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Abstract

We develop a model with heterogeneous and socially interacting investors apply-
ing different technical trading rules (algorithms), by extending the seminal model of
Day and Huang (1990). The original model consists of (sophisticated) α-investors,
(unsophisticated) β-investors and a market maker. We have studied the nonlin-
earity features and described the dynamic behavior of the market. In the ex-
tended model, β-investors are replaced by heterogeneous and socially integrated
algo-traders. Through the communication process, each investor is able to obtain
information about certain other investors and his characteristics (wealth, stress in-
dicator and trading rule). If he finds a superior investor, he will adapt his or hers
algorithm. Based on ten dissimilar technical trading rules we constructed some nu-
merical experiments, and simulated the model. Then we evaluated the mean wealth
and the long run price behavior. The combination of algo-traders and the sophis-
ticated investors resulted in price fluctuates of different types. The volatility was
typically highest at the beginning of the different price series, and in one of the
series a stable 10-cycle appeared. This cycle seems consistent for some levels of the
flocking coefficient in the bifurcation diagram that was generated for the original
Day and Huang model. The main conclusion is that unsophisticated investors does
not destabilize the market. Our extended model provides several starting points for
future work.
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1 Introduction

Recently there has been a rapid growth in the amount of automated trading in stock
markets and other financial markets. Automated trading is a general terminology used
to characterize computerized trading. The computer technology has revolutionized finan-
cial markets, and nowadays these markets are highly dependent on artificial intelligence.
Automated trading is also known as algorithmic trading or robot trading, where different
securities are traded automatically by computers, generating an output signal, based on a
data set. This signal might be generated by an algorithm, often referred to as a technical
trading rule.

An investor trading in a financial market, cannot know for sure whether other partic-
ipants operating in the same market, are computers or usual investors.

Financial markets are said to have nonlinearity and chaotic dynamics. In Day and
Huang they develop a deterministic model that generates stochastic fluctuating prices.
We use this model as a groundwork in our study.

The objective of this thesis is to develop an extended version of the Day
and Huang (1990) model, to see how heterogeneous and socially integrated
investors affect the market.

The investors use different algorithmic trading rules to operate in this stylized nonlinear
model. The original model focus on a given population, but we are emphasizing on the
individual investor in the extended model. β-investors are substituted by algo-traders
in the extended model. While Day and Huang explain the stock volatility, we expand
this view by looking beyond the “hidden surface” and focusing on the microstructure of
the investors. A new dimension is given to the extended model, in the sense of a social
integration process.

We generate some sub-results of the original model, such as the bifurcation diagram
of the flocking coefficient, and we made some small corrections. The extended model is
tested based different numerical experiment, applying a subset of 10 dissimilar algorithmic
rules.

It is a common intuition saying that the more unsophisticated investors going into the
financial market the more destabilization. In contrary, Suhadolnik et al. (2010) find that
if one introduce more of these unsophisticated investors (robot traders) that are social
integrated, then it causes more stabilized stock markets.

The motive for using the seminal model by Day and Huang is a combination of its
simplicity, and that it is able to provide several stylized facts about the stock market
(more on the advantages of the model in section 5.8).

Our main focus is to develop the extended model and to provide a functional envi-
ronment for communication. The combination of the communication process and the
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algorithmic trading is what differs this thesis from other papers.

1.1 Outline

The outline of this thesis is as follows. In Section 2, we presents a review of the literature
on technical analysis, automated trading and market impact. Then, in Section 3 different
investment strategies, fundamental and technical, are described and the market mecha-
nism is explained briefly. The fundamentals of the Day and Huang model are carefully
described in Section 4, and in Section 5 we analyze the same model.. The extended model
is revealed in Section 6. In Section 7 we simulate the model, and finally, in Section 8 the
conclusions and our proposals for future research are outlined.

2 Literature review

This master’s thesis is related to different fields of research, and we have divided the
literature review into three different topics: technical analysis, automated trading and
market impact. The first part focuses on the behavior of price changes in financial markets,
and if technical analysis provides any valuable information. Automated trading, often
referred to as algorithmic trading, is mainly based on technical analysis and is discussed
in the second part. The third and last part is about how different markets are affected
by the growing amount of automatic trading.

2.1 Technical analysis

Technical analysis is often said to be old as the market itself. Early in the 20th century
Charles Dow develops a series of principles designed to describe and forecast the behavior
of financial markets. The “Dow theory” is often regarded as the groundwork of technical
analysis.

In Bachelier (1900) the famous model “random walk” is developed, which describes
the behavior of speculative prices in financial markets. The model implies that technical
analysis is useless. One important assumption for Bachelier’s random walk is that prices
in financial markets follow a Gaussian (normal) distribution. This assumption is later
rejected by Mandelbrot (1963) and Fama (1965). In other papers random walk often
refers to price changes that may have other distributions than the Gaussian. The other
main assumption related to random walk is that price changes are independent.

The forecasting skills of professional agencies are tested and evaluated in Cowles
(1933). At first 36 financial and insurance companies are trying to foretell which se-
curities that will provide the highest return. Then 25 financial publications and their
ability to forecast the stock market are tested. In the conclusion it is stated that no

2



significant evidence of forecasting skills is found. This indicates that the forecasters are
unable to predict price changes in the market, or at least not able to profit from it.

Kendall (1953) tests whether price changes in the past provide any valuable informa-
tion about price changes in the future. The data set consists of 19 industry indices, two
commodity price series (wheat and cotton) and one monthly average of the wheat price
series. It is stated that random changes in the price series are large enough to “swamp”
any systematic effect, but aggregative index numbers seem to behave more systematically
compared to their simple components. Alexander (1961, 1964) is partly based on data
and results from Kendall’s work. The author concludes that price changes in speculative
markets appear to follow a random walk over time, but at the same time a move in the
price changes seems to exist.

In Fama (1965) the theory underlying the random walk model is discussed, and the
empirical validity of the model is tested. The data set consists of daily prices from the
Dow-Jones Industrial Average in the period 1957 to 1962. Both the price distribution and
the independence of the price series are tested. He finds that the distribution of the daily
price changes contains too many centered observations and the tails are too “fat” to be
consistent with the Gaussian distribution. Fama also finds that the amount of dependence
in the price series is approximately zero. It is concluded that stock prices seem to follow
a random walk model. This finding is consistent with the result from Mandelbrot (1963).
Samuelson (1965) shows that stock prices are efficient1, and follows a martingale process.

Later Fama (1970) finds evidence of positive dependencies between changes in day-
to-day prices on common stocks. This finding may be used by technicians2 to make
profitable trading rules, but according to the paper even with low transaction costs this
profit will be eliminated. The famous theory “Efficient Market Hypothesis”, developed by
the economist Eugene Fama in Fama (1965, 1970), is based on Bachelier’s thinking.

At this time it seems to be an agreement among many academics that technical analysis
is useless, even though some weak trends in different price series have been discovered.
This view is about to change later in the 20th century, at least among some researchers.

Brock et al. (1992) find strong support for technical analysis. The objective of the
paper is to test two of the most popular technical trading rules, moving average and
trading-range break, using an empirical approach. At first the strategies are tested in an
artificial market based on Dow Jones Industrial Average (DJIA). The data set contains
90 years of daily observations. Then the returns, generated by the two different rules
in the artificial market, are compared to the return from the actual Dow Jones. It is
concluded that buy signals consistently generate higher return than sell signals, which is
not consistent with the random walk model.

1With all available information; efficient in the sense that prices are fairly valued.
2Users of technical analysis.
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Sullivan et al. (1999) use the same DJIA data set as Brock et al. (1992) for an in-sample
test. They robust the in-sample period for data-snooping, and they found even better
performance of the best technical trading rule. However, they studied a 10-years period,
1987-1996, testing the best trading rule for an out-of-sample test. The result is that the
best trading rule in the in-sample does not repeat its performance in the out-of-sample
period.

2.2 Automated trading

Recently financial markets have been heavily influenced by algorithmic trading, but al-
gorithms have existed in the literature for a long time. Hartl (1989) has the objective
to solve an optimal control problem, and to generalize this trading model using “forward
algorithms” on every wheat price path. He finds a solution for selected specific price
movements, but no closed solution for every price fluctuation.

To solve optimization problems, evolutionary algorithm system can be exploited. Un-
der the creation of artificial intelligence3, in the beginning of the computers, one of the
goals was to develop computer programs that had the capability of adapting and learning
in their environments. This idea is the foundation of genetic algorithms.

Genetic algorithms, invented by Holland (1962, 1975), is a technique based on a class
of research, adaptation, and optimization. According to Goldberg (1989) a genetic algo-
rithm is a stochastic searching technique based on the mechanism of genetics and natural
selection. Holland’s original goal was to “. . . study the phenomenon of adaptation as it
occurs in nature and to develop ways in which the mechanisms of natural adaption might
be imported into computer systems” Michell (1996, p. 2-3). In the same book Mitchell
builds the understanding of genetic algorithms to students and researchers, and provides
insight about complex adaptive systems. She explains how genetic algorithms have been
used to model processes of innovation, bidding strategies and the emergence of economic
markets.

Machine learning algorithms, such as genetic algorithms, have contributed improve-
ments to trading of stocks, bonds and securities. Bauer and Liepins (1992) are regarded
as the first to connect investment strategies and genetic algorithms together in an under-
standable way. In Bauer (1994) a practical assistance, using genetic algorithms to develop
attractive strategies of trading based on fundamental information, is created. “These tech-
niques can be easily extended to include other types of information such as technical and
macroeconomic data as well as past prices” Papadamou and Stephanides (2007, p.190).

Allen and Karjalainen (1999) use genetic algorithms to find technical trading rules
based on historical data from the S&P 500. The data set consists of daily prices from

3The intelligence of a computer (software).
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1928 to 1995. According to this paper, technical rules do not provide any excess return
when transaction costs are included, but the rules are able to identify periods when the
daily return is positive and the risk is low. This implies that genetic algorithms are an
appropriate method to discover technical trading rules.

Neural networks are used to generate and to test the performance of trading rules in
artificial markets. Fernandez-Rodriguez et al. (2000) develop a simple technical trading
rule based on Artificial Neural Networks. This rule is applied to the General Index of
the Madrid Stock Market. In their result it is suggested that the technical trading rule
performs better than a simple buy-and-hold strategy for both bear and stable markets,
but not for bull markets. Transaction costs are not included in these tests.

Echo State Network (ESN) is a special case of neural networks. Lin et al. (2011) use
genetic algorithms and genetic programming to improve the technical trading rules used
on stock in the trading system ESN. These rules perform significantly better than a simple
buy-and-hold strategy on the S&P 500.

Fernandez-Rodriguez et al. (2001) investigate the profitability of technical trading
rules using genetic algorithms to optimize the parameters. They suggest that such rules
are always superior to a risk-adjusted buy-and-hold strategy for reasonable trading costs.

According to Hsu et al. (2009), the central idea of successful stock market forecasting
is to achieve best possible results using historical data and the least complex stock market
model.

While Allen and Karjalainen focused on applying genetic algorithms models to gener-
ate profitable trading rules, Shangkun et al. (2012) test the robustness of such algorithms
on currency trading. Their results depend on the similarity of the trend between training
and testing period. “. . . we conclude that a trading rule trained in a period is profitable
with relatively high probability in periods which are similar in trends but is mixed in periods
which are different in trends” Shangkun et al. (2012, p. 93).

Nowadays the research in the context of automated trading is emphasized on high-
frequency trading. Strassburg et al. (2012) test the possibility to speed up the genetic
algorithm process by introducing parallelization4. They find that the average result time
used to find one set of technical trading rules is shorter when using more CPU5 cores. This
means that the genetic algorithm process can be improved by introducing parallelization.

In Gerber et al. (2004) they simulate and test the “Optimark’s electronic matching
algorithm”6. The authors develop a “new” algorithm to improve the system and to make
it easier to use. Papadamou and Stephanides (2007) use genetic algorithms to improve

4A large problem is divided into smaller ones and solved simultaneously.
5Short for “central processor unit” and represent a part of the computer’s hardware.
6Optimark Inc. “Provides exchange solutions to electronic marketplaces and communities”, URL:

http://www.optimark.com/
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parameters in the technical analysis by generating a software program in MATLAB7. This
is a tool to optimize the trading rule parameters and the prediction of trend for technical
analysis, which results in better profit and saving of time compared to other relevant
software.

Schmidt et al. (2010) use the support of different online algorithms for trading de-
cisions and evaluate their empirical performance. They also analyze the algorithm by
using historical prices of DAX-30 index from 1998 to 2007. The threat-based algorithm
dominates the other algorithms.

