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Abstract

We give a logic for formulas φ−◦ψ, with the informal reading
”ψ is true in the context described by φ”. These are interpreted
as binary modalities, by quantification over an enumerable set of
unary modalities c−◦ψ, meaning ”ψ is true in context c”. The
logic allows arbitrary nesting of contexts.

A corresponding axiomatic presentation is given, and proven
to be decidable, sound, and complete.

Previously, quantificational logic of context restricted the
nesting of contexts, and was only known to be decidable in very
special cases.

1 Introduction

The need for formal systems of reasoning within given contexts, and for
migrating between contexts, was pointed out in (McCarthy and Buvač
1994), (McCarthy 1993), (Giunchiglia 1993). See (Buvač 1996), (Buvač
et al. 1995), (Gabbay and Nossum 2000), (Serafini and Giunchiglia
2001), (Nossum and Serafini 2002), (Nossum 2002) for some develop-
ments of logical systems in this area.

An well-known application of a formal system of context is to lo-
calized contexts in the Cyc knowledge base (Reed and Lenat 2002).
During the early phases of the Cyc project (Guha 1991) introduced
the notation ist(c, ψ), with the reading that ”ψ is true in context c”.

We use the notation c−◦ψ for this, and generalize by allowing for-
mulas in the first coordinate: φ−◦ψ. We give formal semantics corre-
sponding to the informal reading of φ−◦ψ as ”ψ is true in the context
described by φ”.

This paper is organized as follows: The formula language is defined
in the next section, and some examples are given that illustrate some
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of the issues in interpreting contextualized formulas. Then a model
framework is defined, with clauses for interpreting every formula of the
language. A deductive system of axiom schemas and rules of inference
is given, with proofs of decidability, soundness, and completeness. Fi-
nally, some further properties of the logic are given, and some other
work in this area is discussed.

2 Formula language

The formula language is defined by a Backus-Naur grammar clause.
The bases for the definition are a set A of atomic formulas, and a set C
of context names, both of which are assumed to be enumerably infinite.

Definition 2.1 (The language Σ)

Σ ::= A|¬Σ|Σ → Σ|C −◦Σ|Σ−◦Σ

Additional connectives ↔,∧,∨ etc., and the constants > and ⊥,
can be added to the language in the usual way.

Our formulas c−◦φ are comparable to ist(c, φ) of (Buvač 1996),
but where there is first-order quantification over c in (Buvač 1996), we
have instead formulas ψ−◦φ, the semantics of which will be defined by
quantification over a set of modalities {d−◦φ}, depending on ψ.

3 Examples

3.1 Nested contexts

Recall the story of King Lear, who makes the fateful mistake of dis-
owning his only loving and loyal daughter, entrusting his kingdom to
his two other daughters. But they are greedy and selfish, and disaster
unfolds. Let ψ be the formula ”he is happy”.

the play −◦ ( the family −◦¬ψ)

The play is usually cast with actors who are quite rational in their
personal lives: Imagine such an actor, a devastating Lear on stage, but
privately a considerate and sensible father. Therefore,

the family −◦ψ
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unless some mishap temporarily interferes:

the family −◦ ( some mishap −◦¬ψ)

Of course, if a relative visits him at home, and compliments the
actor on his performance as King Lear, this makes him happy:

the family −◦ ( the play −◦ψ)

We are concerned that the pattern of surrounding contexts should
have bearing on the interpretation of embedded formulas. Some pre-
viously proposed logics of context only took account of the innermost
context in formulas such as the above (Buvač 1996).

3.2 Contexts described by formulas

Context can also be indirectly given by formulas, which then describe
the set of contexts where they are true. Consider the example given
by (Lewis 1973) in his early formal treatment of counterfactual condi-
tionals: ”If kangaroos had no tails, they would topple over.”

Writing κ for ”kangaroos have no tails”, and τ for ”kangaroos topple
over”, this becomes

κ−◦ τ

and our semantical account of it interprets it to be true in circumstances
such that all contexts where kangaroos have no tails, are contexts where
kangaroos topple over. The models employ a possible-worlds framework
to make precise the phrase ”circumstances such that”.

