
Making source code available through the project site so it’s easy to find and inspect by
the public would be in line with general recommendations for open source development
and motivate more people to contribute.

The problem of having two different development threads are illustrated by expert B,
where you will have a problem with the two diverging as they are both developed in
different directions. Although having two source code branches is not a problem, it’s
recommended that that there be only one main development thread. Expert B suggests
that the community version should be the main development thread, and then
periodically take from the community version to make a “stable” version that has gone
through quality assurance rigorous testing procedures. The expert mentions a good
example of a project where two versions of the software exist; one community version,
that is the main development thread, and a “certified” version. Both versions are open
source, but the certified version is thoroughly tested and suitable for production use.

Similarly, an option for the Open e-PRIOR project is to merge the two versions into
one version, making the Open e-PRIOR version the main development thread, and
have the EC development team develop on this version. Periodically taking selected
contributed features from this version over to a “Certified” version that go through the
quality assurance and testing procedures for releasing a new version.

5.3. Community

The Open e-PRIOR project faces several governance challenges of evolving the internal
endeavors of the EC into engaging the users and other organizations in EU member
states in a community around further development of the software. Engeström (2004)
describes that this model of “co-configurative” work requires the integration of the
user-organizations as active subjects. For this collaborative model to work, a dynamic
dialogic relationship between the different actors is needed.

To be able to motivate and engage new and existing members to the community, the
current Open e-PRIOR team should change their processes to work in the public. Then
as new members join the community, they will be able to see the whole process of
developing Open e-PRIOR and participate. Several of the F/OSS experts state the
importance of the planning activities and decision making being done in public thus

Page 37 of 55

generating trust and credibility to the project in the eyes of the outside world, while the
full transparency of activities in the project will motivate and engage new members to
join. Since these activities are now done internally at the EC, this leaves the external
members of the community with little influence on the direction of the project. To
enable the community to have more influence on a project, a commonly used method
combined with a public planning process, is introducing ways to vote for features etc.
Another study by O’Mahony and West (2008) describes that there is a control vs.
growth tension when organizations try to keep control over the project’s strategic
direction. Keeping this control limits the ability for the community to grow.

Informants of the expert group mention the importance of communicating a clear
mission statement on the website. A few informants go on to elaborate that it’s
important that this mission statement is unifying for both the community members and
the vendor or organization running the project. It should be something that both will
want to adhere to. This will help create clarity of what the community and project is
there for, and help as a guide to make sure the project stays on course. This again will
help motivate community members by building trust to the organization; this trust from
the community is kept as long as the organization stays on course and doesn’t drift from
the mission statement.

In the Open e-PRIOR case, the community is being built around the existing software
already developed by the EC. In their literature, O’Mahony and West (2007; 2005)
warns that with projects like this, the challenges differ from community-founded
projects in that since the community is not a part of the initial development, the
motivation for joining the community and contributing is affected. This is also backed
up by the expert panel who points out that rewarding the community is the way to
motivate and engage them to join and contribute to a project. Making the community
members feel a greater sense of ownership to the code is to consider creating something
that can compare to a “summer of code” event for Open e-PRIOR. Another example
mentioned that could be relevant for Open e-PRIOR is the reward of increasing skill
base. New members will be working in collaboration with experts from the engineer
team that will be able to help them by reviewing their code etc. ultimately increasing the
skills of other members of the community. This is also supported by research done by
Hars & Ou (2001).

5.4. Governance

Until now the Open e-PRIOR project has not been very transparent to outsiders,
mostly because most of the team members doing any work on it are all located at the
same place. The project also started out this way, and they never had any need to use
public communication channels since it was easier to just have meetings face-to-face.
Ambitions to expand the project to include external community members will, however,
drastically change the game for how work needs to be done. Experts interviewed
underlined the importance of open and transparent processes, stating that it is one of
the cornerstones of open source development.

