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Abstract Ainslie (Theory and Decision, 73, 3–34, 2012) challenges our interpreta-
tion of the properties of hyperbolic discount curves in an iterated prisoners’ dilemma
(IPD) model. In this reply, we discuss the emergence of hyperbolic discount functions
in the behavioral economics literature and evaluate their properties. Furthermore, we
present a summarized version of our IPD model and evaluate Ainslie’s points of con-
tention.
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1 Introduction

Ainslie (2012, p. 27) (hereafter simply Ainslie) questions our understanding of the
properties of hyperbolic discount curves as modeled in Musau (2009) (hereafter [M]).
We are grateful for the opportunity to provide a more structured discussion of our
model and evaluate Ainslie’s points of contention. Evidently, our conclusions were
not clearly stated.

The paper is organized as follows: Sect. 2 provides a discussion of the emergence of
hyperbolic discount functions in the behavioral economics literature and evaluates their
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properties. Section 3 highlights the relevance of calculating incentives to cooperate in
the iterated prisoners’ dilemma (IPD) under non-exponential discounting. Section 4
presents a summarized version of the model and results in [M]. Section 5 responds to
Ainslie’s points with reference to the previous sections. Eventually, Sect. 6 concludes.

2 Hyperbolic discount functions

Hyperbolic discount functions incorporate two key behavioral features namely:

(i) Extreme impatience for payoffs occurring in the immediate future.
(ii) Declining discount rates over time.

In Sect. 2.4 of [M], several hyperbolic functional forms are surveyed but the most
common version is Mazur (1987):

D(t) = (1 + kt)−1 (1)

where D(t) is the discount function, k is the discount rate, and t represents a time
delay. Before characterizing the mathematical properties of this function (and hence
hyperbolic discounting functions in general), it is appropriate to first motivate their
emergence in the behavioral economics and psychology literatures.

2.1 Pre-hyperbolic discounting: The discounted utility model

Samuelson (1937) (hereafter [S]) proposed the discounted utility model (hereafter DU
model) for representing intertemporal preferences. A fundamental point in [S] is the
observation that representing tradeoffs at different points in time requires a cardinal
measure of utility (Assumption I, p. 156). Since the DU model’s introduction, it has
dominated economic analysis of intertemporal choice (Loewenstein and Prelec 1992,
p. 573).

In the DU model, an economic agent is represented as selecting between choices
based on a weighted sum of utilities: the weights being represented as discount factors.
The main underlying assumption of the DU model is that the discount factor is constant
over time (Assumption III in [S], p. 156). As an example, assume that the DU model
represents the decline in a kid’s utility for reading comic books. If the kid were to
evaluate his utility for reading comics three years from now in relation to two years
from now, then the percentage decline would equal that of two years from now in
relation to a year from now. The same holds for any evaluation that is done for some
pair t and t − 1 years from now (t ≥ 1). The DU model’s constant discount rate
assumption thus leads to an exponential discounting function—commonly associated
with financial calculations of present value. Formally, the functional form in [S] is
expressed in the following way in discrete time:

U (c1, c2, . . . , cN ) =
N∑

τ=1

δτ−1u(cτ ) (2)
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where U (·) is the time-separable intertemporal utility function, (c1, c2, . . . , cN ) rep-
resents a consumption profile: cτ denotes consumption in period τ , u(·) is the cardinal
instantaneous utility function and δ is the discount factor. In terms of the discount
factor and the discount rate (denoted k), the following inverse relation holds:

δ = (1 + k)−1 (3)

In [M], it is argued that a reason for the DU model’s dominance of economic analy-
sis of intertemporal choice relates to desirable mathematical properties inherent in
exponential discounting. Two properties identified are exponential discounting’s sta-
tionarity property which leads to dynamically consistent choices and its mathematical
tractability (refer to Sect. 2.1.2 for illustrated examples). However, a list of anom-
alies have been identified in the DU model that diminish its adequacy in modeling the
behavior of economic agents.

2.2 DU model anomalies and origins of hyperbolic functions

The literature on behavioral anomalies in the DU model arising from empirical and
experimental studies in behavioral economics and psychology is extensive (refer to
Fredrick et al. 2002 for a survey). In the following, we describe five main anomalies:

1. Falling discount rates—Relative to exponential discounting, individuals discount
the near future at a higher rate and the far future at a lower rate.

2. Preference reversal—For mutually exclusive rewards X at τ and Y at τ + s, an
individual at period t indicates preference for X . The same individual at period t
indicates preference for Y at τ + k + s over X at τ + k (where τ is some point in
time, s is a short time delay and k is a long time delay).

3. Magnitude of payoff—For positive payoffs, larger absolute amounts are discounted
at a lower rate than smaller amounts.

4. Sign of payoff—Positive payoffs (gains) are discounted at a higher rate than neg-
ative payoffs (losses).

5. Framing—Individuals’ willingness to accept (WTA) for delaying a real reward
from period t to t + k is greater than their willingness to pay (WTP) to speed up
its receipt from t + k to t (k > 0 days).

The anomalies described above were formally documented long after concerns
were raised regarding the empirical validity of the DU model. Two decades after its
introduction, economist Robert Strotz was first to claim that the DU model was not
a normatively representative model of intertemporal choice (Strotz 1956). He did not
specify an alternative model but noted that any non-exponential discount function
would lead to time-inconsistent preferences.

