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PREFACE 

 

 

This thesis marks the end of a two – year Master’s degree in Economics and Business 

Administration with specialization in financial economics. The purpose is to apply scientific 

methods to explore specific research questions. It has been an instructive journey with many 

challenges along the way.  

 

This process has given me the opportunity for a deeper insight of portfolio theory, which I 

find as an interesting topic. In addition, I had to learn the statistical software program R to 

conduct the analysis. This has perhaps been the greatest challenge, since I was new to the 

programming-environment. However, learning this software has opened many doors to how I 

could expand my analysis and thereby increasing my interest for portfolio theory even further. 

 

I would like to thank my supervisor, Trygve Kastberg Nilssen, for steady guidance and 

helpful inputs. Also, I would like to thank my family for support and motivation during this 

semester. 
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ABSTRACT 
 

This analysis is based on the article by Choueifaty & Coignard (2008) where a “most-

diversified portfolio” (MDP) is compared to a market capitalization – weighted benchmark, a 

global minimum variance portfolio and an equally-weighted portfolio. The weight allocation 

of assets in a MDP is determined by maximizing the diversification ratio. They show that the 

MDP outperforms the other portfolios in terms of higher diversification ratio and higher 

Sharpe ratio. In this analysis I determine if similar results can be achieved in the Norwegian 

stock market, for the MDP. I focus on the portfolio performance and the portfolio 

diversification, although these two terms coincide to some degree. The annualized Sharpe 

ratio measures the performances, while the diversification ratio, rolling volatility and 

correlations are used to measure diversification. I create two MDPs. Portfolio number one has 

no short-sale restrictions. Portfolio number two has a long-only constraint. The performances 

of the MDPs are compared to each other, a cap-weighted benchmark and an equally-weighted 

portfolio in the period 2000-2012. I show that the MDPs have higher Sharpe ratios and are 

more diversified than the cap-weighted portfolio and the equally-weighted portfolio, when we 

look at the total period. However, when the annualized Sharpe ratio is calculated each year, 

the MDPs deliver substantially lower Sharpe ratios in 2001 and 2008-2012 compared to the 

cap-weighted benchmark and the equally-weighted portfolio. All four portfolios show lower 

Sharpe ratios in these periods due to the dot-com bubble that burst in the beginning of 2000, 

and the financial crisis that hit the global economy in 2008. In the period 2000-2012, the 

MDPs deliver lower Sharpe ratios in recessions and superior Sharpe ratios in economic 

upturns.   
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CHAPTER 1 – INTRODUCTION 

 

There are different views regarding the profitability of active portfolio management. This 

originates from the view of market portfolio efficiency. From Markowitz and modern 

portfolio theory we have learned that if two portfolios have the same expected return but 

portfolio number one has a lower volatility, then portfolio number two is inefficient. The 

same holds if the volatilities are the same but the first portfolio has a higher expected return. 

If a portfolio generates higher expected return than the market, then this portfolio should also 

have greater risk relative to the market index, given that the market index is defined as 

efficient.    

 

In this analysis I want to focus on two issues. Inspired by the research of Choueifaty & 

Coignard (2008), I want to adopt this to the Norwegian stock market. I chose sixty-five stocks 

from the Oslo Stock Exchange as the stock universe. The goal is to explore the performance 

of the MDP compared to a cap-weighted portfolio and an equally-weighted portfolio in terms 

of Sharpe ratios, in the period 2000-2012. In other words, I want to examine if the MDP is the 

efficient portfolio in this context.  

 

Next, I want to take a closer look at the diversification of a MDP. This is the main reason why 

I include an equally-weighted portfolio in the analysis. In theory, by applying equal weights 

to sixty-five stocks, this portfolio should be well diversified. By comparing the diversification 

of these four portfolios, this would give a clear indication whether applying portfolio weights 

by maximizing the diversification ratio, actually leads to a more diversified portfolio.  

 

In the analysis I create two MDPs. The sum of asset weights must equal to one for both 

portfolios. For one portfolio this is the only constraint, i.e. short sales are allowed. This will 

be called MDP – short. The other portfolio has in addition a long-only constraint, i.e. all asset 

weights must be larger than (or equal to) zero. This will be named MDP – long. It is clear that 

the efficient set of the constrained portfolio must lie within (or on the boundary) of the 

unconstrained efficient set when the goal is to maximize the diversification ratio. However, I 

want to examine if the possibility to have short positions, poses a great difference in 

performance and diversification for this portfolio. 
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In the next chapter I present a quick summary of portfolio theory followed by an explanation 

of the diversification ratio. Research regarding efficiency of market – cap weighted portfolios, 

is presented at the end of this chapter.  In chapter three I go through the data and methodology 

of how I constructed the most-diversified portfolios, and the procedure behind shrinking the 

covariance matrix. Chapter four gives a mathematical derivation of the diversification ratio 

which leads to an analytic solution of the portfolio weights. This is followed by a discussion 

of how well the diversification ratio captures the actual portfolio diversification. Chapter five 

compares the two most-diversified portfolios to the capitalization-weighted benchmark and 

the equally-weighted portfolio; in terms of performance and diversification. Finally, the 

conclusion of my analysis is found in chapter six. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

 

 

 

CHAPTER 2 THEORY 

 

2.1 A quick review of portfolio theory 

2.1.1 Basics 

The modern portfolio theory is over sixty years old. It began with the article published by 

Markowitz (1952) where he introduced the concept of how portfolio risk can be reduced by 

not putting all eggs in one basket. Although this concept existed long before this article was 

published, the formal portfolio construction where this is accounted for was new to the 

finance world (Bodie, Kane & Marcus, 2011). A problem with Markowitz’ approach has been 

the high degree of complexity when we include a large number of assets. Due to the fact that 

there are easier access to advanced software to do these mathematical computations, this issue 

is not as important as before. In the following paragraph I introduce some basic statistical 

measurements for the return of the stock price. Next I apply this to a portfolio of n stocks and 

derive a formula for the portfolio return, variance and standard deviation. Then I rewrite these 

formulas as vectors and matrices, and derive a result from matrix derivation that is used later 

in the thesis. 

 

Consider an investor who buys stock A at time t for the price   , and sells the stock at time 

t+1 for     . The simple realized return (r) for the investor at t+1, is (Berk & DeMarzo, 2011, 

p. 298): 

 

      = 
       

  
 = 

    

  
                                                                 (1) 

 

We now assume that the investor did not sell the stock and observes the return over a specific 

period. The price at t+1 is uncertain at time t and we assume that the return is an independent 

and identically distributed random variable. The investor can calculate the expected 

return,     , of the stock based on the historical data (Bodie et. al, 2011, p. 158): 

 

      
 

 
∑                                                                                         

 

   

 

 

which is the arithmetic average of the simple returns. Note that by dividing by T, we use equal 

probabilities for each observation. It would be interesting for the investor to know how much 
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the realized returns deviates from the expected value. The variance of return is equal to the 

expected value of squared deviations from the mean. Since we use historical returns we 

calculate the deviations from the simple arithmetic average (2). The true expected return is 

unobservable, so by replacing it with the arithmetic average we estimate the variance (Bodie 

et.al, 2011, p.161): 

 

 ̂  
 

   
∑            

 

   

                                                              

 

The distance between observed – and expected value is squared so that the variance is non-

negative. The purpose of this is to prevent that sums of deviations below and over the 

expected value reduce the total variance. This expression is divided by n-1 to eliminate the 

estimation error that results from using the arithmetic mean and not the true, unknown 

expected value
1
. In other words, since the simple return of the first observation cannot be 

calculated, and this term is included in the variance of return, we “loose” one degree of 

freedom.  

  

The variance can be viewed as a risk measure, but the units are defined in squared returns. It 

would be difficult to compare the risk of different stocks with this measure.  An answer to this 

problem is to apply the square root to the variance. We are then left with the standard 

deviation which is measured in the same units as the return (Bodie et. al, 2011, p. 161): 

 

 ̂  √
 

   
∑          

 

   

                                                              

 

If the investor now in addition buys another stock, we can calculate the covariance of returns 

of the two stocks, i.e. how the two stock returns move together (Berk et.al., 2011, p. 333): 

 

                                                 

 
1
 The arithmetic average of squared deviations is multiplied by n/(n-1), but since the n in the numerator in this 

term and the n in the denominator of the second term cancel out, we are left with this expression; 
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∑(          )  

 

   

                                   

 

From (5) we see that if the two stocks move in the same direction (both returns move below 

or above the mean at the same time), the covariance is positive. If they move in opposite 

direction the covariance is negative. If the two returns are stochastically independent then the 

covariance is zero
2
. We divide by T-1 since we use historical data, which makes (5) an 

estimated covariance.  

 

To quantify the strength of the relationship between the two returns we can calculate the 

correlation between them (Berk et.al, 2011, p. 334): 

 

    (     )  
   (     )

    
                                                                 

 

Since we divide the covariance by the volatility of the two returns, the correlation coefficient 

will be a number between -1 and +1. The sign of the correlation follows the same logic as 

with the covariance. 

 

2.1.2 Portfolio of n stocks 

Now consider n risky stocks where     is the return (i represents any of the n stocks). We 

assume that    is an independent and identically distributed random variable. If we construct a 

portfolio of these stocks, then the portfolio return is equal to the weighted sum of the returns 

(Berk et. al, 2011, p. 331): 

 

    ∑    

 

   

                                                                                      

 

where    denotes the weight of asset i. The expected return for each stock is      . The 

portfolio expected return can be written as (Bodie et. al, 2011, p. 241): 

 

                                                 

 
2
 Note that this does not necessarily mean that if Cov(       = 0 the two stocks are stochastically independent. 
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 (  )   ∑       

 

   

                                                                           

 

The portfolio variance is the sum of the variance for each stock return and the pairwise 

covariance
3
 between them:  

 

   (  )  ∑∑        (     )                                            

 

   

 

   

    

 

We define the portfolio variance by   
  and    (     ) as    . Rewriting (9) as (Bodie et.al, 

2011, p. 241): 

 

  
  ∑∑                                                                             

 

   

 

   

 

 

From (10) we get the portfolio standard deviation by applying the square root to the portfolio 

variance: 

 

   √∑∑       

 

   

 

   

                                                                    

 

The portfolio standard deviation is a widely used measure of portfolio risk.  

 

2.1.3 Portfolio calculation in matrix notation 

Before introducing equation (7), (8), (10) and (11) in matrix notation, it is necessary with 

some basic definitions. 

 

Every matrix and vector will be denoted in bold text. We define: 

 

                                                 

 
3
 This is a simplified expression since we do not assume that i is different from j. Since Cov(       = Var(    the 

weighted sum of variances is captured by (9).  
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                                       = (

  

  

 
  

) ,      = (

  
  
 
  

) and      = (

     
     

 
     

) 

where w is a vector of portfolio weights, R is a vector of stock returns and μ is a vector of 

expected returns. The subscript of each vector (and matrices) defines the dimension; for 

example      means that the portfolio weights contain n rows and 1 column. This is also 

called a column vector. By using basic matrix calculation we see that (7) can be written as 

(Markowitz, 1959, p. 172): 

 

                            ∑     
 
      

 
      (

  
  
 
  

) = w’R =                      (12) 

 

The expected return of the portfolio can be written in the same manner: 

 

                   ∑        
 
             (

  

  

 
  

)        (  )                               

 

where    is the transpose of the weight vector, meaning that the weight in the i’th row in the 

j’th column
4
 is placed in the j’th row in the i’th column. We use the transpose to be able to 

calculate the inner product. In general, matrix multiplication is only possible if number of 

columns in the first matrix is equal to the number of rows in the second matrix.  