The lack of transparency, slow decision process and rigid command and control
structures can leave normal community members feeling like 2nd-class citizens, and that
demotivates members enough to in some cases leave the community. Because if they
feel like they can’t get forward in the community and gain more influence, they tend to

 Page 38 of 55

become bored and quit. For Open e-PRIOR this might be reflected in the fact that the
Open e-PRIOR engineers use different tools than the community has access to,
excluding the other members somewhat from parts of the project that they might be
interested in having access to. Some informants emphasize the importance of not
ignoring suggestions from the community when they engage themselves. Many
informants mention examples of projects ignoring their community from the real world,
like i.e. Sun and Open Office who did exactly this, with negative consequences to
follow.When Sun microsystems bought a company called Star division, they had a good
many people inside who were doing development. But they didn’t really care that much
whether the outside community was contributing or not. This sort of project really
should have been as important as Linux, except that company did not run it as a
community project at all. And for that reason they only had about a 100 different
entities who had signed on as contributors to Open Office. In general if you’re not
going to operate as a community project, it might not be terribly effective to be an open
source project at all. Finally, when Sun microsystems were purchased by Oracle, the
community forked the project and split it off to Libre Office. And Libre Office has
been developing at very high speed.

One of the things mentioned in the data often is the need to have meritocratic
government in open source software projects, where a contributor would get rights in
the project based on his achievements. O’Mahony and West (2005) and Von Krogh et
al.(2003) also points out the importance of this. As members become more involved in
a project and they contribute more, their rights and status increases in the project. In
really large communities this would be very difficult to manage in a fair way if done
manually. One of the informants suggests that a reputation engine be used in those
cases, which will automatically generate metrics based on a member’s activity in a
project. Then it is easier to be fair when managing rights in a very large community.
Open e-PRIOR on the other hand is not there yet, and a manual process would work
just fine as a start, but it might be useful to establish a meritocracy never the less.
Informants explained that it’s normal for a vendor or organization backed open source
project to have a central ruling body that takes the important decisions. A meritocracy
could work as a motivating mechanism for any member to work their way into the
project and end up in the ruling body. Accomplishing that would also give the
community and project a whole new level of diversity, which according to informants, is
very important to a well-functioning community long-term. Other communities like
Ubuntu and Gnome for example, have organized foundations as their ruling bodies and
they employ a voting system for deciding what and when new features should be
implemented. The Open e-PRIOR project could explore this idea of forming a
foundation for the project. In this approach, inviting external members for the board is
important as the expert group explains, to get diversity in the decision group.

5.5. Documentation

As pointed out by external evaluations, the Open e-PRIOR site at JoinUp has
documentation for the software available through office documents that are fairly
comprehensive. This makes it more difficult to navigate for readers who are looking for
a certain piece of information. Keeping documentation in documents like this and
having the user download it matches the way Neus (2001) describes burying information
in an unwieldy tool. Multiple informants emphasize the importance of having websites
that are more intuitive for anyone and the information is digested and placed on a

Page 39 of 55

natural place so it’s easy to find. For the Open e-PRIOR project this could be done by
extracting important information from documents and making them available as web
content for easier navigation and use collaboratively by the community; for example
replacing a broken link or updating the information as it is outdated. A very common
tool for this is a wiki, which enables the community to collaborate on content more
easily. Scoping the information to different types of readers is also important.

5.6. Technical

The software architecture of Open e-PRIOR is fairly complex and consists of many
different components doing different things. The software has initially been designed by
the EC and then released as open source, building a community around the project.
O’Mahony (2007) warns that not developing the code and the community in parallel can
affect the external developers’ ability to contribute to the project by making the learning
curve too steep for beginners. Getting started should be as easy as possible. Many from
the expert group mention this. It is especially important for users downloading and
installing the software because almost all new community members start off as users
first. So it’s important to attract them as users. Some may stick around to become
contributors eventually. Developers can tolerate a bit more hassle than users to get
started, but that doesn’t mean that the developers in the community shouldn’t try and
lower the entry-barrier as much as possible. Experts explain that the lower the barriers
are, the bigger the chance that a new member will be able to contribute back to the
project. One way to make it easy for developers to get started is to have good
architecture and modularize the code base so that a new developer doesn’t have to learn
the whole system to be able to make his first changes. Another is the installation and
deployment procedure for the software. For end-users this should have the lowest
learning curve, preferably automated through wizards or install scripts. To lower the
threshold for users to get started you could provide a sandbox installation for users to
try out online, and also make sure that there is always an updated properly compiled
package to be downloaded, similar to installing Apache or Postgresql on a Debian
system. This will make it less likely that a user gets frustrated and moves on before even
getting started. For developers the same argument applies to some extent. If a developer
is unable to get the software up and running on his machine, then he might just quit and
often never even tell anyone about it. The evaluations done earlier (Teinum, 2012)
illustrate this will, as the evaluator didn’t manage to get the software up and running in a
reasonable time and therefore failed to contribute any code to the project, even though
this was the intent. It can be wise to publish a selection of low hanging fruits as entry
points for beginners. Those could be testing tasks, documentation etc.