Fong et al. (2012) evaluate the performance of different “trend-following” algorithms.
A simulation of the Hang Sang Index Futures is developed to test the algorithms. The
algorithm, “trend recalling”, achieves the best performance, and it is a huge gap between
the performance of the best and the second best “trend-following” algorithm.

Financial funds or investors executing large stock positions may cause a shortfall in
the market. Pemy (2012) develops one algorithm to minimize the execution shortfall and
one to maximize the volume-weighted average price. The idea behind both strategies
(algorithms) is to divide large orders into several small orders, and to execute them into
the market during a predetermined period of time.

2.3 Market impact

Furbush (1989) is an empirical study of the marked crash that occurred the 19th of Oc-
tober 1987 - known as “Black Monday”. The paper focuses on the relationship between
program trading, and stock and futures price changes the days before and after Black
Monday. He finds that program trading is associated with these extreme price fluctua-
tions in the cash market, and that the pattern of the program trading during the 19th
and 20th of October is different compared to the days before. After Black Monday it has
been discussed who was to blame for the crash. According to Shiller (1988) the expla-
nation of the market crash may be a sociological or psychological phenomenon as well
an economic one. “It is difficult to place the blame for the crash of 1987 on the program
trading since stock quotes were changing so rapidly on Black Monday that program trading
could not have occurred because the market information needed to make transactions was
continuously being updated ” Kim (2007, p. 10).

Lux (1995) attempts to formalize the “herd behavior” of investors, and describes the
rise of bubbles as a self-organizing process. In which degree speculators behave similar
to other speculators depends on the economic variable called actual return according to
Lux. He also states that investors’ beliefs with respect to the fundamental values are
what cause the phenomena of bullish and bearish beliefs and bubbles. In Lux (1998)

7A numerical computing software developed by MathWorks, URL: http://www.mathworks.se/
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he develops a socio-economic model of the interaction of speculators in a financial mar-
ket. “The key result of the paper is that the distribution of returns that follows from the
(quasi-deterministic mean-value) dynamics conforms in important aspects with empirical
regularities” Lux (1998, p. 162).

In Izumi et al. (2009) the authors want to extend the artificial-market simulation to
the practical financial markets, and to find out how automated trading affects the stability
of the stock market. Eight different trading rules (strategies) are tested and evaluated in
an artificial market and by using a back test. They conclude that the artificial market
evaluation provides better information than the back test evaluation. It is also concluded
that the market impact depends on the trading rules and how they are combined together.

On the 6th of May 2010, also known as the “flash crash”, one of the largest point swing
and the biggest one-day point decline in the history of the Dow Jones Industrial Average
took place. CFTC and SEC (2010) concludes that the crash was complex and triggered
by an automated execution of a large sell order. Automated programs and algorithmic
trading may destabilize the market according to the report. A Combination of the large
automatic selling order, high frequency trading and algorithmic trading was one of the
reasons for these extreme price movements and increased volatility.

Suhadolnik et al. (2010) suggest to use automated trading as an alternative to mon-
etary policy and financial regulations to make the economy more stable. The motivation
of this suggestion is that if financial markets are complex, monetary policy and financial
regulations may be unable to protect these markets against bubbles and crashes. “Under
such circumstances, why not use the robot traders as an anti-bubble decoy? ” Suhadolnik
et al. (2010, p. 5183). A new stochastic-cellular automata model, where traders are so-
cially integrated in and interacting in the neighborhood of each other, is introduced in the
paper. The robot traders are implemented in a simulated model of the Boverspa8 index.
It is concluded that the introduction of such robot traders results in a more Gaussian
market, and that the use of intelligent robots to prevent bubbles and lower the volatility
can be justified.

2.4 Summary

The value of technical analysis has been discussed among academics for a long time.
Burton G. Malkiel describes the situation like this: “Obviously, I’m biased. This is not
only a personal bias but a professional one as well. Technical analysis is anathema to
much of the academic world. We love to pick on it” Malkiel (2011, p. 139).

Lately, the literature has been emphasized on automated trading which is often based
on technical analysis. The objective of various papers is to use algorithms to find optimal

8Sao Paulo Stock Exchange Index.
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trading strategies, and some of them conclude that it is possible to “beat” the market
using technical trading rules developed by genetic algorithms. Fast and sophisticated
computers are able to exploit mismatches in the market in no time, but some argues
that this excess return will be eliminated by the transaction costs. Both historical data
and simulation has been used to test different strategies, but the latter often provides
performance estimates with higher precision.

In the light of financial bubbles and crashes, e.g Black Monday, some economists
have blamed automated trading for these extreme price fluctuations. This is only partly
supported in the academic world, but the literature available focusing on how automated
trading affects the market is scarce. The conclusion from one paper, using an artificial
simulation approach, is that the market impact will depend on the trading rules and how
they are combined together.

Robot trading is quite unpopular among many investors, and they claim that these
robots manipulate and destabilize the market. The view is totally different in a paper
written a few years ago. In this paper robot trading is suggested as an alternative to
monetary policy and financial regulations to make the markets more stable. It is con-
cluded that the use of intelligent robots to prevent bubbles and lower the volatility can
be justified.

3 Investment selections and market mechanism

Many different techniques are applied by investors to try to earn money in financial
markets, and it is often distinguished between investors using fundamental analysis (fun-
damentalists) and they using technical analysis (technicians or chartists). Even though
they have the same objective, namely to make a profit in the market, the methods used
are totally different. Fundamentalists calculate the intrinsic value and compare it to the
market price and try to find underpriced companies. Technicians focus on nothing else
but the stock charts. A third strategy, used by many investors, is to combine these two
techniques.

The value of technical and fundamental analysis are heavily discussed among aca-
demics and others. The random walk hypothesis, which is said to be consistent with the
efficient-market hypothesis (EMH), implies that both techniques are useless. But there
are also many papers suggesting that financial markets are inefficient, meaning that it
might be possible to predict future prices. For instant, the January effect, weekend effect,
sunshine effect, and sports effect (see Thaler (1987), Huberman and Regev (2001), Hir-
shleifer and Shumway (2003), and Edmans et al. (2007) respectively), all indicate some
kind of inefficiency in the market.

A more detailed description of fundamental and technical analysis is given below. In-
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dependent of strategy, all investors need a market environment in order to trade. Different
market platforms and mechanisms are discussed briefly at the end of the section.

3.1 Fundamental analysis

Fundamental analysis is used to find the intrinsic value of securities such as stocks. The
intrinsic value is often called the “true value” and is based on real data. The idea is to
find the true value and compare it to the market price, to determine whether the stock is
overpriced or underpriced. Fundamentalists consider a stock as mispriced if the intrinsic
value differs from the market price. This is because they expect the intrinsic value to be
equal to the market price in the long run. If the intrinsic value is higher than the stock
price, then analysts expect the price to increase and recommend to buy. Similarly, it is
considered as a sell signal if the stock price is higher than the intrinsic value, because
fundamentalists expects the price decrease in that case.

Fundamental analysis is often divided into a study of factors that is specific to the
firm and macroeconomic variables. The idea is to include and consider all factors and
variables that may affect the company and the stock value. Firm-specific factors like
earnings, debt-equity and dividends are obtained from the company’s financial statement.
A fundamentalist may also be looking at qualitative information, such as the quality of
the company’s management. Gross domestic product (GDP), inflation rates and interest
rates are examples of macroeconomic variables that are evaluated.

Let’s construct an example of how fundamental analysis may be used: At first the
firm’s paid dividends are obtained from the financial statement. Then the yearly expected
future growth of the dividend is calculated. Further a discount rate is calculated based
on the interest rate and the company’s total risk. A dividend discount model is used to
find the intrinsic value of the equity and this value is then compared to the market price.
The analyst recommends to buy shares if intrinsic value exceeds market price, and to sell
in the opposite case.

The relatively wide time horizon is probably one the reasons why fundamental analysis
is rarely used in automated trading. Many of the factors that fundamental analysis is
based on are reported one or a few times each year only, and consequently the intrinsic
value is not changed rapidly. Because of that the benefit of using automated trading may
be small for fundamentalists. Another reason is that qualitative information often is a
part of the estimation intrinsic value. Such information is very hard or at most impossible
for computers to handle.
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3.2 Technical analysis

In technical analysis historical prices and its qualities, such as momentum and volume,
are used to forecast future price movements. Unlike fundamentalists chartists do not
calculate a firm’s true value, nor do they care about financial statements or any economic
variables. The idea is that the market repeats itself, and therefore they try to find patterns
and trends in the chart of the stocks. Because of their use of charts to predict future prices,
technical analysts are often referred to as chartists.

Automated trading is primarily based on technical analysis and there are at least
two good reasons for that. The first reason is that chartists do not use any qualitative
information, which makes the technical rules suitable for algo-trading. The second reason
is that the time horizon for such rules is relatively short, and the conditions change fast
and the use computers may give considerable advantages.

It is said to exist hundreds of different technical trading rules, and some of the most
used rules are explained in words and graphically below. The descriptions are based this
on different literature such as Brock et al. (1992); Sullivan et al. (1999); Bodie et al.
(2011); Malkiel (2011); Izumi et al. (2009).

Some of the rules may be implemented with a band (filter). If the band is one percent,
then the price must exceed the resistance level by one percent to generate a buy signal.
Similarly, the price must fall below the support level by one percent to produce a sell
signal.

Golden Cross. This rule is based on two simple moving averages - one long-term and
one short-term moving average. The long-term line captures the main trend, while the
short-term line captures the shorter price movements. A buy (sell) signal is generated
if the short-term line breaks above (below) the long-term line (see Figure 3.1a). Every
intersection between the short-term line and the long-term line generates a buy or sell
signal.

MACD. Moving Average Convergence/Divergence (MACD) is a technical indicator.
The MACD-rule, is based on a MACD line and a signal line. If the MACD line breaks
above the signal line, then chartists consider this as a buy signal because they expect the
price to increase. Similarly, it is a sell signal if the MACD line breaks below the signal
line, because the price is expected to decrease (see Figure 3.1b).

Envelope. The rule, Envelope, is defined by upper and lower price range levels, which
are based one simple moving average (MA) of historical prices. A percentage is added to
and subtracted from the MA to generate the upper and lower levels respectively. Envelope
is used to identify conditions in which the stock is overbought or oversold in the market.
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If the price break above the upper level, the stock is considered as overbought which is a
sell signal. Similarly, a buy signal is generated if the price breaks below the lower level,
because the stock is oversold (see Figure 3.1c). Analysts may apply and interpret the rule
differently, but the overall strategy is to identify when the stock price breaks above the
upper level and below the lower level.

Trading Range Break. Trading Range Break or High/Low Band is a simple trading
rule based on local maximum and minimum prices. A local maximum (minimum) price is
the highest (lowest) price during a determined period of time. The length of the periods
varies between different strategies. Local maximum and minimum prices are often called
resistance levels and support levels respectively.

According to chartists, resistance (support) levels exist because many investors are
willing to sell (buy) at this price level, and when the current price equals the resistance
(support) level, the price drops because of many selling (buying) orders. If the price still
breaks above the resistance level, then it is a buy signal because the price is expected to
increase even more. In the opposite case, when the price breaks below the support level, a
sell signal is generated because the price is expected to decrease further (see Figure 3.2a).
In some variants of the strategy the buy or sell position is held for a predetermined period
of time and during the period all other buy or sell signals are ignored.

Relative Strength Index. Relative strength index (RSI) is a momentum indicator and
is based on recent gains and losses. The idea is to compare average losses and gains during
the last 14 days9 to determine conditions in which the stock is overbought or oversold.
The index ranges from 0 to 100. An increase in the RSI indicates a “strength”, while a
decrease is a sign of “weakness”. If the RSI breaks below (above) a predetermined support
(resistance) level, then the stock is oversold (overbought). The support and resistance
level are normally set equal to 30 and 70 respectively. It is considered as a sell signal if
the stock is overbought, and similarly it is a buy signal if the stock is oversold (see Figure
3.2b).

Psychological Line. Psychological (PSY) line is another momentum indicator, and
may be considered as a simple version of the RSI. The PSY-line ranges from 0 to 1.
To calculate the PSY line, during a period of time the sum of all days in which the
price increases is divided by the total number of days. The strategy also consists of
predetermined resistance and support levels. If the PSY line exceeds the resistance level,
then it is a sell signal, and a buy signal is generated if the PSY line falls below support
level (see Figure 3.2c).