 

The portfolio variance is expressed as: 

 

∑∑        

 

   

 

   

         (

       

   
       

)(

  

  

 
  

)    
        

          

 

                                                 

 
4
 In this case j=1. 
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where      is the covariance matrix
5
. This is a symmetric matrix (         with the 

variances along the diagonal.  We multiply the covariance matrix with w and w’ to get the 

weights squared. To calculate the portfolio standard deviation we simply apply the square root 

to (14): 

√    
                                                                          

 

Later in the thesis, when I create the most-diversified portfolios, I calculate the derivative of 

the diversification ratio with respect to w. In this section I will explain how to calculate the 

first order conditions of the portfolio variance.  

 

The portfolio variance is written as w’Ωw . It is easier to illustrate the derivative of this 

function w.r.t w by using a simple example: 

 

Let w be a column vector with two rows: 

(
  

  
). 

 

Ω is a symmetric matrix. Since w has two rows the dimension of this matrix is 2 by 2: 

 (
  
  

)  

 

Since w’Ωw = a  
  + 2b     + c  

  we get (Zivot, 2011): 

 

  ’  

  
  

(

 
 

  ’  

   

  ’  

   )

 
 

  (
          

          
)  

 

We see that this can be written in matrix form as follows: 

 

 (
  
  

) (
  

  
)                                                                                    

                                                 

 
5
      = E((Rn,1 – μn,1)(Rn,1 – μn,1)’) and is a n by n matrix since R has n elements (Zivot, 2011) 
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2.2 Diversification ratio 

As mentioned in the previous section, the portfolio standard deviation of returns is used to 

measure portfolio risk. We distinguish between two sources of risk. On the one hand there is 

risk associated with the general economy (inflation, interest rates etc.). This is called 

systematic risk. On the other hand we have risk that is firm-specific, often called unsystematic 

risk. The difference between them is that the systematic risk affects all firms, but the 

unsystematic risk only affects the specific firm. In a portfolio context we can reduce the 

unsystematic risk by including more stocks in the portfolio. Eventually we are left with only 

the systematic risk. A lot of research has been devoted to finding the number of stocks that 

make a diversified portfolio. For example in the article by Statman (1987), the result was 30 

stocks for a borrowing investor and 40 stocks for a lending investor. In the following 

paragraph, I illustrate how a stock contributes to portfolio risk by decomposing the variance 

of portfolio return. Next, I introduce the measurement developed by Choueifaty & Coignard 

(2008) called the diversification ratio. 

 

An alternative to (10) is to express the variance of portfolio return as the sum of the weighted 

covariance of stock i with the portfolio (Berk et.al, 2011, p. 341): 

 

  
   ∑      

 

   

                                                                                      

 

Since                      we can rewrite (18) as: 

 

  
   ∑          (     )                                                              

 

   

 

 

We divide by   on both sides. The result is a decomposition of the portfolio volatility: 

 

    ∑        (     )                                                                   
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From (20) we see that the portfolio volatility depends on the weighted average volatility of 

each stock, and the correlation between the stock and the portfolio. The correlation adjusts for 

the risk that is common to the portfolio and stock i. The portfolio volatility will be lower than 

the weighted average volatility of each stock, unless all stocks are perfect positively 

correlated with the portfolio (    (     )     . 

 

A way to quantify the degree of diversification is by calculating the diversification ratio (DR). 

This ratio is defined as: 

 

      
∑     

 
   

  
                                                                                    

 

In matrix notation (21) becomes
6
: 

 

       
   

√    
                                                                                      

 

where σ is a column vector of the volatility of each stock: 

 

   (

  

  

 
  

)                                                

 

From (20) we see that the nominator in (22) is the portfolio volatility when every stock is 

perfectly correlated with the portfolio. The denominator is the actual portfolio risk. We see 

that the diversification ratio of a portfolio containing one stock is equal to one. In reality, 

every stock will not be perfectly correlated with the portfolio, so the diversification ratio will 

be larger than one when the portfolio consists of more than one stock (Sapra, 2011). By 

maximizing this ratio subject to constraints, we get the most diversified portfolio. This is done 

in the next chapter.  

 

                                                 

 
6
 The matrix dimensions are defined in chapter 2.1.3, and will not be included further in the thesis. 
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The maximization of the diversification ratio is a different approach when it comes to 

diversifying a portfolio. Instead of increasing number of stocks in the current portfolio, we 

rearrange the weights of the existing stocks to achieve the highest possible diversification 

ratio. In essence: higher diversification ratio  a more diversified portfolio.  

 

2.3 Is the cap-weighted portfolio efficient? 

The study of the efficiency of investing in a market cap-weighted portfolio is not a new 

subject. Haugen & Baker (1991) showed that cap-weighted stock portfolios are inefficient, 

except under extremely restrictive conditions. They argued that the theory predicts this 

portfolio to be inefficient even under the assumption that the capital market is 

“informationally” efficient.   

 

Amenc, Goltz, Martellini  & Retkowsky (2010) also recognized this inefficiency and, by 

focusing on the tangency portfolio, developed a procedure for generating efficient indices 

with Sharpe ratios considerably higher than the cap-weighted index.  

 

Chow, Hsu, Kalesnik & Little (2011) developed alternative passive investment strategies that 

outperformed cap-weighted indexing, unadjusted for risk factors. These strategies were 

categorized by heuristic-based weighting methodologies and optimization-based weighting 

methodologies.  

 

Arnott, Hsu & Moore (2005) compared the cap-weighted index to fundamental equity market 

indices, i.e. weights were measured by fundamental factors other than market capitalization. 

They showed that these index portfolios delivered superior mean-variance performances.  

 

Lee (2011) argues that there is no theory to predict the performance of risk based portfolios 

relative to the market. For some active portfolios to outperform the market portfolio, others 

have to underperform. If a portfolio consistently outperforms the market, then it has more 

information on future asset returns than the market portfolio. 
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CHAPTER 3 METHODOLOGY 

 

3.1 Data and strategy 

I include 65 stocks from the Norwegian stock market as the stock universe in this analysis. 

The firms are listed in appendix A.  I use daily data from 01.01.1999 to 01.01.2013. This is 

downloaded from the Thomson Reuters Datastream. To create the most-diversified portfolios, 

the necessary inputs are the (inverted) covariance matrix and the volatility vector. All inputs 

are based on historical data of 250 days. To improve the estimated covariance matrix, and to 

avoid problems regarding singularity, I applied a shrinkage method to the covariance matrix. 

From this I add the resulting weights to the stock returns. This rebalancing is done on a 

quarterly basis from January 2000 to December 2012.  

 

To conduct the analysis, I use the statistical software program R. Packages that came to good 

use are listed in the credits. I created a function in R to calculate the MDPs. This function is 

listed in appendix C. The benchmark is constructed by applying weights according to the 

market capitalization of the 65 firms. In this way the benchmark and the most-diversified 

portfolios are comparable since they have the same universe of stocks. The benchmark is also 

rebalanced on a quarterly basis. This benchmark is however not a market cap-weighted index, 

as opposed to the benchmark used in the article by Choueifaty & Coignard (2008). OBX is a 

tradable index and includes the 25 most liquid stocks on the Oslo Stock Exchange. The firms 

are weighted according to their market capitalization. The index is rebalanced on a semi-

annual basis. I chose not to use this index as a benchmark for two reasons. First, it is difficult 

to obtain data from the time period I want to examine. Reason number two is that this index 

contains fewer stocks than I would like in the portfolios, since a significant part of the 

analysis deals with portfolio diversification. I am mainly interested in comparing portfolios 

with different allocations of weights. However, the correlation of returns between the 

benchmark and OSEBX is 0.95, and 0.94 between the benchmark and OBX. In other words, 

this benchmark is a valid representation of market cap-weighted index returns. 

 

The equally-weighted portfolio contains approximately 1.54% of every stock. 
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3.2 Shrinkage estimator 

The sample covariance matrix is an unbiased estimator, however when number of 

observations (t) is less than the number of stocks (n) it would be a problem inverting the 

covariance matrix. Also when t is close to n, estimation errors may occur. Ledoit & Wolf 

(2004) points out that an estimator with a lot of structure will handle this problem, but such 

estimators tend to be biased. They state that all successful risk models contain a compromise 

between an unstructured and a highly structured estimator. By this philosophy they develop a 

linear convex combination between the sample covariance matrix, i.e. unstructured estimator, 

and a highly structured estimator (T): 

 

Ω* = λT + (1 – λ Ω                                                           (23) 

 

where λ is a constant
7
. We see that Ω is “shrunk” towards T. This is the technique called 

shrinkage. There are different ways of shrinking the covariance matrix. The method used in 

this analysis is based on Schäfer & Strimmer (2005), which can be used in R by installing the 

package corpcor. Here, the estimated covariance matrix is determined by shrinking the 

variance of each stock and the correlation matrix. In order to illustrate this we define V as a 

matrix with n rows and  n columns, with the variances along the diagonal: 

 

   (
  

   
   
    

 
)                                                                 

This gives us: 

 ̃  √                  

 

where  ̃ is a matrix with n rows and n columns with the volatilities along the diagonal. The 

covariance matrix can now be expressed as: 

 

                                                       Ω =  ̃  ̃                                                                                                                                                              

 

where C is the correlation matrix. By shrinking the variance and the correlation matrix, we get 

the following expression for the estimated covariance matrix: 

                                                 

 
7
 Also called the “shrinkage-intensity”.  
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    ̃    ̃                                                                           

 

where  ̃   √  . These expressions are explained in more detail in the next two sub-

chapters. 

 

3.2.1 The variance shrinkage intensity 

By following the same logic as with (23) we can write the estimated variance (V*) as: 

 

    ̂ 
         (   ̂ 

 )                                                    

 

where         is the median of the variances. The median is, in this case, the target estimator.   

 

The shrinkage intensity for the variance can be expressed as (Opgen-Rhein & Strimmer, 

2007): 

 ̂ 
        

∑    ̂    
 
   

∑               
   

                                                    

 

We see that if the empirical variance deviates a lot from the median (the target), then there 

will be less shrinkage. The min( ) function is used to avoid over – and under shrinkage. In 

other words, the shrinkage intensity can only be a number between 0 and 1.  

  

The expression for    ̂     and    is straightforward. From (2) we have the arithmetic 

average of simple returns which, for simplicity, we will define here as  ̅ . We define: 

 

            ̅       

 ̅  
 

 
∑    

 

   

            

 

From this we get: 

   
 

   
 ̅      



20 

 

 

 

 

   ̂     
 

      
∑       ̅  

 

 

   

  

 

 

3.2.2 The correlation shrinkage intensity 

When estimating the correlation matrix, we shrink the empirical correlation towards the 

identity matrix: 

 

    ̂ 
   (   ̂ 

 )   

 

where (Schäfer & Strimmer, 2005): 

 

 ̂ 
     (  

∑    ̂(   )   

∑    
 

   

)  

 

    denotes the elements in the empirical correlation matrix. We see that if the correlations are 

high, then less shrinkage will be applied towards the identity matrix. The expression for 

   ̂(   ) is derived in a similar fashion as in the previous sub-chapter. From (6) we know that 

the measures need to be standardized, i.e.     
   