A discount function depicting the specific form of inconsistency emerged following
findings from animal behavior experiments. Herrnstein (1961) observed that subjects
approximately sample two concurrently available streams of rewards in proportion to
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the mean rates, immediacies, and sizes of the rewards (the “matching law”).1 Following
this, Ainslie (1975) proposed that the matching law if applied to individual, discrete
choices between smaller sooner (SS) and larger later (LL) rewards would imply the
following predictions:

(i) The relationship between decline in rewarding effect and delay is better charac-
terized by a value function that is inversely proportional to delay (a hyperbolic
discount function) than a value function that declines by a constant proportion of
residual value per unit of delay (an exponential discount function).

(ii) The hyperbolic discount function will lead to preference reversals of the sort
noted by Strotz. 2,3

Section 2.4 reviews properties of hyperbolic discount functions and illustrates how
they account for some of the behavioral anomalies of the DU model described in this
section. However, an approximation of the hyperbolic discount function in discrete
time is the quasi-hyperbolic or “β − δ” discount function. The function has gained
wide popularity among behavioral economists in recent times and we next review its
properties.

2.3 The quasi-hyperbolic discount function

The quasi-hyperbolic specification was proposed by Phelps and Pollak (1968) in a
model of intergenerational altruism.4 It takes the form:

U = u(c0) + βδu(c1) + βδ2u(c2) + βδ3u(c3) + . . . , 0 < β < 1, 0 < δ < 1

(4)

where the parameter β reflects “myopia” and all other variables as defined in the DU
model in Sect. 2.1 (p. 186).5 The function can be expressed as the following set of
discrete values {1, βδ, βδ2, βδ3, . . .} and is such that:

D(t) =
{

1 if t = 0
βδt if t > 0

(5)

1 In Herrnstein’s experiment, pigeons in an operant chamber could peck at one of two response-keys, each
of which was on a variable interval (VI) reinforcement schedule. The experiment used concurrent schedules
of intermittent reward (VI-VI).
2 Many writers in behavioral economics get this point wrong. In fact, no paper until Ainslie (1975) pointed
out that the “matching relationship” would be a hyperbola if applied to individual, discrete choices, and
thus cause preference reversals.
3 Ainslie’s hyperbolic function is such that events τ periods away are discounted with factor 1

τ .
4 The function was later used by Laibson (1997) to model intrapersonal dynamic conflict.
5 Myopia in common usage is near-sightedness. O’Donoghue and Rabin (1999) define the term as “present-
biased” time preference in the context of intertemporal choice.
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An analysis of the model in Eq. 4 shows that it is identical to the DU model if
β = 1. To interpret the role of β, the model can be rewritten as follows:

U = u(co) + β[δu(c1) + δ2u(c2) + δ3u(c3) + . . .] (6)

β can thus be interpreted as a weight factor applicable to all future periods. For example,
if β < 1 say β � 0.33 . . . and δ � 1, we have the following set of values:

{1, βδ, βδ2, βδ3, . . .} = {1,
1

3
,

1

3
,

1

3
, . . .} (7)

implying,

U = u(co) + 1

3
[u(c1) + u(c2) + u(c3) . . .] (8)

From Eq. 8, we can derive some properties of a quasi-hyperbolic discount function:

(i) All periods in the future are worth less relative to the present (for example, 1
3 in

Eq. 8).
(ii) All discounting beyond the exponential occurs between the present and the imme-

diate future (resulting from the effect of β).
(iii) Between future periods, there is no additional discounting.

The quasi-hyperbolic discount function is thus able to account for extreme impa-
tience that individuals exhibit for payoffs occurring in the immediate future through
the parameter β. However, the fact that it is a hybrid of exponential discounting implies
that payoffs occurring at periods t > 1 are discounted at a constant rate.

2.4 Properties of hyperbolic discount functions

In order to derive properties of hyperbolic discount functions, we analyze Mazur’s
functional form in Eq. 1. Two necessary conditions that a function must satisfy to be
a discount function are:

Axiom 1 D(0) = 1, that is, no discounting of the present.
Axiom 2 D′(t) < 0, that is, D(t) must be strictly monotone decreasing.

It is easy to verify that the hyperbolic discount function in Eq. 1 satisfies Axiom 1
and Axiom 2. For t = 0, the value of the function is equal to unity.

D(0) = 1

1 + (k × 0)
= 1 (9)
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Similarly, the first-order derivative of the function with respect to both of its argu-
ments is negative implying that D(t) is strictly monotone decreasing.

d

dt

( 1

1 + kt

)
= − k

(1 + kt)2 < 0, t > 0, k > 0 (10)

d

dk

( 1

1 + kt

)
= − t

(1 + kt)2 < 0, t > 0, k > 0 (11)

Evaluating the limits of the function, we note that D(t) ∈ (0, 1]

lim
k→∞ D(t) = 0 ∧ lim

t→∞ D(t) = 0 (12)

Therefore, a low value of the hyperbolic discount function can be attributed to a
long time delay t , or a high discount rate k, or both. The elasticity of the hyperbolic
discount function with respect to a time-delay t (denoted ηh) is approximately equal
to −1 for all t .6 This is given by:

ηh = t D′(t)
D(t)

= −kt (1 + kt)−2

(1 + kt)−1 = −kt (1 + kt)−1 (13)

It should be noted that in Eq. 1, only the normalizing constant in the denominator
prevents this value from strictly being equal to −1.7 In a different hyperbolic specifi-
cation such as Ainslie (1975) where D(t) = 1/t , this elasticity is exactly equal to −1
implying that the hyperbolic discount curve is inversely proportional to delay.