3.3 Incremental context

Context can be perceived as an incremental construction, and recon-
structing a coherent context from fragmented information is sometimes
necessary. Understanding anaphoric references is a case in point. Con-
sider for example a visitor to one of London’s prestigious old university
colleges, who is trying his best to find his way to a colleague’s office
through a confusing maze of underground corridors between various
college buildings.

He entered the underground passage, and the lights went
out. He swore profusely as he hit his forehead on something.
When the lights came back on, he found her office where he
had left it two days earlier. The bandaids were underneath
the computer manuals.
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A benevolent reader will be prone to ’fill in the gaps’ in the above
paragraph by bringing to bear contextual knowledge and assumptions
consistent with the rest of the tale. ’The bandaids’ acquire relevance by
assimilation of a ’hitting of forehead’-context, although their mention
is not preceded by any explicitly defining occurrence. This necessitates
a contextual reconstruction based on the preceding narrative, as well
as other sources, for understanding. (Kempson et al. 2001) present a
technique for building a tree structure of contextual information from
text, for use in resolving anaphoric references.

In the semantical framework that follows, there is a function which
augments a current state of affairs, say w, with a contextual component
c, to form a new state of affairs w?c. This represents incremental
assimilation of contextual information into the current state of affairs.

4 Model framework

As indicated above, we are concerned with the ability to interpret for-
mulas in circumstances which are influenced by context, and where
current circumstances are augmented when new contextual informa-
tion arrives. States of affairs change as context is assimilated, they
may change again by the addition of more context, and so on.

This leads to a reflection about what it is to be a state of affairs,
or a possible world, in our framework: Let us dispense for a moment
with any preconception of an original state of affairs from which later
states develop, or a final state of affairs towards which previous states
are headed, and try to fend exclusively with the sequential assimilation
of new bits of contextual information. In that case, all that a state of
affairs has to identify it, is the sequence of contexts that has led up to
it. If so minded, we may well speak of a possible world w and how it
changes to w?c when context c is assimilated, while remaining ready to
identify w with a sequence c of assimilated contexts. In fact, at several
places in the following sections, that is going to be very convenient
indeed.

The truth value of a formula will be evaluated at each of a set
of points, or possible worlds, in each model. A possible world gives
a coherent interpretation of the propositional language fragment, and
the worlds are related in a way that determines the interpretation of
−◦ formulas.

The interpretation of a formula c−◦φ at a point w depends on the

4



interpretation of φ at another point, which is related to w and c.
Each point is related to an enumerable set of other points, one per

context. Formulas of the form φ−◦ψ are interpreted at a point by
interpreting φ → ψ at all related points.

Formally, a model in this framework is a triple M = 〈W,?, V 〉,
where

• W 6= ∅ is the set of possible worlds,

• ? : W × C → W , and

• V : W ×A → 2.

The ? component imposes a directed graph on W , with an edge from
w to w?c for each w ∈ W and c ∈ C. Paths in the graph correspond
to sequences of nested contexts.

Whenever c is a finite sequence 〈c1, . . . , ck〉 of contexts, c−◦φ is
an abbreviation for c1−◦ . . . ck−◦φ, and w?c is an abbreviation for
w?c1 . . . ?ck. When c is empty, c−◦φ and w?c are just φ and w.

Definition 4.1 (Interpretation) The truth value of a formula φ at
a point w ∈ W in a model M is denoted M,w |= φ, and defined by the
following clauses, where a ∈ A, c ∈ C, and φ, ψ ∈ Σ:

M, w |=a iff V (w, a)

M, w |=¬ψ iff M,w 6|= ψ

M, w |=φ → ψ iff M, w |= φ implies M, w |= ψ

M, w |=c−◦ψ iff M, w?c |= ψ

M, w |=φ−◦ψ iff M,w |= c−◦ (φ → ψ)

for all c ∈ C

The symbol −◦ is doing the work of two here, corresponding to the
last two semantical clauses, but it will always be syntactically unam-
biguous which one is intended.

Definition 4.2 (Satisfaction) We say that a model M = 〈W,?, V 〉
satisfies a formula φ, denoted M |= φ, iff M, w |= φ for all w ∈ W .
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Definition 4.3 (Validity) Truth of a formula φ at all points in all
models is denoted |= φ, and we then say that φ is valid.