    
  From this we get that: 

 

      
 

    
(      ̅ )  (      ̅ )  

Now, we define 

 ̅   
 

 
∑     

 

   

  

 

The estimated variance of the correlation elements can now be written as: 

 

   ̂(   )  
 

      
∑        ̅   

 

 

   

  

 

A simple numerical example to illustrate this is given at the end of Appendix C. 
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CHAPTER 4 THE MOST-DIVERSIFIED PORTFOLIO 

 

4.1 Maximizing the diversification ratio 

The strategy of determining weights by maximizing the diversification ratio is defined as an 

anti-benchmark strategy (Choueifaty, 2006). There are however different anti-benchmark 

strategies that leads to a most-diversified portfolio. The first approach is the one used in this 

thesis. The analytical solution (30.1) below is not explicitly stated in the article. Due to the 

fact that the diversification ratio is similar to the Sharpe ratio, I used the procedure for 

maximizing this ratio (Zivot, 2011 and Blake, 2011) as a benchmark. To ensure that this 

solution is correct, I used the Solver in Microsoft Excel to calculate the first set of weights for 

the MDP – short and compared to the weights retrieved from (34.2).  

    

The optimization problem for the MDP – short can be formulated as (Choueifaty, Froidure & 

Reynier, 2011): 

 

   
 

 

 
                                                                                 

 

We multiply by 
 

 
 to be able to simplify the first order condition. This method can be applied 

since DR(w) is homogenous of degree zero: 

 

        
    

√      
  

   

√    
                                                        

 

In other words, although we scale the function by 
 

 
, we will still have the same solution 

because of this property. 

  

This optimization problem has the following Lagrange function (Pemberton & Rau, 2007, p. 

321): 

    λ   
 

 
                                                                  

 

First order conditions: 
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     λ 

  
 

 

 
     λ                                                             

 

     λ 

 λ
                                                                            

 

(27) is a result from the derivation rule derived at the end of chapter two.  We rewrite and 

simplify this expression as: 

      λ                                                   

 

Solve with respect to w: 

   λ                                                                                                

 

(28) can be written as: 

                                                                                                                                                  

 

Since     =     we get: 

                                                     

 

By multiplying    on both sides of (29), we get: 

    λ                                

 

Now we find an expression for λ
8
: 

λ  
 

      
                                      

 

Finally, we insert this expression in (29): 

 

  
    

      
                                                                                      

 

                                                 

 
8
 Since        is just a number (as opposed to a vector or matrix), we can divide it on both sides. For vectors 

and matrices, we need to multiply both sides by its inverse.  
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The portfolio weights depend on the inverted covariance matrix and the volatility vector. 

Stocks with higher (lower) volatility will have smaller (larger) weights in the portfolio. In 

addition we want the portfolio weights to sum to one, so we need to rescale the weights. 
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For a portfolio with a positive weights constraint, the maximization problem can be defined 

as: 

 

   
 

 
 

 
                                                                             

       

 

 

where i represents the weight of a stock in the portfolio. Because of this added constraint we 

can no longer derive an analytic solution. This maximization problem has to be solved 

numerically (Zivot, 2011), i.e. we have to try different weight combinations and chose the one 

that generates the highest diversification ratio. Similar to the optimization above, we need to 

rescale the weights to sum to one.  

 

As shown by Choueifaty & Coignard (2008), a different approach is to define X1, X2, ..., Xn 

as stocks in universe U. To simplify the math we imagine a universe (Us) of synthetic stocks 

(S1, S2, ..., Sn), i.e. all stocks have the same expected volatility. In mathematical terms a 

synthetic stock is defined as
9
: 

   
  

  
 

 

where    is the volatility of Xi. For simplicity we assume that the expected volatility of Si is 

equal to 1. Since this is a universe of synthetic stocks, this means that all the stocks in this 

                                                 

 
9
 For simplicity I do not include the risk-free investment. 
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universe have expected volatilities equal to 1. The volatility vector is therefore a vector of 

ones: 

   (

 
 
 
 

)  

The diversification ratio for the synthetic stocks is defined as: 

 

       
     

√       

 

 

where   is the column vector of weights for the portfolio of synthetic stocks, and   is the 

covariance matrix for this portfolio. As with the approach above we want the weights to sum 

to 1. Since the volatility vector is a vector of ones, this means that the denominator is equal to 

one.  

              (

 
 
 
 

)     

We can now write the diversification ratio as: 

 

       
 

√       

   

 

The only way for DRs to increase is for the denominator to decrease, so maximizing this ratio 

is equivalent to minimizing the portfolio volatility. Since every stock has an expected 

volatility of 1, the covariance matrix is equal to the correlation matrix (C) of the original 

stocks (Xi). This approach is therefore a minimization problem and can be defined as: 

 

   
 

  
                     

                                            

 

We can of course add more constraints to (32). The solution from this optimization is 

however not the final result. These weights are based on a universe of synthetic stocks. We 
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need to construct a real portfolio (M) by dividing each optimal weight     
   by the actual 

volatility (σi)
10

: 

 

  

(

 
 
 
 
 

   
 

  

   
 

  

 
   

 

  )

 
 
 
 
 

  

 

M is a column vector of portfolio weights and can be defined as the most-diversified 

portfolio. These weights does not necessarily sum to 1. We would add the remaining weights 

to the risk-free investment. Since we do not include a risk-free asset, the weights have to be 

rescaled such that the sum of weights equals 1. 

 

Even though these are two different approaches to a most-diversified portfolio, they have the 

same solution. This proof is shown in appendix B. 

 

4.2 Diversification ratio as a measure of portfolio diversification 

4.2.1 Portfolio volatility vs. DR 

As mentioned earlier, the diversification ratio is one way of quantifying the degree of 

portfolio diversification. However the difference between      and √     is a differential 

diversification measure and not an absolute measure (Meucci, 2010). In other words, there is 

no absolute classification of a high or low diversification ratio. I use this ratio to compare the 

four portfolios and can only determine that one diversification ratio is higher relative to 

another. To some degree we can classify a ratio close to 1 as small, since a portfolio of one 

stock will have a diversification ratio equal to one. It is clear that a one-stock portfolio is not 

well diversified. From (21) we see that in order for the ratio to increase, either the portfolio 

volatility has to decrease or the volatility contribution of each stock has to increase. Since the 

latter assumes that all stocks are perfectly correlated (which is not a realistic assumption), I 

want to look at the relationship between the portfolio volatility and the actual diversification 

ratio in the performance period. For this measure to be an indicator of portfolio diversification 

                                                 

 
10

 This procedure is called the Choueifaty Synthetic Asset Back-Transformation. 
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there should be an inverse relationship between the diversification ratio and the portfolio 

volatility. In the figures below, the standard deviation of the portfolio is plotted against the 

actual diversification period for all four portfolios in the performance period. Both measures 

are calculated at the end of each quarter. The ratio is calculated from January 2000 to 

December 2012 on a quarterly basis using (21).  

 

 

 

 

 

Figure 1: Plots of the portfolio volatility against the actual diversification ratio for all four portfolios in the performance 
period.  

According to Figure 1, it holds for all four portfolios that observations with relatively low 

volatility have a higher diversification ratio. For observations were the volatility is relatively 

high, the diversification ratio is lower.   
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4.2.2 Decomposition of DR 

In the article by Choueifaty, Froidure & Reynier (2011), the DR is decomposed to: 

 

           (       )         
 
  

 

where      is the volatility weighted average correlation of the stocks in the portfolio: 

      
∑               
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and       is the volatility weighted concentration ratio  
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This shows us that when the concentration ratio decreases and/or the volatility weighted 

average correlation decreases, the diversification ratio increases. The intuition behind this 

decomposition is that portfolios with concentrated weights (majority of weights in few stocks) 

and high correlation between the stocks and the portfolio, are poorly diversified portfolios. 

This will result in a low diversification ratio.  

 

We can illustrate this decomposition by a simple example. Consider three stocks with the 

following volatilities, correlations and covariances: 
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To create a most-diversified portfolio of these stocks, we use the approach explained in 

chapter 4.1. From (30.1) and (30.2) we get the following weights: 

 

  (

  

  

  

)  (
     
     

      
)  

 

By applying (22) we get the diversification ratio: 

 

             

 

Now we calculate the volatility weighted average correlation of the stocks in the portfolio: 
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    = 2.549. 

 

Next, we need the volatility weighted concentration ratio  

 

       
∑       
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      = 1.577. 

Finally, we can insert these two numbers in the decomposed DR formula to make sure that the 

calculations are correct. 
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The difference is due to rounding error. 

 

Choueifaty, Y. Froidure, T. & Reynier, J. (2011) also states two core properties of the MDP – 

long. First, every stock that is not included in the MDP – long (i.e. weight is zero), is more 

correlated to this portfolio than any of the stocks that are included. In this analysis, the stocks 

that are included in the MDP – long are on average 1/2 of the whole universe of stocks. 

However, according to this property this does not mean that the portfolio is poorly diversified. 

The second core property states that the correlation between the MDP – long and any other 

long – only portfolio is greater than, or equal to the ratio of its DR. The correlations of all 

assets to the MDP-short are constant, and equal to the inverse of the MDP’s DR. We can use 

the example above to illustrate this. The three stocks have the following returns: 
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)       (

   
    
    
    

), 

 

i.e. we have four observations of each stock. With the weigh vector, we can calculate the 

portfolio return: 

 

   (

       
       
       
       

)  

 

Now we calculate the correlation between each stock and the most-diversified portfolio: 

 

              

              

             . 

 

We see that every stock has a correlation of 32.56% with the portfolio. This is also equal to 

the inverse of the MDP’s diversification ratio: 

 

Note that: 
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When calculating its inverse, we get: 

        
 

     
         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

 

 

 

CHAPTER 5 COMPARING THE FOUR PORTFOLIOS 

 

5.1 Portfolio performances 

I measured the performance of the four portfolios in the period 2000-2012. The main focus is 

on the Sharpe ratios. When analyzing the diversification of the portfolios, I consider the 

average diversification ratio, the daily observations of the portfolio volatilities and the 

correlation between the portfolios and each stock. 

 

To compare the portfolios I calculated the annualized return and annualized volatility. The 

annualized return is calculated by multiplying number of trading days in a year
11

 by the 

average daily return ( ̅  of the portfolio: 

 

Rannualized =  ̅ *252.                                                                                    (33) 

 

The annualized volatility is calculated in a similar manner. We multiply the average daily 

volatility ( ̅  by the square root of number of trading days: 

 

 annualized =   ̅ * √    .                                                                           (34) 

 

By using a risk free rate (    of 4,68% (AF KP) we can calculate the annualized excess return: 

                                            Rexcess = Rannualized –    

                                             = Rannualized – 0.0468.                                                                   (35) 

 

By dividing (35) by (34) we get the (annualized) Sharpe ratio (S): 

  
            –    

           
  

       

           
                                                          

 

The portfolio performances can be summarized in the following table: 

 

 

 

                                                 

 
11

 Approximately 252 days. 
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Table 1: The returns, volatilities and Sharpe ratios are given in this table for the total period. This is calculated for the 
MDP-short, MDP-long, the equally-weighted portfolio (EW) and the cap-weighted benchmark (B). 