5.7. Collaboration

It’s well established that providing good collaboration tools is crucial for anyone trying
to set up an online community, and when development of software is involved it
becomes even more crucial. Some informants in the expert group pointed out that the
tools were not as important as the processes they support. For most online
communities, regardless of whether there is software development involved, a form of
asynchronous communication channel is essential. Also the research by O’Mahony and
West (2005) underlines the importance of tools for online discussions. This can either
be a forum or a mailing list for example. The choice really depends on a lot of things

 Page 40 of 55

like, the size of the community, the purpose etc. Open e-PRIOR has already a mailing
list and a forum, but they are not being used extensively by the community, nor by the
EC developers. The technical aspects of a mailing list are not that complicated. A
community member simply needs a way to subscribe and unsubscribe to it. What’s more
interesting is that the content being sent out on the mailing list should be digested in a
way that there is a minimum of junk going out on the list. If there is too much junk in
the mails from the list, members will often either unsubscribe, or start ignoring mails
from the list. One informant went on to call these kinds of mails for “Cyber CRUD”.
He went on to describe several mails from different mailing lists he had in his inbox,
and his personal opinion was that users tend to start ignoring pretty quickly mails that
look very machine-generated, whereas a better design of the content would help getting
the message through to the reader at a glance, rather than having to dig into the mail to
find the interesting parts.

Another very common tool for this kind of communication is forums. They are less
intrusive than mailing lists since the user has to go visit them to find and collaborate
through messages. This paradigm is better suited for some collaboration forms, like
support questions to the community for example. This is often the main collaboration
tool of an online community, which is why it’s essential that the technological solution is
stable and easy to use for community members. Otherwise they will switch back to mail
or other communication forms that disrupts one of the main benefits of these tools.
Messages that are posted are archived so that new members can search for what they
want to know, and if it has been asked and answered before, the community doesn’t
have to answer the same questions over and over again. This way, forums will gain
higher and higher value to the community the more actively they are used. Even search
engines will index the entire publically available contents of a forum easily so the
content is searchable from all major search engines.

When moving over to the software development activities, O’Mahony and West (2005)
and the expert group agree that the most important tools for a community to
collaborate is a bug tracker with light product management features and forums or
mailing lists. For Open e-PRIOR there are two competing tools that do a lot of the
same. JoinUp’s bug tracker, which is the one publically available today, and the internal
JIRA bug tracker. The JIRA bug tracker is the main tool used by the EC for software
development. Even though they are both bug trackers, the feature sets of these two
tools are quite different. The bug tracker at JoinUp is inferior in functionality to what
the JIRA product offers. The JoinUp bug tracker is missing project management tools
required for good community development, like planning and coordination between
developers. Some of the informants from the EC group with intimate knowledge to
JoinUp went far to indicate exactly this, and said that the JoinUp platform was not really
the best of breed in this regard. They also pointed out that there are other free tools out
there that would do the job much better.

JIRA is actually one of these free tools, as Atlassian offers all of their tools for free to
open source projects under some simple terms that the Open e-PRIOR project easily
qualifies to (Atlassian, 2012b). One immediate benefit of this scenario would be that the
Open e-PRIOR engineering team already knows how to use these tools and would be
comfortable straight away. Another is that JIRA is one of the most popular issue
trackers in the world, and the chances that new members would also already know this
tool are pretty high. A third is that Atlassian also offers all the other tools in their suite
for free, and all these tools are made to be integrated with each other. Everything from

Page 41 of 55

bug tracker, wiki, build server, code review, automated testing tools, to mention a few.
There are also other open source tools available that could cover the same functionality,
i.e. Git, Trac, MediaWiki and Gerrit, that would be familiar to open source developers.
But regardless, what’s important is that the members of the external community and
professional engineering team all use and collaborate through the same tool-chain.