9This of course depends among chartists.
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(c) Envelope rule

Figure 3.1: Technical trading rules; golden gross, MACD and Envelope
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(c) Psychological Line rule.

Figure 3.2: Technical trading rules; TTR, RSI and PSY
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3.3 Market maker’s mechanism

Financial markets or security exchanges are established to meet the needs of different
traders, and organizing markets of trading. Back in time, direct negotiations was needed
to trade securities, but in modern finance the market has emerged from meeting places
to more efficient electronic market platforms. Broadly speaking on might distinguish
between three trading systems (applied in the United States): over-the-counter (OTC),
electronic communication network (ECN) and formal exchanges, according to Bodie et al.
(2011, p. 62).

NASDAQ is an over-the-counter quotation system for securities not listed on regular
stock exchanges. The system was develop to link brokers and dealers in computer networks
(electronic trading) to median quotes. Today NASDAQ is a trading system, handling
the majority of trades with sophisticated electronic trading platforms, and typically the
standard for exchange markets worldwide. It is a computer-based market, with a system of
market makers. NASDAQ was one of the major developers of ECN, which is a computer-
operated trading network offering financial products on the outside of stock exchanges.

Formal exchanges are manages through a specialist, and New York Stock Exchange
(NYSE) is an example of such an exchange. Specialists may act either as a broker or a
dealer, and each security is assigned to one specialist.

If no trades are carried out, meaning that the market lacks either demand or supply,
then the specialist may buy or sell shares (of stocks) for his own account (inventory), to
make the other side of a trade. The function of the specialist is to make and maintain a
“fair and orderly market” by buying and selling from his inventory. The specialist earns
commission on managing the orders.

4 Day and Huang model

In the seminal paper by Day and Huang (1990) they develop a financial market model with
heterogeneous interacting agents. The object of the paper is to model market behavior in
the stock market. Day and Huang describe it as: “A deterministic excess demand model
of stock market behavior is presented that generates stochastically fluctuating prices and
randomly switching bear and bull markets” Day and Huang (1990, p. 299).

The model is based on stylized institutional realities and behavior specifications. To
make the results more rigorous, the model has some simplifications. A number of key
variables are treated as parameters, and should be thought of as changing endogenously
variables.

Assumption: The market consists of only one type of shares (one company).

The model and its participants are described in the following.
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symbol description

p current market price
p0 initial value
u estimate of investment value
M estimated topping price
m estimated bottoming price
f(·) chance function
ε parameters in the chance function
d1,2 parameters in the chance function
α magnitude of α-investor’s strength
v current fundamental value
b flocking coefficient
c price adjustment coefficient
E(·) aggregate excess demand

Table 4.1: Description of the Day and Huang model parameters

4.1 The participants

There are three different participants operating in this market; α-investors, β-investors
and the market maker.

Assumption: All α-investors are homogenous and all β-investors are homogenous.

In some papers10 α-investors and β-investors are refereed to as fundamentalists and
chartists respectively. This is not consistent with the definitions of fundamentalists and
chartists used in this paper, but there are of course different ways to describe such in-
vestors.

Assumption: The results are derived from the behavior of the participants, and no exoge-
nous inputs influence the system.

4.1.1 α-Investors

α-investors base their trading strategy on the spread between market price p and a so-
phisticated estimate of investment value u. These investors might also be referred to as
information traders or sophisticated investors. The investment value is a complicated sta-
tistical analysis of the future value of fundamental valuev. An information trader wants
to buy when the price is well below the investment value (p < u), and to sell when the
price is well above the investment value (p > u).

10e.g. Gu (1993); Wieland and Westerhoff (2005)
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α-investors try to include all the most recent information into their estimation of u.
This information is based on macroeconomic variables, industry information, company
performance and others. I contains quantitative and qualitative information used in
estimating u. To obtain all necessary data is costly and requires a lot a resources. If φ
reflects the cost of I, then u = φ(I).

In addition to estimate investment value, information traders also consider the chance
for capital gains and losses. The market is regarded as dynamical, where prices are in
constant motion. If p is less then u, then investors expect a capital gain. Subsequently,
if p decreases, then the chance of an increase in the future is higher. Therefore, investors
might wait to buy the share, expecting the price to drop even lower. If instead the price
rises, then investors miss the opportunity of a higher gain, and has to settle for a lower
gain. These conditions are reversed when p is larger than u. The chance for capital gain
or loss is small or equal to zero when p is close to u. This hypothesis is described in
Keynes (1936). His work within the aspect of speculation, resulted in the function f(p),
which represents the chance function. f(p) is bounded to the topping price M and the
bottoming price m. If p is close to M , then the chance of losing a capital gain is great.
If p is close to m, then the chance of missing a possible capital gain is great. This is
illustrated in figure 4.1a

The chance function is specified as

f(p) :=


0 p < m

(p−m+ ε)−d1(M + ε− p)−d2 m 5 p 5M

0 p > M

(4.1)

for 0 < d1 < 1 and 0 < d2 < 1. f(·) is assumed to be non-negative and differentiable.
Properties of the function: f ′(p) < 0 when m < p < u, f ′(p) = 0 when p = u and
f ′(p) > 0 when u < p < M .

α-investors’ excess demand is represented by the function

α(p) =


0 p < m,

a(u− p)f(p) p ∈ [m,M ]

0 p > M

(4.2)

where a is a measure of the strength of α-investors’ demand. As described in Black (1986),
information traders become more and more aggressive, as the difference between current
price and investment value increases. Figure 4.1b illustrates the non-linearity and the
complexity of α-investors’ excess demand.
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Figure 4.1: α-investors

4.1.2 β-Investors

In contrast to α-investors, the majority of investors can not afford sophisticated and
expensive analyzes. Instead β-investors base their trading strategy on simple rules, which
are less costly. These investors are regarded as unsophisticated and behave like “noise
traders” (introduced in Black (1986)).

Basically, the strategy of the these investors is based on the current price p and current
fundamental value v. Their excess demand function is

β(p) := b(p− v). (4.3)

where b is the flocking coefficient and “...reflects the relative importance of β-investors and
the strength of their response to price signals” Day and Huang (1990, p. 305). Contrary
to α-investors, β-investors do not take into account the chance function. More precisely,
the chance function is assumed to be constant, and doesn’t affect the excess demand.

β-investors do not try to sell if the prices are increasing, nor do they try to buy if
the prices are decreasing. They will enter the market when the price is high, expecting
the price to increase further, and exit when the price is low, expecting a further decrease.
Because of their characteristics, they “chase” the stock prices up and down and causes
bull and bear markets.
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Figure 4.2: β-investors and aggregated excess demand

4.1.3 Market maker

The market maker (specialist) is an intermediary, and might be compared to a matching
platform. Its main function is to set the price when the market is out of equilibrium, which
is true if the demand exceeds the supply or vice versa. If demand equals supply, then
there will be no change in the price. To be able to provide all buyers when the demand
exceeds the supply, the market maker has an inventory of stocks. In such a situation his
inventory of stocks decreases. When supply exceeds demand, the market maker uses his
financial resources to buy shares, and his inventory increases.

Assumption: Prices are announced at discrete intervals of time, and orders are executed
at the announced price.

The aggregated excess demand E(p) is calculated by adding the excess demand for all
investors, which is

E (p) := α (p) + β (p) . (4.4)

The (aggregated) excess demand is negative if the supply exceeds the demand. The change
in the inventory is represented by the function

Vt − Vt+1 = E (pt) (4.5)

where Vt is the inventory of stocks at time t. Note that equation 4.5 is dissimilar from
the corresponding one in Day and Huang model. To our best knowledge there has be
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some kind of a typing error in their equation, because the equation inconsistent with the
written description. We tried to investigate this further by looking it up in a more recent
version of the model (Huang and Day, 1993), but the equation is not reproduced in this
article.

Anyway, it is important to keep equation (4.5) in balance because the market maker’s
financial resources is limited. To achieve a balanced formula, the market maker adjusts
the price from one period to another. To avoid a destabilization of the market, the price
adjustments have to be as “moderate” as possible. This is the standard Walrasian market
mechanism or the tatonnement process operating - setting the price out of equilibrium. 11

Because of its function in the market, a market maker must buy from investors when
the price is high and sell when it’s low. But these losses can be offset by investing on
their own account. Similar to what we described in Section 3.3, the specialist also earn a
commission on the trade between α and β investors.

The model assumes “...that the change in price pt+1−pt is determined by a continuous,
monotonically increasing function cγ [E (p)] where γ(0) = 0 and where c is an adjustment
coefficient...” Day and Huang (1990, p. 306). It is also assumed that

pt+1 = f (pt) := pt + cγ [E (pt)] .

To make the model more simple it is assumed that γ [E (p)] ≡ E (p) for all p, which leads
to

pt+1 = f (pt) := pt + cE (pt) . (4.6)

f (p) is called the price adjustment function. More on price adjustment functions in
different market situations will be described in the next sections.

4.2 Summary

There are two types of investors (α-investors and β-investors) and a market maker oper-
ating in the model. α-investors buy (sell) when the price is below (above) their estimated
investment value, while β-investors buy (sell) when the price is above (below) the current
fundamental value. The market maker is an intermediary, and all buy and sell orders are
executed through this specialist. For each period the market maker quotes a price based
on last period’s price and the aggregated excess demand (supply).

11For more see Walras and Jaffé (1954); Friedman (1955); Kaldor and Tobin (1985); Cowell (2006, p.
164)
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5 Analyzing the model

To understand the model it does not hold to just write down the equation of the system,
because there is a nonlinearity in the equation. In this section we will try to capture the
essential features of the model, and describe the market behavior. At first, the complete
price adjustment function is derived, and then we have analyzed the market situation
based on the numerical experiment in Day and Huang. This situation is used as a basis
to analyze how changes in a single parameter affects the whole market when the other
parameters are treated as constants. In the real market, parameters like v and u would
change within business markets as well as reactions to macro-economical features and
other news, and therefore it is interesting to see how such changes affects the model. We
have described and evaluated changes in the following parameters: a, b, c, u and v. Lastly,
we sum up and briefly discuss the model’s empirical relevance.

5.1 Deriving the equation of the model

Based on the description of the participants from earlier, we can now the complete the
equation of the model. The price in the next period (t + 1) is given by combining the
equations (4.1a)-(4.4):

pt+1 = f(p) =


m pt < m

pt + c[ a(u−p)
(pt−m+ε)d1 (M+ε−pt)d2

+ b(pt − v)] m 5 p 5M

M pt > M

(5.1)

where f(p) is the price adjustment function. This map f(p) represents the equation in
the system set up by the parameters described in Table 4.1.

The model is said to “explode” if the price is below 0 or above 1 at any point. Negative
share prices (p < 0) make of course no sense, because then the company is already
bankrupt. If p > 1, then the α-investors’ chance function and their excess demand is both
equal to 0 (see equation (4.1)). β-investors’ excess demand increases as the price goes
upwards, regardless of whether p > 1 or not. These characteristics of α and β investors
imply that the aggregate excess demand E(p) is always positive if p > 1, and from earlier
we know that the market maker adjusts the price upwards as long as E(p) > 0. It follows
from this reasoning that if p > 1, then the price increases infinitely in the long run.

This “explosion” occurs if one or more parameters are set too high or low with respect
to what the model is able to deal handle. An example of a situation where p < 0 is given
in Figure 5.1. The model explodes because the price adjustment function is below 0 (and
above 1) as shown in Figure 5.1a.
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Figure 5.1: Model is out of range: explode.

5.2 Switching market

This market situations is based on the numerical experiment in Day and Huang, and the
parameter values are

a = 0.2 b = 0.88 c = 1 m = 0 M = 1

u = 0.5 v = 0.5 ε = 0.01 d1 = 0.5 d2 = 0.5

(5.2)

Figure 5.2b shows the time series and how the price decreases in the beginning. α-
investors’ chance function is small and their excess demand is low at this point, because
the initial price is set just below 0.5 (p0 = 0.49). β-investors’ excess supply exceeds α-
investors’ excess demand, and the aggregated excess demand is negative. The market
maker uses his financial resources to buy shares and adjusts the price downwards. The
price decreases until it is very close to the bottoming price, and the α-investors’ chance
function and demand increases sufficiently to cause a positive aggregated excess demand.
Then, shares are sold by the market maker and the price is adjusted upwards. This
situation, in which aggregated excess demand alternates in sign and prices go up and
down within the bear zone, continues for an unpredictable number of periods.