Every atomic formula a ∈ A is interpreted as a proposition which is
either true or false, and the connectives ¬ and → are interpreted classi-
cally. Therefore, all substitution instances of propositional tautologies
are valid in this class of models.

5 Deductive system

The deductive system consists of axiom schemas and rules of inference.
A finite nonempty sequence σ = 〈σ1, . . . , σk〉 of formulas is a derivation
of σk iff each element of σ either is an axiom or follows from previous
elements of σ by a rule of inference.

A formula φ is a theorem, in symbols ` φ, iff there exists a derivation
of φ.

These are the axiom schemas and rules of inference:

A1 All instances of propositional tautologies.

A2 (c−◦¬φ) ↔ ¬(c−◦φ)

A3 (c−◦ (φ → ψ)) → ((c−◦φ) → (c−◦ψ))

A4 (φ−◦ψ) → (c−◦ (φ → ψ))

R1
` φ,` φ → ψ

` ψ

R2
` φ

` c−◦φ

R3
` φ → (c−◦ (c−◦ (ψ → χ)))
` φ → (c−◦ (ψ−◦χ))

if c does not occur in φ.

Let us briefly comment on each schema and rule. Schema A1 and
rule R1 root the system in propositional logic, and A2 constrains
the set of formulas true in each context to be propositionally coherent.
Schema A3 and rule R2 are reminiscent of K and RN from normal
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modal logic, cfr (Chellas 1980). Schema A4 and rule R3 are similar
in spirit to universal instantiation, resp. universal generalisation, as
found in texts on quantified modal logic, e.g. (Hughes and Cresswell
1996).

Definition 5.1 (Decidability) A deductive system is said to be de-
cidable iff there is an effective procedure for deciding membership in its
set of theorems.

When an axiomatic system with finitely many axioms and rules of
inference has the finite model property, i.e. every formula which is satis-
fied by all finite models is valid, then theoremhood can be decided by a
procedure which alternately enumerates derivations and finite models.
Given a formula, eventually either it will pop up as a theorem or its
negation will be satisfied in a finite model. This procedure is effective,
since satisfaction can be recursively calculated in finite models.

Because our deductive system is finite, we only have to prove the
finite model property in the proof of decidability below.

Definition 5.2 (Soundness) An axiom is sound with respect to a
model framework iff it is valid, and a rule of inference is sound if it
maps valid premises to valid conclusions.

If all axioms and rules are sound, the whole system is said to be
sound, and then

` φ implies |= φ

for all formulas φ.

Definition 5.3 (Consistency) A formula φ is consistent iff 6 ` ¬φ.

A finite set of formulas is said to be consistent iff the conjunction
of its members is consistent, and an infinite set is consistent iff all its
finite subsets are consistent.

A formula φ is consistent with a set Γ according to the consistency
of Γ ∪ {φ}. Clearly, when Γ is a consistent set, φ is consistent with Γ
iff ¬φ is inconsistent with Γ.

Definition 5.4 (Maximality) A consistent set Γ is maximal iff, for
all formulas φ, consistency of Γ ∪ {φ} implies φ ∈ Γ.
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For a treatment of maximal consistent sets and their properties,
consult e.g. (Chellas 1980).

Definition 5.5 (Completeness) If every valid formula is a theorem;

|= φ implies ` φ

then the system is said to be complete.

The definitions of interpretation, satisfaction and validity are not
extended to sets of formulas, in particular not to infinite sets. Thus the
present notion of completeness can be rephrased as ”every consistent
formula is true at some point in some model”, but this does not carry
over to infinite sets of formulas.

We now proceed to prove decidability, soundness, and completeness
of this axiomatic presentation of the logic.

6 Decidability proof

Since we have finitely many schemas and rules, it is sufficient to show
that every formula satisfied by all finite models is valid. In the proof it
is convenient to rephrase this condition into an equivalent form: Every
formula true at some world in a model, is true at some world in a finite
model.