Another important tool mentioned by O’Mahony and West (2005) is a source control
tool for collaborating on the code. For simple projects it might be enough with a single
repository for the whole project, especially when the community and code base is very
small. When the community or the code base grows, the need to properly organize the
source code will arise. This will also depend on the amount of activity going on in the
project and is a coordination challenge. For the ruling body it might be tempting to just
dictate and take decisions without any regard to the needs of the community. But for
the community members, it’s also a question of freedom and influence, and being able
to do what they want in their own tree. So the need to have more than one branch or
tree will arise eventually. In these situations it is important to find a solution that works
for both the engineering team and the external community developers. The expert panel
proposes that one way of doing this is to distribute the source control management
through Git for example. Git will allow you to keep your central repository that the
ruling body has complete control over. But any developer can fork the central
repository and start his own branch without any extra management. If the developer on
the satellite branch ends up with something that he wants to contribute back to the
central repository, Git uses a mechanism of pull requests. This way the ruling body of
the central repository can pick their litter in contributions to go into the next release by
accepting a pull request after evaluating whether the contribution is good enough to go
into the next release. Then normal quality assurance can be done on the code in the
central repository and the release process runs as normal. For Open e-PRIOR, this
might also be an interesting approach to enable the community to contribute easily
without a lot of extra administrative overhead. Git is widely used by many prominent
open source projects today, like the Linux kernel, Android, Drupal, Fedora, Qt and
VLC to name a few (GitProjects, 2012).

5.8. Anti-patterns and refactored solutions

In the case of Open e-PRIOR, the findings indicate the presence of some of the most
common anti-patterns for communities and they all have well documented proposals
for refactored solutions. Interestingly enough, the refactored solutions to these anti-
patterns coincide very well with the input from the external F/OSS expert group. This
should only strengthen the case for the proposed solutions. As the literature on anti-
patterns describes, once an anti-pattern has been identified, you can remedy the
problem by refactoring the pattern toward improved benefits and minimized
consequences (Brown, et al., 1998).

5.8.1 Command and control anti-pattern

As the EC is the founder of the Open e-PRIOR project, it is natural for the EC to want
to want to have strong control of what features are included in the software, for reasons
such as to protect reputation with users, ensure quality and testing. This “command and
control” approach is likely to counteract the successful growing of a contributor
community. This is supported by the control vs. growth tension described by

 Page 42 of 55

O’Mahony and West (2008). Examples of this can be roadmaps that are not being
published or lacking the room for external influence.

The volunteers entering into the project are likely to be undermined by the “command
and control” management pattern and features will seem to appear by announcement
without public discussion, much as described in the case of Open e-PRIOR’s planning
activities. The consequence of this anti-pattern can be a reinforcing loop preventing the
successful growth of a healthy community due to the lack of trust in the community
itself.

The literature describes that the command and control structure anti-pattern is best
treated by exchanging influence for control (CommunityManagementWiki, 2012). This
means that the community members who are not a part of the control organization
would have to get incorporated into the decision process and have the possibility of
influencing the direction of the project. The founders of a project will in any case
warrant enormous respect and authority in a project.

Literature also supports this solution, where F/OSS projects are described as co-
configurative work. Collaboration among people of varying expertise including
professionals, experts and users requires a dynamic, dialogic relationship between the
different stakeholders of the project (Engeström, 2004).

Several informants in the external experts group mention that the community needs to
be rewarded to keep the community motivated and engaged; by given influence in the
project and the direction it’s going. This solution also fits into the description of
meritocracy in a community project.

Another proposed treatment to this anti-pattern mentioned by literature is to open up
the processes completely and work in the public (CommunityManagementWiki, 2012),
which fits well with the need for transparency that can be seen very strongly indicated
by all the informants in the data gathered through interviews.

5.8.2 Water cooler anti-pattern

Since the majority of the communication in Open e-PRIOR is done internally in the
EC, there is clear evidence of the “water cooler” anti-pattern. This anti-pattern is
described by the symptom of too much of the work being done behind closed doors.
Although there is a public newsletter and forums available through the JoinUp site, it
might be difficult for community members to understand the motives and priorities of
the project.

Literature also have a clear treatment described for this anti-pattern, which coincidently
is the same refactored solution as the second one in the command and control anti-
pattern; process transparency and working in public mode.

5.8.3 The big show anti-pattern

Up until now most of the development work on Open e-PRIOR has been done
internally in the EC. The Open e-PRIOR project releases periodically new versions of
the software based on a roadmap of features. However the intermediate source-code

Page 43 of 55

and development progress between releases remains hidden for the public community.
This is an indication of the Big Show anti-pattern, a phenomenon where organizations
do their work behind closed doors, maybe for months at a time before announcing it to
the public. The ability to motivate outsiders to become interested and for a community
to grow is negatively impacted by this behavior. Project members assigned to the project
work on these features, interacting less with the community. At the end, the result is
release of a huge chuck of code that’s had no peer review from the external community.
This might also result in people outside the company feeling like 2nd class citizens.