At some point, when the price reaches too close to the bottoming price, the aggregated
excess demand is sufficiently high to pull the price into the bull zone. The price fluctuates
within the bull zone for an unpredictable number of periods. When the price reaches too
close to the topping price, the price is pulled back into the bear zone and as before it goes
up and down within this zone. The price fluctuations switch between bull and bear at

21



random intervals in the long run.
Unsophisticated investors dominate the market in this situation and cause this erratic

and unpredictable behavior. They buy high and sell low, and in this way they “make a
market” for the information traders. The behavior of the fluctuations cannot be distin-
guished from a stochastic process or a random walk.

Figure 5.2a shows three fixed points p̄.12 Prices are flocking around these points as
shown in the price distribution Figure 5.2c. The return in Figure 5.2d is generated by the
function

rmt = ln(pt+1)− ln(pt).

5.3 α-Investors behavior

If the magnitude of α-investor’s strength a is above 0.2, then the market becomes more
stableand less volatile. This is because an increase in amakes the information traders more
dominant. The market is in full equilibrium if a is sufficiently high (0.45 approximately),
and the price is stable at 0.5 in the long run (see Figure 5.3b). In this situation there will
be no trading between the participants because both α- and β-investors’ excess demand
are equal to zero. The properties of full and temporary equilibrium is derived in (A.2). α-
investors dominates the market, and under such circumstances the volatility will be more-
or-less zero (particularly in the long run) and price fluctuations can only be explained by
exogenous shocks. This “α− dominated” market situation is shown in Figure 5.3.

The model explodes if a is smaller than 0.2 approximately. Unsophisticated investors
dominate the market in this situation and cause “extreme” prices as exemplified in Figure
5.1b. Dependent on initial price, current price will then decrease or increase infinitely in
the long run (see Section (5.1) for more details).

5.4 β-investors behavior

As mentioned earlier, there will be no trading between the participants in an α-dominating
market. Such a market situation is not very interesting from an analytical point of view,
and in this section we focus on the more interesting case in which β-investors are more
dominant, as the flocking coefficient b rises.

5.4.1 Bifurcation diagram of the flocking coefficient.

To capture the essential features of the model and to provide a better understanding of the
relation between the market dynamics and the flocking coefficient b, we have generated

12Fixed points are given by the intersection between the price adjustment function and the 45◦-line
(see (A.2)), or by solving equation (5.1) for pt+1 = pt = p̄. According to Wieland and Westerhoff (2005,
p. 120), the value of these points are approximately equal to 0.04, 0.50 and 0.96.
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Figure 5.2: Bear and bull markets
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(b) Stock price series

Figure 5.3: Market dominating by α-investors

a bifurcation diagram as an alternative of individual diagrams. In general, bifurcations
of higher-order cycles are difficult to detect, but by generating a bifurcation diagram this
will show the complexity in a simple, systematic way.

“By trying different values of this nonlinear parameter, May found that he
could dramatically change the system’s character. Rising the parameter meant
rising the degree of nonlinearity, and that changed not just the quantity of the
outcome, but also its quality.” Gleick (1988, p. 70)

May et al. (1976) was able to connect all the information and plot it in a single picture
or diagram. A bifurcation diagram is a plot that shows possible long run values, in the
system, of a bifurcation parameter (or a changing parameter). Bifurcation diagram may
also be called Feigenbaum structure. Such diagrams make it possible to analyze the entire
changes in the properties of the system of equilibria, and get a better view of the critical
boundaries between steadiness and oscillation (see Gleick (1988); Schroeder (2009)). The
bifurcation diagram shows the price fluctuations (time series) for increasing values of b -
from left to right. It can be used to distinguish between steady states (equilibriua), states
of instability and chaotic behavior in the market.

The time series consist 1000 observations, but to show the long-run behavior only the
last 100 are plotted in our bifurcation diagram. Every time series is based on a given
value of b. Figure 5.4 shows the diagram when the initial price is set both high (within
the bull zone) and low (within the bear zone), and how the initial price influences the
time series. The initial price is set below 0.5 in all the diagrams in Figure 5.5. If p0 = 0.5,
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Figure 5.4: Bifurcation diagram of the b

then equation (A.8) is fulfilled, and the price is always stable at 0.5 independent of the
flocking coefficient. This situation is illustrated by dotted line in Figure 5.4.

In Figure 5.4 it is easily seen that the level of b has a significant influence on the model
and the price behavior. When the flocking coefficient increases, the market changes from
being in equilibrium (steady state), to a situation where the fixed price is splitted into two
prices. This process in which the number of fixed prices is doubled is called a bifurcation,
and the prices fluctuate in a 2-cycle. As b increases additionally, the bifurcations occur
more and more frequently, until some point in which the price fluctuations become erratic
and chaotic.

Low level. The market is in temporary or full equilibrium when b is low. If b is less than
0.4, then the market is in full equilibrium and the price is stable and unique at 0.5 (see
Section 5.3). The aggregate excess demand is equal to zero, and will be no transactions
between the investors in this situation. When b is between 0.4 and 0.75, the β-investors
become more dominant and the market price drops below 0.5. The market is still stable,
but the equilibrium is only temporary.

Mid-high level. When the level of b increases additionally and above 0.75 (moving
to the right in the diagram), the prices is no longer stable at one equilibrium price. A
bifurcation of the price occurs when b ≈ 0.76, and the price fluctuates in a periode-2
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(b) Windows of cycles and regional chaos.
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(d) Complete chaos

Windows of the bifurcation diagram. (a) Beginning in full equilibrium, a bifurcation
(cycle) occurs and the equilibrium is no longer unique. The cycles grow at the power of 2,
meaning that the 2-cycle turns into 4-,8-, and 16-cycles and so on. (b) “Black regions” and
“white windows” appear, meaning that the market switches between predictable cycles and
more-or-less chaotic fluctuations. (c) A stable 3-cycle appears. (d) Eventually the number
of period-doubles is “infinitely” and the market becomes chaotic (stochastic).

Figure 5.5: Windows in the bifurcation diagram
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(d) b = 0.838, 3-cycle

Figure 5.6: Periodic cycles, orbits

orbit13 (2-cycle). The price series is unstable in the short run, but stabilized in the long
run and switches back and forth between two prices (see Figure 5.6a). The fixed point
has loss its steady state and is changed from an attractor to a repellor (see A.2 for more
details).

As we are moving more to the right in the diagram, the bifurcations occur more and
more frequently. The 2-cycle grows to a 4-, 8-, 16-cycle and so on (see Figure 5.5b). Even-
tually, the period-doubling becomes so vast that “black regions” appears in the diagram,
as the points spreads within the upper and lower bands. At some b-level above 0.81 the
environment is difficult to distinguish from n-cycles and regional randomness; fluctuations
being more-or-less chaotic. One might expect more chaotic behavior as the flocking coef-
ficient increases further, but suddenly, beyond a certain point, “white windows” appears.
If the windows are wide enough, then it is possible to count the number of fixed points.

The market is switching back and forth between predictable cycles and chaotic fluctu-
ations (0.81 < b < 0.88), even though a rise of the parameter b is said to rise the degree
of nonlinearity (Gleick (1988)). This is illustrated in the different plots in Figure (5.5).

A “period three” appears. In Figure 5.5a it is easily seen that there exist “white
windows” when b ≈ 0.84. This is even easier to see in Figure 5.5c, which shows that a
3-cycle occurs when b = 0.838. This is a very important case and is described in Li and
Yorke (1975). They proved that for any one-dimensional system, that has a three-periodic
cycle (periode-3 orbit), cycles of infinite orders will eventually occur.

Strong level (b = 0.88) Until now, the bifurcation process has repeated itself over
and over again and more-or-less chaotic behavior has occurred as b has been increased.
The prices have fluctuated in 8-, 16-, 32-cycles (see Figure 7.1e and 5.6c) and so on ad
infinitum, ending up in chaos as b goes to 0.88 (the model explodes if b > 0.88). When
b = 0.88, then the price behavior is chaotic and the marked is said to be dominated by
β-investors, see Figure 5.5d. A more detailed description of this situation is given in

13Orbit is the technical term for a succession of iterates pt.
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Section 5.2.

5.5 Model behavior when u 6= v

In the switching market we assumed for simplicity that the investment value u is equal
to the fundamental value v. The model gets far more complicated (as if the model wasn’t
complex enough) if this doesn’t hold (u 6= v), because the market is heavily affected by
changes in investment value and fundamental value.

If the investment value is higher then the current fundamental value (u > v) and the
market is dominated by β-investors (b = 0.88), then the majority of investors are said to
be bearish. The prices fluctuate within the bear zone in the long run. In the opposite
case, where u < v, the majority of investors are said to be bullish and the price fluctuates
within the bull zone. The price behavior depends on the initial price in both situations -
particularly in the short run. Price fluctuations are still more-or-less chaotic when u 6= v,
but the prices do not switch between bull and bear at random intervals. There may be
one, two or three temporary fixed points, but the market is never in full equilibrium if
v 6= u (cf. (A.8)).

It should be stated that the model is particularly sensitive to changes in v or u when
b = 0.88, and the model is able to handle small changes only before the model explodes,
see Figure 5.1. If the flocking coefficient is set lower, say b = 0.5, then it is possible to see
how relatively large changes in u or v affects the market. Figure 5.7a shows that a bear
market is generated if fundamental value is set higher than investment value (v = 0.6 and
u = 0.5). Contrary, a bull market is generated if v = 0.5 and u = 0.6, see Figure 5.7c. In
both situations there will be one steady state only, which is temporary and locally stable.

5.6 Market maker behavior

The coefficient c is a parameter connected to the price adjustment function.

“According to Propositions 2 and 3, changes in the price adjustment coefficient
can profoundly influence the qualitative features of market dynamics. A precise
impression of this relationship can be obtained by computing the bifurcation
diagram for the parameter c.” Day and Huang (1990, p. 321)

Day and Huang consider the market maker’s role in the market and how their rational self-
interest may influence their decisions. In this thesis we aren’t not investigating the market
maker’s role in detail, as we are more interested in how the unsophisticated investors
influence the market. But we have considered the basic elements of the market makers.
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(d) Stock price series - bullish market

Figure 5.7: Bearish market and bullish market
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A more detailed description is given in Gu (1995), which had the purpose to carry out an
economic analysis of the specialist’s simple price adjustment rules.

One can say that the price adjustment coefficient adjusts or scales the aggregate excess
demand’s effect on tomorrow’s price pt+1 (cf. equation (4.6)). If c is zero, then pt+1 = pt,
which means the aggregated excess demand has no effect on tomorrow’s price. If c is high
(low), then the aggregated excess demand has large (small) influence on pt+1.

Given a switching market situation (see Section 5.2), the market is no longer switching
between bull and bear if c is set below 1. Price fluctuations might still be more-or-less
chaotic, but the prices are never pulled from bull to bear zone or vice versa. Whether the
price fluctuates within the bull or the bear zone depends on the initial price. When c is
sufficiently low, the market is stable at one price and converge to m or M (dependent of
p0).

In the case in which c > 1, the prices switch more frequently between bull and bear
compared to the switching market. The model explodes if c is set higher than 1.02
approximately.

5.7 Summary

The model is highly sensitive to changes in the different parameters, and even small
modifications might affect the characteristics of the model dramatically. Our main concern
has been how the β-investors and different values of the flocking coefficient b influences
the price behavior, but changes in other parameters have been evaluated too.

The market is in full equilibrium and there will be no trading between the participants
if α-investors dominate and the flocking coefficient is low. As b increases and the β-
investors become more dominant, the market is no longer in full equilibrium, but still
stable at one fixed price. The bifurcation process begins when the flocking coefficient is
0.75 approximately, and the prices fluctuate in 2-, 4-, and 8-cycles and so on. Prices are
predictable as long as such cycles exist, but cycles of high orders might be very hard to
observe. At some point, when b = 0.88 approximately, price fluctuations of chaotic type
occur and the prices switch between bull and bear markets and random intervals. This
behavior cannot be distinguished from a stochastic process or a random walk. β-investors
dominates the market in this situation, and they are said to make a market for the α-
investors. This situation (b = 0.88), which is referred to as a switching market in our
thesis, is based on the numerical experiment in Day and Huang’s paper.

For simplicity it is assumed that u = v in the switching market. If the market is
dominated by β-investors (b = 0.88) and estimated investment value is higher than current
fundamental value (u > v), then a bear market occurs. A bull market occurs in the
opposite case where v > u.