We plot a hyperbolic discount curve and an exponential discount curve in Fig. 1.
As can be observed from the plot, the hyperbolic curve initially is steeper relative to
the exponential curve but eventually flattens out as the time delay increases.

To get an intuition of this, we can evaluate the first-order derivative of the function
with respect to a time-delay at different intervals.8 Setting k = 1, and choosing some
low t , say t = 0.1, the value of D′(t) in Eq. 10 is equal to −0.8264. Conversely,
choosing a high t , say t = 10, the value of D′(t) is −0.0083. Thus, the approximate
change in the function value as the time delay increases by one unit is significantly
smaller for longer delays. The implication is that a hyperbolic discount function implies
a monotonically falling discount rate.

Empirically, Fredrick et al. (2002) note that when mathematical functions are explic-
itly fit to measured data, a hyperbolic functional form is seen to fit the data better than
the exponential functional form which implies a constant discount rate (p. 360). As a
consequence, the hyperbolic discount function is able to explain dynamically incon-
sistent behavior observed in experiments involving both human and animal subjects.

6 The elasticity of D(t) with respect to t represents the ratio of the incremental change of the logarithm of
D(t) with respect to the incremental change of the logarithm of t .
7 The constant in the denominator of Eq. 1 ensures that the value of the function is equal to 1 if either k = 0
or t = 0. Otherwise, the value of the function is not defined at this point.
8 The derivative of D(t) with respect to t measures the change in the function as the time delay changes
marginally holding the discount rate k constant.
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Fig. 1 A comparison of exponential and hyperbolic discounting

Ainslie illustrates this property of the function by comparing an SS reward occurring
at some period τ and an LL reward at τ + s, where s is a fixed time lag. He notes that
the LL reward is preferred when both τ and τ + s are distant but as one approaches τ ,
there is a shift in preference to the SS reward (p. 6).

A restrictive property of hyperbolic discount functions is their mathematical
intractability. For example, when evaluating an infinite series of payoffs, the following
series does not converge:

1

1 + k
+ 1

1 + 2k
+ 1

1 + 3k
+ · · · (14)

One therefore has to perform a new computation at every point in time a payoff
occurs. This feature of hyperbolic discount functions limits their use in applied work.

3 Discounting and the IPD model

Before presenting our IPD model under different forms of discounting in Sect. 4, we
first provide a basis for such an analysis. Many long-run relationships between two
parties in various economic contexts can be described as self-enforcing agreements.
According to Telser (1980), self-enforcing agreements are characterized by the follow-
ing features: (i) each party unilaterally decides whether it is in its interest to continue
dealing with the other party; (ii) if one party violates the terms of the agreement, then
the only recourse is for the other party to terminate the agreement upon discovering the
violation; and (iii) no external party intervenes to enforce the agreement, to establish
whether violations have occurred, to assess damages, or to impose penalties.
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Such relational contracts arise since it is costly or impossible in many instances to
rely on third parties, e.g., courts, to enforce agreements and assess damages resulting
from violations. Within economics, multi-period principal-agent models illustrate self-
enforcing contracts and have been considered in as diverse contexts as labor markets
(Harris and Holmstrom 1982; Shapiro and Stiglitz 1984), credit markets (Bulow and
Rogoff 1989; Albuquerque and Hopenhayn 2004), and international trade (Thomas
and Worrall 1994).

The qualitative features of self-enforcing contacts allows them to be represented
in the form of IPDs. The standard approach within economics and social psychology
is to equate cooperation in the IPD with trust and trustworthiness of players (refer
to Deutsch 1960; La Porta et al. 1997). Single defections in the form of breaches of
trust render the relational contract void, for example, the worker losing her job after
repeated instances of shirking.

So far, there has not been much interest among economists and other social sci-
entists in calculating the effect of delay discounting on interpersonal IPD incentives
since this adds little to IPD contingencies. Therefore, not much work exists beyond
early folk-theorem exercises which typically utilize exponential discounting. How-
ever, intrapersonal, i.e., intertemporal, IPDs should not even exist under exponential
discounting, and discerning their outcome values under non-exponential discounting
provides the key to whether preferences will reverse as a function of time.

The issue is central in understanding impulsiveness and self-control, a principal
topic in behavioral economics. Ross (2010) categorizes economic models that depict
self-control lapses (procrastination) into either of two main categories.9 The first,
labeled prior-strategy models, consider an individual as unable to exert influence on
her future selves, and thereby, she must set up her future incentives beforehand.10 The
second labeled dual-motivation models separate the planner from the doer, usually by
pitting one faculty against another, e.g., weak flesh versus a sovereign will.11

None of the existing models utilize hyperbolic discounting, and as Ainslie observes,
they all stop short of recursive self-prediction (p. 21). Consider the case of a worker who
voluntarily contributes to her retirement fund each month: It usually is the case that her
short-term and long-term interests are in conflict. The short-term self will want to spend
the monthly paycheck, including that part that is set aside for retirement contribution.
The long-term self, on the other hand, will not want to jeopardize the retirement fund
and will aim at consistently making contributions until the desired target is met. What
existing behavioral economics models cannot depict is the intrapersonal simultaneous
contest between self-regulation and temptation.

Trigger strategies employed in proofs of the folk theorem (for example, Rubinstein
1979) and also utilized in the model is Sect. 4 fit some of these intrapersonal conflict
situations such as the example of the worker saving for retirement, or a recovering
alcoholic contemplating a lapse. For each single choice in a series of choices, e.g.,
whether to make the monthly contribution in the case of the worker, or whether to take

9 The existing models primarily utilize β − δ discounting.
10 It is usual practice in economics to model a time-inconsistent agent as a sequence of sub-agents, in effect
splitting her up on diachronic dimensions (see Ross 2005).
11 Refer to Ainslie (2012) for a review of the models.
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a single drink in case of the recovering alcoholic, the credibility of future contributions
and future sobriety, respectively, is put at stake.