The big show anti-pattern solution needs a bit more balancing to remedy the situation.
But a code-drop type release announcement like in Open e-PRIOR today is too late for
the community to get involved and start participating. So announcing new features to
the community early and then involving members at an earlier stage is a solution
(CommunityManagementWiki, 2012). Like some informants emphasise that community
members should be involved in the planning phase, and that planning decision making
should be done in public in the community in addition to the development.

5.9. Summary of recommendations

The following table shows the identified barriers that need to be addressed and
corresponding potential measures for overcoming them.

Table 5.1: Summary of barriers and measures

Categories Barriers Measures Suggestions for Open e-PRIOR

Adoption Few public
administrations
adopt the software.

Learn from
commercial marketing

Raise awareness with
boundary spanning

Invite Difi, and the corresponding
agencies across Europe to a
workshop discuss a draft proposal
on how to collaborate on the
further development of the
project.

Distribution and
release

Source code
visibility is low

Make the source code
more accessible

Organize source code
according to best
practices

Provide binaries to download and
install.

Supplement with online sandbox
installation for users to get a first
flavor of how it works.

Community Community’s
influence on project
is low

Reward and motivate
community members
to get engaged and
join

Don’t treat members
like 2nd class citizens

Let community have
influence on the
project

Consider to introduce ways to vote
for features etc.

 Page 44 of 55

 Recruitment to the
developer
community is low

A clear unified
mission statement for
organization and
community

Be welcoming to new
members

Consider how to create something
that can compare to a “summer of
code” event for Open e-PRIOR.

Governance Development
process is hidden
from community

Decision making
process of EC is
slow

Open up process and
make visible to
community

Make sure internal EC staff pursue
more decision-making openly
online and publish questions and
answers etc.

Documentation Access to
documentation is
unwieldy

Make documentation
easily accessible

Replace PDF documents with
Wiki pages, and rather consider to
create PDF documents related to
stable versions for the record.

Technical Technical entry-level
is high for beginners

Lower entry-barriers
as much as possible
for all roles

Publish a selection of low hanging
fruits as entry points for beginners.
Those could be testing tasks,
documentation etc.

Collaboration Collaborative tools
for community
development is
insufficient

Provide well-
functioning
collaboration tools

Unify tool-chain for
community and
vendor’s engineering
team

Consider to switch to more
commonly used open source tools
such as Wikimedia etc.

Page 45 of 55

Chapter 6

Conclusion and limitations

6.1. Conclusion

Because of its basic philosophy F/OSS has a potential to succeed in the public sector.
The openness and sharing mentality of F/OSS is congruent with the accountability
governments have to its citizens. The Open e-PRIOR project is an example of such a
project. A goal of the project is pursuing an open source strategy that will build a
community around the project and enable the sharing of knowledge, collaborative
development and re-use of this software across the whole of Europe.

Through this study of the Open e-PRIOR project, several barriers that need attention
for the project to build a community and reap further benefits of F/OSS have been
identified along with possible measures to overcome these barriers. The barriers and
measures are presented in Feil! Fant ikke referansekilden.

Public administrations reluctance to adopt the software is hindering users to become
potential community members. In addition, because of the way the project development
is set up today, it lacks a practical way of letting outside members of the community
collaborate on development of Open e-PRIOR. Even though the project is present at
the JoinUp forge, it is not used by the EC development team, hiding the development
process from the public and leaving the community with little ability to influence the
project. The source code developed by the team is only made available on each release
and the accompanying documentation is released in unwieldy PDF documents. In
addition, the technical entry-barrier to the project is an issue for new users and
developers. Another factor hindering community contributions is the lack of
transparency in the decision-making process. Planning and development is mostly done
internally at the EC, and future plans are communicated in a one-way fashion and not in
detail to the community. In summary, much of main challenges boil down to
transparency of the processes and enabling the community to be able to become an
engaged part of the project in an easy way.

This answers the first research question.