So, let us take an arbitrary formula φ for which there is a model
M = 〈WM , ?M , VM 〉 and a w ∈ WM such that M, w |= φ, and construct
a model F = 〈WF , ?F , VF 〉 with finite WF , such that F, u |= φ for some
u ∈ WF .

The possible worlds WF will be a subset of WM , constructed during
a a process which scans through all the subformulas of φ. At the start,
WF is empty, and for every subformula, at most one possible world from
WM is included into WF . Thus, WF will remain finite throughout the
procedure even though WM may be infinite.

The world u ∈ WF which will validate φ in the constructed finite
model F is w itself, and w is included into WF at the first step of the
procedure.

The order of traversal of φ corresponds to the natural order of se-
mantical interpretation, and proceeds analogously to the way in which
one would apply the semantical clauses to evaluate M, w |= φ.

Each subformula is interpreted at a possible world, or in the case of
ψ−◦χ formulas, a set of possible worlds. In either case, no more than
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a single world from WM is incorporated into WF for each subformula
of φ.

During this traversal we also construct part of ?F , and build a
relation ♥ between elements of WF and subformulas of φ. This relation
keeps track of which subformulas are interpreted at which worlds during
traversal.

The traversal procedure can be denoted P (w, φ) and defined recur-
sively as follows, letting WF = {w} and ♥ = ∅ initially.

P (w, φ) : First let w♥φ, then proceed by cases:

φ ∈ A : Define w?F c to be w for all c ∈ C.

φ = ¬ψ : Proceed with P (w, ψ).

φ = ψ → χ : Proceed with P (w, ψ) and P (w,χ).

φ = c−◦ψ : Include w?Mc into WF , and define w?F c to be w?Mc. Pro-
ceed with P (w?F c, ψ).

φ = ψ−◦χ : If M, w |= φ then choose a c ∈ C such that M, w?Mc |=
ψ → χ, otherwise choose a c ∈ C such that M, w?Mc 6|=
ψ → χ. Include w?Mc into WF . Define w?F c to be w?Mc.
Proceed with P (w?F c, ψ → χ).

Observe that with every invocation of P (u, η) on some world u ∈
WM and some subformula η of φ, u has already been included in WF ,
and u♥η is established immediately by P .

Clearly, WF as constructed here is finite, since at most one world
is added per subformula of φ.

It remains to define VF , and to define w?F c for remaining pairs w, c.
The former is simply VM restricted to WF ×A. For the latter, observe
that for all w ∈ WF there is some c ∈ C for which w?F c was defined
by P . Given w, pick one of these c, and let w?F d = w?F c whenever
w?F d was left undefined by P . This completes the construction of F .

Lemma 6.1 F, u |= η iff M,u |= η, whenever u♥η.

Proof: By induction on the syntactical structure of η:

η ∈ A : Immediate since VF (u, η) = VM (u, η).

η = ¬ψ : By the induction hypothesis applied to the syntac-
tically simpler formula ψ.
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η = ψ → χ : Ditto for ψ and χ.

η = c−◦ψ: We have u?F c = u?Mc from the corresponding
clause in the definition of P so F, u |= η iff (by se-
mantics) F, u?F c |= ψ iff (by induction) M, u?F c |=
ψ iff (as remarked) M, u?Mc |= ψ iff (by semantics)
M, u |= η.

η = ψ−◦χ : If M, u |= η, then for all c ∈ C we have M,u?Mc |=
ψ → χ, in particular for all c such that u?Mc were
included in WF , and F, u |= η follows. Otherwise
some c ∈ C was selected so that u?Mc ∈ WF and
M, u?Mc 6|= ψ → χ. It follows that F, u?F c 6|= ψ →
χ, and hence F, u 6|= η as required.

Lemma 6.2 F,w |= φ

Proof: Follows from the previous lemma, since M,w |=
φ and w♥φ.

This completes the proof of decidability.

7 Soundness proof

We prove soundness of A4 and R3 as examples. The other axiom
schemas and rules are no more complicated.

A4 We fix some arbitrary model M = 〈W,?, V 〉, and show that A4
is true at all w ∈ W : assuming the antecedent of the implication
true: M, w |= φ−◦ψ, we must prove its consequent true for the
same M and w: M, w |= c−◦ (φ → ψ). But from the assumption
we get: M, w |= c−◦ (φ → ψ) for every c ∈ C, which is sufficient.