In Table 1, I have calculated the mean of the entire period and multiplied by 252. We see that 

both MDPs have higher returns and lower standard deviations than the benchmark, hence the 

higher Sharpe ratios. The equally-weighted portfolio also has a higher Sharpe ratio than the 

benchmark, but less than the two MDPs. 

 

 

Figure 2 Risk-return scatter plot for the MDP-short, MDP-long, benchmark and the equally-weighted portfolio. 

In this figure
12

 we clearly see that if we are standing in B we can reduce the volatility and 

increase the return by moving to the MDPs. If we hold the equally-weighted portfolio, we can 

lower the volatility by holding one of the MDPs instead. The MDP – long offers slightly 

                                                 

 
12

 Note that the plot measures the annualized return and not the annualized excess return. This does not however 

affect the relationship between the portfolio performances since the risk-free rate is a constant. 

  MDP-short MDP-long B EW 

2000-
2012 

Total period     

 Annualized return 14.91% 14.43% 8.07% 15.04%  

 Annualized excess 
return 

10.23% 9.75% 3.39% 10.36% 

 Annualized volatility 12.52% 12.46% 24.07%   17.97% 

 Sharpe ratio 0.817 0.783 0.141 0.577 
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lower annualized return, but has a higher Sharpe ratio. In other words, the benchmark and the 

equally-weighted portfolio are inefficient compared to the MDPs. Between the two MDPs, the 

MDP-short is the efficient portfolio. This is, however, a relatively long investment horizon. 

Therefore, I have calculated the annualized Sharpe ratio for each year in order to see if the 

MDPs consistently outperform the benchmark. The results are shown in table two. 

 

  2000 2001 2002 2003 2004 2005 2006 

MDP-
short 

Annualized return 9,50% -7,74% -7,14% 71,69% 38,56% 52,53% 36,88% 

 Annualized excess 
return 

4,82% -12,42% -11,82% 67,01% 33,88% 47,85% 32,20% 

 Annualized volatility 10,83% 11,15% 14,19% 13,17% 9,71% 11,15% 12,42% 

 Sharpe ratio 0,445 -1,113 -0,833 5,090 3,490 4,292 2,592 

         

MDP-long Annualized return 8,44% -7,99% -5,70% 70,38% 38,36% 53,33% 33,08% 

 Annualized excess 
return 

3,76% -12,67% -10,38% 65,70% 33,68% 48,65% 28,40% 

 Annualized volatility 10,61% 11,22% 13,49% 12,72% 9,75% 11,18% 12,04% 

 Sharpe ratio 0,354 -1,129 -0,770 5,165 3,455 4,352 2,358 

         

B Annualized return 15,82% -10,83% -29,34% 34,00% 30,81% 35,44% 24,43% 

 Annualized excess 
return 

11,14% -15,51% -34,02% 29,32% 26,13% 30,76% 19,75% 

 Annualized volatility 16,59% 17,83% 20,93% 16,41% 13,93% 15,86% 23,52% 

 Sharpe ratio 0,672 -0,870 -1,626 1,786 1,876 1,939 0,840 

         

EW Annualized return 12,65% -9,25% -20,68% 70,84% 44,02% 54,14% 30,16% 

 Annualized excess 
return 

7,97% -13,93% -25,36% 66,16% 39,34% 49,46% 25,48% 

 Annualized volatility 14,17% 14,46% 14,82% 13,28% 12,55% 14,70% 16,21% 

 Sharpe ratio 0,562 -0,963 -1,711 4,981 3,135 3,366 1,572 
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  2007 2008 2009 2010 2011 2012 

MDP-
short 

Annualized return 14,27% -29,54% 15,06% 7,48% -21,90% 10,26% 

 Annualized excess 
return 

9,59% -34,22% 10,38% 2,80% -26,58% 5,58% 

 Annualized volatility 10,32% 12,71% 13,00% 12,06% 14,32% 15,17% 

 Sharpe ratio 0,930 -2,692 0,798 0,232 -1,856 0,368 

        

MDP-long Annualized return 15,91% -36,06% 14,96% 9,27% -23,23% 13,08% 

 Annualized excess 
return 

11,23% -40,74% 10,28% 4,59% -27,91% 8,40% 

 Annualized volatility 9,91% 14,04% 13,35% 12,32% 13,93% 14,78% 

 Sharpe ratio 1,134 -2,903 0,770 0,373 -2,003 0,568 

        

B Annualized return 10,66% -75,71% 61,26% 16,26% -32,68% 21,85% 

 Annualized excess 
return 

5,98% -80,39% 56,58% 11,58% -37,36% 17,17% 

 Annualized volatility 19,36% 46,29% 32,50% 22,26% 27,35% 19,73% 

 Sharpe ratio 0,309 -1,737 1,741 0,520 -1,366 0,870 

        

EW Annualized return 11,02% -59,29% 44,84% 10,11% -29,89% 30,43% 

 Annualized excess 
return 

6,34% -63,97% 40,16% 5,43% -34,57% 25,75% 

 Annualized volatility 14,06% 30,21% 18,79% 16,99% 19,90% 24,32% 

 Sharpe ratio 0,451 -2,117 2,137 0,320 -1,737 1,059 

Table 2 The annualized returns, excess returns, volatilities and Sharpe ratios each year from 2000-2012.  

 

To calculate the annualized return and volatility each year, I have multiplied the daily average 

return of each year by the number of trading days in a year. When dealing with negative 

Sharpe ratios, it is important to keep in mind that a portfolio with a Sharpe ratio closer to zero 

is the efficient portfolio (given that none of the comparable portfolios have positive values). 

From the table we see that the MDPs do not deliver superior Sharpe ratios each year. This is 

illustrated more clearly in the following figure. 
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Figure 3 The annualized Sharpe ratios each year for MDP-short, MDP-long, the benchmark and the equally-weighted 
portfolio. 

All four portfolios have decreasing Sharpe ratios in the beginning. This is clearly a reaction to 

the dot-com bubble that burst March 2000 (Chaffey, 2010). During the 90’s IT-based 

companies experienced a tremendous upswing. Because of the promising prospects of this 

technology, these companies were overvalued. This dot-com bubble continued to increase and 

finally burst in the beginning of 2000. A lot of these firms went bankrupt and only a few 

survived. In the Norwegian stock market there are 6 out of 35 IT-based companies left. The 

Sharpe ratios start to increase during 2002. All portfolios have their peaks in 2003, except for 

the benchmark which has its highest value in 2005. In 2008 every portfolio hits rock bottom. 

This is when the financial crisis hit the global economy. In the rest of the period the Sharpe 

ratios are fluctuating. We see a new downfall in 2011, which may be due to the following 

uncertainty in the Eurozone countries, such as Spain, Italy and Greece. The benchmark has 

the highest Sharpe ratio in the beginning and at the end of the period. In every downfall, the 

benchmark is the most efficient portfolio. The two MDPs seem to follow each other closely in 

the beginning. They deliver superior Sharpe ratios from 2002 to 2007. The equally-weighted 

portfolio tends to lie a bit lower than the two MDPs, but has clearly the highest Sharpe ratio in 

2009.  
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Another way to measure portfolio performances is to compare the cumulative returns, i.e. we 

look at the future value of investing in the portfolios at the start of the period.  

  
Figure 4: The cumulative returns for the four portfolios in the period 2000-2012. This figure shows the future value of 
investing $1 at the beginning of the period. 

From Figure 4 we see that both MDPs outperform the cap-weighted benchmark. MDP – short 

has overall the highest cumulative return. This portfolio has its peak in the beginning of 2008. 

The $1 investment has grown over 8 times its original value, while the investment in the 

benchmark has grown approximately 3 times its original value. MDP – long follows the MDP 

– short closely, and has its peak at a little over 8. The equally weighted portfolio has at this 

point grown to a little over 7.5 times its original value. All four portfolios have a downturn 

right after their peaks in the beginning of 2008. This, of course, is due to the financial crisis. 

After the downfall in 2008 the cumulative returns seems to flat out for all portfolios.  
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5.2 Diversification 

5.2.1 Diversification ratio 

In order to compare the four portfolios, each observation of the diversification ratio is plotted 

in the figure below. The diversification ratio is calculated at the end of each quarter from 

2000-2012.  

 

                                                                                                   

Figure 5: The figure shows the diversification ratio for the four portfolios from 2000-2012 on a quarterly basis, i.e. 1 on 
the  x-axis refers to the 1st quarter of 2000.    

 

The benchmark lies below the two MDPs in the entire period. It is difficult to distinguish 

between the two most-diversified portfolios by just looking at this plot. They both range from 

3 to 5 while the benchmark ranges from 1.5 to almost 3. The equally-weighted portfolio lies a 

bit lower than the two MDPs. All four portfolios tend to move downwards. This change occur 

around 25 on the Time-axis, which refers to the second quarter of 2006.  

 

From this we can calculate the average diversification ratio (   . This can be defined as: 

 

    
 

 
∑   
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In this case T = 52, since the diversification ratio is measured on a quarterly basis from 2000-

2012. The results are shown in the table below. 

 

Average Diversification Ratio  

 MDP-short MDP-long B EW 

Total period 
(2000-2012) 

4.00 3.98 1.78 3.29 

Table 3: The table shows the average diversification ratio for the four portfolios in the total period.  

 

From Table 3 we see that the MDPs have almost identical diversification ratios. This is 

interesting because when the weights of the MDP - long are constructed, the highest possible 

ratio it can accomplish would be the same as the MDP – short portfolio
13

. It turns out that the 

actual diversification ratio is approximately the same. The market benchmark has the lowest 

average DR. Since the equally-weighted portfolio has a small amount of every stock, this 

could be defined as a well-diversified portfolio. This is also supported by the high 

diversification ratio relative to the benchmark. It does not however exceed the average 

diversification ratio of the two MDPs. 

 

5.2.2 Volatility  

From Table 1 we saw that the MDP-long had the lowest annualized volatility. This is based 

on the daily standard deviations. In addition I calculated the average daily risk at the end of 

every quarter from 2000 to 2012 to compare the risk movements of the four portfolios. This is 

displayed in the figure below. 

 

                                                 

 
13

 In that case there would be no short positions in the MDP – short. 



39 

 

 

 

 

 

                                                       

 Figure 6: The average daily volatility for each quarter from 2000-2012.  

Overall the two MDPs have lower volatilities than the benchmark. In the beginning, the 

differences are small but increase after the second quarter of 2006 (25 on the Time-axis). In 

the end of 2008 the difference is at its largest of approximately 4%. When looking at the total 

period, the standard deviations of the two MDPs have a smaller range than the cap-weighted 

benchmark. The equally-weighted portfolio seems to follow the benchmark but has 

consistently lower volatility, except for the last observation. At the end we see that the 

benchmark is headed downwards, while both MDPs and the equally weighted portfolio are 

headed upwards. 