Succeeding in building a sustainable F/OSS community around the Open e-PRIOR
project, this study proposes that the EC address uncertainties that public
administrations might have to F/OSS and raise awareness of the benefits that open
source might contribute to these public organizations. Secondly changing the project
processes from internally hidden, to be more transparent and visible to the community,
also enabling the community to take part in the decision making process i.e. by
introducing a voting system for community members. The project needs a better way of
collaborating on software development with the external community either by
improving the current collaboration platform, or find alternative F/OSS development

 Page 46 of 55

tools to build a new community developer site. The collaboration platform need to
provide the community with access to the current development source code, a better
bug tracker with simple project management features, and asynchronous
communication tools, all enabling for the public visibility of the on-going development
process. To further motivate new members to contribute to the development, the entry-
barrier should be lowered as much as possible, making it easy to get started on a low
hanging fruits for beginners to pick.

These barriers are also described through a practical lens of three identified community
anti-patterns which help illustrate the presence of challenges. Refactored solutions the
community anti-patterns are described, by applying the measures identified.

This answers the final research question.

6.2. Limitations

Though care has been given to ensure that the proposed strategic measures is of generic
nature within the context of public administrations, it could be argued that following the
use of one single case-study, the findings are partly limited to Open e-PRIOR. Hence, in
order to further generalise the findings, further research on other F/OSS projects
should be carried out. Also, since the data collected from the F/OSS expert panel is

based on their own experience it is unavoidable that in this study, certain degree of
subjectivity can be found.

Further, the EC and any other entity considering the use of the proposed strategic
measures as input should bear in mind that in order to ensure successful building of an
open source community, the measures should be accompanied by a number of other
aspects. Such aspects were defined as out of scope of this project (Chapter 1.4) and
include activities such as defining of implementation plan, review, change management,
training of staff, project management, etc.

Page 47 of 55

Chapter 7

Bibliography

Applewhite, A. (2003). Should governments go open source? IEEE Software, 20(4), 88-
91.

Atlassian. (2012a). JIRA - Track bugs, tasks and projects for software development,
2012, from http://www.atlassian.com/software/jira/overview

Atlassian. (2012b). Open Source | Atlassian, 2012, from
http://www.atlassian.com/opensource/overview

Boynton, A. C. (1998). Invented here: Maximizing your organization's internal growth and
profitability: Harvard Business Press.

Brown, W., Malveau, R., & Mowbray, T. (1998). AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis: Wiley.

CommunityManagementWiki. (2012). Community Management Wiki - Anti Patterns,
from http://communitymgt.wikia.com/wiki/Category:Anti-patterns

D'Orazio, S., Fichera, M., Rodrigues, J. F., & Daniels, M. (2010). Open e-PRIOR Software
Architecture Document. European Commission.

Dar, O., Forsbakk, D., Johansen, A., & Liljemo, K. (2011). Open e-PRIOR study : A
Master student project at the University of Agder, Carried out in a collaboration with the
European Commission.

DiMaggio, P. J., & Powell, W. W. (1983). The iron cage revisited: Institutional
isomorphism and collective rationality in organizational fields. American
sociological review, 147-160.

Dougiamas, M., & Taylor, P. (2003). Moodle: Using learning communities to create an open
source course management system.

Engeström, Y. (2004). New forms of learning in coconfiguration work. Journal of
Workplace Learning, 16(1), 11-21. doi: 10.1108/13665620410521477

ePractice. (2012). ePractice.eu, from http://www.epractice.eu/
GBDirect. (2001). Benefits of Using Open Source Software. Retrieved from

http://open-source.gbdirect.co.uk/migration/benefit.html#auditability
Giacomo, D. D., Goedertier, S., Liljemo, K., Frade, J. R., & Hee, N. V. (2012).

ENFEOSS Vision Document - The vision and business case for an enhanced software
catalog for e-government. European Commssion.

GitProjects. (2012). Projects that use Git for their source code management., 2012, from
https://git.wiki.kernel.org/index.php/GitProjects

Hars, A., & Ou, S. (2001). Working for Free? – Motivations of Participating in Open Source
Projects. Paper presented at the Hawaii International Conference on System
Sciences, Hawaii.

JoinUp. (2012). JoinUp : Open e-PRIOR Retrieved 26.10.2011, 2011, from
https://webgate.acceptance.ec.europa.eu/joinup/software/open_e-
prior/description

McDonald, C. J., Schadow, G., Barnes, M., Dexter, P., Overhage, J. M., Mamlin, B., &
McCoy, J. M. (2003). Open Source software in medical informatics--why, how
and what. International journal of medical informatics, 69(2-3), 175-184.