The hypothesis that motivates our model in Sect. 4, referred to as reward bundling,
is proposed by Ainslie’s prediction 4b (p. 17). Specifically, individuals who frame their
current choices as predictive of similar future choices “bundle” their expectations of
these choices into just such a series (Ainslie 1975, 1992, 2001). The inherent tendency
to prefer small short-term rewards combined with imperfect self-prediction results in
limited conflict among successive motivational states (or selves12 ) which may be
resolved by defining a variant of the IPD among the selves. Defection in the present
increases the likelihood of defection in the future not from a motive of retaliation but
by making cooperation seem likely to be wasted.13

Evidence of reward bundling comes from an experimental study by Hofmeyr et
al. (2010) where participants consisting of regular smokers (exemplifying addicted
individuals) and a group of non-smokers choose between small, short-term and larger,
long-term monetary rewards over a sequence of four decisions with a lag of two weeks
between decisions. Decisions are framed as either independent, or part of a series.
Hofmeyr et al. observe a significant increase in preference for long-term rewards
among the group of smokers when decisions are framed as part of a series.14 This
effect has also been documented by Kirby and Guastello (2001) on undergraduate
students using both monetary rewards and slices of pizza.

4 An iterated prisoners’ dilemma model

The following is a summarized version of the model in [M] (Sect. 3; p. 29). The
interaction between two firms is modeled in the form of an IPD. The firms can choose
between two actions at each period: Cooperate or Defect. If both firms play Cooperate,
then each obtains a payoff of C ∈ R. If both firms play Defect, then each obtains a
payoff of D ∈ R. If either firm plays Defect, then it obtains a payoff of A ∈ R in the
event that the other firm plays Cooperate. The latter obtains a payoff of Z ∈ R. The
following inequality holds with respect to the magnitude of these payoffs: A > C >

D > Z . The stage IPD game is a triplet: G = (N , S, π) where

– N is the set of players: N = {1, 2}.
– S is the set of pure strategy profiles: S = ×i∈N Si

(i) Si denotes the strategy set for player i ∈ N . In the model description, each
player i ∈ N has two strategies.15 We denote these strategies s1

i and s2
i : s1

i =
Cooperate, s2

i = Defect. Therefore, Si = {s1
i , s2

i }.
(ii) From (i), it follows that S = S1 × S2 ⇒ S = {(s1

i , s1
i ), (s1

i , s2
i ), (s2

i , s1
i ),

(s2
i , s2

i )}. The elements in S represent the outcomes of the game. It is convenient

12 “selves” here representing “oneself in different motivational states”.
13 To draw an analogy with our earlier discussion, the limited conflict described here is also a feature of
interpersonal bargaining where it gives rise to self-enforcing agreements.
14 Notably, the effect in not observed among the group of non smokers.
15 In the normal form specification, strategies are equivalent to actions.
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Fig. 2 The stage IPD game in
matrix form

from a notational point of view to define these elements in the following way:
s1 = (s1

i , s1
i ), s2 = (s1

i , s2
i ), s3 = (s2

i , s1
i ), s4 = (s2

i , s2
i ).

– π is the combined payoff function: π : S → R
2

π is a mapping from S to the cartesian plane. We use the notation π i (s) ∈ R

to denote the payoff to player i ∈ N under the outcome s.

Figure 2 exhibits the normal form game in matrix form. A characterizing fea-
ture of the stage IPD game is the existence of a Nash-Equilibrium outcome (Defect,
Defect) that is Pareto-dominated by a non-Nash-Equilibrium outcome (Cooperate,
Cooperate).16

In the following, we analyze the IPD game under different forms of discount func-
tions. It is worth noting that in a finitely repeated version of the game, the unique
sub-game perfect equilibrium (SPE) outcome is the Nash-Equilibrium outcome of the
stage game where both firms play Defect (refer to Appendix 1 for a proof). However, if
the game is repeated infinitely or has an unknown end-point, then the outcome (Coop-
erate, Cooperate) can emerge as an SPE under certain conditions.17 Before proceeding
to characterize these conditions as it relates to players’ time preference, we limit our
analysis to one kind of strategy called trigger strategies. We follow the definition by
Shy (1995) adapted to our setting.

Definition D − 1: Firm i ∈ N is said to be playing a trigger strategy if for every
period τ ; τ = 1, 2, . . .,

si
τ =

{
Cooperate as long as si

τ = s j
τ = Cooperate ∀ t = 1, 2, τ − 1.

Def ect otherwise

The trigger strategy states that firm i ∈ N plays Cooperate as long as both itself and
the other firm have not deviated from this strategy. In the case of a single deviation,
firm i plays Defect forever.

Proposition 1 Under exponential discounting, the outcome where both firms play
their trigger strategy is SPE if: δ ≥ A−C

A−D .

Proof We consider two possible cases under the trigger strategy.

16 The Prisoners’ Dilemma game was originally framed by Merrill Flood and Melvin Dresher working at
RAND Corporation in 1950 and later formalized by Albert W. Tucker.
17 This is an implication of the folk theorem which states that in repeated games, conditional on players’
minimax conditions being satisfied, any outcome is a feasible solution concept.
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Case 1: “Mutual Cooperation” – Both firms choose the strategy s1
i = Cooperate for

[t = 1, 2, . . .].
Case 2: “Unilateral Defection” – Firm i chooses the strategy s2

i = Defect and firm j
chooses the strategy s1

i = Cooperate at t = 1; (i �= j).