R3 Taking the premise of the rule as valid in all models: M, w |=
φ → (c−◦ (c−◦ (ψ → χ))) for every model M = 〈WM , ?M , VM 〉
and every w ∈ WM , we prove that the conclusion of the rule is
valid in any model N = 〈WN , ?N , VN 〉, in other words N,u |=
φ → (c−◦ (ψ−◦χ)) for every u ∈ WN .

Choose an arbitrary N and a world u ∈ WN such that N, u |= φ,
to prove N, u |= (c−◦ (ψ−◦χ)). Now we take an arbitrary context
d ∈ C, and prove N, t?Nd |= ψ → χ with t = u?Nc.
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To this end, we construct a special model M from N as follows:
its domain is C∗, the set of finite sequences of contexts, including
the empty sequence ε. Intuitively, such a sequence points out a
world in WN , reachable from u by repeated application of ?N .
Distinct paths from u reaching the same world in WN count as
distinct worlds in WM .

The crucial difference between N and M is in the interpretation
at u, resp. ε, of formulas of the form c−◦ (c−◦ . . .) with c and c
as fixed above. Here are the definitions of M = 〈WM , ?M , VM 〉:

WM = C∗

w?Me = we for arbitrary w and e, except c?Mc = cd

VM (w, a) = VN (u?Nw, a)

We have M, ε |= φ since N, u |= φ and c does not occur in φ. By
the premise of R3 , i.e. M |= φ → (c−◦ (c−◦ (ψ → χ))), and
application of R1 , we obtain M, ε |= c−◦ (c−◦ (ψ → χ)). By
the model conditions this is equivalent to M, c?Mc |= ψ → χ, and
by the construction of M it follows that N, t?Nd |= ψ → χ, as
required.

8 Completeness proof

As already remarked, completeness is equivalent to truth of every con-
sistent formula δ at some point in some model . The proof uses a special
model M constructed from δ, in which the possible worlds are maxi-
mal consistent sets of formulas, and where a certain possible world w0,
which contains δ, also validates δ. This proof plan is an adaptation of a
technique invented by (Henkin 1949) for first-order predicate calculus.

We take an arbitrary consistent formula δ ∈ Σ, and construct a
model M = 〈W,?, V 〉 such that M,w |= δ for a particular w ∈ W :

• W = {w0} ∪ {w?c|w ∈ W, c ∈ C}, where w0 is a certain set of
formulas, containing δ and constructed as described below,

• w?c = {φ|c−◦φ ∈ w},
• and V (w, a) iff a ∈ w.

The construction of w0 proceeds in steps as follows. We start with
the set {δ}, and traverse the whole of Σ, including more formulas as
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we go: Σ is clearly enumerable since A and C are, so we fix some
enumeration Σ = 〈σ1, σ2, . . .〉. Now we consider each σi in turn, and
if σi is consistent with w0, then we add σi to w0. If furthermore σi is
of the form (c−◦¬(ψ−◦χ)), then we also add (c−◦¬(c′−◦ (ψ → χ)))
to w0, where c′ is chosen as a member of C that does not occur in any
member of w0. Since at each stage of the process w0 is finite, while C
is enumerably infinite, this is always feasible.

Lemma 8.1 w0 is a maximal consistent set.

Proof: The proof is by induction on the number of
steps in the construction of w0. It is consistent to begin
with, and we show that each addition to it preserves con-
sistency. It follows that every finite subset of w0 will be
consistent, therefore w0 itself will be consistent too. Also
it will be maximal, for suppose that w0 ∪ {σi} is consistent
for some σi ∈ Σ, then σi ∈ w0, since it was added in step i
of the process.

Addition of σi in the i’th step is only done if it pre-
serves consistency, so it remains to show that, after adding
(c−◦¬(ψ−◦χ)) consistently, adding (c−◦¬(c′−◦ (ψ →
χ))) to w0 also preserves consistency.