 

5.2.3 Correlation 

As mentioned in subchapter 4.2.2, the correlation between each stock and the MDP – short is 

constant. However, this is just the case if we have perfect forecast of the necessary inputs. In 

other words, since the weights are based on historical data it is not certain that correlation is 

constant in the performance period. I have calculated the correlation of each stock to the four 

portfolios. If a portfolio is highly correlated with a majority of stocks, then this could mean 

that the portfolio is poorly diversified. 
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 MDP-short MDP-long EW B 

ABG SUNDAL CLI HLDG  0.2060 0.2507 0.3350 0.3330 

AF GRUPPEN  A  0.1749 0.1797 0.1523 0.1049 

ARENDALS 

FOSSEKOMPANI 
0.1587 0.1593 0.0805 0.0633 

ATEA 0.2291 0.2834 0.4264 0.4112 

AVOCET MINING 0.1981 0.2068 0.2333 0.2140 

BELSHIPS 0.1946 0.2124 0.2364 0.1751 

BLOM 0.2062 0.2243 0.2910 0.2142 

BONHEUR 0.2359 0.2952 0.4270 0.3909 

BORGESTAD  A  0.1943 0.1990 0.1441 0.1128 

BYGGMA 0.1875 0.1899 0.0887 0.0470 

CONTEXTVISION 0.1940 0.2015 0.1829 0.1223 

DATA RESPONS 0.2023 0.2112 0.2507 0.1974 

DNB 0.1863 0.2981 0.5453 0.7431 

DNO INTERNATIONAL 0.2220 0.2969 0.4969 0.5275 

EKORNES 0.1857 0.2058 0.2575 0.2599 

EMS SEVEN SEAS 0.2219 0.2270 0.2275 0.1318 

FARSTAD SHIPPING 0.2094 0.2390 0.3446 0.3381 

FRED OLSEN ENERGY 0.2525 0.3339 0.5242 0.5516 

GANGER ROLF 0.2334 0.3112 0.4672 0.4521 

GOODTECH 0.2052 0.2143 0.1808 0.1067 

GYLDENDAL 0.1736 0.1797 0.0696 0.0429 

HAFSLUND  A  0.1767 0.2007 0.2474 0.2499 

HAFSLUND  B  0.1833 0.2255 0.3248 0.3282 

HEXAGON COMPOSITES 0.2087 0.2187 0.2539 0.1751 

IGE RESOURCES 0.1982 0.2040 0.2733 0.1742 

IM SKAUGEN 0.1765 0.1868 0.1725 0.1198 

JINHUI SHIP   TRSP  0.2227 0.2821 0.4111 0.3687 

KITRON 0.2164 0.2285 0.2451 0.2020 

KONGSBERG GRUPPEN 0.2011 0.2341 0.3370 0.3612 

MARINE HARVEST 0.1923 0.2036 0.2899 0.2354 

NAMSOS 

TRAFIKKSELSKAP 
0.1688 0.1746 0.0790 0.0404 

NORDIC 

SEMICONDUCTOR 
0.2486 0.2609 0.2651 0.1968 

NORSE ENERGY CORP  0.2210 0.2432 0.3702 0.3227 

NORSK HYDRO 0.2320 0.3531 0.6036 0.8225 

NORSKE 

SKOGINDUSTRIER 
0.1966 0.2490 0.4263 0.4658 

NORTHLAND RESOURCES 0.1294 0.1386 0.2230 0.1191 

NORWEGIAN CAR 

CARRIERS 
0.1931 0.1958 0.1076 0.0478 

ODFJELL  A  0.1992 0.2358 0.3081 0.2676 

ODFJELL  B  0.1987 0.2218 0.2775 0.2246 

OLAV THON EIEP  0.1694 0.1904 0.2308 0.2232 

ORKLA 0.2027 0.3212 0.5511 0.7114 

PETROLEUM GEO 0.2265 0.2978 0.4899 0.5322 
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SERVICES 

PETROLIA 0.2847 0.3011 0.3921 0.0628 

PROSAFE 0.2507 0.3465 0.5878 0.6609 

REACH SUBSEA 0.1949 0.1937 0.1948 0.0637 

RIEBER   SON 0.1347 0.1456 0.1193 0.0935 

ROCKSOURCE 0.2087 0.2379 0.2857 0.2030 

SAS 0.2118 0.2439 0.3594 0.3875 

SCANA INDUSTRIER 0.1938 0.2088 0.2253 0.1606 

SCHIBSTED 0.2204 0.2881 0.4763 0.5391 

SKIENS AKTIEMOLLE 0.1580 0.1623 0.0917 0.0708 

SOLSTAD OFFSHORE 0.2023 0.2331 0.3412 0.3324 

SOLVANG 0.1896 0.1951 0.0902 0.0383 

SPAREBANK 1 SR BANK 0.1861 0.2250 0.3372 0.3537 

STOLT NIELSEN 0.2540 0.3046 0.4425 0.4339 

STOREBRAND 0.2061 0.2889 0.5187 0.6345 

SUBSEA 7 0.2365 0.3142 0.5212 0.5705 

TGS NOPEC GEOPHS  0.2498 0.3488 0.5897 0.6423 

TIDE 0.1937 0.2019 0.0722 0.0246 

TOMRA SYSTEMS 0.2076 0.2387 0.3550 0.4144 

TTS GROUP 0.1930 0.2448 0.3040 0.2598 

VEIDEKKE 0.2181 0.2541 0.3573 0.3638 

VOSS VEKSEL OG LMDBK  0.1945 0.2001 0.0297 -0.0040 

WILHS WILHELMSEN 

HDG  A  
0.2109 0.2416 0.3423 0.3210 

WILHS WILHELMSEN 

HDG  B  
0.2012 0.2187 0.2653 0.2329 

 

Table 4: The correlation between every stock and each of the four portfolios. 

From Table 4 we see that the MDP – long, the equally-weighted portfolio and the cap-

weighted benchmark have highest correlation coefficients with Norsk Hydro (35.31%, 

60.36% and 82.25% respectively). MDP – short has its highest correlation with Petrolia 

(28.47%). Overall, the MDPs have lower correlations than both the equally-weighted 

portfolio and the benchmark. This is illustrated more clearly in the following figure. 
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Figure 7: The correlation between each of the 65 stocks and the four portfolios.  

Although the correlations are not constant for the MDPs (see chapter 4.2.2), they have a 

significantly smaller range than the equally-weighted portfolio and the benchmark.   
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CHAPTER 6 CONCLUSION 

 

In this thesis I have analyzed the performance and diversification of different portfolios in the 

period 2000-2012. I have introduced the diversification ratio, and maximized this ratio in 

order to create the most-diversified portfolios. To estimate the covariance matrix, I used a 

shrinkage approach which is developed by Ledoit & Wolf (2003), and enhanced by Schäfer & 

Strimmer (2005). I decomposed the diversification ratio in a volatility-weighted average 

correlation term and a volatility-weighted concentration ratio for a broader understanding of 

the forces behind it. 

 

I created a capitalization-weighted portfolio and an equally-weighted portfolio. The 

cumulative returns plot showed that the two MDPs outperform both portfolios. This also 

holds in terms of Sharpe ratios. Overall, the MDP-short has the highest Sharpe ratio. The cap-

weighted portfolio has the lowest. When we look at the annualized Sharpe ratios for each 

year, none of the portfolios deliver consistently superior performance. The MDPs have the 

lowest Sharpe ratios in 2001 and 2008-2012, while the capitalization-weighted benchmark has 

the highest Sharpe ratio in these periods.  

 

The diversification ratios are consistently higher for the two MDPs. From the DR-

decomposition we know that this originates from lower average correlation and/or lower 

concentration ratio. The equally-weighted portfolio has a low concentration on each stock, but 

has overall a higher correlation to each stock. This lowers the diversification ratio. The MDPs 

also have lower daily standard deviations in the whole period, except towards the end. The 

greatest difference between the daily portfolio standard deviations is at the end of 2008.  

 

In addition, I looked at the correlation between each of the 65 stocks and the four portfolios. 

Overall, the MDPs have lower correlation than the cap-weighted benchmark and the equally-

weighted portfolio.  

 

According to the Sharpe ratios and the cumulative returns plot, the MDP – short outperforms 

the MDP – long. When we look at the portfolio diversification, the intuition would tell us that 

MDP – short is more diversified than MDP – long, due to the possibility of negative weights. 

However, in this analysis it is hard to spot major differences in diversification when we look 
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at the diversification ratio and the daily volatility. The correlation to each stock is a bit lower 

for the MDP – short, although this difference is hard to spot.   
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APPENDIX A 

List of firms used in the analysis: 

ABG SUNDAL CLI HLDG  

AF GRUPPEN  A  

ARENDALS 

FOSSEKOMPANI 

ATEA 

AVOCET MINING 

BELSHIPS 

BLOM 

BONHEUR 

BORGESTAD  A  

BYGGMA 

CONTEXTVISION 

DATA RESPONS 

DNB 

DNO INTERNATIONAL 

EKORNES 

EMS SEVEN SEAS 

FARSTAD SHIPPING 

FRED OLSEN ENERGY 

GANGER ROLF 

GOODTECH 

GYLDENDAL 

HAFSLUND  A  

HAFSLUND  B  

HEXAGON COMPOSITES 

IGE RESOURCES 

IM SKAUGEN 

JINHUI SHIP   TRSP  

KITRON 

KONGSBERG GRUPPEN 

MARINE HARVEST 

NAMSOS 

TRAFIKKSELSKAP 

NORDIC 

SEMICONDUCTOR 

NORSE ENERGY CORP  

NORSK HYDRO 

NORSKE 

SKOGINDUSTRIER 

NORTHLAND RESOURCES 

NORWEGIAN CAR 

CARRIERS 

ODFJELL  A  

ODFJELL  B  
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OLAV THON EIEP  

ORKLA 

PETROLEUM GEO 

SERVICES 

PETROLIA 

PROSAFE 

REACH SUBSEA 

RIEBER   SON 

ROCKSOURCE 

SAS 

SCANA INDUSTRIER 

SCHIBSTED 

SKIENS AKTIEMOLLE 

SOLSTAD OFFSHORE 

SOLVANG 

SPAREBANK 1 SR BANK 

STOLT NIELSEN 

STOREBRAND 

SUBSEA 7 

TGS NOPEC GEOPHS  

TIDE 

TOMRA SYSTEMS 

TTS GROUP 

VEIDEKKE 

VOSS VEKSEL OG LMDBK  

WILHS WILHELMSEN 

HDG  A  

WILHS WILHELMSEN 

HDG  B  
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APPENDIX B 

The two approaches in chapter 4.1 lead to the same solution. This can be illustrated as 

follows: 

 

Define  ̃ as a matrix with n rows and n columns, with the volatility of each stock along the 

diagonal. The upper – and lower triangles are filled with zeros:  

 

 ̃   (
    
   
    

)  

The covariance matrix can be expressed as: 

                                                            Ω =  ̃  ̃ 

where C is the correlation matrix. 

 

The inverse covariance matrix can be expressed as: 

     ̃      ̃    

 

Since  ̃        equation 34.1 can be written as: 

           
    

       
   ̃  

    

      
  

 

We remember from the second approach that we had to divide each asset weight with its 

volatility. This has already been accounted for in the expression above, since we multiply by 

 ̃  . In other words, in the second approach we could have written: 

 

  

(

 
 
 
 
 

   
 

  

   
 

  

 
   

 

  )

 
 
 
 
 

   ̃      

Finally, we need to rescale the weights to sum to 1. 
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APPENDIX C 

 

Below is a list of the scripts and functions I used in R
14

. 