 Page 48 of 55

Neary, D. (Producer). (2010). Community Anti-Patterns - MeeGo Conference 2010.
Neus, A. (2001). Managing information quality in virtual communities of practice. IQ,

119-131.
Nygaard, K. (2012). Kristen Nygaard, from

http://en.wikipedia.org/wiki/Kristen_Nygaard
O’Mahony, S. (2007). The governance of open source initiatives: what does it mean to

be community managed? Journal of Management and Governance, 11(2), 139-150.
OFE. (2011). Open IT Procurement in the UK Public Sector. Retrieved from

http://www.openforumeurope.org/openprocurement/openprocurement/open
-procurement-
library/Open%20IT%20procurement%20final%20version%2001_11_2010.pdf

Peeling, N., & Satchell, J. (2001). Analysis of the impact of open source software.
QinetiQ Ltd. QINETIQ/KI/SEB/CR010223. Available at
http://www.govtalk.gov.uk/interoperability/egif_document.asp.

Perens, B. (2007). The Open Source Definition. Retrieved from
Settas, D., & Cerone, A. (2011). Using antipatterns to improve the quality of FLOSS

development. Retrieved from
Teinum, A. (2012). Open e-PRIOR - An evaluation. University of Agder.
Thunus, D. (2012). DIGIT.B4 eProcurement Section - Software Development Plan. European

Commission.
Von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community, joining, and

specialization in open source software innovation: a case study. Research Policy,
32(7), 1217-1241.

West, J., & O'Mahony, S. (2005, 03-06 Jan. 2005). Contrasting Community Building in
Sponsored and Community Founded Open Source Projects. Paper presented at the
System Sciences, 2005. HICSS '05. Proceedings of the 38th Annual Hawaii
International Conference on.

West, J., & O'mahony, S. (2008). The role of participation architecture in growing
sponsored open source communities. Industry and Innovation, 15(2), 145-168.

Wikipedia. (2012). Open source software development, from
http://en.wikipedia.org/wiki/Open_source_software_development

Page 49 of 55

Appendix

 Page 50 of 55

Annex I. Interview invitation email

Dear Sir/Madam,

My name is Atle Johansen. I am a Master Student at the University of Agder in Norway.
I am doing my master thesis, conducting a case study of an open-source e-procurement
software project at the European Commission.

My master thesis is focusing on “Succeeding with an open source strategy”, where I seek to
obtain a detailed understanding of the processes and approaches of barriers in community
building around an open-source project in the public sector.

It would be extremely useful for me to learn about your expert experience and knowledge of
open-source software.

In order to investigate your insight in open-source software I would be very grateful if you could
have time to allow me to conduct a telephone or Skype interview. The time and date will depend
on your agenda, and the interview will basically cover the following topics:

1. Open-source governance and development process

2. Open-source communities

3. Communication barriers

4. Open-source adoption

5. Technical barriers

6. Open-source project infrastructure

Your participation will significantly contribute to the success of this research and your help would
be highly appreciated.
If you have the opportunity, I propose conducting the interview at [DATETIME]
If this is not a good date for you, feel free to propose another date that is more convenient for
you.

Should you have any queries, please feel free to contact me through
telephone: +47 911 23 093, Skype: johatl or email: atlej04@student.uia.no.

Thank you for your kind attention and I am looking forward to receiving your reply soon.
Have a nice day!

Yours sincerely,

Atle Johansen
Institute for information systems,
University of Agder

Page 51 of 55

Annex II. Interview guide

[Name of Informant]
[Address]
[Telephone number]
[Email]

[Date]

Succeeding with an Open Source strategy: Interview Guide

Introduction

This interview is conducted as part of my Master’s Thesis “Succeeding with an Open
Source strategy: a case study of Open e-PRIOR, an e-Procurement software project at
the European Commission”. The master thesis is run at the University of Agder in
Kristiansand, Norway, at the Department of economy and social sciences - Information
systems, and in cooperation with the Directorate-General for Informatics of the
European Commission, Unit B4.

As indicated in earlier communication, the purpose of this interview is to gain further
insight into how to succeed with an open source strategy.

The interview consists of mostly open questions leaving the interviewee room to answer
as freely as possible according to his/her context, and the duration of interview will be
between 40-60 minutes.

Contact information for interviewer is:

 Atle Johansen
 Email: atlej04@student.uia.no
 Tel: +47 911 23 093
 Skype: johatl

The interviews will be recorded, transcribed for analysis, and then deleted after project
is completed. I would like to reassure you that your questions will be handled strictly
confidentially and no individual information about your answers will be disclosed
without your previous agreement. All answers will of course be handled confidentially.