To see this, suppose for contradiction that
(c−◦¬(c′−◦ (ψ → χ))) is inconsistent with w0, in
other words,

` ¬(φ ∧ (c−◦¬(c′−◦ (ψ → χ))))

where φ is the (finite) conjunction of members of w0 after
adding σi consistently. Equivalently

` φ → ¬(c−◦¬(c′−◦ (ψ → χ)))

or, by repeated application of A2 ,

` φ → (c−◦ (c′−◦ (ψ → χ)))

But then by R3 :

` φ → (c−◦ (ψ−◦χ))

since c′ is chosen so as to not occur in φ. By repeatedly
applying A2 again, we get

` φ → ¬(c−◦¬(ψ−◦χ))
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or equivalently

` ¬(φ ∧ (c−◦¬(ψ−◦χ)))

But this contradicts the consistency of σi with w0, so it
follows that the consistency of w0 is preserved at every step
of its construction process.

Lemma 8.2 w?c is a maximal consistent set whenever w is.

Proof: The following three parts are sufficient, cfr.
(Chellas 1980):

• w?c contains all theorems: Suppose ` φ. Then ` c−◦φ
by R2 , so c−◦φ ∈ w since w is a maximal consistent
set. Then it follows that φ ∈ w?c by the definition of
?.

• w?c separates formulas from their negations, i.e. φ /∈
w?c iff ¬φ ∈ w?c:
Expanding the definition of the former we obtain:
(c−◦φ) /∈ w which is equivalent to ¬(c−◦φ) ∈ w by
the fact that w is maximal and consistent. By A2 this
is equivalent to c−◦¬φ ∈ w, which again by definition
of ? is equivalent to ¬φ ∈ w?c.

• w?c is propositionally closed, i.e. if φ ∈ w?c and φ →
ψ ∈ w?c then ψ ∈ w?c:
Suppose φ ∈ w?c, i.e. by definition c−◦φ ∈ w,
and suppose also φ → ψ ∈ w?c, which develops into
(c−◦ (φ → ψ)) ∈ w. We must show ψ ∈ w?c, which
means c−◦ψ ∈ w. But this follows from A3 and the
fact that w is a maximal consistent set.

Therefore the set w?c is maximal and consistent when-
ever w is. By induction on the length of paths in W starting
at w0, the previous two lemmas prove that all w ∈ W are
maximal consistent sets.

Lemma 8.3 M, w |= φ iff φ ∈ w

Proof: The proof is by induction on the syntactical
structure of the formulas.
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• The atomic case follows from the definition of V .

• ¬φ: M, w |= ¬φ iff, by definition, M, w 6|= φ iff, by
induction, φ /∈ w, iff, since w is maximal consistent,
¬φ ∈ w.

• φ → ψ: M, w |= φ → ψ iff, by definition, M, w |= φ
implies M, w |= ψ, iff, by induction, φ ∈ w implies
ψ ∈ w, iff, since w is maximal consistent, φ → ψ ∈ w.

• c−◦χ: By definition, M,w |= c−◦χ iff M, w?c |= χ,
equivalent by induction to χ ∈ w?c, which by defini-
tion of ? is equivalent to: c−◦χ ∈ w.

• φ−◦ψ: By definition, M, w |= φ−◦ψ iff for every
c ∈ C, M, w |= c−◦ (φ → ψ). By induction, this is
equivalent to: c−◦ (φ → ψ) ∈ w for every c ∈ C.
Now suppose that φ−◦ψ ∈ w. Then, by A4 and the
fact that w is a maximal consistent set, c−◦ (φ → ψ) ∈
w for any c, which is equivalent to M, w |= φ−◦ψ.
But if, on the contrary, (φ−◦ψ) /∈ w, then since w is a
maximal consistent set, ¬(φ−◦ψ) ∈ w. By construc-
tion of the model,

– w = w0?c for some sequence c of contexts
– c−◦¬(φ−◦ψ) ∈ w0

– c−◦¬(c′−◦ (φ → ψ)) ∈ w0 for some select c′

It follows that ¬(c′−◦ (φ → ψ)) ∈ w, which as re-
marked above is equivalent to M, w 6|= (φ−◦ψ).

This completes the proof of the lemma.

Lemma 8.4 M, w0 |= δ

Proof: This is now obvious, since δ ∈ w0.