The price adjustment coefficient c scales the aggregated excess demand’s effect on
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tomorrow’s price. If c is set lower than 1, then the price volatility decreases, and the
model explodes if c > 1.02 approximately.

5.8 Empirical relevance

Is the model empirically relevant? Gu (1993) among others has the objective to answer
this question. The purpose of his paper is to test whether the type of volatility generated
in the Day and Huang model, is anything similar to that observed in real stock markets.
To do that, he compares the distribution of price changes in the Day and Huang model to
that of the S&P composite stock price index. The data set contains 62 years of monthly
average prices, which are adjusted for inflation and economic growth. He concludes that
the two distributions are strikingly similar, or more precisely, the tests used in the paper
fail to reject that the two distributions are not statistically different.

Day and Huang shows that their model can generate price series that have stochastic
characters like that tails are fatter for the short averages and get less and less leptokurtic
as the length of the average increases. Gu (1995) investigated the arguments of the market
makers ability to “churn the market”.

It is exceedingly debated that financial markets have chaotic dynamics, but it is certi-
fied that conditions of nonlinearity is an underlying property in the financial market. To
cause chaos, conditions for nonlinearity has to be fulfilled.

6 The extended model

In this section we introduce a new and extended version of the Day and Huang model,
derived in the previous section. As the original , the new model consists of α-investors,
β-investors, and a market maker, but the unsophisticated investors are no longer ho-
mogenous (at least in the initial state). Investor i represents each individuel β-investor,
where i ∈ {1, 2, 3, . . . , I} denotes the investor index. The time index is defined by
t ∈ {1, 2, 3, . . . , T}.

The characteristics of the information traders and the specialist or not changed in the
new version. In the original model all β-investors based their trading strategy on the
relation between current price and current fundamental value, but the latter parameter
is removed in this extended version. Instead, β-investors base their investment decisions
on different technical trading rules or algorithms, and therefore they may be referred to
as algo-traders .

The algo-traders are socially integrated, in the sense that they are able to obtain and
adapt information from other algo-traders to improve their own strategy. This motivation
of interacting, is an outcome reflected by a stress indicator.
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The original Day and Huang model doesn’t say anything about the situation in which
an investor that does not hold any shares or has sold his position. As in Shangkun et al.
(2012), we consider a safe, interest bearing account as an alternative to holding shares. In
other words, investors either hold risky assets (shares) or risk free assets (interest bearing
account) at all times. In this model we do not consider any transaction cost.

Assumption: Short selling is prohibited in the model.

All assumptions and simplifications made in the original model still hold unless something
else is pointed out.

6.1 The parameters

To make the model functioning some new parameters have to be introduced. These
parameters are listed in the Table 6.1 and subsequently the most important ones are
explained.

symbol meaning

i investor index
t time index
γit units of the risky asset held by investor i at time t
ωit investor i’s wealth at time t
sit stress indicator for investor i at time t
bit investor i’s excess demand for the risky asset at time t
ait algorithm used by investor i at time t
pt price per unit of the risky asset at time t
r interest rate paid by the safe asset
Ψ function used to scale the excess demand
ipmt investor population matrix at time t
nn number of neighbors

Table 6.1: Notation in the extended model

6.1.1 Risky and risk free assets.

Investor i holds γit units of the risky asset at time t, where γit ∈ R and γit ≥ 0. To
indicate that an investor holds his funds in a risk free account, that has bearing interest
of r, the γit is set equal to zero. An investor is said to be “in” the market if he holds risky
assets, and “out” of the market if he holds his funds in a risk free account.
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γit

= 0, all wealt invested in the safe asset at time t;

> 0, units of risky asset held at time t.
(6.1)

Assumption: γit is not defined as an integer so it is possible to buy fractions of shares.

6.1.2 Investor wealth.

ωit denotes the investor i’s wealth at time t, where ωit ∈ R and ωit ≥ 0. If the investor
holds risky assets, i.e. γit > 0, then his wealth at time t is determined simply by valuing
his stock of risky assets by their current value, that is ωit = γitpt. If the investor holds
his wealth in a safe, i.e. γit = 0, then the wealth ωit includes the interest paid for period
t: ωit = ωi t−1(1 + r). Since variable ωit does not carry the entire information about the
nature of investor i’s wealth, only the numerical value, one will usually consider the pair
(γit, ωit) to fully characterize the wealth position of an investor.

6.1.3 Algorithm rules.

We consider a set of alternative trading algorithms. Each investor might use different
technical trading rule (but only one at the same time) and each rules are labeled using
integers. So the set of potential algorithm is given by {1, 2, 3, . . . , A}. If a trading rule
is applied at time t, it generates a binary signal S on the basis of a subset of past prices
pt−1, pt−2, pt−3, . . . , pt−τ . Therefore each algorithm can be written as F : Rτ → {0, 1} or
S ← F (pt, pt−1, pt−2, pt−3, . . . , pt−τ ), where

S =

{
1, buy;
0, sell.

(6.2)

Assumption: Each algo-trader chooses one trading algorithm. The choice of investor i
at time t is recorded on the variable ait. Consequently, the variable takes integer
values: ait ∈ {1, 2, 3, . . . , A}.

To see what type of action is implied by the binary signal indicated by rule F , one has
to consider whether investor i currently is in or out of the market. Let SI denote the
state indicator for investor i, assuming values from the set {in out}. Table 6.2 specifies
the action suggested by rule F conditional on SI. In each cell in Table 6.2 we identify
the action triggered by the signal S conditional on whether or not the investor currently
holds the risky asset.
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S

SI 1 (buy) 0 (sell)

in hold risky assets sell risky assets

out buy risky assets hold safe assets

Table 6.2: Investor’s action space

Assumption: A algo-trader always implements the action (strategy) suggested by the
trading rule ait he has decided to use at time t.

6.1.4 The last signal

The signal generated from the last period is recorded and is denoted slit, where slit = Sit−1.
We need this book keeping, of the last signal, because some of the algorithm requires this
information in their calculations. sl is connected to investor i, note that if an investor
substitute his algorithm in a communication process he will not adapt this sl signal.

6.1.5 Stress indicator.

The stress indicator for investor i at time t sit, reflects the number of consecutive losses the
investor has experienced. Whenever the investor’s wealth position improves, the variable
is zeroed out. sit is a discrete variable and take values from the set {0, 1, 2, 3, . . . , N}. It is
the level of sit that might trigger a change in the trading rule currently used by investor i.
Given that sit exceeds a tolerance level, which is individual for each investor, he starts to
look for alternatives. In that case the investor uses the stress levels and wealth positions
of selected neighbors to identify a rule that is superior to his own.

Technically speaking, the investor has a preference order over (ωjt, sjt) which allows
for a mathematical representation by means of a utility function ui. Consequently, ui
is defined on the tuple (ωjt, sjt) for some j 6= i. Investor j represents each individual
investor that investor i communicates with in this case. Meaning that, the stress levels
and wealth positions of each investor j is known for investor i. Investor j’s algorithm ajt

is also known, but not a part of investor i’s utility function. Further detailed are discussed
in Section 6.5.1.

6.1.6 Excess demand.

Analyzing Table 6.2 one notices that in the two “hold” positions, on the diagonal, no
transactions will be carried out. The investor’s demand for the risky asset will be zero in
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each case. Someone that is holding units of the risky asset will sell (supply) those units
if the trading algorithm generates a sell signal, and consequently the excess demand is
reduced. Alternatively, an investor who currently holds his wealth in form of the safe
asset will demand units of the risky asset if the algorithm produces a buy signal. In that
way, excess demand will be increased. Let bit represent investor i’s demand for the risky
asset (in units of the asset), and we can distinguish between three cases:

bit


> 0, investor i is a net demander of the risky asset;
= 0, investor i does not affect the price;
< 0, investor i is a net supplier of the risky asset.

(6.3)

Then table 6.2 can be transformed into Table 6.3 that gives the effect of alternative
outputs of a trading algorithm applied by investor i at time t.

S

SI 1 (buy) 0 (sell)

in bit = 0 bit < 0

out bit > 0 bit = 0

Table 6.3: Effects of investor’s actions

6.2 Accumulating the excess demand (supply)

At each point in time the following is known about investor i: the number of units of
risky assets in his portfolio (γit), his wealth position (ωit), the excess demand (supply) of
the risky asset (bit), his stress level sit, an indicator of the trading rule applied (ait), and
signal generated by ait in t− 1 is recorded. That is, the 1 by 6 row vector

(
γit ωit bit sit ait slit

)
(6.4)

provides a complete characterization of investor i at time t. To represent the population
of algo-traders we arrange the rows characterizing all I investor in an I by 6 matrix. This
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matrix is referred to as the investor population matrix :

ipmt =



γ1t ω1t b1t s1t a1t sl1t

γ2t ω2t b2t s2t a2t sl2t

γ3t ω3t b3t s3t a3t sl3t
...

...
...

...
...

...
γit ωit bit sit ait slit
...

...
...

...
...

...
γIt ωIt bIt sIt aIt slIt


(6.5)

The excess demand of the algo-traders is computed at the end of period t as

β(pt) = Ψ(
I∑
i=1

bit) (6.6)

where Ψ : R→ R denotes the function used to scale the excess demand to be compatible
with the β-component in the original Day and Huang model. Ψ is defined as

Ψ :=
1

1 + e−λ(
∑I

i=1 bit)
− ψ

2
(6.7)

where ψ maps the excess demand in the range (−ψ
2
, ψ

2
), and λ adjust the steepness. The

scaling function Ψ prevents the model from exploding if the excess demand or supply
of the algo-traders is high. If ψ, which is an exogenous parameter, is set low, then the
amplitude of the prices is low. In the opposite case, where ψ is high, the amplitude is
(of course) high. The explanation is that the price changes made by the market maker
(when there is excess demand (supply)) is larger when ψ is high, compared to a situation
in which it is low. While the ψ cover the height, the λ plays an intricate role conduction
the steepness of the scale function. Figure 6.1 illustrates the characteristic of the equation
(6.7) with a fixed, but with different, values of λ. The smaller λ gets (going to zero in the
limit), the curving of the Ψ is less converge to a straight horizontal line if λ = 0. If the
λ is set relatively high this will make the function curving vertically. At present, the λ is
set to a level that coincide with the wealth and I.

6.3 The price adjustment

The price at time t+1 is determined in the course of the tatonnement process established
in the reference model:

pt+1 = pt + c[α(pt) + β(pt)].
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For simplicity the price adjustment coefficient is assumed to be 1, and therefore the latter
equation can be written as

pt+1 = pt + α(pt) + β(pt)

= pt + α(pt) + Ψ

(
I∑
i=1

bit

)
(6.8)

The event of fixing the price for the risky asset defines the end of a period. Once the price
has been fixed and made public the subsequent periods begins.

6.4 Details on the communication process

In this prevailing version of the model we have implemented a very stylized form of
“communication process”. An investor who sees the need to communicate will make a
number of random contacts in the population of algo-traders. The chatter with those
individuals will always be successful in the sense that the true value of the relevant
characteristics will be revealed by the contacts in the course of the communication with
investor i. We let the nn be the “number of neighbors” parameter that investor i may be
in contact with.
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Assumption: When investor i gets information about investor j’s wealth, stress and al-
gorithm , he will always be given the truth in the communication process.

6.5 Description of period t

At the beginning of period t the path of past prices up to and including the current price
is common knowledge: Pt =

(
p0 p1 p2 p3 . . . pt−2 pt−1 pt

)
. Each algo-trader

has access to this price series and a subset of rows of the investor population matrix from
the previous period ipmt−1. That is, each investor has a chance to inform himself about
the characteristics of other algo-traders through a communication process to be described
below.

Given this information basis, the i’th investor is able to perform a sequence of decisions
leading to actions, i.e. performing transactions, which eventually will lead to a new vector
of investor characteristics. In a first approach, we give a coarse description of this sequence.
Given Pt and ipmt−1 the i’th investor

1. chooses an algorithm; F (rule) from the set {1, 2, 3, . . . , A},

2. implements the rule and receives the signal,

3. carries out the transactions suggested by the rule at the current price pt.

At the beginning of period t the situation of investor i is described by the elements of
the i’th row of the ipmt−1 matrix. Once the sequence given above is terminated, this row
vector of investor characteristics is updated. A more detailed description of this updating
process is given in Section 6.5.3.

As soon as the sequence 1-3 has been performed by each of the I investors and the
updating of their characteristics is complete the new investor population matrix ipmt

available. Finally, marking the end of the period t, the information on population com-
prehensive excess demand (3rd column of ipmt matrix) is accumulated and used to de-
termining the price of the risky asset prevailing in the period t+ 1.