�
With no loss of generality, suppose that firm i = firm 1. Under Case 1, firm 1 earns

a payoff of C at each period since π1(s1) = C . Over an infinite time horizon, the
present value (PV) of this sum of payoffs under exponential discounting is:

C + δC + δ2C + · · · = C

(
1

1 − δ

)
(15)

Under Case 2, firm 1 earns a payoff of A at the first period since π1(s3) = A. After
the first period, the “trigger” defined in D − 1 is pulled and firm 1 thus earns a payoff
of D at each subsequent period since π1(s4) = D. The PV of this sum of payoffs
under exponential discounting is:

A + δD + δ2 D + δ3 D + · · · = A + D

(
δ

1 − δ

)
(16)

Taking Eqs. 15 and 16 and solving for δ yields the result in Proposition 1 (refer to
Appendix 2 for a step by step derivation).18

Proposition 2 Under quasi-hyperbolic discounting, the outcome where both firms
play their trigger strategy is SPE if δ ≥ A−C

β(C−D)+A−C .

Proof We employ Phelps and Pollak (1968) specification of a quasi-hyperbolic func-
tion to analyze the model.19 Taking Case 1 described in the proof of Proposition 1,
the PV of the resulting sum of payoffs under quasi discounting is:

C + βδC + βδ2C + βδ3C + · · · = C + βC

(
δ

1 − δ

)
(17)

Under Case 2, the sum of the resulting payoffs under quasi-hyperbolic discounting
is:

A + βδD + βδ2 D + βδ3 D + · · · = A + βD

(
δ

1 − δ

)
(18)

Taking Eqs. 17 and 18 and solving for δ yields the following result (refer to Appendix
3 for a step by step derivation):20

18 This result is standard since most folk-theorem analysis employ an exponential discount function.
19 refer to Sect. 2.3 for a summary of the function.
20 Streich and Levy (2007) obtain the same conditions for the discount factor when comparing a tit-for-tat
strategy versus an always-defect strategy in the same game.

123



A. Musau

Fig. 3 Domain and range of δ∗(β)

δ ≥ A − C

β(C − D) + A − C
≡ δ∗(β) (19)

Taking the derivatives of δ∗(β), we establish that the function is decreasing in the
parameter β (refer to Appendix 4 for details):

d

dβ
δ∗(β) < 0 ∧ d2

dβ2 δ∗(β) > 0 (20)

Figure 3 exhibits the inverse relationship between β and δ∗(β). From Eq. 19, we
establish the following limits for the function:

lim
β→0

δ∗(β) = 1 ∧ lim
β→1

δ∗(β) = A − C

A − D
where

(
0 <

A − C

A − D
< 1

)
(21)

Therefore, the discount factor under quasi-hyperbolic discounting necessary to
sustain the outcome (Cooperate, Cooperate) as an SPE equals that of exponential
discounting if β is equal to 1. However, if β < 1, the implication is that the firms
require a higher discount factor for the cooperative outcome to emerge.21

Proposition 3 Under hyperbolic discounting, there does not exist a level of δ for
which trigger strategies constitute an SPE.

Ainslie’s point of contention relates to Proposition 3. Therefore, we leave the propo-
sition stated and discuss it in the next section.

21 β here reflects the degree of “present-biased” time preferences (refer to Sect. 2.3).
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5 Discussion

The quasi-hyperbolic discount function reviewed in Sect. 2.3 to date still remains the
most widely utilized approximation of a hyperbolic discount function in discrete time.
However, the function does not account for declining discount rates over time—an
key empirical anomaly of the DU model. As Ainslie observes:

Most behavioral economists have settled on [the quasi-hyperbolic discount func-
tion in representing intertemporal preferences] more from a desire to preserve the
tractability of classical economic discount functions than from either parsimony
or a need to fit experience (p.4; italics added)

This point alludes to our Proposition 3. In illustrating how to represent declin-
ing discount rates in discrete time, we run into the problem of specifying too many
parameters ([M], p. 36). Consider the following model of discounting:

U = u(c0) + u(c1)β1δ + u(c2)β1β2δ
2 + · · · (22)

where βi is a weighting factor (i = 1, 2, . . .), and all other variables as defined in the
DU model in Sect. 2.1. The model can thus be expressed as the following infinite set
of discrete values:

{1, β1δ, β1β2δ
2, . . .} (23)

The function is arbitrary since we specify no constraints on the β parameter values.
However, its advantage is that it has intuitive appeal since it exemplifies the fact
that the change in discounting between any periods t and t + 1 is βt+1δ, whereas
under exponential and generally quasi-hyperbolic discounting, this change would be a
constant δ. By defining β1δ = (1+kh)−1, β1β2δ

2 = (1+2kh)−1, and so on, where kh

is the hyperbolic discount rate, one is able to specify a sequence in which the discount
rate falls over time in line with Mazur’s functional form in Eq. 1. For δt = (1 + ke)

−t

where ke is the exponential discount rate:

β1 = 1 + ke

1 + kh
, β2 = (1 + ke)

2

β1(1 + 2kh)
= (1 + ke)(1 + kh)

1 + 2kh
, and so on. (24)

In general for n > 1:

βn = (1 + ke)
n

(1 + nkh)
∏n−1

i=1 βi
= (1 + ke)(1 + (n − 1)kh)