 

######################Creating MDP-short######################### 

 

library(timeSeries) 

library(PerformanceAnalytics) 

library(corpcor) #for cov.shrink and invcov.shrink 

 

#Import dataset  

price <- read.csv("C:/.../StockPrice.csv", sep=";", dec=",") 

 

 

#Function that generates the optimal weigths for maximizing div 

#ratio. It also calculates the diversification ratio and the 

#portfolio volatility. 

 

#Inputs:   

#Period1 = historical data 

#Period2 = performance data 

 

monthly.MDP = function(Period1,Period2) 

{ 

  call = match.call() 

   

  period1.ts = as.timeSeries(Period1,drop=FALSE) 

  period1.ret = returns(period1.ts,method="simple") 

  period1.retmat = as.matrix(period1.ret) 

   

  #Inputs to calculate optimal weights 

  cov.mat = cov(period1.ret) 

  st.dev = cbind(apply(period1.ret,2,sd)) 

  cov.mat.inv <- invcov.shrink(period1.ret) 

   

  #optimale weights 

   

  top.mat = cov.mat.inv%*%st.dev 

  bot.mat = as.numeric(t(st.dev)%*%top.mat) 

  weights = top.mat/bot.mat 

  weights = as.vector(w.dmax) 

  w.dmax = weights/sum(weights) 

 

  #Performance period 

  period2.ts = as.timeSeries(Period2,drop=FALSE) 

  period2.ret = returns(period2.ts,method="simple") 

  period2.retmat = as.matrix(period2.ret) 

    

                                                 

 
14

 I created a function called “monthly.MDP( )”. In the beginning of the process I rebalanced the portfolios on a 

monthly basis. When I decided to rebalance on a quarterly basis instead, it would take a lot of time to rename the 

function for every quarter, since I used the same script.   



49 

 

 

 

 

  #Calculate the most-diversified portfolio(MDP) 

  MDP = period2.retmat%*%w.dmax 

  colnames(MDP) = c("MDP-short") 

  MDP.ts = as.timeSeries(MDP,drop=FALSE) 

   

  #Calculate diversification ratio 

  cov.mat2 = cov(period2.ret) 

  st.dev2 = cbind(apply(period2.ret,2,sd)) 

  DR = (t(w.dmax)%*%st.dev2)/sqrt(t(w.dmax)%*%cov.mat2%*%w.dmax) 

  port.vol = sqrt(t(w.dmax)%*%cov.mat2%*%w.dmax) 

   

  dmax.port = list("call"=call, 

                   "MDP" = MDP.ts, 

                   "DR" = DR) 

  class(dmax.port) = "portfolio" 

  dmax.port 

} 

 

##########################Creating MDP-long####################### 

library(timeSeries) 

library(PerformanceAnalytics) 

library(corpcor) 

library(quadprog) 

 

monthly.MDP = function(Period1,Period2) 

{ 

  call = match.call() 

   

  period1.ts = as.timeSeries(Period1,drop=FALSE) 

  period1.ret = returns(period1.ts,method="simple") 

  period1.retmat = as.matrix(period1.ret) 

   

  cov.mat = cov(period1.ret) 

  st.dev = cbind(apply(period1.ret,2,sd)) 

   

   

  #Inputs to quadratic optimization 

  Amat = cbind(st.dev, diag(65)) 

  dvec= rep(0,65) 

  Dmat= cov.shrink(period1.ret) 

  bvec = c(1,rep(0,65)) 

   

  MDPLong = solve.QP(Dmat=Dmat, dvec=dvec, Amat=Amat, bvec=bvec, 

meq=1) 

  w.dmax = MDPLong$solution/sum(MDPLong$solution) 

  w.dmax = round(w.dmax, digits=4) 

   

  #Performance period 

  period2.ts = as.timeSeries(Period2,drop=FALSE) 

  period2.ret = returns(period2.ts,method="simple") 

  period2.retmat = as.matrix(period2.ret) 

   

   

  #Calculate the most-diversified portfolio(MDP) 

  MDP = period2.retmat%*%w.dmax 
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  colnames(MDP) = c("MDP-long") 

  MDP.ts = as.timeSeries(MDP,drop=FALSE) 

   

  #Calculate diversification ratio 

  cov.mat2 = cov(period2.ret) 

  st.dev2 = cbind(apply(period2.ret,2,sd)) 

  DR = (t(w.dmax)%*%st.dev2)/sqrt(t(w.dmax)%*%cov.mat2%*%w.dmax) 

  port.vol = sqrt(t(w.dmax)%*%cov.mat2%*%w.dmax) 

   

  dmax.port = list("call"=call, 

                   "MDP" = MDP.ts, 

                   "DR" = DR) 

  class(dmax.port) = "portfolio" 

  dmax.port 

} 

 

########################Combine each quarter################# 

 

#We need to apply these functions every quarter from 2000-2012.  

#Run the function for MDP-short 

 

MDP1 = monthly.MDP(price[1:262,],price[263:327,]) 

MDP2 = monthly.MDP(price[65:327,],price[328:392,]) 

MDP3 = monthly.MDP(price[129:392,],price[393:457,]) 

MDP4 = monthly.MDP(price[193:457,],price[458:522,]) 

MDP5 = monthly.MDP(price[257:522,],price[523:587,]) 

MDP6 = monthly.MDP(price[321:587,],price[588:652,]) 

MDP7 = monthly.MDP(price[385:652,], price[653:717,]) 

MDP8 = monthly.MDP(price[449:717,], price[718:782,]) 

MDP9 = monthly.MDP(price[513:782,],price[783:847,]) 

MDP10 = monthly.MDP(price[577:847,],price[848:912,]) 

MDP11 = monthly.MDP(price[641:912,],price[913:977,]) 

MDP12 = monthly.MDP(price[705:977,],price[978:1042,]) 

MDP13 = monthly.MDP(price[769:1042,], price[1043:1107,]) 

MDP14 = monthly.MDP(price[833:1107,],price[1108:1172,]) 

MDP15 = monthly.MDP(price[897:1172,], price[1173:1237,]) 

MDP16 = monthly.MDP(price[961:1237,], price[1238:1302,]) 

MDP17 = monthly.MDP(price[1025:1302,],price[1303:1367,]) 

MDP18 = monthly.MDP(price[1089:1367,], price[1368:1432,]) 

MDP19 = monthly.MDP(price[1153:1432,], price[1433:1497,]) 

MDP20 = monthly.MDP(price[1217:1497,], price[1498:1562,]) 

MDP21 = monthly.MDP(price[1281:1562,], price[1563:1627,]) 

MDP22 = monthly.MDP(price[1345:1627,], price[1628:1692,]) 

MDP23 = monthly.MDP(price[1409:1692,], price[1693:1757,]) 

MDP24 = monthly.MDP(price[1473:1757,], price[1758:1822,]) 

MDP25 = monthly.MDP(price[1573:1822,], price[1823:1887,]) 

MDP26 = monthly.MDP(price[1637:1887,], price[1888:1952,]) 

MDP27 = monthly.MDP(price[1701:1952,], price[1953:2017,]) 

MDP28 = monthly.MDP(price[1765:2017,], price[2018:2082,]) 

MDP29 = monthly.MDP(price[1829:2082,], price[2083:2147,]) 

MDP30 = monthly.MDP(price[1893:2147,],price[2148:2212,]) 

MDP31 = monthly.MDP(price[1957:2212,], price[2213:2277,]) 

MDP32 = monthly.MDP(price[2021:2277,], price[2278:2342,]) 

MDP33 = monthly.MDP(price[2085:2342,], price[2343:2407,]) 

MDP34 = monthly.MDP(price[2149:2407,], price[2408:2472,]) 
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MDP35 = monthly.MDP(price[2213:2472,], price[2473:2537,]) 

MDP36 = monthly.MDP(price[2277:2537,], price[2538:2602,]) 

MDP37 = monthly.MDP(price[2341:2602,], price[2603:2667,]) 

MDP38 = monthly.MDP(price[2405:2667,], price[2668:2732,]) 

MDP39 = monthly.MDP(price[2469:2732,], price[2733:2797,]) 

MDP40 = monthly.MDP(price[2533:2797,], price[2798:2862,]) 

MDP41 = monthly.MDP(price[2597:2862,], price[2863:2927,]) 

MDP42 = monthly.MDP(price[2661:2927,], price[2928:2992,]) 

MDP43 = monthly.MDP(price[2725:2992,], price[2993:3057,]) 

MDP44 = monthly.MDP(price[2789:3057,], price[3058:3122,]) 

MDP45 = monthly.MDP(price[2853:3122,], price[3123:3187,]) 

MDP46 = monthly.MDP(price[2917:3187,], price[3188:3252,]) 

MDP47 = monthly.MDP(price[2981:3252,], price[3253:3317,]) 

MDP48 = monthly.MDP(price[3045:3317,], price[3318:3382,]) 

MDP49 = monthly.MDP(price[3109:3382,], price[3383:3447,]) 

MDP50 = monthly.MDP(price[3173:3447,], price[3448:3512,]) 

MDP51 = monthly.MDP(price[3237:3512,], price[3513:3577,]) 

MDP52 = monthly.MDP(price[3301:3577,], price[3578:3642,]) 

 

#MDP-short 

total.mdp= 

rbind(MDP1$MDP,MDP2$MDP,MDP3$MDP,MDP4$MDP,MDP5$MDP,MDP6$MDP,MDP7$MDP

,MDP8$MDP,MDP9$MDP,MDP10$MDP,MDP11$MDP,MDP12$MDP,MDP13$MDP,MDP14$MDP

,MDP15$MDP,MDP16$MDP,MDP17$MDP,MDP18$MDP,MDP19$MDP,MDP20$MDP,MDP21$M

DP,MDP22$MDP,MDP23$MDP,MDP24$MDP,MDP25$MDP,MDP26$MDP,MDP27$MDP,MDP28

$MDP,MDP29$MDP,MDP30$MDP,MDP31$MDP,MDP32$MDP,MDP33$MDP,MDP34$MDP,MDP

35$MDP,MDP36$MDP,MDP37$MDP,MDP38$MDP,MDP39$MDP,MDP40$MDP,MDP41$MDP,M

DP42$MDP,MDP43$MDP,MDP44$MDP,MDP45$MDP,MDP46$MDP,MDP47$MDP,MDP48$MDP

,MDP49$MDP,MDP50$MDP,MDP51$MDP,MDP52$MDP) 

 

colnames(total.mdp) = c("MDP-short") 

 

#DR  

DRMDPS = 

rbind(MDP1$DR,MDP2$DR,MDP3$DR,MDP4$DR,MDP5$DR,MDP6$DR,MDP7$DR,MDP8$D

R,MDP9$DR,MDP10$DR,MDP11$DR,MDP12$DR,MDP13$DR,MDP14$DR,MDP15$DR,MDP1

6$DR,MDP17$DR,MDP18$DR,MDP19$DR,MDP20$DR,MDP21$DR,MDP22$DR,MDP23$DR,

MDP24$DR,MDP25$DR,MDP26$DR,MDP27$DR,MDP28$DR,MDP29$DR,MDP30$DR,MDP31

$DR,MDP32$DR,MDP33$DR,MDP34$DR,MDP35$DR,MDP36$DR,MDP37$DR,MDP38$DR,M

DP39$DR,MDP40$DR,MDP41$DR,MDP42$DR,MDP43$DR,MDP44$DR,MDP45$DR,MDP46$

DR,MDP47$DR,MDP48$DR,MDP49$DR,MDP50$DR,MDP51$DR,MDP52$DR) 