6.5.1 Choosing the algorithm

Assumption: An investor who realizes increases in wealth does not see the need to change
the trading rule he is using, i.e. the algorithm is never substituted if sit = 0.

It is the scenario where he experiences one or more periods of loss in a row, i.e si t > 0,
that provides a motivation for substituting the rule used so far, by an alternative one.
The choice of the new rule is based on the outcome of a communication process.

At the beginning of this process investor i contacts investor j. It is assumed that as a
result of the “conversation” with investor j, investor i manages to get information about a
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subset of investor j’s characteristics for the previous period. To be more specific, investor
i will have information about investor j’s wealth and stress level at time t − 1, and the
trading algorithm used during the last period. If investor i “talks” to investors l, k, m,
and n, then he has the following data base at his disposal:

ωl t−1 sl t−1 al t−1

ωk t−1 sk t−1 ak t−1

ωmt−1 smt−1 amt−1

ωn t−1 sn t−1 an t−1

 .

Since the wealth level is a real number and the stress level is an integer variable, the space
(ω, s) lacks convexity. The (wealth, stress)-situation experienced by investor i in period
t− 1 is represented by the point having the coordinates (ωi t−1, si t−1). These coordinates
are plotted in the (wealth, stress)-space shown in Figure 6.2, and each (wealth, stress)-
situation will be represented as a point on one of the gray lines.

Figure 6.2: Investor preferences over (ω, s)-space

Investor i’s (wealth, stress)-situation partitions the (ω, s)-space into four regions: I,
II, III, and IV. An investor (that has decided to substitute his rule) will try to “learn”
from other investors by comparing their own (wealth, stress)-position to that of other
investors. Investor i selects those contacts who have currently reached a higher wealth
position at a lower stress level. Suppose we were to plot the (wealth, stress)-situations
of those investors who happen to outperform investor i in Figure 6.2, then the resulting
points would lie on the gray lines in region IV.
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If no such cases exist, i.e the region IV is empty, then the investor interprets the fact
that none of his contacts does better both in terms of wealth and level, as an indication
that the circumstances are just “bad”. Then the investor will not change the rule he
currently applies, meaning that he will stick to his own rule. It should be pointed out
that even though the marked situation is “bad”, it is never an option to ignore buy (or
sell) signals generated by the algorithm. These investors are assumed to unsophisticated
and they carry out the transactions suggested by the rule no matter what, see assumption
on page 34. An investor will not copy rules used by contacts positioned in region I, II, or
III. Contacts in region I are better in terms of wealth and in III they are better in terms
of stress, but none of them are superior in both. In region II the contacts are worse of in
both wealth and stress.

If, on the other hand, one of his contacts use a rule that is superior to his own (i.e.
there is exactly one point in region IV), then this contact is identified and investor i copies
investor j’s rule. What will happen if the communication process leads to several points
lying in region IV? In this instance the investor compares all alternatives and copies the
rule used by the investor who had the most attractive position in the (wealth, stress)-
space. In a special case in which more than one point lie on the most attractive (farthest
out in the North-Western direction) indifference curve, the first occurrence is chosen.

Assumption: The investor has a preference order on (ω, s) which can be represented by
a utility function u(ω, s) such that (ω, s) � (ω, s)′ ⇔ u(ω, s) ≥ u((ω, s)′) where
u(ω, s) = ω − γs and γ > 0.

This utility function is increasing in wealth (positive marginal product of wealth) and
decreasing in stress. Moreover, it reflects the fact that investor i is willed to accept higher
stress levels if he is compensated by higher wealth. Some representatives of the set of
linear indifference curves implied by the utility function are plotted in region IV in Figure
6.3. Level curves lying further out in the North-Western direction are associated with
higher utility levels. For example, we have ū′ > ū in Figure 6.3.
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Figure 6.3: Indifference curves on subset of (ω, s)-space

To sum up, investor i will copy the trading rule of the contact whose (wealth, stress)-
position maximizes his own utility function, and consequently, his vector of investor char-
acteristics will be updated:

ai t ← aj t−1.

6.5.2 Implementing the rule and receiving the signal

Once the decision concerning algorithm has been reached investor i applies the rule.
Given his access to the price history, the algorithm operation on a subset of the price
series is run. Investor i receives the binary signal S generated by the rule, and follows
the rule by instigating the appropriate actions (c.f. Table 6.2 and Table 6.3). The
possible changes in investor characteristics are discussed in the following section.

6.5.3 Updating the investor characteristics

The updating process is the third and last part of the sequence of decisions discussed in
Section 6.5. As considered earlier, each algorithm (indicating by F ) generates a binary
signal S, 0 or 1, based on past prices. The different rules (algorithms) might generate
different signals based on the same price series, but they all produce either a buy signal
(S = 1) or sell signal (S = 0). Every signal leads to an updating process where investor i’s
portfolio of risky assets, wealth and excess demand is updated, which means the investor
population matrix, equation (6.5), is updated from ipmt−1 to ipmt. Figure 6.4 gives the
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updating rules for each and every possible reaction to the binary signal S.

Figure 6.4: Tree representation of the updating process

Since the process depends on whether investor i is in or out of the market at time
t − 1 and if the binary signal S is a buy or sell signal, there are four possible scenarios
(see figure 6.4). Each scenario (situation) is described below.

In the first scenario investor i is out of the market and the algorithm (trading rule)
generates a sell signal (S = 0). Since the investor by now is holding risk free assets
(γit−1 = 0) no transactions will be carried out. However, the elements γit, ωit and bit are
updated at the end of the sequence, but only ωit is changed. Investor i’s wealth at time t
is equal to his wealth last period plus the risk-free interest rate earned during the period
(ωit = ωit−1(1 + r)). Obviously, since no transactions are carried out, investor i’s position
in risky assets is unchanged, implying that γit = γit−1 = 0. The excess demand at time t
is equal to zero for the same reason.

Investor i is in the market and a sell signal is produced by the trading rule in the
second situation. On the basis of this signal, investors i sells his position in risky assets
and instead deposits his wealth in a safe account (γit = 0). Because of this selling order,
the excess demand is negative (i.e. positive excess supply) at time t (bit = −γit−1).
Investor i’s updated wealth is equal to his number of shares at time t − 1 multiplied by
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the current share price (ωit = γit−1pt).
In the third scenario investor i is out of the market and a buy signal (S = 1) is

generated. Because of the buy signal investor i withdraws his money from the risk free
account and buys risky assets. The number of shares (units) bought is equal to his wealth
at time t− 1 divided by the current share price (γit = ωit−1

pt
). Investor i’s wealth at time

t is equal to his number of shares multiplied by the current price (ωit = γitpt). Excess
demand is positive and equal to investor i’s number of shares at time t, (bit = γit).

Investor i is in the market and the algorithm generates a buy signal in the fourth
and last situation. Since he is already in the market, no transactions will be carried
out, and consequently there will be no excess demand at time t (bit = 0). Investor i’s
number of units of the risky asset is not changed during the process (γit = γit−1), and
his updated wealth is equal to number of shares at time t multiplied by the current share
price (γit−1pt).

6.6 Summary

In this section we introduce and derive an extended version of the Day and Huang model.
Our attention is directed against the β-investors (algo-traders), which are the only par-
ticipants changed from the original model. The algo-traders are heterogeneous, and their
investment strategies are based on different technical trading rules. Moreover, these in-
vestors are socially integrated and investor i has the opportunity to obtain information
about investor j’s wealth, stress indicator and trading rule. The stress indicator reflects
the number of losses the investor has experienced, and it is the level of stress that might
trigger a change in his trading rule. A risk free and interest bearing account is introduced
as an alternative to holding shares.

If investor i exceeds his tolerance level with respect to stress, then he uses the stress
levels and wealth positions of selected neighbors to identify an algorithm that is superior
to his own. The algorithm is superior only if the investor using the algorithm does better
both in terms of wealth and stress. On the other hand, if no such cases exist (or he
is below his tolerance level), then investor i will not change the algorithm he currently
applies.

7 Simulations

In this section we run simulations of the extended model and derive the results. But
before we are able to do simulations, we have to outline the initial conditions and the
different properties of technical trading rules (algorithms) applied by the investors. The
algorithms are basically based on moving averages of dissimilar lengths, which are divided
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into three types: simple MA, filtered MA and double MA, similar to the collective term
of generalized moving average (GMA) in Strassburg et al. (2012, p. 1308).

The simulations are based on two numerical experiments. In the first one, the investors
use dissimilar versions of the simple MA only, which makes it easier to describe the
dynamics of the market. It also give us a chance to control for possible defects of the
model, or errors in the programming (before the model becomes too complicated). In
the second experiment, dissimilar versions of the GMA are applied by the investors. In
addition to describe the dynamics of the market, we also evaluate some wealth condition
of the population.

7.1 Initial conditions

Starting values Let’s consider the starting values for each element of the investor
population matrix at the initial state ipm0. Each individual investor holds amount ω
in an interest bearing account, i.e. γ = 0, and ω is set equal to 100 in the numerical
experiment below. Understandably, the excess demand b and the stress level s both
equals zero at the initial point. A technical trading rule is randomly drawn from the set
of rules (1, 2, 3, ..., A) with replacement, and assigned to each investor in the ipm0. The
last element of the matrix, which is the signal from the last period sl, is set equal to zero.

The initial price history Technical trading rules are based on past prices. For instant,
to be able to calculate a moving average of five days, at least five historical prices are
required. In other words we need an initial price history in order to implement the differ-
ent rules. Such price histories might be constructed differently and we use two dissimilar
methods below. In method (1) the initial price is chosen from the range (0, 1), and dur-
ing the first n periods α-investors are the only participants trading in the market. This
means that prices during the first n periods, except from the initial price, are determined
by the sophisticated investors. At the end of this initial price history, the algo-traders are
no longer excluded from the market. In method (2) the initial price history consists of
randomly chosen prices only. To make this alternative more realistic, the prices might be
chosen from a relatively small range.

7.2 Technical trading rules (algorithms)

The three different GMA described here is consistent with Strassburg et al., and they are
based on the same ideas as the golden cross described in Section Investment selections
and market mechanism. Let’s first formulate the moving average, which is equal to
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MAt(θ) =
1

θ

θ−1∑
i=0

pt−i, t = θ, θ + 1, ..., N (7.1)

where θ defines the order over the MA. pt is the price that is known (made public) at
time t. The binary signal S is given by

St(θ1, θ2, θ3) = MAt(θ1)− (1 + (1− 2St−1)θ3)MAt(θ2) (7.2)

where θ1 is defined as the short period, θ2 is the long period, and θ3 is the filter parameter.
St−1 represents the binary signal generated by the algorithm last period, which is denoted
by sl in the population matrix.

7.2.1 Simple MA:

In the simple moving average case, θ1 = 1, θ2 > 1, θ3 = 0, which gives

St = pt −MAt(θ2). (7.3)

where pt = MAt(1) since θ1 = 1. The rule generates a buy signal (1) if pt > MAt(θ2),
and a sell signal (0) if pt 6MAt(θ2).

7.2.2 Filtered MA:

To avoid “false” or weak signals a filter is added to the rule, making the rule more conser-
vative. Basically, this means that the rule only generates a signal if the short and the long
moving MA differs significantly. In this case, θ1 ≥ 1, θ2 > θ1, θ3 > 0, and for example if
θ1 = 1, and θ2 = 2, then

St = pt − (1 + (1− 2St−1)θ3)MAt(2). (7.4)

If the last signal applied by the investor indicated sell (St−1 = 0), meaning that investor
i’s is out of the market, then

St = pt − (1 + θ3)MAt(2).

In the opposite case, in which St−1 = 1 and the investor is in the market, then

St = pt − (1− θ3)MAt(2).
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7.2.3 Double MA:

In contrast to the simple MA, θ1 is always larger than 1 in the case of double MA. Further
it is required that the order of the long MA is higher than the order the short MA, θ2 > θ1,
and if θ3 = 0, then

St = MAt(θ1)−MAt(θ2). (7.5)

It should be pointed out that both the simple and the double MA might be imple-
mented with the filter, which is the case in some of the rules applied in the numerical
experiment below.