1 + nkh
(25)

The function explicitly points to a tractability issue that would arise if one were
to employ it to evaluate a large series of payoffs. Since it has an infinite number of
parameters, it cannot be evaluated analytically. To illustrate this, consider Case 1 in
Sect. 4 where both firms choose the strategy s1

i = Cooperate for [t = 1, 2, . . .]. The
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Fig. 4 The stage IPD game
with numerical payoffs

PV of the payoffs under hyperbolic discounting is thus:

C + β1δC + β1β2δ
2C + · · · (26)

Conversely, under Case 2, the PV of the payoffs is:

A + β1δD + β1β2δ
2 D + · · · (27)

Taking Eqs. 26 and 27, it is apparent that one is not able to analytically solve for
the level of δ for which the PV of payoffs in the former exceeds the PV of payoffs in
the latter. Therefore, no analytical solution for δ exists hence our Proposition 3.

In this regard, we admit that we were a bit careless in omitting the term “analytical”
in the proposition which led to Ainslie incorrectly interpreting our results. The fact
that no analytical solution exists does not mean that no solution exists. One may, for
instance, use iterative estimation methods to find solutions in specific contexts. How-
ever, note that analytical expressions such as those in Proposition 1 and Proposition 2
are general and hold for any value of payoffs and parameters.22

Ainslie’s prediction on the incentives to cooperate in the IPD under hyperbolic
discounting is qualitative:

... although hyperbolic curves are steeper than exponential ones at short delays,
they are decreasingly steep with longer delays and become less steep than expo-
nential curves, leading to more incentive to cooperate as more delayed rewards
are taken into account (p.27; italics added).

We agree with this prediction. However, if we are to test its validity, then we need
to specify a numerical example. Do we wish to do this? We think yes.

5.1 A numerical example

Consider the stage IPD game in Fig. 4:
The outcome (Cooperate, Cooperate) is SPE under exponential discounting if:

2 + 2δ + 2δ2 + . . . ≥ 3 + δ + δ2 + δ3 + · · · (28)

22 In our case, therefore, one may specify within limits any set of values for A, C, D, Z , and β and
obtain a value for δ for which (Cooperate, Cooperate) constitutes an SPE.
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Table 1 Exponential discounting (break-even discount rate k = 1 ⇔ δ = 0.5)

Period Payoffs Discounted payoffs

Case 1 Case 2 Case 1 Case 2

t = 0 2 3 2 3

t = 1 2 1 1 0.5

t = 2 2 1 0.5 0.25

t = 3 2 1 0.25 0.125

t = 4 2 1 0.125 0.0625

t = 5 2 1 0.0625 0.03125

t = 6 2 1 0.03125 0.015625

t = 7 2 1 0.015625 0.0078125

t = 8 2 1 0.0078125 0.00390625

t = 9 2 1 0.00390625 0.001953125

t = 10 2 1 0.001953125 0.000976563

t = 11 2 1 0.000976563 0.000488281

t = 12 2 1 0.000488281 0.000244141

t = 13 2 1 0.000244141 0.00012207

t = 14 2 1 0.00012207 6.10352E-05

t = 15 2 1 6.10352E-05 3.05176E-05
∑

3.999938965 3.999969482

From Proposition 1, it follows that:

δ ≥ 3 − 2

3 − 1
⇔ δ ≥ 1

2
. (29)

Table 1 shows that the sum of discounted payoffs for both the right hand and left
hand member of Eq. 28 converges to 4 given δ = 0.5 (or k = 1) from Eq. 29. This result
that can be established analytically thanks to properties of the exponential discount
function:23

2
∞∑

t=0

0.5t = 2

(
1

1 − 0.5

)
= 4 (30)

3 +
∞∑

t=1

0.5t = 3 +
(

0.5

1 − 0.5

)
= 4 (31)

For values of the discount factor greater than 0.5, the PV of payoffs under Case 1
in Sect. 4 exceeds the PV of payoffs under Case 2.

23 In particular,
∑∞

t=0 δt = 1
1−δ

and
∑∞

t=1 δt = δ
1−δ

.
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Table 2 Sum of discounted payoffs: hyperbolic discounting

Discount rate Time delay

t = 1, 2, . . . , 10 t = 1, 2, . . . , 20 t = 1, 2, . . . , 100 t = 1, 2, . . . , 1000

k = 0.01a 20.971 (12.486) 38.298 (21.149) 140.131 (72.065) 480.672 (242.336)

k = 0.1a 15.375 (9.688) 23.320 (13.660) 49.065 (26.533) 93.329 (48.664)

k = 1a 6.040 (5.020) 7.291 (5.645) 10.395 (7.197) 14.973 (9.486)

k = 2a 4.362 (4.181) 5.008 (4.504) 6.579 (5.289) 8.872 (6.436)

k = 5 3.064 (3.532) 3.328 (3.664) 3.960 (3.980) 4.879 (4.439)

k = 10 2.557 (3.278) 2.690 (3.345) 3.007 (3.503) 3.466 (3.733)

k = 20 2.285 (3.143) 2.352 (3.176) 2.511 (3.255) 2.741 (3.370)

k = 100 2.058 (3.029) 2.072 (3.036) 2.103 (3.052) 2.149 (3.075)

Mutual Cooperation (Unilateral Defection)
aThe outcome (Cooperate, Cooperate) is SPE

Under quasi-hyperbolic discounting, the outcome (Cooperate, Cooperate) is SPE
if:

2 + 2βδ + 2βδ2 + . . . ≥ 3 + βδ + βδ2 + · · · (32)

From Proposition 2, it follows that:

δ ≥ 3 − 2

β(2 − 1) + 3 − 2
⇔ δ ≥ 1

β + 1
. (33)

Except in the case where β=1 and thus quasi-hyperbolic discounting is equivalent to
exponential discounting, the implication is that with “present-biased” time preferences
(0 ≤ β < 1), firm i ∈ N requires a higher δ for (Cooperate, Cooperate) to emerge as
an SPE. The requirement is that the value of δ lie in the half closed interval (0.5, 1].