Since every consistent formula is true somewhere, the logic is com-
plete for our class of models.

9 Further properties of the logic

We survey a few additional properties of the logic, in the form of sound
axiom schemas and rules of inference.
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In view of completeness, the soundness of each of these schemas
and rules is sufficient to show that they are derivable in the axiomatic
system. Soundness is straightforward to verify every case, so we omit
the proofs.

A5 (φ → ψ) → ((ψ−◦χ) → (φ−◦χ))

A6 (φ → ψ) → ((x−◦φ) → (x−◦ψ)) for x ∈ C or x ∈ Σ.

We see that −◦ is antitone in its first coordinate and monotone
in its second one. This is intuitively pleasing, and admits a pos-
sible reading of the binary modality −◦ as a kind of conditional,
although this was not the main motivation for its definition.

A7 (φ−◦φ)

A8 (x−◦φ) → ((φ−◦ψ) → (x−◦ψ)), for x ∈ C or x ∈ Σ.

This shows that −◦ is a partial preorder on Σ, again in keeping
with a reading of −◦ as a conditional symbol.

A9 (>−◦φ) → (c−◦φ)

The least specific description of a context is >, which describes
every context by virtue of being true no matter what.

A10 ¬(>−◦¬φ) → ((φ−◦¬ψ) ↔ ¬(φ−◦ψ))

This comes close to mimicking A2 for φ−◦ψ, and can be intu-
itively understood to say that every non-contradictory formula
describes some contexts.Whenever φ is not false in every context,
then whatever is false in the contexts described by φ, is not true
there. The restriction on φ is to avoid empty quantification.

A11 ((c−◦φ) ∧ (c−◦ψ)) ↔ (c−◦ (φ ∧ ψ))

This and other analogous rigidity principles apply to the classical
connectives. Intuitively, they are aspects of the propositional
coherence of the set of formulas true in each context.

A12 (x−◦ (φ → ψ)) → ((x−◦φ) → (x−◦ψ)) for x ∈ C or x ∈ Σ.

When an implication is true in every member of a set of contexts,
and the antecedent is true in every member, then the consequent
is also true in every member. An easy generalization over A3 ,
admitting formulas in the first coordinate of −◦ .
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A13 (φ−◦ψ) ↔ (>−◦ (φ → ψ))

This conversion principle corresponds closely to the semantical
clause for φ−◦ψ. Intuitively, > is the least specific description,
and thus describes every context. Therefore, every subformula
>−◦ . . . corresponds to a quantifier spanning the whole set C of
contexts.

R4
` φ ↔ ψ

` (φ−◦χ) ↔ (ψ−◦χ)

R5
` ∧φi → ψ

` ∧(x−◦φi) → (x−◦ψ)
for x ∈ C or x ∈ Σ.

These two rules show that, in the terminology of (Chellas 1980),
if we look at −◦ as a binary modality, it is classical in its first
coordinate and normal in its second one. It shares these proper-
ties with the class of conditional logics investigated there, and for
which the model framework was a class of minimal models. We
feel that the present class of models is simpler and more intuitive.

R6
` φ

` x−◦φ
for x ∈ C or x ∈ Σ.

Every theorem is true in every context described by any formula.
This is highly intuitive, and is a generalization over R2 , admit-
ting formulas in the first coordinate of −◦ .

R7
` φ → ψ

` φ−◦ψ

Constrains the phrase ”described by” in the informal reading of
φ−◦ψ. What is implied logically by φ, must also be true in the
contexts described by φ.

10 Comparison with other logics of context

The propositional logic of ist(c, ψ) is investigated in (Buvač et al. 1995),
and augmented with first-order quantification in (Buvač 1996). These
are axiomatic systems for reasoning with ist-formulas asserted in given
contexts. The syntax for asserting φ in context c is c : φ, and a cen-
tral motivation for these logics is the ability to enter a given context,
perform some reasoning there according to facts that hold in that con-
text, and exit with the results so obtained. In general, this gives rise
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to a stack c of contexts having been entered into and not exited from,
and these are the deduction rules governing entry into and exit from
contexts:

Enter:
` c : ist(c, ψ)
` cc : ψ

Exit:
` cc : ψ

` c : ist(c, ψ)

The Enter rule is not listed in the axiomatic presentation of (Buvač
et al. 1995), and it is subsumed by other axioms and rules of the logic.
It is included here for symmetry.