 

colnames(DRMDPS) = c("MDP - short") 

 

#Now run the function for MDP-long and re-run this script 

 

#MDP-long 

total.mdpLong= 

rbind(MDP1$MDP,MDP2$MDP,MDP3$MDP,MDP4$MDP,MDP5$MDP,MDP6$MDP,MDP7$MDP

,MDP8$MDP,MDP9$MDP,MDP10$MDP,MDP11$MDP,MDP12$MDP,MDP13$MDP,MDP14$MDP

,MDP15$MDP,MDP16$MDP,MDP17$MDP,MDP18$MDP,MDP19$MDP,MDP20$MDP,MDP21$M

DP,MDP22$MDP,MDP23$MDP,MDP24$MDP,MDP25$MDP,MDP26$MDP,MDP27$MDP,MDP28

$MDP,MDP29$MDP,MDP30$MDP,MDP31$MDP,MDP32$MDP,MDP33$MDP,MDP34$MDP,MDP

35$MDP,MDP36$MDP,MDP37$MDP,MDP38$MDP,MDP39$MDP,MDP40$MDP,MDP41$MDP,M
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DP42$MDP,MDP43$MDP,MDP44$MDP,MDP45$MDP,MDP46$MDP,MDP47$MDP,MDP48$MDP

,MDP49$MDP,MDP50$MDP,MDP51$MDP,MDP52$MDP) 

 

colnames(total.mdpLong) = c("MDP-long") 

 

#DR  

DRMDPL = 

rbind(MDP1$DR,MDP2$DR,MDP3$DR,MDP4$DR,MDP5$DR,MDP6$DR,MDP7$DR,MDP8$D

R,MDP9$DR,MDP10$DR,MDP11$DR,MDP12$DR,MDP13$DR,MDP14$DR,MDP15$DR,MDP1

6$DR,MDP17$DR,MDP18$DR,MDP19$DR,MDP20$DR,MDP21$DR,MDP22$DR,MDP23$DR,

MDP24$DR,MDP25$DR,MDP26$DR,MDP27$DR,MDP28$DR,MDP29$DR,MDP30$DR,MDP31

$DR,MDP32$DR,MDP33$DR,MDP34$DR,MDP35$DR,MDP36$DR,MDP37$DR,MDP38$DR,M

DP39$DR,MDP40$DR,MDP41$DR,MDP42$DR,MDP43$DR,MDP44$DR,MDP45$DR,MDP46$

DR,MDP47$DR,MDP48$DR,MDP49$DR,MDP50$DR,MDP51$DR,MDP52$DR) 

 

colnames(DRMDPS) = c("MDP-long") 

 

 

###################Creating the cap-weighted benchmark############## 

library(PerformanceAnalytics) 

library(timeSeries) 

 

#Import dataset 

#Stock prices and weights 

price <- read.csv("C:/.../StockPrice.csv", sep=";", dec=",") 

weights <- read.csv("C:/.../weights.csv", sep=";", dec=",") 

     

#Function for benchmark 

#Inputs:  

#1. w.dmax = a column vector of weights (nx1) 

#2. Period2 = performance period 

 

cap.benchmark = function(w.dmax,Period2) 

{ 

  call = match.call() 

   

  #Performance period 

  period2.ts = as.timeSeries(Period2,drop=FALSE) 

  period2.ret = returns(period2.ts,method="simple") 

  period2.retmat = as.matrix(period2.ret) 

   

   

  #Calculate MDP-long 

  MDP = period2.retmat%*%w.dmax 

  colnames(MDP) = c("MDP-long") 

  MDP.ts = as.timeSeries(MDP,drop=FALSE) 

   

  #Calculate diversification rate and portfolio volatility 

  cov.mat2 = cov(period2.ret) 

  st.dev2 = cbind(apply(period2.ret,2,sd)) 

  DR = (t(w.dmax)%*%st.dev2)/sqrt(t(w.dmax)%*%cov.mat2%*%w.dmax) 

  port.vol = sqrt(t(w.dmax)%*%cov.mat2%*%w.dmax) 

   

  dmax.port = list("call"=call, 

                   "MDP" = MDP.ts, 
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                   "DR" = DR) 

  class(dmax.port) = "portfolio" 

  dmax.port 

} 

 

#Calculating portfolio returns for each quarter 

MDP1 = cap.benchmark (weights[,2],price[263:327,]) 

MDP2 = cap.benchmark (weights[,3],price[328:392,]) 

MDP3 = cap.benchmark (weights[,4],price[393:457,]) 

MDP4 = cap.benchmark (weights[,5],price[458:522,]) 

MDP5 = cap.benchmark (weights[,6],price[523:587,]) 

MDP6 = cap.benchmark (weights[,7],price[588:652,]) 

MDP7 = cap.benchmark (weights[,8], price[653:717,]) 

MDP8 = cap.benchmark (weights[,9], price[718:782,]) 

MDP9 = cap.benchmark (weights[,10],price[783:847,]) 

MDP10 = cap.benchmark (weights[,11],price[848:912,]) 

MDP11 = cap.benchmark (weights[,12],price[913:977,]) 

MDP12 = cap.benchmark (weights[,13],price[978:1042,]) 

MDP13 = cap.benchmark (weights[,14], price[1043:1107,]) 

MDP14 = cap.benchmark (weights[,15],price[1108:1172,]) 

MDP15 = cap.benchmark (weights[,16], price[1173:1237,]) 

MDP16 = cap.benchmark (weights[,17], price[1238:1302,]) 

MDP17 = cap.benchmark (weights[,18],price[1303:1367,]) 

MDP18 = cap.benchmark (weights[,19], price[1368:1432,]) 

MDP19 = cap.benchmark (weights[,20], price[1433:1497,]) 

MDP20 = cap.benchmark (weights[,21], price[1498:1562,]) 

MDP21 = cap.benchmark (weights[,22], price[1563:1627,]) 

MDP22 = cap.benchmark (weights[,23], price[1628:1692,]) 

MDP23 = cap.benchmark (weights[,24], price[1693:1757,]) 

MDP24 = cap.benchmark (weights[,25], price[1758:1822,]) 

MDP25 = cap.benchmark (weights[,26], price[1823:1887,]) 

MDP26 = cap.benchmark (weights[,27], price[1888:1952,]) 

MDP27 = cap.benchmark (weights[,28], price[1953:2017,]) 

MDP28 = cap.benchmark (weights[,29], price[2018:2082,]) 

MDP29 = cap.benchmark (weights[,30], price[2083:2147,]) 

MDP30 = cap.benchmark (weights[,31],price[2148:2212,]) 

MDP31 = cap.benchmark (weights[,32], price[2213:2277,]) 

MDP32 = cap.benchmark (weights[,33], price[2278:2342,]) 

MDP33 = cap.benchmark (weights[,34], price[2343:2407,]) 

MDP34 = cap.benchmark (weights[,35], price[2408:2472,]) 

MDP35 = cap.benchmark (weights[,36], price[2473:2537,]) 

MDP36 = cap.benchmark (weights[,37], price[2538:2602,]) 

MDP37 = cap.benchmark (weights[,38], price[2603:2667,]) 

MDP38 = cap.benchmark (weights[,39], price[2668:2732,]) 

MDP39 = cap.benchmark (weights[,40], price[2733:2797,]) 

MDP40 = cap.benchmark (weights[,41], price[2798:2862,]) 

MDP41 = cap.benchmark (weights[,42], price[2863:2927,]) 

MDP42 = cap.benchmark (weights[,43], price[2928:2992,]) 

MDP43 = cap.benchmark (weights[,44], price[2993:3057,]) 

MDP44 = cap.benchmark (weights[,45], price[3058:3122,]) 

MDP45 = cap.benchmark (weights[,46], price[3123:3187,]) 

MDP46 = cap.benchmark (weights[,47], price[3188:3252,]) 

MDP47 = cap.benchmark (weights[,48], price[3253:3317,]) 

MDP48 = cap.benchmark (weights[,49], price[3318:3382,]) 

MDP49 = cap.benchmark (weights[,50], price[3383:3447,]) 
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MDP50 = cap.benchmark (weights[,51], price[3448:3512,]) 

MDP51 = cap.benchmark (weights[,52], price[3513:3577,]) 

MDP52 = cap.benchmark (weights[,53], price[3578:3642,]) 

 

#Benchmark 

total.bench= 

rbind(MDP1$MDP,MDP2$MDP,MDP3$MDP,MDP4$MDP,MDP5$MDP,MDP6$MDP,MDP7$MDP

,MDP8$MDP,MDP9$MDP,MDP10$MDP,MDP11$MDP,MDP12$MDP,MDP13$MDP,MDP14$MDP

,MDP15$MDP,MDP16$MDP,MDP17$MDP,MDP18$MDP,MDP19$MDP,MDP20$MDP,MDP21$M

DP,MDP22$MDP,MDP23$MDP,MDP24$MDP,MDP25$MDP,MDP26$MDP,MDP27$MDP,MDP28

$MDP,MDP29$MDP,MDP30$MDP,MDP31$MDP,MDP32$MDP,MDP33$MDP,MDP34$MDP,MDP

35$MDP,MDP36$MDP,MDP37$MDP,MDP38$MDP,MDP39$MDP,MDP40$MDP,MDP41$MDP,M

DP42$MDP,MDP43$MDP,MDP44$MDP,MDP45$MDP,MDP46$MDP,MDP47$MDP,MDP48$MDP

,MDP49$MDP,MDP50$MDP,MDP51$MDP,MDP52$MDP) 

 

colnames(total.bench) = c("B") 

 

#DR  

DRBench = 

rbind(MDP1$DR,MDP2$DR,MDP3$DR,MDP4$DR,MDP5$DR,MDP6$DR,MDP7$DR,MDP8$D

R,MDP9$DR,MDP10$DR,MDP11$DR,MDP12$DR,MDP13$DR,MDP14$DR,MDP15$DR,MDP1

6$DR,MDP17$DR,MDP18$DR,MDP19$DR,MDP20$DR,MDP21$DR,MDP22$DR,MDP23$DR,

MDP24$DR,MDP25$DR,MDP26$DR,MDP27$DR,MDP28$DR,MDP29$DR,MDP30$DR,MDP31

$DR,MDP32$DR,MDP33$DR,MDP34$DR,MDP35$DR,MDP36$DR,MDP37$DR,MDP38$DR,M

DP39$DR,MDP40$DR,MDP41$DR,MDP42$DR,MDP43$DR,MDP44$DR,MDP45$DR,MDP46$

DR,MDP47$DR,MDP48$DR,MDP49$DR,MDP50$DR,MDP51$DR,MDP52$DR) 

 

 

#############Creating the Equally-weighted portfolio########### 

library(PerformanceAnalytics) 

library(timeSeries) 

 

#Import dataset 

price <- read.csv("C:/.../StockPrice.csv", sep=";", dec=",") 

 

weights = rep(1/65,65) 

 

#Performance period 

perf.ts = as.timeSeries(price[263:3642,],drop="FALSE") 

perf.ret = returns(perf.ts, method="simple") 

perf.retmat = as.matrix(perf.ret) 

 

#Since the MDPs and the benchmark are rebalanced each quarter, we 

#loose an observation each time. These observations must also be 

#removed for EW, otherwise there are specific functions we can't 

#use to compare the portfolios. 