Under hyperbolic discounting, to prove that the strategy where both firms play
their trigger strategy is SPE, it is sufficient to establish that there exists a discount
rate under which the PV of payoffs under Mutual Cooperation exceeds the PV of
payoffs under Unilateral Defection. Employing Mazur’s specification in Eq. 1, we
compute the sum of discounted payoffs for delays t1 = 1, 2, . . . , 10; t2 = 1, 2, . . . , 20;
t3 = 1, 2, . . . , 100; and t4 = 1, 2, . . . , 1000; and discount rates k1 = 0.01, k2 = 0.1,
k3 = 1, k4 = 2, k5 = 5, k6 = 10, k7 = 20, and k8 = 100. Table 2 summarizes results
of the computations.

As is evident, more delayed payoffs are prominent for low values of the hyperbolic
discount rate implying that the strategy where both firms play Cooperate is preferred.
The break-even discount rate under hyperbolic discounting (k > 2) is much higher
than under exponential discounting (k = 1) consistent with Ainslie’s prediction.
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6 Concluding remarks

Ainslie criticizes existing models of internal self-control in behavioral economics
(hereafter BE) noting that they all attempt to make a single equilibrium preference
predictable from a person’s prior incentives:

…“β−δ” delay discount functions [have] been widely justified by the assumption
that a person’s intertemporal inconsistency (impulsiveness) can be accounted for
by the arousal of appetite for visceral rewards. Although arousal is clearly a factor
in some cases of intertemporal inconsistency, it cannot be blamed for others, and
furthermore does not necessarily imply [“β−δ”] discounting. (p.1; italics added)

This criticism is confined to one class of BE models but it generally extends to
others. As Frydman and Goldberg observe in their textbook Imperfect Knowledge
Economics, BE models although putatively embrace “psychological realism” are sim-
ilar to neoclassical economics models in the sense that they fully pre-specify the causal
mechanism that underpins change (2007, p. 12). This approach inevitably leads to an
inadequacy on the part of the models in representing observed behavior since not all
aspects of individual decision-making can be represented in terms of causal variables.

Herbert Simon, widely considered the founding father of the subdiscipline, echoes
the same sentiments in a critique of Ariel Rubinstein’s textbook on bounded rationality:

out of the rich collection of examples expounded in your lectures, I simply do
not see how they lead to the kind of economic theory that we should all be
seeking: a theory that describes real-world phenomena …not all phenomena
that we imagine, but those that actually occur (Rubinstein 1998 p.190; italics
added).

Neoclassical economics models have been criticized on the basis of their failure
to conform to reality. The criticisms directed towards BE models should be taken
seriously if such models are to distinguish themselves from their predecessors.

Acknowledgments I am especially grateful to Jochen Jungeilges for his comments, suggestions, and
guidance in relation to the article that this paper references. I also thank Ellen K. Nyhus for numerous dis-
cussions on the subject, and George Ainslie for helpful comments. Financial support from the Competence
Development Fund of Southern Norway is gratefully acknowledged.

Appendix 1: finitely iterated prisoners’ dilemma

Consider the IPD model described in Sect. 4 and suppose that the game is repeated
T times in periods 1, 2, . . . , T where T ∈ Z s.t. 1 ≤ T ≥ ∞. If this is common
knowledge, we prove that the game has a unique SPE in which each firm plays Defect
at all periods. We split the proof into 2 parts.

[Part 1: First, we determine the Nash equilibrium of the stage game using the best
response function of firm i ∈ N :
Definition D − 2: In a 2 player game, the best response function of player i is the
function Ri (s j ) that for every given strategy s j of player j assigns a strategy si =
Ri (s j ) that maximizes player i’s payoff π i (si , s j ) (Shy 1995, p. 21).
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From the model description in Sect. 4, the best response function of firm i ∈ N is:

Ri (s j ) =
{

Defect i f s j = Cooperate

Defect i f s j = Defect
(34)

Definition D − 3: An outcome ŝ = (ŝ1, ŝ2, . . . , ŝ N ) (where ŝi ∈ Si for every i =
1, 2, . . . , N ) is said to be a Nash equilibrium (NE) if for every player i , π i (ŝi , ŝ¬i ) ≥
π i (si , ŝ¬i ) for every si ∈ Si (Shy 1995, p.18).