The interview will be carried out through a telephone/Skype interview on [Date Time]

The contents of the interview are further explained in the next section, followed by the
questionnaire.

 Page 52 of 55

Interview Details

The questionnaire is divided in four sections:

1. Introduction

This section aims to collect information about you and your previous experience. We would
like to once again reassure you that any information provided will be kept strictly
confidential unless otherwise explicitly agreed with you.

2. Analysis Area 1: Governance

We would like to collect your input on governance aspects. We have divided the section
between development process and community.

3. Analysis Area 2: Communication

Here we would like your input with regards to communication from an Open Source
project to the outside world to attract users and contributors.

4. Analysis Area 3: Technical

In this last section we would like to collect your input on technical barriers and important
aspects of project infrastructure.

Page 53 of 55

Questionnaire

The table below contains the questions that will be asked during the interview along
with a brief explanation to describe possible options of each question.

Question Interviewer Notes

Introduction

1. What is your name?

2. What is the name of the
organization that you represent?
What is your role in the
organization?

3. Where are you located? - Country / institution

4. What is your relation to the
Open e-PRIOR project?
(Have you heard of the Open e-
PRIOR project)

- Developer / Facilitator

- Peripheral

- External

5. What is your experience with
Open Source software

- As user

- As community member / contributor

Analysis Area 1: Governance

Governance/Dev. process

6. What are your thoughts on the
importance of process
transparency in open source
software projects?

- Also Open e-PRIOR for relevant people

7. What activities do you think are
most important be visible to the
community in an open source
project?

- Ask about planning

- Ask about release

- Ask Open e-PRIOR about possible “hidden”
processes

8. What release / distribution
process do you think is most
beneficial for an open source
software project?

- Continuous integration

- Nightly builds

- Periodic, Feature-based releases

9. At what point do you think a
member should gain commit
access to source code when
joining a community?

- Ask about joining script

- Also Open e-PRIOR for relevant people

Governance/Community

 Page 54 of 55

Question Interviewer Notes

10. What do you think are important
factors for members who would
like to join a software
community project?

- Community process

- Joining script

11. What are your thoughts on trust
relationship within an open
source community?

- Skill level of members

- Communication “tone”

- Comfort for members

12. What factors would you say are
important when organizing a
software community?

13. (different kind of community
types)
(roles and responsibilities)

- Co-developer community (extending)

- Deployer community

- User community

- Homogeneous mass

- Different groups of users

14. What do you think are important
incentives for an organization to
release software as open source?

-

15. How do you think this is
different in the public sector?

-

Analysis Area 2: Communication

Communication/Barriers

16. What do you think are good
ways to raise awareness of an
open source software project and
reaching target groups?

- Also Open e-PRIOR for relevant people

17. What available information do
you feel are most important on
an open source project website?

- Ask about JoinUp when relevant
Use source-forge when not

- Technical level of information

- Audience for community site information

18. How do you think support is
best organized in an open source
software project?

- Forums/phone/ITIL

19. What are your thoughts being a
member of a community if you
have confidentiality challenges
i.e. through an NDA?

- Rules of EC / NDA

Communication/Adoption

Page 55 of 55

Question Interviewer Notes

20. What do you feel are important
incentives for adoption of open
source software?

- Describe

21. How important is (perceived)
software maturity for open
source software adopters do you
think?

- Perceived quality

- Perceived usefulness

- Technology acceptance

Analysis Area 3: Technical

Technical/Barriers

22. How important do you feel it is
for an open source software
project, that getting started is as
easy as possible?

- Requirements

- Installation / Deployment

- Customizing/ Building

23. What importance does software
architecture have for open
source software projects?

- Modularization of software

- Open vs e-PRIOR

24. What are your thoughts on
access to the source code and
source control in open source
software projects?

- Git / SVN

- Restrictive access

- Dual repository

25. Many software projects have
online demos of their software;
do you think these could have a
significant effect on open source
software adoption?

- Feasibility of online demo of Open e-PRIOR

Technical/Project infrastructure

26. What importance do you think
the availability of collaboration
tools are for a community?

- Wiki

- Bug tracker

- Forum/mailing list

27. What do you think is important
features to promote usage of
such tools in an open source
project?

- User friendly

- Collaborative features

28. If several overlapping systems
are present; what consequences
do you see could arise?

- Integration of tools

- Use of only one?