 

#Create a vector that contains the row numbers which will be      

#removed 

RemoveRow = c(65, 130, 195, 260, 325, 390, 455, 520, 585, 650, 715, 

780,845, 910, 975, 1040, 1105, 1170, 1235, 1300, 1365, 1430, 

1495,1560, 1625, 1690, 1755, 1820, 1885, 1950, 2015, 2080, 2145, 

2210,2275, 2340, 2405, 2470, 2535, 2600, 2665, 2730, 2795, 2860, 

2925,2990, 3055, 3120, 3185, 3250, 3315) 

perf.retmat = perf.retmat[-(RemoveRow),] 
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eq.port = perf.retmat%*%weights 

 

colnames(eq.port) = "EW" 

eq.ts = as.timeSeries(eq.port, drop=FALSE) 

 

#I used the function cap.benchmark to calculate the  

#diversification ratio and portfolio volatility for EW by 

#substituting the equal weights by w.dmax 

 

##################Plots################### 

library(PerformanceAnalytics) 

library(timeSeries) 

 

#Combine all four portfolios 

total.Merge = cbind(total.mdp, total.mdpLong, eq.ts, total.bench) 

 

#Risk and return 

chart.RiskReturnScatter(total.Merge, sharpe.ratio=NULL) 

 

#Cumulative returns plot 

chart.CumReturns(total.Merge, wealth.index=TRUE,lwd=2, 

legend.loc="topleft", main="Cumulative returns in the period 2000-

2012") 

 

#DR 

plot(DRMDPS, type="l", lwd=2,col="black", ylim=c(1,5.5),xlim=c(-

20,52), main="Diversification ratio 2000-2012", ylab="Div ratio", 

xlab="Time") 

lines(DRMDPL, lty="dashed",lwd=2, col="blue") 

lines(DREW, lty="solid", lwd=2,col="grey") 

lines(DRBench, lty="longdash",lwd=2, col="red") 

legend(x="topleft", col=c("black","blue","grey","red"), 

lty=c("solid","dashed","solid","longdash"),lwd=2) 

 

#Portfolio volatility 

plot(MDPS.vol,lwd=2, type="l", col="black", ylim=c(0,0.05), 

ylab="Volatility", main="Portfolio volatility in the period 2000-

2012", xlim=c(-20,52),xlab="Time") 

lines(MDPL.vol,lwd=2, lty="dashed", col="blue") 

lines(EW.vol,lwd=2, lty="solid", col="grey") 

lines(Bench.vol, lwd=2,lty="longdash", col="red") 

legend(x="bottomleft", col=c("black","blue","grey","red"), 

lty=c("solid","dashed","solid","longdash"),lwd=2) 

 

#DR against volatility 

plot(DRMDPS, MDPS.vol, ylab="Volatility", xlab="Div ratio", 

main="MDP-short") 

plot(DRMDPL,MDPL.vol,ylab="Volatility", xlab="Div ratio", main="MDP-

long") 

plot(DREW,EW.vol, ylab="Volatility", xlab="Div ratio", main="EW") 

plot(DRBench, Bench.vol, ylab="Volatility", xlab="Div ratio", 

main="B") 
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##################Correlation##################### 

library(PerformanceAnalytics) 

library(timeSeries) 

 

 

correlation.Portf = function(Stock,MDPS,MDPL,EW,Bench) 

{ 

  call=match.call() 

  Stock.ts = as.timeSeries(Stock,drop=FALSE) 

  Merged = cbind(Stock.ts,MDPS,MDPL,EW,Bench) 

  cor.portf = cor(Merged) 

   

  dmax.port = list("call"=call, 

                   "Cor" = cor.portf[,1] 

                   ) 

  class(dmax.port) = "portfolio" 

  dmax.port 

   

} 

 

cor.matrix = matrix(nrow=65,ncol=4) 

 

cor1 = 

correlation.Portf(perf.retmat[,1],total.mdp,total.mdpLong,eq.ts,tota

l.bench) 

cor.matrix[1,]=cor1$Cor[2:5] 

 

#Replace cor1 by cor2 and cor.matrix[1,] by cor.matrix[2,] 

#all the way to 65. 

 

round(cor.matrix, digits =4) 

 

#Plot correlations 

par(mfrow=c(2,2)) 

plot(cor.matrix[,1],type="h",lwd=2,ylab="Correlation", 

xlab="Stocks", main="MDP-short",ylim=c(0,0.8)) 

plot(cor.matrix[,2],type="h",lwd=2,ylab="Correlation", 

xlab="Stocks", main="MDP-long",ylim=c(0,0.8)) 

plot(cor.matrix[,3],type="h",lwd=2,ylab="Correlation", 

xlab="Stocks", main="EW",ylim=c(0,0.8)) 

plot(cor.matrix[,4],type="h",lwd=2,ylab="Correlation", 

xlab="Stocks", main="B") 

 

########################Shrinkage example################### 

library(gdata) #lowerTriangle() 

library(PerformanceAnalytics) 

library(corpcor) 

 

#Returns 

StockA = rbind(0.02,0.01,0.05,0.025) 

StockB = rbind(0.01,0.07,-0.005,0.1) 

StockC = rbind(0.1,0.09,0.12,0.13) 

Merged = cbind(StockA,StockB,StockC) 
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######The variance shrinkage intensity 

 

xA.bar = (sum(StockA))/4 

xB.bar = sum(StockB)/4 

xC.bar = sum(StockC)/4 

 

w.A1=  (StockA[1,]-xA.bar)^2 

w.A2 = (StockA[2,]-xA.bar)^2 

w.A3 = (StockA[3,]-xA.bar)^2 

w.A4 = (StockA[4,]-xA.bar)^2 

w.B1 = (StockB[1,]-xB.bar)^2 

w.B2 = (StockB[2,]-xB.bar)^2 

w.B3 = (StockB[3,]-xB.bar)^2 

w.B4 = (StockB[4,]-xB.bar)^2 

w.C1 = (StockC[1,]-xC.bar)^2 

w.C2 = (StockC[2,]-xC.bar)^2 

w.C3 = (StockC[3,]-xC.bar)^2 

w.C4 = (StockC[4,]-xC.bar)^2 

 

wbar_A = sum(w.A1,w.A2,w.A3,w.A4)/4 

wbar_B = sum(w.B1,w.B2,w.B3,w.B4)/4 

wbar_C = sum(w.C1,w.C2,w.C3,w.C4)/4 

 

vA = wbar_A*(4/3) 

vB = wbar_B*(4/3) 

vC = wbar_C*(4/3) 

 

var.vA = sum((w.A1-wbar_A)^2,(w.A2-wbar_A)^2,(w.A3-wbar_A)^2,(w.A4-

wbar_A)^2)*(4/(3^3)) 

var.vB = sum((w.B1-wbar_B)^2,(w.B2-wbar_B)^2,(w.B3-wbar_B)^2,(w.B4-

wbar_B)^2)*(4/(3^3)) 

var.vC = sum((w.C1-wbar_C)^2,(w.C2-wbar_C)^2,(w.C3-wbar_C)^2,(w.C4-

wbar_C)^2)*(4/(3^3)) 

 

var.vec = diag(var(Merged)) 

median.var = median(var.vec) 

 

#Now computing lambda 

l.top = sum(var.vA,var.vB,var.vC) 

l.bot = sum((vA-median.var)^2,(vB-median.var)^2,(vC-median.var)^2) 

lambda.var = l.top/l.bot 

 

lambda.var #0.1363 

#When using the estimate.lambda.var function in corpcor 

estimate.lambda.var(Merged) #0.1363 

 

#Now calculating the estimated variance and volatility 

vol.shrink = sqrt((lambda.var*median.var)+(1-lambda.var*var.vec)) 

vol.shrink.mat = matrix(nrow = 3,ncol=3) 

diag(vol.shrink.mat)= vol.shrink 

  

##########The correlation shrinkage intensity 

 

#Volatilities 

st.devA = apply(StockA,2,sd) 
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st.devB = apply(StockB,2,sd) 

st.devC = apply(StockC,2,sd) 

 

w.k1ij1= ((StockA[1,]-xA.bar)*(StockB[1,]-xB.bar))/(st.devA*st.devB) 

w.k1ij2 =((StockA[1,]-xA.bar) *(StockC[1,]-

xC.bar))/(st.devA*st.devC) 

w.k1ij3 = ((StockB[1,]-xB.bar)*(StockC[1,]-

xC.bar))/(st.devB*st.devC) 

w.k2ij1 = ((StockA[2,]-xA.bar)*(StockB[2,]-

xB.bar))/(st.devA*st.devB) 

w.k2ij2 = ((StockA[2,]-xA.bar)*(StockC[2,]-

xC.bar))/(st.devA*st.devC) 

w.k2ij3= ((StockB[2,]-xB.bar)*(StockC[2,]-xC.bar))/(st.devB*st.devC) 

w.k3ij1 = ((StockA[3,]-xA.bar)*(StockB[3,]-

xB.bar))/(st.devA*st.devB) 

w.k3ij2 = ((StockA[3,]-xA.bar)*(StockC[3,]-

xC.bar))/(st.devA*st.devC) 

w.k3ij3 = ((StockB[3,]-xB.bar)*(StockC[3,]-

xC.bar))/(st.devB*st.devC) 

w.k4ij1 = ((StockA[4,]-xA.bar)*(StockB[4,]-

xB.bar))/(st.devA*st.devB) 

w.k4ij2 = ((StockA[4,]-xA.bar)*(StockC[4,]-

xC.bar))/(st.devA*st.devC) 

w.k4ij3 = ((StockB[4,]-xB.bar)*(StockC[4,]-

xC.bar))/(st.devB*st.devC) 

 

w.barAB = (w.k1ij1+w.k2ij1+w.k3ij1+w.k4ij1)/4  

w.barAC = (w.k1ij2+w.k2ij2+w.k3ij2+w.k4ij2)/4 

w.barBC = (w.k1ij3+w.k2ij3+w.k3ij3+w.k4ij3)/4 

 

top1 = (w.k1ij1-w.barAB)^2+(w.k2ij1-w.barAB)^2+(w.k3ij1-

w.barAB)^2+(w.k4ij1-w.barAB)^2 

top2 = (w.k1ij2-w.barAC)^2+(w.k2ij2-w.barAC)^2+(w.k3ij2-

w.barAC)^2+(w.k4ij2-w.barAC)^2 

top3 = (w.k1ij3-w.barBC)^2+(w.k2ij3-w.barBC)^2+(w.k3ij3-

w.barBC)^2+(w.k4ij3-w.barBC)^2 

top.tot = (4/(3^3))*(top1+top2+top3) 

 

cor.sq = lowerTriangle(cor(Merged)^2) 

 

lambda.cor = top.tot/sum(cor.sq) 

lambda.cor #0.8726 

 

#When using the estimate.lambda function in corpcor 

estimate.lambda(Merged) #0.8726 

 

#Estimated correlation matrix 

identity.mat = diag(x=1, nrow=3, ncol=3) 

cor.shrink = lambda.cor*identity.mat+(1-lambda.cor)*cor(Merged) 

 

#The estimated covariance matrix 

covmat.shrink = vol.shrink.mat%*%cor.shrink%*%vol.shrink.mat 

 

#By using the corpcor package 

cov.matshrink1 = cov.shrink(Merged) 
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