For the outcome s1 = (s1
i , s1

i ); π1(s1
i , s1

i ) = C < π1(s2
i , s1

i ) = A, contra-
dicting D − 3 ⇒ s1 is not NE.
For the outcome s2 = (s1

i , s2
i ); π1(s1

i , s2
i ) = Z < π1(s2

i , s2
i ) = D, contra-

dicting D − 3 ⇒ s2 is not NE.
For the outcome s3 = (s2

i , s1
i ); π2(s2

i , s1
i ) = Z < π2(s2

i , s2
i ) = D, contra-

dicting D − 3 ⇒ s3 is not NE.
For the outcome s4 = (s2

i , s2
i ); π1(s2

i , s2
i ) = D > π1(s1

i , s2
i ) = Z &

π2(s2
i , s2

i ) = D > π2(s2
i , s1

i ) = Z ⇒ s4 is NE.
The outcome s4 = (Defect, Defect) thus constitutes an equilibrium in dominant strate-
gies (EDS) and a unique NE for the stage IPD game.
[Part 2: Having established that (Defect, Defect) is an NE of the stage game, we
suppose that both firms have played the IPD game in T −1 periods and they are ready
to play for one last time in period T . At this point, the game is identical to the stage
game and firm i ∈ N plays its dominant strategy Defect (refer to the best response
function of firm i in Eq. 34). Therefore, the outcome of the game is the NE of the stage
game (Defect, Defect). Now consider the game in period T − 1. Both firms know that
following this period, they will have one game to play and the outcome of the game
involves both playing Defect. Again, at this period, both firms will play their dominant
strategy resulting in the outcome (Defect, Defect). Using backward induction, we note
that at each period T − 2, T − 3, . . . , 1, the outcome where both firms play Defect
will result hence SPE. �

Appendix 2: cooperation under exponential discounting

Consider Case 1 and Case 2 defined in Sect. 4. We prove that the outcome (Cooperate,
Cooperate) is SPE under exponential discounting if δ ≥ A−C

A−D .

– The sum of discounted payoffs under Case 1 is given by:

C + δC + δ2C + . . . (35)

To find the sum of the series in Eq. 35, we exploit a property of the exponential discount
function.
Claim: The following sum, 1 + δ + δ2 + . . ., converges to 1

1−δ
if δ < 1.

Proof Define the partial sums of the series as follows: s1 = 1, s2 = 1 + δ, s3 =
1 + δ + δ2,…, sn = 1 + δ + · · · + δn−1 where si represents the i th partial sum
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(i = 1, 2, . . . n). Multiply sn by δ and obtain δsn = δ + δ2 + · · · + δn . Subtract δsn

from sn and obtain: sn − δsn = 1 − δn . Solve for sn : sn = 1−δn

1−δ
, (δ �= 1). Finally

taking the value for sn , note that if | δ |<1 then δn →0 as n →∞ and sn → 1
1−δ

. �

– From this property, we establish that the sum in Eq. 35 is C
(

1
1−δ

)

– The sum of discounted payoffs under Case 2 is given by:

A + δD + δ2 D + · · · = A + D

(
δ

1 − δ

)
(36)

– For the outcome (Cooperate, Cooperate) to be an SPE, we require that:

C

(
1

1 − δ

)
≥ A + D

(
δ

1 − δ

)
(37)

⇔ C

1 − δ
≥ A + δD

1 − δ
⇔ C − δD

1 − δ
≥ A ⇔ C − δD ≥ A − δA

⇔ δ(A − D) ≥ A − C ⇔ δ ≥ A − C

A − D
�

Appendix 3: cooperation under quasi-hyperbolic discounting

Consider Case 1 and Case 2 defined in Sect. 4. We prove that the outcome (Cooperate,
Cooperate) is SPE under quasi-hyperbolic discounting if δ ≥ A−C

β(C−D)+A−C .

– The sum of discounted payoffs under Case 1 is given by:

C + βδC + βδ2C + · · · (38)

Similarly, we exploit the convergence property of exponential discounting to deter-
mine this sum. The sum in Eq. 38 is thus:

βC

(
δ

1 − δ

)
+ C

– The sum of discounted payoffs under Case 2 is given by:

A + βδD + βδ2 D + · · · (39)

The sum in Eq. 39 is:

βD

(
δ

1 − δ

)
+ A
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– For the outcome (Cooperate, Cooperate) to be an SPE, we require that:

βC

(
δ

1 − δ

)
+ C ≥ βD

(
δ

1 − δ

)
+ A (40)

⇔ δ(βC − βD)

1 − δ
≥ A − C ⇔ δ(βC − βD) ≥ (A − C)(1 − δ)

⇔ δ(βC − βD + A − C) ≥ A − C ⇔ δ ≥ A − C

β(C − D) + A − C
�

Appendix 4: analysis of the break-even quasi-hyperbolic discount factor

We show that the following relation in Eq. 20 holds:

d

dβ
δ∗(β) < 0

Define (A − C) as α and (C − D) as γ in Eq. 19 and re-write δ∗(β) as follows:

δ∗(β) = A − C

β(C − D) + A − C
= α

βγ + α

Differentiating δ∗(β) with respect to β, we obtain:

d

dβ

(
α

βγ + α

)
= − αγ

(βγ + α)2

From the model description in Sect. 4, we have that A > C > D implying α > 0
and γ > 0:

α = (A − C)︸ ︷︷ ︸
+

γ = (C − D)︸ ︷︷ ︸
+

⇒ (A − C)(C − D) > 0

Therefore, we establish the result in Eq. 20:

− αγ

(βγ + α)2 < 0 ⇔ − (A − C)(C − D)

(β(C − D) + (A − C))2 < 0

Similarly, we show that the following relation holds for the second order derivative:

d2

dβ2 δ∗(β) > 0
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d2

dβ2

(
A − C

β(C − D) + A − C

)
= d

dβ

( −αγ

(βγ + α)2

)
= −αγ

d

dβ

(
1

(βγ + α)2

)

= −αγ · − 2γ (βγ + α)

(βγ + α)4 = 2αγ 2 1

(βγ + α)3 > 0

⇔ 2(A − C)(C − D)2

(β(C − D) + (A − C))3 > 0

�
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