7.3 Numerical experiment based on simple MA

In the first numerical experiment we simulate a market in which algo-traders only use
simple moving averages of different length of, i.e. θ2 = [2, ..., 11]. Consistent with the
initial conditions described earlier, each algo-trader is assigned to one algorithm, arbi-
trarily selected from the set of different 10 rules. Since the rules are arbitrarily chosen,
situations in which not all of the 10 rules are represented in the initial state might occur.
The rules differs in the sense that the long MA varies, but the short MA equals to pt for
each algorithm. Based on the parameter values;

a = 0.2 ψ = 0.6 λ = 1 u = 0.5 I = 50 nn = 2 r = 0.001 ω0 = 100, (7.6)

we are able to generate different price series.
At first, in section 7.3.1 and 7.3.2, the initial price history is constructed using method

(1), and it consists of 15 periods (n = 15). The initial price p0 is set within the range
(0.05, 0.5) in Figure 7.1a and within (0.5, 0.95) in Figure 7.1b. If p0 < 0.05 or p0 > 0.95,
then the model might explode, meaning that the price is below 0 or above 1 at some
point. As in the original Day and Huang model, the price is stable and in full equilibrium
at 0.5 in the long run, if p0 = 0.5. Then, in Section 7.3.3, we use method (2) to construct
the initial price history, and the interval is set to (0.4, 0.6)

The communication process taking place in the different price series is described and
discussed in a separate section at the end.

Since there is random elements (generally two in the communication process and assign
algorithms) in the model, we run it for a number of times, and the price series presented
in this section are typically in the sense that these graphs are similar to what were
generated in most of the cases. This doesn’t mean that price series of another features
can not appear.
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ait θ1 θ2 θ3

1 5 10 0
2 2 7 0.1
3 1 2 0.15
4 2 3 0.1
5 2 4 0.1
6 2 4 0.15
7 2 8 0
8 3 5 0.5
9 5 10 0.1
10 2 6 0.1

Table 7.1: Number and their characteristics to algorithm rules

7.3.1 Low initial price

During the initial price history in Figure 7.1a, the aggregated excess demand is positive
and the price converges to α-investors’ investment value u. At the end of period 15, the
algo-traders are no longer excluded from model, and right away the price rises dramati-
cally. This increase occurs because all the simple MAs generate a buy signal at this point,
which again can be explained by the price pattern during the initial price history. Based
on the characteristics of the these rules, it is quite obvious that all of them produce buy
signals since the price has increased for 15 periods in a row. At the end of period 16,
when the price is relatively high, α-investors’ excess supply exceeds algo-traders’ excess
demand and the market maker adjusts the price downwards for the next period. The
price decreases for a couple of periods, and investors being in the market suffer losses.
These losses trigger the algo-traders to start looking for alternatives, and if one (or more)
superior alternative is found, then the rule he currently applies is substituted.

In the long run price behavior, the prices typically fluctuate in a 4- or 6-cycle, depen-
dent on the communication process and on how many rules that still exist. In most of
the cases only the first and the second rule, MA(θ2 = 2) and MA(θ2 = 3), survive in the
long run.

7.3.2 High initial price

At first in Figure 7.1b, when α-investors are operating only, the (aggregated) excess
demand is negative and the price declines. Subsequent to the initial price history, the
algo-traders starts to participate in the model, but they stay out of the market (i.e. hold
interest bearing account). Since the price decreased monotonically during the initial price
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history, all the algorithms generate sell signals, and therefore the algo-traders stay out of
the market.

The price drops until it converges to 0.5 in the long run. Since all of the algo-traders
are out of the market, their stress levels equal zero, and none of them are motivated to
substitute the rule currently used. From this it follows that each algo-trader applies the
same rule in the long run as in initial state.

7.3.3 Random initial price history

Figure 7.1 illustrates dissimilar price series that might be generated when we use random
initial price history. In other words, the model doesn’t provide one typical price series,
but there are some characteristic similarities between them.

In Figure 7.1c - 7.1e, the price rises dramatically after the initial price history. This
increase occurs because the demand is high relative to the supply, which is zero at this
point. In fact, the supply will always be equal to zero at the end of period 15 since
no investors are in the market (they are left out from the model during the initial price
history). This means that even the slightest demand will cause an excess demand and an
increase in the price.

In the long run, the prices fluctuate in 4-, 6- and 8-cycles in Figure 7.1c, 7.1d and 7.1e.
The numbers of rules applied by the investors decreases during these time series, and
typically in the long run only one, two or three different rules are used. In the general,
rules with low θ2, meaning they are based on relatively short MAs, perform better then
the other rules and are therefore frequently adopted by the other investors.

In figure 7.1f the price converges to 0.5 in the long run. The algo-traders are never
in the market in this situation, and they never substitute the rule they are currently
applying.

7.3.4 The social interaction process

We have up til now describe the dynamics of how the price change, but left out the
interaction between the algo-traders. The quantity that investor i can communicate with
is denoted by the parameter nn. If the number of neighbors nn is set relatively high to the
total number of investors, I, this will in general increase the “speed” of all these related
processes. The outline of which rule the population end up using goes relatively faster
then previously.
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(c) θ2 = 2, 4-cycle
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(d) θ ∈ {3, 4}, 6-cycle
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(e) θ = 5, 8-cycle
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(f) θ2 ∈ {2, ..., 8}, one price

Figure 7.1: Numerical experiment of simple MA in different condition
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7.4 Numerical experiment based on generalized MA

In this section we implement the remaining algorithms, meaning that all three types of
GMA rules that might be used by the algo-traders. We set up two numerical experiments
with different parameter values and 10 dissimilar rules. In each case, method (2) with
a range of (0.4 0.6), is used to generate the initial price history. Based on these initial
conditions, the simulation of each experiment is carried out. We run the simulations for
several times, and the results seems to be quite different from time to time.

For each experiment we plot at least one price series, and make a corresponding plot
of the (arithmetic) mean wealth at time t. In a sense, this mean-wealth parameter is a
performance measure, which focuses on the population instead of each algorithm.

7.4.1 Experiment 1

In this experiment the parameter values are set equal to

a = 0.2 ψ = 0.6 λ = 0.008 u = 0.5 I = 50 nn = 2 r = 0.001 ω0 = 100, (7.7)

and Table 7.1 describes the characteristics of the different algorithms.
If one compares Figure 7.2a and 7.2b, then it is easy to see how different simulations

based on the same initial conditions might generate totally dissimilar price series. Let’s
first focus on the price dynamics in Figure 7.2a. The plot shows large changes in the price
volatility during the time horizon. At the beginning (beyond the initial price history), the
prices are highly volatile and they fluctuate close to 0 and 1 at some points. Then, the
volatility decreases, and the price fluctuates close to 0.5. The price behavior looks similar
to cycles in this situation, but they are not stable. At some point, the price volatility
increases again, and in the long run the prices fluctuate in a stable 10 cycle14.

The corresponding wealth-plot in Figure 7.3a, illustrates that the mean wealth de-
creases for a long time. At some point, the mean wealth converts close to zero, and
subsequently it starts to increase. Comparing the wealth-plot to the price series, one can
see that the wealth starts to increase approximately at same time as the price fluctuations
turn into a stable cycle (t ≈ 300).

14See Appendix of the extended model and one can see a clear 10 cycle in the prices e.g. in period 489
and 499 consisting of the highest price in the amplitude.
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(a) Prices series generated of experiment 1a

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t+

1)

(b) Prices series generated of experiment 1b
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(c) Prices series generated of experiment 2

Figure 7.2: Price series of the tree experiments generated by the extended model
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(a) The mean wealth of ipmt generated by experiment 1a
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(b) The mean wealth of ipmt generated by experiment 1b
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(c) The mean wealth of ipmt generated by experiment 2

Figure 7.3: Mean wealth of the tree experiments generated by the extended model

52



Table 7.2 illustrates that every algo-trader use the same rule (number 7). Since the
mean wealth increases in the long run, and rule number 7 is the only one used, it is implied
that this algorithm has to generate positive return.

Rule θ1 θ2 θ3 Number of investors

7 2 8 0 50

Table 7.2: Experiment long run behavior t = 500

Looking at the other price series (Figure 7.2b), which is based on the same numeri-
cal experiment, the price dynamics is totally different. Except from the beginning, the
volatility is very low, and the prices fluctuates close to 0.5. The prices seem to fluctuate
in a stable cycle for a long time, but studying the price series more carefully, one could
see that this is the not case. The price series contains 500 observations only, and stable
cycles might occur in an extended time horizon.

In the wealth-plot in Figure 7.3b, a similar trend in the long run behavior as in the
associated time series can be seen. At the beginning, the wealth decreases dramatically,
but in the long run it is almost stable and only small changes occurs.

Table 7.3 shows the five different algorithms that “survive” in the long run. Note that
four out of five rules are implemented with filter, which might partly explain the low
volatility in the price series (Figure 7.2b).

Rule θ1 θ2 θ3 Number of investors

2 2 7 0.1 1
3 1 2 0.15 34
5 2 4 0.1 4
6 2 4 0.15 4
7 2 8 0 7

Table 7.3: Experiment 2b long run behavior t = 500

7.4.2 Experiment 2

Rule θ1 θ2 θ3 Number of investors

3 1 2 0.15 61

7 2 8 0 39

Table 7.4: Experiment 3 long run behavior t = 500
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In this experiment the number of investors are set equal to 100, and one of the algo-
rithms is marginally changed to:

ait θ1 θ2 θ3

5 3 4 0.1

In the price series in Figure 7.2c it seems to be some kind of a pattern in the sense that
similar spikes appear over and over again. These spikes occur at random intervals, and
looking more carefully, one can see that they are unequal. At the beginning of the series,
the prices are highly volatile, which is similar to what we observed in the two simulations
in Experiment 1. After 50 periods approximately, the volatility seems to decrease, and
except from the characteristic spikes the price fluctuates close to 0.5.

Figure 7.3c shows that the mean wealth increases considerably during the time horizon.
Comparing this plot to the price series, similar spikes in the wealth-plot can be observed,
and they occur at the same time interval. This indicates that at the algorithms applied by
the investors are able to profit from the spikes moving upwards. Two different algorithms
are used in the long run (see Table 7.4).

8 Conclusion and future research

The objective of this thesis was to develop an extended version of the Day and Huang
model with heterogeneous and socially integrated investors. The investors use different
algorithmic trading rules to operate in this stylized nonlinear model.

In the first part we investigated carefully the original Day and Huang model and its
dynamics. Our main concern was the β-investors, and their relative importance in the
market, which is denoted by the flocking coefficient b. A bifurcation diagram was made to
see how different values of the flocking coefficient generate different price series. We found
that the prices were predictable for some values of b, but for other values, fluctuations of
more-or-less chaotic type occur. From the bifurcation we concluded that a higher flocking
coefficient not always is consistent with a more complex marked, and in some cases a
higher coefficient leaded to less complexity.

In the next part, we developed an extended version of the Day and Huang model.
The β-investors from the original model was replaced by algo-traders, but the α-investors
and the market maker were not changed. The algo-traders are heterogeneous and their
investment strategies are based on different technical trading rules, as we revealed in
section 3.2. Further, these investors are socially integrated, and investor i is able to
obtain information about investor j’s wealth, stress indicator and trading rule. If investor
i, exceeds his tolerance level with respect to stress and he identifies an algorithm that is
superior to his own, then the algorithm he currently applies is substituted.
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When the fundamentals of the model were programmed, we started to simulate the
model based on a numerical experiment. At first, the trading rules only consisted of
simple moving averages. Keeping the rules simple, we were able to check the programming
for errors and understanding the basics of the model. Then based on dissimilar initial
conditions and the numerical experiment, we plotted three different price series to test
the logic of the social integration process and to outline the price behavior. For each
simulation, the long-run price was either in full equilibrium (p = 0), or it fluctuated in a
stable cycle, typically a 2- 4- or 6-cycle. The number of different algorithms applied in
the long run, was typically one, two or three. Rules with a long MA of a low order (few
periods) tended to perform better than the other rules, in the sense that they survived in
the long run. Looking at the price series, one could see frequently switches between bull
and bear. Based on this price behavior it is quite logical that the long MA of low order,
performs well, which indicates that the social integration process seems to work.

Further, dissimilar versions of the generalized MA rule were implemented. We gener-
ated different price series and plots of the mean wealth based on two numerical experi-
ments.

Our main conclusion is that the unsophisticated investors does not destabilize the mar-
ket. This is in line with the result from Suhadolnik et al. (2010). The intuition that
more unsophisticated investors increase complexity to the market can not say to hold.
Although, in our price series the short run price behavior shows more complexity, but in
the long run, cycles occur and it is less complex.