The semantics of (Buvač 1996) does not distinguish between
ist(c, ist(d, φ)) and ist(d, φ), which appears anomalous at first blush.
The rules for entering and exiting contexts are correspondingly con-
strained:

Enter:
` x : ist(c, ψ)

` c : ψ
Exit:

` c : ψ

` x : ist(c, ψ)

The logic remembers only the last context that has been entered into.
This phenomenon, called flatness, is not unavoidable however, and as
discussed below, (Nossum 2002) generalizes the propositional logic of
ist(c, φ) to an algebraically generated spectrum of context logics where
flat contexts are only a special case.

We may compare our
φ−◦ψ

with
∀c : ist(c, φ → ψ)

of (Buvač 1996). The latter formula can be taken as rephrasing our
semantical clause for the former. If the two are accepted as variants of
each other, then Buvač’s system is seen to be strictly more expressive
than the one presented here, because it has full first-order quantifica-
tion, over context variables as well as other variables. But as usual
expressivity comes at a price: the system of (Buvač 1996) is not decid-
able.

To further illuminate the trade-off that afforded us decidability in
the present logic, let us point out our axiom A2, which may be taken
to express that each individual context is a logically coherent and com-
plete entity. That is a stricter assumption than in most other logics of
context, including other logics studied by this author (Nossum 2002),
(Nossum and Serafini 2002), (Gabbay and Nossum 2000).
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van Benthem (van Benthem 1996) finds that the term ’context’
denotes a convenient methodological fiction, rather than a well-defined
ontological category. His proposal is for an indexing scheme, where
each language element can be decorated with an index specifying an
intended context for evaluation. This results in a logic where transition
between contexts has a natural expression.

Giunchiglia, Serafini et.al. have also developed logical systems of
context where transition between contexts is the main concern (Ser-
afini and Giunchiglia 2001). Each context is modelled by a separate
natural deductive system, and there are special rules for inter-context
deduction. However, there is no direct provision for nesting of contexts,
as in ist(c, ist(d, φ)), although the natural deduction system allows for
convenient passage between c and d.

Nossum and Serafini have developed natural-deductive systems of
context where context combination is catered for through an algebraic
component (Nossum and Serafini 2002). Sequential composition of
contexts, e.g. c, d, e, . . ., is represented associatively by algebraic terms,
e.g. c ⊕ d ⊕ e . . ., and there is provision for algebraic equations on
context terms, thus spanning a variety of natural-deductive logics of
context including flat contexts, context sets, context multisets, and
context sequences.

(Nossum 2002) expands on the idea of algebraic context augmenta-
tion in the framework of an axiomatic ist-logic in the style of (Buvač
et al. 1995). This time, context terms like c⊕ d⊕ e are introduced into
the syntax of the language, as are algebraic equations on ground con-
text terms. The equational varieties within the scope of this approach
are the same as in (Nossum and Serafini 2002), including flat contexts,
context sets, context multisets, and context sequences. Augmenting a
context w with another one, c, to form a composite context w ⊕ c, is
analogous to going from possible world w to possible world w?c in the
logic of the present paper. Ongoing work aims to generalize (Nossum
2002) to wider equational varieties and quasi-varieties, as well as to
quantificational logic.

In (Gabbay and Nossum 2000) a quantificational system similar to
Buvač’s is obtained by self fibring of predicate logics, and decidability
is shown in a special case. They also develop a multi-modal logic for
ist(φ, ψ), which is as expressive as the present logic for φ−◦ψ, but they
do not prove decidability for it.
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11 Conclusion

We depart from the notation ist(c, ψ) which originates with (Guha
1991), preferring c−◦ψ and generalizing to φ−◦ψ. Our system har-
nesses generalization over contexts in a two-layered multi-modal sys-
tem, the semantics of one modality quantifying over a set of simpler
modalities. This results in a simple, decidable, sound, and complete
axiomatic presentation.
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