Figure 7.2c, illustrates the price series fluctuates in a 10-cycle in the long run as the
algo-traders and the sophisticated α-investors are trading is in the market. This seems
consistent for some levels of the flocking coefficient in the bifurcation diagram generated
previously.

8.1 Future research

The current version of the extended model provides several starting points for future
improvements, such as: introducing a more complex communication process, including
more algorithmic rules, reconstructing the investor population and introducing a high-
frequency trading perspective.

In the communication process in our model, it is assumed that the true information
always will be reviled. This may not always be the case, and someone can for example lie
or misunderstand. In In future versions of the model one might consider to encompass a
more complex communication process.

It is said to exist hundreds of different technical trading rules, and by implementing
additional rules, one can increase the complexity of this stylized model. In the current
version of the model it assumed that if a rule doesn’t “survive” the communication process,
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then it will never come back. From some point of view this assumption might look
unrealistic, and it would be interesting to develop a system in which such rules can back
and into the market again. This system could be linked to the communication process,
and it would be a way of bringing in rules endogenously.

It seems reasonable that not every investor are equipped with the same level of wealth,
and that they can tolerate different level of stress. For example one could use some kind
of distribution, giving investors unlike wealth at the initial state.

The perspective of high frequency trading could be encountered by providing α-traders
to only trade in intervals of each hundred or thousand period and let the algo-traders trade
in between. Lastly, in a smaller perspective one could remove the ban from short selling,
and also investigate the scaling function more carefully.
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A Appendix of Day and Huang model

A.1 Price adjustment function in the Day and Huang model

Derivation of the θ(·)

pt+1 = θ(p) = p+ cE(p)

= p+ c[α(p) + β(p)]

= p+ c[a(u− p)f(p) + b(p− v)], p ∈ [m,M ] (A.1)

First order condition w.r.t. p

θ′ (p) = 1 + c[a(u− p)f ′(p) + af(p) + b] (A.2)

= 1 + c[α′(p) + b]

where α′(p) = a(u−p)f ′(p)+af(p), then from equation (4.4) we can write E ′(p) = α′(p)+b

when p̄ = v = u

θ′ (p̄) = 1 + c[af(p̄) + b] (A.3)

if c = 1, then θ′ (p̄) = 1 + af(p̄) + b

A.2 Properties of the Day and Huang model

To derive some characterization properties of the model, some basic concept of dynamics
systems theory.

Fixed points

The graphical map of the price adjustment function θ is said to have fixed points (steady
states) p̄, and are located in the intersection between the 45◦-line and θ.

Hyperbolicity

Let p̄ denote a fixed point of θ. Then p̄ is said to be hyperbolic if

|θ′(p̄)| 6= 1. (A.4)
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Attractor

If p̄ denotes a hyperbolic fixed point of θ and

|θ′(p̄)| < 1 (A.5)

is fulfilled, then p̄ is said to be an attracting fixed point (attractor) or asymptotically
stable.

Repellor

If θ′(p) is not in the unit circle, meaning that

|θ′(p̄)| > 1, (A.6)

then p̄ is called a repelling fixed point (repellor).

Full and temporary equilibrium

Let current price be stationary at level p. Then the aggregated excess demand is

E(p) = α(p) + β(p) = 0, (A.7)

which implies that α-investors’ excess demand equals β-investors’ excess supply or vice
versa [α(p) = β(p)]. α-investors are only in full equilibrium if α(p) = 0, which is true if
p = u. Similarly, β-investors are only in full equilibrium if β(p) = 0, which is true if p = v.

From this it follows that the market is in full equilibrium (and unique) if

p̄ = u = v. (A.8)

If only equation (A.7) is fulfilled and equation (A.7) doesn’t hold, then the equilibrium
price is only temporary.

Stability of full equilibrium

To obtain local stability of full equilibrium it is required that equation (A.5) holds, which
implies that θ′(p) lies within the unit circle −1 < θ′(p̄) < 1. This can be rewritten as

− 2 < c[α′(p̄)− b] < 0. (A.9)

If equation A.9 is fulfilled, then α-investors dominate the market and β-investors are
more-or-less absent. There will be no fluctuations of chaotic type at this point.
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Instability of full equilibrium

If equation (A.5) is violated and the p̄ is a repellor (see (A.2)), then the conditions of
local stability of full equilibrium are violated and

c[α′(p̄) + b] < −2 or α′(p̄) + b > 0. (A.10)

For simplicity it is assumed that c = 1, and that a, b and α′(p̄) are all positive. If
θ′(p) = 1 + α′(p̄) + b > 1 holds, then one can be sure that full equilibrium is unstable.

In the non-hyperbolic situation

A fixed point is said to be non-hyperbolic if

|θ′(p̄)| = 1.

In this situation |1 + c[α′(p̄) + b]| = 1. We can rewrite into

c[α′(p̄) + b] = −2 or α′(p) + b = 0,

if c > 0 then α′(p̄ = v = u) + b = 0.

A.3 R codes

We revile the basic code that we constructed with the Day and Huang model.

chance <- function(p){ m<-0; d1<-0.5; d2<-0.5; M<-1; eps<-0.008; c<-1; out<-0

if (prod(p<m-0.0001|p>M+0.0001)) {out<-0}

else {out<-(p-m+eps)^(-d1)*(M+eps-p)^(-d2)}

out}

alpha <- function(p){a<-0.2; u<-0.50; m<-0; M<-1; z<-0

if (prod(p<m-0.01|p>M+0.01)) {z<-0}

else {z<-a*(u-p)*chance(p)}

z}

beta <- function(p){b<-0.88; v<-0.50; z<-b*(p-v)}

dom<-0.01*1:99 ;c<-1.0

y<-alpha(dom); yy<-alpha(dom)+beta(dom)

p1<-dom+c*(alpha(dom)+beta(dom))
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plot(dom,p1,type="l")

price <- function(init, len, c){p<-c(1:(len+1)); p[1]<-init;

for (i in 1:len) {p[i+1]<-p[i]+c*(alpha(p[i])+beta(p[i]))}

p}

z<-price(0.1234654,200,1.0); plot(z,type="l")

hist(z,seq(-0.1,1.1,0.01,),prob=TRUE);lines(density(z))

B Appendix of the extended model

We have constructed a matrix of the experiment with correlated Figure 7.2c and 7.3c in
order to see the evolution in the model and the population. 15 In order the columns are:

period t, price pt, mean wealth ω̄it, the fraction of risky asset 1− 1
I

I∑
i=1

γit, mean stress level

s̄it, and aggregated excess demand (supply) β(pit).

[,1] [,2] [,3] [,4] [,5]

... ... ... ... ... ...

[15,] 0.57615014 100.068000 0.32 0.00 2777.0538958

[16,] 0.84582715 115.072178 0.74 0.00 2485.2595513

[17,] 0.95995470 127.093696 0.90 0.00 835.0402392

[18,] 0.83263069 111.576936 0.90 0.90 0.0000000

[19,] 0.65936487 90.457717 0.90 1.80 0.0000000

[20,] 0.59328711 82.409777 0.60 2.70 -2161.7266228

[21,] 0.25592454 55.890822 0.38 2.40 -1398.2773102

[22,] 0.06550080 46.270293 0.12 1.90 -1744.7665707

[23,] 0.09566739 46.793110 0.02 0.00 -475.6742065

[24,] 0.07167580 46.687233 0.02 0.02 0.0000000

[25,] 0.38531206 48.718341 0.10 0.00 73.4499216

[26,] 0.51734992 49.764857 0.64 0.00 2903.0014175

[27,] 0.81051525 69.074976 0.98 0.00 959.3388676

[28,] 0.95577078 81.429537 1.00 0.00 7.1892020

[29,] 0.55810855 47.549603 1.00 1.00 0.0000000

[30,] 0.53508002 45.587623 0.86 2.00 -578.5973857

[31,] 0.22703927 22.914062 0.32 2.58 -2846.8191484

[32,] 0.05446154 20.052962 0.12 1.28 -399.7634552
15Parts of the matrix have been taken out.
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[33,] 0.14312720 20.843415 0.00 0.00 -434.7083954

[34,] 0.05852204 20.861087 0.16 0.00 2709.9615448

[35,] 0.70985087 56.175547 0.28 0.00 334.6004610

[36,] 0.88051642 66.568325 0.94 0.00 693.4141341

[37,] 0.95206437 71.917216 1.00 0.00 38.9331597

[38,] 0.60825630 45.946578 1.00 1.00 0.0000000

[39,] 0.56463369 42.651404 0.82 2.00 -2848.4230347

[40,] 0.23897886 36.636250 0.04 2.46 -908.3811757

... ... ... ... ... ...

[120,] 0.63312209 3.858014 1.00 1.00 0.0000000

[121,] 0.57881396 3.527080 1.00 2.00 0.0000000

[122,] 0.54740453 3.335683 1.00 3.00 0.0000000

[123,] 0.52865953 3.221458 0.10 4.00 -171.8202727

[124,] 0.33848851 2.717946 0.08 0.50 -5.0498708

[125,] 0.39949666 2.875750 0.00 0.00 -127.8115444

[126,] 0.29858810 2.878626 0.00 0.00 0.0000000

[127,] 0.38496314 2.881504 0.00 0.00 0.0000000

[128,] 0.43146113 2.884386 0.00 0.00 0.0000000

[129,] 0.45869394 2.885410 0.92 0.00 202.7619497

[130,] 0.67606056 3.767909 0.92 0.00 0.0000000

[131,] 0.60216550 3.468247 1.00 0.92 85.2192579

[132,] 0.65958194 3.798944 1.00 0.00 0.0000000

[133,] 0.59340432 3.417786 1.00 1.00 0.0000000

[134,] 0.55599315 3.202312 1.00 2.00 0.0000000

[135,] 0.53381346 3.074565 0.90 3.00 -18.0667177

[136,] 0.49882909 2.885902 0.24 3.60 -155.9524010

[137,] 0.33315760 2.510046 0.20 1.20 -1.8916491

[138,] 0.40043135 2.662597 0.00 0.00 -112.0704399

[139,] 0.31426131 2.665259 0.00 0.00 0.0000000

[140,] 0.39282653 2.667925 0.00 0.00 0.0000000

... ... ... ... ... ...

[206,] 0.50858548 2.787490 0.52 3.20 -55.4758392

[207,] 0.43970545 2.502921 0.50 2.60 -4.3920516

[208,] 0.45834253 2.579186 0.36 0.00 -14.4266621

[209,] 0.45750573 2.576889 0.36 0.36 0.0000000

[210,] 0.47429460 2.640951 0.28 0.00 -28.4679791

[211,] 0.45041314 2.565763 0.28 0.28 0.0000000

[212,] 0.47002920 2.629573 0.22 0.00 -12.6561117
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[213,] 0.46667494 2.619841 0.76 0.22 118.8391521

[214,] 0.61257852 3.395929 1.00 0.00 11.2239505

[215,] 0.58058580 3.218572 1.00 1.00 0.0000000

[216,] 0.54845221 3.040434 1.00 2.00 0.0000000

[217,] 0.52928918 2.934201 1.00 3.00 0.0000000

[218,] 0.51773879 2.870169 1.00 4.00 0.0000000

[219,] 0.51075075 2.831430 0.46 5.00 -118.8391521

[220,] 0.37376207 2.398817 0.08 2.76 -103.7630914

[221,] 0.30724528 2.328197 0.00 0.56 -54.5808974

... ... ... ... ... ...

[485,] 0.35184334 43.461730 0.00 0.00 0.0000000

[486,] 0.41282380 43.505192 0.00 0.00 0.0000000

[487,] 0.44766194 43.548697 0.00 0.00 0.0000000

[488,] 0.46837772 43.548697 1.00 0.00 4648.8865058

[489,] 0.78085163 72.601812 1.00 0.00 0.0000000

[490,] 0.64815666 60.264135 1.00 1.00 0.0000000

[491,] 0.58717620 54.594310 1.00 2.00 0.0000000

[492,] 0.55233806 51.355139 1.00 3.00 0.0000000

[493,] 0.53162228 49.429033 0.00 4.00 -4648.8865058

[494,] 0.21914837 49.478462 0.00 0.00 0.0000000

[495,] 0.35184334 49.527941 0.00 0.00 0.0000000

[496,] 0.41282380 49.577469 0.00 0.00 0.0000000

[497,] 0.44766194 49.627046 0.00 0.00 0.0000000

[498,] 0.46837772 49.627046 1.00 0.00 5297.7590957

[499,] 0.78085163 82.735276 1.00 0.00 0.0000000

[500,] 0.64815666 68.675556 1.00 1.00 0.0000000
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